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Abstract—Content delivery success in wireless caching helper
networks depends mainly on cache-based channel selection di-
versity and network interference. For given channel fadingand
network geometry, both channel selection diversity and network
interference dynamically vary according to what and how the
caching helpers cache at their finite storage space. We study
probabilistic content placement (or caching placement) todesir-
ably control cache-based channel selection diversity and network
interference in a stochastic wireless caching helper network,
with sophisticated considerations of wireless fading channels,
interactions among multiple users such as interference andloads
at caching helpers, and arbitrary memory size. Using stochastic
geometry, we derive optimal caching probabilities in closed form
to maximize the average success probability of content delivery
and propose an efficient algorithm to find the solution in a noise-
limited network. In an interference-limited network, based on
a lower bound of the average success probability of content
delivery, we find near-optimal caching probabilities in closed
form to control the channel selection diversity and the network
interference. We numerically verify that the proposed content
placement is superior to other comparable content placement
strategies.

Index Terms—Probabilistic content placement, caching prob-
ability, stochastic geometry, channel selection diversity

I. I NTRODUCTION

Recent evolution of mobile devices such as smart-phones
and tablets has facilitated access to multi-media contents
anytime and anywhere but such devices result in an explosive
data traffic increase. The Cisco expects by 2019 that these
traffic demands will be grown up to 24.3 exabytes per month
and the mobile video streaming traffic will occupy almost 72%
of the entire data traffic [1]. Interestingly, numerous popular
contents are asynchronously but repeatedly requested by many
users and thus substantial amounts of data traffic have been
redundantly generated over networks [2]. Motivated by this,
caching or pre-fetching some popular video contents at the
network edge such as mobile hand-held devices or small cells
(termed aslocal caching) has been considered as a promising
technique to alleviate the network traffic load. As the cache-
enabled edge node plays a similar role as a local proxy server
with a small cache memory size, the local wireless caching
has the advantages of i) reducing the burden of the backhaul
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by avoiding the repeated transmission of the same contents
from the core network to end-users and ii) reducing latency
by shortening the communication distance.

In recent years, there have been growing interests in wire-
less local caching. The related research has focused mainly
on i) femto-caching with cache-enabled small cells or ac-
cess points (called as caching helpers) [3]–[10], ii) device-
to-device (D2D) caching with mobile terminals [11]–[17],
and iii) heterogeneous cache-enabled networks [18]–[20].For
these local caching networks, varieties of content placements
(or caching placements) were developed [3]–[6], [8], [11],
[15], [18], [20] and for given fixed content placement, the
performance of cache-enabled systems with different trans-
mission or cache utilization techniques was investigated [7],
[9], [10], [12]–[14], [16], [17], [19]. Specifically, content
placement to minimize average downloading delay [3] or
average BER [4] was proposed for fixed network topology. In
a stochastic geometric framework, various content placements
were also proposed either to minimize the average delay
[8], [15] and average caching failure probability [11] or to
maximize total hit probability [18], offloading probability [20].
However, these caching solutions were developed in limited
environments; they discarded wireless fading channels and
interactions among multiple users, such as interference and
loads at caching helpers.

Recently, the content placement on stochastic geometry
modeling of caching was studied in [5], [6]. A tradeoff
between content diversity and cooperative gain according to
content placement was discovered well in [5] but the caching
probabilities were determined with numerical searches only.
Moreover, in [5], cache memory size is restricted to a single
content size and loads at caching helpers are not addressed.
The optimal geographical caching strategy to maximize the
total hit probability was studied in cellular networks in [6].
However, only hit probability whether the requested content is
available or not among the covering base stations was investi-
gated. None of the previous works successfully addressed the
channel selection diversity and interactions among multiple
users such as network interference and loads according to
content placement.

Success of content delivery in wireless cache network de-
pends mainly on two factors: i)channel selection diversity gain
and ii) network interference. For given realization of nodes in
a network, these two factors dynamically vary according to
what and how the nodes cache at their limited cache memory.
Specifically, if the more nodes store the same contents, they
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offer the shorter geometric communication distance as wellas
the better small-scale fading channel for the specific content
request, which can be termed as channel selection diversity
gain. On the contrary, if the nodes cache all contents uniformly,
they can cope with all content requests but channel selection
diversity gain cannot help being small. Moreover, according to
content placement, the serving node for each content request
dynamically changes, so the network interference from other
nodes also dynamically varies. Thus, it might be required
to properly control the channel selection diversity gain and
network interference for each content.

Recently, in [4], a tradeoff between content diversity and
channel diversity was addressed in caching helper networks,
where each caching helper is capable of storing onlyone
content. However, although pathloss and small-scale fading
are inseparable in accurately modeling wireless channels,the
channel diversity was characterized with only small-scale
fading and the effects of pathloss and network interferencede-
pending on random network geometry were not well captured.
In this context, we address the problem of content placement
with a more generalized model considering pathloss, network
interference according to random network topology based on
stochastic geometry, small-scale channel fading, and arbitrary
cache memory size. In this generalized framework, we develop
an efficient content placement to desirably control cache-based
channel selection diversity and network interference. Themain
contributions of this paper are summarized as follows.

• We model the stochastic wireless caching helper net-
works, where randomly located caching helpers store
contents independently and probabilistically in their finite
cache memory and each user receives the content of
interest from the caching helper with the largest instan-
taneous channel power gain. Our framework generalizes
the previous caching helper network models [4], [5] by
simultaneously considering small-scale channel fading,
pathloss, network interference, and arbitrary cache mem-
ory size.

• With stochastic geometry, we characterize the channel
selection diversity gain according to content placement
of caching helpers by deriving the cumulative distribution
function of the smallest reciprocal of the channel power
gain in a noise-limited network. We derive the optimal
caching probabilities for each file in closed form to
maximize the average content delivery success probability
for given finite cache memory size, and propose an
efficient algorithm to find the optimal solution.

• In interference-limited networks, we derive a lower bound
of the average content delivery success probability in
closed form. Based on this lower bound with Rayleigh
fading, we derive near-optimal caching probabilities for
each content in closed form to appropriately control the
channel selection diversity and the network interference
depending on content placement.

• Our numerical results demonstrate that the proposed
content placement is superior to other content placement
strategies because the proposed method efficiently bal-
ances channel selection diversity and network interfer-

Fig. 1. System model

ence reduction for given content popularity and cache
memory size. We also numerically investigate the effects
of the various system parameters, such as the density
of caching helpers, Nakagami fading parameter, memory
size, target bit rate, and user density, on the caching
probability.

The rest of this paper is organized as follows. In Section
II, we describe the system model and performance metric
considered in this paper. We analyze the average content
delivery success probability and desirable content placement of
caching helpers in a noise- and interference-limited network
in Sections III and IV, respectively. Numerical examples to
validate the analytical results and to investigate the effects of
the system parameters are provided in Section V. Finally, the
conclusion of this paper is given in Section VI.

II. SYSTEM MODEL AND PERFORMANCE METRIC

We consider a downlink wireless video service network,
where the caching helpers are capable of caching some con-
tents in their limited caching storage, as depicted in Fig. 1.
We assume that all contents have the same size normalized to
one for analytic simplicity1. The caching helpers are randomly
located and modeled as2-D homogeneous Poisson point pro-
cess (PPP) with intensityλ. The caching helpers are equipped
with a single antenna and their cache memory size isM ,
so M different contents can be cached at each helper since
each content has unit size. The total number of contents is
F (> M) and the set (library) of content indices is denoted as
F = {1, 2, · · · , F}. The contents have own popularity2 and
their popularity distributions are assumed to follow the Zipf
distribution as in literature [4], [5], [13]:

fi =
1/iγ

∑F
j=1 1/j

γ
, for i ∈ F , (1)

1Unequal content sizes are not addressed in this paper but forunequal sized
contents, each content can be partitioned into small chunksof the same size.
Each chunk can be treated as an individual content of the samesize and then
the analytic framework of this paper might be applicable.

2The contents have own popularity which is assumed to be perfectly
known. However, given time-varying content popularity in practical scenarios,
incorporation of estimation errors of content popularity might be required and
would be an interesting topic although this paper does not address it.
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Fig. 2. An example of the probabilistic caching method [6] when M = 3

andF = 5

where the parameterγ(≥ 0) reflects the popularity distribution
skewness. For example, ifγ = 0, the popularity of the contents
is uniform. The lower indexed content has higher popularity,
i.e., fi ≥ fj if i < j. Note that our content popularity
profile is not necessarily confined to the Zipf distribution but
can accommodate any discrete content popularity distribution.
The users are also randomly located and modeled as2-D
homogeneous Poisson point process (PPP) with intensityλu.
Based on Slivnyak’s theorem [21] that the statistics observed
at a random point of a PPPΦ is the same as those observed at
the origin in the processΦ∪{0}, we can focus on a reference
user located at the origin, called atypical user.

In this paper, we adoptrandom content placement where the
caching helpers independently cache contenti with probability
pi (0 ≤ pi ≤ 1) for all i ∈ F . According to the caching
probabilities (or policies){pi}, each caching helper randomly
builds a list of up toM contents to be cached by the
probabilistic content caching method proposed in [6]. Fig.
2 presents an example of the probabilistic caching method
[6] and illustrates how a caching helper randomly chooses
M contents to be cached among totalF contents according
to the caching probability{pi} when the cache memory size
is M = 3 and total number of contents isF = 5. In this
scheme, the cache memory of sizeM is equally divided into
L (≤ M ) blocks of unit size. Then, starting from content 1,
each content sequentially fills theM discontinuous memory
blocks by the amount ofpi from the first block. If a block
is filled up in the filling process of contentj, the remaining
portion of contentj continuously fills the next block. Then,
we select a random number within[0, 1] and the contents at
the position specified by the random number in each block
are selected. Because one content is selected from each block
by the selected random number, totalL (≤ M ) contents can
be selected in a probabilistic sense according to{pi}. In this
way, in Fig. 2, the contents{1, 3, 5} are chosen to be cached.

The contents selected in a probabilistic sense at each helper
are cached in advance by either its request or overhearing.
The caching helpers storing contenti can be modeled as
independent PPP with intensityλi(, piλ) and the locations
of the caching helpers storing contenti can be represented

by Φi = {xi,k} where k ∈ N. The typical user requests
one amongF contents according to the content popularityfi;
the content with a higher popularity is requested with higher
likelihood. If the typical user requests contenti and selects a
serving helper to maximize the instantaneous channel power
gain among the helpers storing contenti ∈ F , the received
signal power becomes

max
x∈Φi

P |hx|
2|x|−α, (2)

whereP is the transmit power of a caching helper,hx and|x|
denote the channel fading coefficient and the distance from the
typical user to the caching helper located atx, respectively,
andα(> 2) is the path loss exponent.

For each contenti, we denote a set of the reciprocals
of the channel power gains fromΦi to the typical user
in ascending order asΞi =

{

ξi,k =
rαi,k

|hi,k|2
, k ∈ N

}

, where
ξi,1 ≤ ξi,2 ≤ · · · . The notationri,k and hi,k represent the
distance and the channel fading coefficient from the typical
user to the caching helper with thek-th smallest recipro-
cal channel power gain among the caching helpers storing
content i, respectively. Note that the caching helper with
the largest instantaneous channel power gain is equivalentto
that with the smallest reciprocal of the channel power gain
(i.e., ξi,1). Assuming Gaussian signaling and time/frequency
resource sharing among the users associated with the same
caching helper, the mutual information between the typical
user requesting contenti and its serving caching helper is

Ri =
1

Ni
log2

(

1 +
P

ξi,1 (σ2 + Ji(ξi,1))

)

, (3)

whereNi is the load of the serving caching helper,σ2 is the
noise power variance, andJi(ξi,1) is the interference received
at the typical user, given by

Ji(ξi,1) =
∑

y∈Φc
i

P |hy|
2|y|−α +

∑

z∈Ξi\ξi,1

Pz−1, (4)

whereΦc
i (, Φ \ Φi) is the set of caching helpers which do

not cache contenti in their cache memory. The small-scale
channel fading terms of the desired link and the interfering
links follow the independent Nakagami-m distributions with
parametersmD andmI , respectively.

Similar to [5], [7], we define the average content delivery
success probability as a performance metric to properly ac-
count for the success events of content delivery as

Ps =
F
∑

i=1

fi · P [Ri ≥ ρi] , (5)

wherefi is the content requesting probability andρi is the
target bit rate of contenti [bits/s/Hz] to successfully support
the real-time video streaming service of contenti without
playback delay.

III. PROPOSEDCONTENT PLACEMENT IN NOISE-LIMITED

NETWORK

In this section, in order to investigate how channel selection
diversity affects the optimal caching solution, we first consider
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a noise-limited network; when the number of active users is
much smaller than the number of caching helpers, the impact
of interference is negligible compared to the noise power and
the typical user can be served without resource sharing with
other users.

In noise-limited networks, assuming Gaussian signaling, the
mutual information between the typical user requesting content
i and its serving helper is obtained as

Ri = log2

(

1 +
1

ξi,1

P

σ2

)

= log2

(

1 +
η

ξi,1

)

, (6)

whereη = P/σ2 is the signal-to-noise ratio (SNR).

A. Analysis of content delivery success probability

The power gain distribution of a Nakagami-ms fading
channel is given by

f(x;ms) =
mms

s

Γ(ms)
xms−1 exp (−msx) , (7)

whereΓ(t) =
∫∞

0 xt−1e−xdx is the gamma function,x ≥
0, and ms

(

≥ 1
2

)

is the fading parameter for links where
s ∈ {D, I} represents either the desired link (D) or the i.i.d.
interfering links (I). If ms = 1, the power gain distribution
follows the exponential distribution corresponding to Rayleigh
fading. Forms →∞, the channel is a deterministic channel.

When the typical user receives contenti from the caching
helper with the smallest reciprocal of the channel power
gain (i.e., the largest channel power gain), the cumulative
distribution function (CDF) of the smallest reciprocal of the
channel power gain (i.e.,ξi,1) is derived in Lemma 1.

Lemma 1: The CDF of the smallest reciprocal of the chan-
nel power gain,ξi,1, in a Nakagami-mD fading channel is
given by

Fξi,1 (ξ) = 1− exp
(

−κpiξ
δ
)

, (8)

whereκ = πλ Γ(δ+mD)

mδ
DΓ(mD)

andδ = 2
α .

Proof: For i ∈ F , let Ψi = {rαi,k(= |xi,k|
α), k ∈ N}

be the path losses between the typical user and the caching
helpers caching contenti. From the mapping theorem [The-
orem 2.34, [22]], Ψi is a non-homogeneous PPP and its
intensity function is given by

λΨi(x) = piλπδx
δ−1, x ∈ R

+, (9)

where δ = 2/α. Note that{Ψi}, ∀i ∈ F are also mutually
independent due to independence among{Φi}. Using the
displacement theorem [Theorem 2.33, [22]], we can also
derive the intensity function ofΞi =

{

ξi,k =
rαi,k

|hi,k|2

}

for a
general Nakagami-mD fading channel as

λΞi(y) = piλπδy
δ−1Γ(δ +mD)

mδ
DΓ(mD)

, y ≥ 0. (10)

Since the PPP ofΦi is transformed by the displacement and
mapping theorems,Ξi is also a PPP [22]. Therefore, the CDF
of ξi,1 is obtained as

Fξi,1 (ξ) = P (ξi,1 < ξ) , (11)

= 1− P(Ξi[0, ξ) = 0) (12)
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Fig. 3. The CDF of the smallest reciprocal of the channel power gain for
contenti whenα = 2.5 andpi = 1

= 1− exp

(

−

∫ ξ

0

λΞi(y)dy

)

(13)

= 1− exp(−κpiξ
δ) (14)

whereΞi[0, ξ) denotes the number point ofΞi in a circle with
a radiusξ andκ = πλ Γ(δ+mD)

mδ
DΓ(mD)

.

Remark: As piλ or E[|hi,k|
2δ] = Γ(δ+mD)

mδ
DΓ(mD)

increases, the
CDF of ξi,1 grows faster to 1 because the intensityλΞi of
PPPΞi is proportional to them. In other words, as the number
of caching helpers that are storing the content of interest
and accessible by the typical user increases or the small-
scale fading channel becomes more deterministic, the intensity
of PPPΞi representing the reciprocal channel power gains
grows and thus the smallest reciprocalξi,1 becomes smaller.
Especially, for givenλ andmD, the largest channel power gain
(i.e., 1/ξi,1) grows aspi increases, which implies an increase
of thechannel selection diversity gain according to the content
placement.

Fig. 3 validates the accuracy of Lemma 1 for varyingλ and
mD. The CDF ofξi,1 increases faster to 1 as eitherλ or mD

increases. However, the CDF ofξi,1 depends more onλ than
on mD, so optimal caching probabilities are affected more by
the density of caching helpers than channel fading.

From Lemma 1, the average success probability for content
delivery is derived in the following theorem.

Theorem 1: When the typical user receives contenti from
the caching helper with the largest instantaneous channel
power gain, the average success probability for content de-
livery Ps in a Nakagami-mD fading channel is obtained as

Ps = 1−

F
∑

i=1

fie
−κpi

(

η

2
ρi−1

)δ

, (15)

whereκ = πλ Γ(δ+mD)

mδ
DΓ(mD)

, δ = 2
α , η = P

σ2 , andρi is the target
bit rate of contenti.
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Proof:

P [Ri ≥ ρi] = P

[

log2

(

1 +
η

ξi,1

)

≥ ρi

]

(16)

= P

[

ξi,1 ≤
η

2ρi − 1

]

(17)

= Fξi,1

(

η

2ρi − 1

)

(18)

= 1− e
−κpi

(

η

2
ρi−1

)δ

, (19)

where (19) is obtained from Lemma 1. Substituting (19) into
(5), we obtain (15).

From Lemma 1, we know that the channel selection di-
versity gain for a specific content increases as the number of
caching helpers storing the content increases, i.e.,pi increases.
However, due to limited memory spaceM , i.e., the constraint
∑F

i=1 pi ≤ M , storing the same content at more caching
helpers (pi increases) loses the chance of storing the other
contents and the corresponding channel diversity gains.

Therefore, for given finite memory size and content popu-
larity, the average success probability of content delivery can
be maximized by controlling the channel selection diversity
gains for each content. This can be achieved by optimally de-
termining caching probabilities in random content placement.
Consequently, the corresponding optimization problem canbe
formulated as

P1 : {p⋆i } = argmax
{pi}

F
∑

i=1

fi

[

1− e
−κpi

(

η

2
ρi−1

)δ
]

, (20)

= argmin
{pi}

F
∑

i=1

fie
−κpi

(

η

2
ρi−1

)δ

, (21)

subject to
F
∑

i=1

pi ≤M, (22)

pi ≤ 1 ∀i ∈ F , (23)

pi ≥ 0 ∀i ∈ F . (24)

B. Optimal caching probabilities

In this subsection, we derive the optimal solution of Problem
P1, the optimal caching probabilities, in closed form. For

eachi, the functiongi(pi) , e
−κpi

(

η

2
ρi−1

)δ

is convex with
respect topi since d2

d2pi
gi(pi) ≥ 0. Since a weighted sum of

convex functions is also convex function, ProblemP1 is a
constrained convex optimization problem and thus a unique
optimal solution exists. The Lagrangian function of problem
P1 is

L({pi}, ω, {µi})

=

F
∑

i=1

fie
−κpiTi+ ω

(

F
∑

i=1

pi −M

)

+

F
∑

i=1

µi (pi − 1) , (25)

where Ti ,

(

η
2ρi−1

)δ

is a constant,ω and µi are the
nonnegative Lagrangian multipliers for constraints (22) and
(23).

After differentiatingL({pi}, ω, {µi}) with respect topi, we
can obtain the necessary conditions for optimal caching prob-
ability, i.e., Karush-Kuhn-Tucker(KKT) condition as follows:

∂L({pi}, ω, {µi})

∂pi
= −fiκTie

−cpiTi + ω + µi ≥ 0, (26)
{

−fiκTie
−κpiTi + ω + µi

}

pi = 0, (27)

ω

(

F
∑

i=1

pi −M

)

= 0, (28)

µi (pi − 1) = 0. (29)

From the constraint in (27), the optimal caching probabilities
are given by

pi(ω, µi) =

[

1

κTi
log

(

fiκTi

ω + µi

)]+

(30)

=
1

κTi
[log (fiκTi)− log (ω+µi)]

+
, ∀i∈F , (31)

where[z]+ = max{z, 0}. The caching probability of content
i grows as the content popularityfi becomes large, but is
regulated by the term oflog(w+µi). For the constraint in (28),
ω is not necessarily zero because the optimal solution should
always satisfy

∑F
i=1 pi = M . Based on the KKT conditions

in (26)-(29), Lagrangian multipliersω andµi range, according
to pi, as (32), which is placed at the top of next page.

(32) reveals that the caching probabilitypi is determined
according to Lagrangian multiplierω only sinceµi is a func-
tion of ω; if ω ≤ min{l1, · · · , lF } where li = fiκTie

−κTi ,
then pi = 1 ∀i ∈ F and thus

∑F
i=1 pi(ω, µi) = F . If

ω ≥ max{u1, · · · , uF } whereui = fiκTi, thenpi = 0 ∀i ∈
F and thus

∑F
i=1 pi(ω, µi) = 0. Whenmin{l1, · · · , lF } ≤

ω ≤ max{u1, · · · , uF },
∑F

i=1 pi(ω, µi) is bounded by0 ≤
∑F

i=1 pi(ω, µi) ≤ F since
∑F

i=1 pi(ω, µi) is decreasing with
respect toω. Therefore, using the fact that

∑F
i=1 pi(ω

⋆, µ⋆
i ) =

M for the optimalω⋆, one-dimensional bisection search can
find the optimalω⋆ and the corresponding{pi(ω⋆, µ⋆

i )} given
by

p⋆i = min
(

[pi(ω
⋆, µ⋆

i )]
+, 1

)

, ∀i ∈ F . (33)

The proposed algorithm to find the optimal caching prob-
abilities {pi(ω⋆, µ⋆

i )} is presented in Algorithm 1. Conse-
quently, the content delivery success probability maximized
with {pi(ω⋆, µ⋆

i )} becomes

P ⋆
s =

F
∑

i=1

fi

[

1− e
−κp⋆

i

(

η

2
ρi−1

)δ
]

. (34)

IV. PROPOSEDCONTENT PLACEMENT IN

INTERFERENCE-LIMITED NETWORK

In the previous section, the cache-based channel selection
diversity gain for each content has been highlighted and the
optimal caching probabilities to balance them were derived
without consideration of interference. In this section, inthe
presence of network interference, we derive near-optimal con-
tent placement and analyze the effects of network interference



6







ω ≤ fiκTie
−κTi , µi =

[

fiκTie
−κTi − ω

]+
for pi = 1,

fiκTie
−κTi < ω < fiκTi, µi = 0 for 0 < pi < 1,

ω ≥ fiκTi, µi = 0 for pi = 0.

(32)

Algorithm 1. A bisection method for findingp⋆i
1: a← min{l1, · · · , lF },

b← max{u1, · · · , uF } ⊲ a, b: two initial boundaries
ω ← a+b

2 ⊲ ω: Initial guess ofω
2: for i = 1, · · · , F

3: µi ← [li − ω]+

4: Compute (31), i.e.,pi(ω, µi)
5: end
6: while |

∑F
i=1 pi(ω, µi)−M | ≥ ǫ do

⊲ ǫ: error tolerance level
7: if

∑F
i=1 pi(ω, µi) > M , then a← ω

8: else if
∑F

i=1 pi(ω, µi) < M , then b← ω
9: end if

10: ω ← a+b
2

11: Repeat: Step 2 - 5
12: end while
13: p⋆i ← pi(ω, µi) for ∀i ∈ F

on the content placement. We assume that the density of users
is much higher than that of caching helpers, i.e.,λu ≫ λ, so
the effect of noise is almost negligible relative to interference.

A. Analysis of content delivery success probability

When the typical user receives contenti from the caching
helper with the smallest reciprocal of the instantaneous chan-
nel power among the caching helpers storing contenti, the
other caching helpers interfere with the typical user because
they are assumed to serve other users. Then, the received
signal-to-interference ratio (SIR) at the typical user is rep-
resented as

γi =
P

ξi,1 · Ji(ξi,1)
, (35)

whereJi(ξi,1) is the interfering signal power and given by

Ji(ξi,1) = P
∑

y∈Φc
i

|hy|
2|y|−α + P

∑

z∈Ξi\ξi,1

z−1, (36)

whereΦc
i (, Φ \Φi) is a set of the caching helpers which do

not cache contenti andΞi is a set of the reciprocals of the
channel power gains fromΦi. Note that the interfering signal
power dynamically changes according to content placement of
caching helpers since it is a function ofξi,1 andΦc

i . Therefore,
optimal caching probabilities are expected to be obtained by
optimally controlling channel selection diversity and network
interference for given content popularity and cache memory
size.

In interference-limited networks, the average success prob-
ability of content delivery in (5) is represented by

Ps =

F
∑

i=1

fi · P

[

1

N ins
i

log2

(

1 +
P

ξi,1Ji(ξi,1)

)

≥ ρi

]

, (37)

whereN ins
i is a random load of the tagged caching helper

when an arbitrary user receives contenti from the caching
helper with the largest instantaneous channel power gain.
To characterize (37), we require both the probability mass
function (PMF) of the load at the tagged caching helper
and the SIR distribution when multiple contents are cached
at each helper and the association is based on the instanta-
neous channel power gains. However, unfortunately, the exact
statistics of the required information are unavailable because
they are complicatedly determined by many interacting factors,
such as multiple cached contents, locations of caching helpers
and users, content request of users, instantaneous channel
fading gains, etc. Thus, the optimal caching probabilitiesto
maximize (37) have to be found by numerical searches of
which complexity is prohibitively high for a huge number
of contents. In this context, we propose near-optimal content
placement to obtain some useful insights in interference-
limited scenarios. To this end, we first approximate (37) with
the average load of the tagged caching helper [23]–[25] as

Ps ≈

F
∑

i=1

fi · P

[

1

N̄ ins
i

log2

(

1 +
P

ξi,1Ji(ξi,1)

)

≥ ρi

]

, (38)

whereN̄ ins
i is the average load of the tagged caching helper

when the user requests contenti to the caching helper with
the largest instantaneous channel power gain. The validityof
approximation (38) is demonstrated in Fig. 4, where red star
and blue circle represent the Monte-Carlo simulation (37) and
its approximation (38), respectively. This figure verifies that
the approximation (38) is quite tight to (37) for arbitraryp1.
Moreover, a lowerbound of (38) is obtained in the following
theorem.

Theorem 2: When the typical user receives the requesting
content from the caching helper with the smallest reciprocal
of instantaneous channel power gain, the average success
probability of content delivery is bounded below by

Ps ≥

F
∑

i=1

fi

∫ ∞

0

mD−1
∑

k=0

1

k!

(

−mDP−1τir
α
)k
×

dk

dsk
LIi(s)|s=mDP−1τirαf|xi|(r)dr, (39)

whereτi = 2cρi − 1, c (≥ 1) is a constant independent ofi
and makes the inequality hold for all ranges of{pi}, mD and
mI are the Nakagami fading parameters of the desired and
interfering links, respectively, and

LIi(s) = exp

(

−2πλ

∫ ∞

0

[

1−
mI

(sPv−α +mI)mI

]

vdv

+ 2πpiλ

∫ r

0

[

1−
mI

(sPv−α +mI)mI

]

vdv

)

, (40)

f|xi|(r) = 2πpiλr exp
(

−πpiλr
2
)

. (41)
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Fig. 4. Average content delivery success probabilities of Monte-Carlo
simulation (37) and our approximations (38), (52), (53) arecompared versus
p1 = 1−p2, whenλ = 10µ (units/m2), λu = 20µ (units/m2), ∀ρi = 0.001
(bits/s/Hz),γ = 1, mD = mI = 1, M = 1, andF = 2.

Proof: See Appendix A.
Based on the lower-bounded average success probability

of content delivery, we formulate an alternative optimization
problem as

P2 : {p̂⋆i } =argmax
{pi}

(39),

subject to
F
∑

i=1

pi ≤M,

pi ≤ 1 ∀i ∈ F ,

pi ≥ 0 ∀i ∈ F . (42)

Although it is still non-trivial to obtain the solution of this
alternative optimization problem, fortunately, whenmD =
mI = 1, i.e., a Rayleigh fading channel, the objective function
(i.e., the lower bound of delivery success probability) becomes
more tractable and sheds light on intuitively understanding
the impacts of network interference on content placement.
Therefore, in the following subsection, we focus on the case
of mD = mI = 1 (i.e., Rayleigh fading).

B. Caching probabilities in Rayleigh fading channels

Corollary 1: For Rayleigh fading channels (i.e.,mD =
mI = 1), the lower-bound of delivery success probability in
(39) is simplified as

Ps ≥

F
∑

i=1

fi ·
pi

(

1− τ
2/α
i Cτi,α

)

pi + τ
2/α
i Cα

, (43)

where τi = 2cρi − 1, Cα = 2π
α csc

(

2π
α

)

, Cτi,α =

τ
−2/α
i 2F1

(

1, 2
α ; 1 +

2
α ;−

1
τi

)

and 2F1(·) is the Gauss hy-
pergeometric function.

Proof: We omit the proof since it can be readily obtained
by substitutingmD = mI = 1 in Theorem 2.

With arbitrary cache memory size ofM at each helper, the
alternative optimization problemP2 is rewritten as

P3 : {p̂⋆i }= argmax
{pi}

F
∑

i=1

fi
pi

(

1−τ
2/α
i Cτi,α

)

pi+ τ
2/α
i Cα

,

subject to
F
∑

i=1

pi ≤M,

pi ≤ 1 ∀i ∈ F ,

pi ≥ 0 ∀i ∈ F . (44)

Now we show that the objective function inP3 is concave
and optimization problemP3 is also the constrained convex
optimization problem.

If we definegi(pi) as

gi(pi) ,
pi

(1−Ai)pi +Bi
, (45)

whereAi = τ
2/α
i Cτi,α(> 0) andBi = τ

2/α
i Cα(> 0), its first

derivative isg′i(pi) = Bi

[(1−Ai)pi+Bi]
2 > 0 becauseBi > Ai

always holds and(1 − Ai)pi +Bi > 0 for 0 ≤ pi ≤ 1. Note
that 0 < Ai ≤ 1 for all i because

Ai = τ
2/α
i Cτi,α = τ

2/α
i

∫ τ
−2/α
i

0

1

1 + uα/2
du

≤ τ
2/α
i

∫ τ
−2/α
i

0

1du = 1, (46)

Ai = τ
2/α
i Cτi,α = τ

2/α
i

∫ τ
−2/α
i

0

1

1 + uα/2
du

≥ τ
2/α
i

∫ τ
−2/α
i

0

0du = 0. (47)

The second derivative ofgi(pi) is g′′i (pi) =
2Bi(Ai−1)

[(1−Ai)pi+Bi]
3 ≤

0 and thusgi(pi) is a strictly increasing concave function.
Since a weighted sum of concave functions still satisfies
concavity, optimization problemP3 is a constrained convex
optimization problem. Applying the same approach in Section
III-B, we obtain the optimal caching probability of problem
P3 as

pi(ω, µi)=

[

−
Bi

1−Ai
+

√

fiBi

(1−Ai)2(ω⋆+µ⋆
i )

]+

, ∀i∈F , (48)

=
1

1−Ai

[

−Bi +

√

fiBi

ω⋆+µ⋆
i

]+

, ∀i∈F , (49)

where Lagrangian multipliersω andµi range, according topi,
as (50), which is placed at the top of next page.

Replacing (31) with (49) and lettingli =
fiBi

(1−Ai+Bi)
2 and

ui =
fi
Bi

in Algorithm 1, we can find the optimalω⋆ andµ⋆
i

with one-dimensional bisection search and the corresponding
near-optimal caching probabilities{pi(ω⋆, µ⋆

i )} given by

p̂⋆i =min





1

1−Ai

[

−Bi+

√

fiBi

ω⋆+µ⋆
i

]+

, 1



 , ∀i∈F . (51)
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

ω ≤ fiBi

(1−Ai+Bi)
2 , µi =

[

fiBi

(1−Ai+Bi)
2 − ω

]+

for pi = 1,
fiBi

(1−Ai+Bi)
2 < ω < fi

Bi
, µi = 0 for 0 < pi < 1,

ω ≥ fi
Bi

, µi = 0 for pi = 0.

(50)
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Fig. 5. Comparison of average content delivery success probabilities among
the proposed content placement, UC, and MPC versus the content popularity
exponentγ whereF = 20 andM = 5.

Remark: Unlike noise-limited networks, the solution of
content placement obtained in (51) is independent of the
transmit power of caching helpers. The caching probability
is a function ofα, fi and τi = 2cρi − 1. In other words,
the content placement is determined by the pathloss exponent,
content popularity, and target bit rate.

V. NUMERICAL RESULTS

In this section, we evaluate the average success probabil-
ity of content delivery to validate our analytical results in
the previous sections. We also examine how various system
parameters, such asSNR, content popularity exponent (γ),
Nakagami fading parameter (mD andmI ), pathloss exponent
(α), density of caching helpers (λ), user density (λu), max-
imum target content bit rate (ρmax), and cache memory size
(M ) affect on caching probabilities. Unless otherwise stated,
the baseline setting of simulation environments is as follows:
γ = 1, F = 10, M = 3, mD = mI = 1, SNR = 20 (dB),
α = 3, λ = 0.05 (units/m2), λu = 0.002 (units/m2) and
ρmax = 1 (bits/s/Hz). The target bit rate for each content
is uniformly generated asρi ∈ (0, ρmax] and all simulation
results are averaged over 10,000 realizations.

A. Comparison among three different caching strategies

Fig. 5 compares the average success probabilities of content
delivery in a noise-limited network for three different content
placement strategies; i) caching theM most popular contents
(MPC), ii) caching the contents uniformly (UC), and iii)
proposed content placement found by Algorithm 1 (Proposed).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

file index i

O
pt

im
al

 c
ac

hi
ng

 p
ro

ba
bi

lit
y 

{p
i* }

 

 
λ=0.05, m

D
=1

λ=0.05, m
D

=5

λ=0.01, m
D

=1

λ=0.01, m
D

=5

Fig. 6. Optimal caching probability of each content for varying λ andmD

This figure demonstrates that the proposed content placement
in (33) is superior to both UC and MPC in terms of average
success probability of content delivery. MPC is closer to the
proposed content placement than UC for highγ, and vice versa
for low γ.

B. Effects of channel power gains

For varying λ and mD, the optimal caching probability
of each contenti in a noise-limited network is plotted in
Fig. 6, where the lower index indicates the higher popularity,
i.e., fi ≥ fj if i < j. As λ or mD increases, the optimal
caching probability becomes more uniform. It implies that
it would be beneficial to increase hitting probability for all
contents instead of focusing on channel selection diversity
for a few specific contents. This is because channel power
gains become higher as either the number of caching helpers
increases or channels become more deterministic although
channel selection diversity can be limited. This figure also
exhibits that the optimal caching probability depends more
on the geometric path loss than on small-scale fading, which
matches the implication of Fig. 3.

C. Effects of target bit rate

Fig. 7 shows the optimal caching probability of each content
i in a noise-limited network for varying maximum target bit
rate ρmax. As ρmax grows, the optimal caching probability
becomes biased toward caching the most popular contents.
If ρmax is large, increasing channel selection diversity gains
of the most popular contents is more beneficial to improve
success probability of content delivery.
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1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

file index i

O
pt

im
al

 c
ac

hi
ng

 p
ro

ba
bi

lit
y 

{p
i* }

 

 
M = 2
M = 3
M = 4

Fig. 8. Optimal caching probability of each content for varying M

D. Effects of cache memory size

In Fig. 8, the optimal caching probability of each content
i in a noise-limited network is plotted for varying cache
memory sizeM . The optimal caching probabilities scale with
the cache memory sizeM , but they become more uniform
as M increases. This is because less popular contents are
accommodated in memory of larger size.

E. Validation of the proposed near-optimal content placement

Fig. 9 compares the average success probabilities of content
delivery with optimalp⋆ obtained from (37) by brute-force
searches, with the proposed sub-optimalp̂⋆ obtained from
P3, and the lower bound (39) with the sub-optimalp̂⋆ versus
∀ρi = ρ, whenλ = 1 × 10−5µ (units/m2), γ = 1, M = 1,
andF = 2. For eachρ and λu, the value ofc for a tighter
lower bound is numerically found. Since the content placement
obtained from the lower bound is sub-optimal, the average
content delivery success probability with the sub-optimalp̂⋆

is bounded below that with optimalp⋆. Although there is a
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λ
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 = 2x10-5, Lowerbound with sub-optimal p

Fig. 9. Comparison of average success probabilities of content delivery
with Monte-Carlo simulation with optimalp⋆, Monte-Carlo simulation with
sub-optimalp̂⋆, and lowerbound with sub-optimal̂p⋆ versus∀ρi = ρ, when
λ = 1× 10

−5 (units/m2), M = 1, andF = 2.

large gap between the lower bound in (39) andPs, the gap
between the average content delivery success probabilities with
the optimalp⋆ and the proposed̂p⋆ is small for an arbitrary
target bit rate because (37) and (39) have quite similar shapes.
Consequently, the proposed sub-optimal caching probability is
close to optimal caching probability although the sub-optimal
caching probability is found from the lower bound in (39).

F. Comparison among three different caching strategies in
interference-limited network

Fig. 10 compares the average content delivery success
probabilities among the proposed content placement schemes
with numerically foundc yielding a tight lower bound and
with c = Mλu

λ , UC, and MPC versus the content popularity
exponentγ. Although the value ofc needs to be numerically
found, any suboptimal solution even with the valuec which
does not always satisfy the inequality in (39) yields a lower
average success probability of content delivery because ofits
suboptimality. From this fact, a suboptimal solution can be
found by setting the value ofc to be the average load of a
typical caching helper asc = Mλu

λ for simplicity. Fig. 10
demonstrates that that both the proposed content placement
schemes with numerically foundc andc = Mλu

λ are superior
to both UC and MPC in terms of average content delivery
success probability for generalγ. The average content delivery
success probability withc = Mλu

λ is quite similar to that with
numerically foundc and outperforms UC and MPC.

G. Effects of user density

In an interference-limited network, for varying user density
λu, the proposed caching probability of each contenti ob-
tained by solving the convex optimization problem inP3 is
plotted in Fig. 11, where the value ofc yielding a tight lower
bound is numerically found. As the user densityλu decreases,
the optimal content placement tends to cache all contents with
more uniform probabilities.
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VI. CONCLUSIONS

We studied probabilistic content placement to desirably
control cache-based channel selection diversity and network
interference in a wireless caching helper network, with spe-
cific considerations of path loss, small-scale channel fading,
network interference according to random network topology
based on stochastic geometry, and arbitrary cache memory
size. In a noise-limited case, we derived the optimal caching
probabilities for each content in closed form in terms of the
average success probability of content delivery and proposed
a bisection based search algorithm to efficiently reach the
optimal solution. In an interference-limited case, we derived
a lower bound on the average success probability of content
delivery. Then, we found the near-optimal caching proba-
bilities in closed form in Rayleigh fading channels, which

maximize the lower bound. Our numerical results verified that
the proposed content placement is superior to the conventional
caching strategies because the proposed scheme efficiently
controls the channel selection diversity gain and the interfer-
ence reduction. We also numerically analyzed the effects of
various system parameters, such as caching helper density,user
density, Nakagamim fading parameter, memory size, target bit
rate, and user density, on the content placement.

APPENDIX A
PROOF OFTHEOREM 2

Since the pathloss dominates the small-scale fading effects
according to Lemma 1,̄N ins

i is approximated as the load of
the tagged caching helper with the largest channel power gain
averaged over fading (i.e., the load based on the association
with long-term channel power gains),̄N ins

i ≈ N̄i. Moreover,
the received SIR with the association based on instantaneous
channel power gains is larger than that with the association
based on long-term channel power gains. Accordingly, (38)
can be further bounded below as

(38)≥
F
∑

i=1

fi · P

[

1

N̄i
log2

(

1+
P |hxi |

2|xi|
−α

Ii

)

≥ρi

]

, (52)

where

Ii =
∑

y∈Φ\xi

P |hy|
2|y|−α,

which is also validated in Fig. 4, where blue circle and green
solid line represent (38) and (52), respectively.

In case ofM = 1, a closed form expression of̄Ni is
available asN̄i = 1 + 1.28 fiλu

piλ
[23]–[25], but with multiple

contents (M ≫ 2) analytic evaluation of (52) is hard due to
the complicated form of̄Ni. To circumvent this difficulty, we
again take a lower bound of (52) as

(52)≥
F
∑

i=1

fi · P

[

1

c
log2

(

1 +
P |hxi |

2|xi|
−α

Ii

)

≥ρi

]

, (53)

wherec (≥ 1) is a constant independent ofi and makes the
inequality hold for all ranges of{pi}, andτi = 2cρi − 1. Note
that since (53) is a decreasing function with respect toc and
bounded below by zero, there must exist a certain value of
c (< ∞) which makes the inequality hold. The value ofc
yielding a tight lower bound can be numerically determined;
in generalc becomes larger as{ρi} diminishes andγ grows.
Fig. 4 validates (53), where green and black dotted lines
represent (52) and our lower bound in (53), respectively. It
is verified that there exists a finite value ofc yielding a
lower bound of (52) regardless of{pi}. In our setting, the
value of c for a tighter lower bound isc ≈ 40. Although
there exists a gap between (37) and its lower bound (53),
the shape of those two functions looks quite similar and thus
the caching probabilities obtained from (53) are close to the
optimal caching probabilities.

The equation (53) can be written by

F
∑

i=1

fi · P

[

1

c
log2

(

1 +
P |hxi |

2|xi|
−α

Ii

)

≥ ρi

]

(54)
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=

F
∑

i=1

fi · P

[

|hxi |
2 ≥

Iiτi|xi|
α

P

]

(55)

(a)
=

F
∑

i=1

fi

∫ ∞

0

EIi

[

Γ(mD,mDP−1τir
αIi)

Γ(mD)

]

f|xi|(r)dr, (56)

where τi = 2cρi − 1, Γ(s) is the Gamma function defined
as Γ(s) =

∫∞

0
ts−1e−tdt, Γ(s, x) is the upper incomplete

Gamma function defined asΓ(s, x) =
∫∞

x
ts−1e−tdt, xi is

the location of the nearest caching helper storing contenti,
f|xi|(r)

(

= 2πpiλr exp
(

−πpiλr
2
))

is the PDF of the distance
to the nearest caching helper storing contenti, and

Ii =
∑

y∈Φ\xi

P |hy|
2|y|−α

=
∑

y∈Φc
i

P |hy|
2|y|−α +

∑

y∈Φi\xi

P |hy|
2|y|−α. (57)

The equality (a) is obtained from the Nakagami-mD fading
channel power gain.

Since Γ[m,my]
γ(m) = e−my

∑m−1
k=0

mk

k! y
k, we have

EIi

[

Γ(mD,mDP−1τir
αIi)

Γ(mD)

]

(58)

=

mD−1
∑

k=0

1

k!

(

mDP−1τir
α
)k

EIi

[

Iki e
−mDP−1τir

αIi
]

(59)

(b)
=

mD−1
∑

k=0

1

k!

(

−mDP−1τir
α
)k dk

dsk
LIi(s)|s=mDτir

α

P

, (60)

where (b) is fromLxkf(x)(s) = (−1)k
dkLf (s)

dsk
andLIi(s) is

the Laplace transform ofIi given by

LIi(s) = E
[

e−sIi
]

= E

[

e−s
∑

y∈Φ\xi
P |hy|

2|y|−α
]

(61)

(c)
= E





∏

y∈Φ\xi

E|hy|2

[

e−sP |hy|
2|y|−α

]



 (62)

(d)
= exp

(

−2πpiλ

∫ ∞

r

[

1− Eg

[

e−sPgv−α
]]

vdv

)

× exp

(

−2π(1−pi)λ

∫ ∞

0

[

1−Eg

[

e−sPgv−α
]]

vdv

)

(63)

(e)
= exp

(

−2πpiλ

∫ ∞

r

(sPv−α +mI)
mI −mI

(sPv−α +mI)mI
vdv

)

× exp

(

−2π(1−pi)λ

∫ ∞

0

(sPv−α+mI)
mI−mI

(sPv−α+mI)mI
vdv

)

(64)

= exp

(

−2πλ

∫ ∞

0

(sPv−α +mI)
mI −mI

(sPv−α +mI)mI
vdv

)

× exp

(

2πpiλ

∫ r

0

(sPv−α +mI)
mI −mI

(sPv−α +mI)mI
vdv

)

, (65)

where (c) is due to independence of the channel; (d) comes
from the Probability Generating Functional (PGFL) of PPP;
(e) is from the mogment generating function (MGF) of the
Nakagami-mI distribution.

Substituting (60) into (56), we obtain

Ps ≥

F
∑

i=1

fi

∫ ∞

0

mD−1
∑

k=0

1

k!

(

−mDP
−1τir

α
)k

×
dk

dsk
LIi(s)|s=mDP−1τirαf|xi|(r)dr, (66)

wheremD andmI are the Nakagami fading parameters of the
desired and interfering links, respectively, and

LIi(s) = exp

(

−2πλ

∫ ∞

0

[

1−
mI

(sPv−α +mI)mI

]

vdv

+2πpiλ

∫ r

0

[

1−
mI

(sPv−α +mI)mI

]

vdv

)

, (67)

f|xi|(r) = 2πpiλr exp
(

−πpiλr
2
)

. (68)
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