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and tablets has facilitated access to multi-media conten
anytime and anywhere but such devices result in an explos
data traffic increase. The Cisco expects by 2019 that thes
traffic demands will be grown up to 24.3 exabytes per mon
and the mobile video streaming traffic will occupy almost 729
of the entire data traffid [1]. Interestingly, numerous plapu

contents are asynchronously but repeatedly requested by m
users and thus substantial amounts of data traffic have b
redundantly generated over networks [2]. Motivated by, thi
caching or pre-fetching some popular video contents at t
network edge such as mobile hand-held devices or small cel
(termed adocal caching) has been considered as a promisin
technique to alleviate the network traffic load. As the cach
enabled edge node plays a similar role as a local proxy server
with a small cache memory size, the local wireless cachir&
has the advantages of i) reducing the burden of the backhaug
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Abstract—Content delivery success in wireless caching helper by avoiding the repeated transmission of the same contents

networks depends mainly on cache-based channel selectioir d from the core network to end-users and ii) reducing latency
versity and network interference. For given channel fadingand

network geometry, both channel selection diversity and netork
interference dynamically vary according to what and how the . .
caching helpers cache at their finite storage space. We studyl€ss local caching. The related research has focused mainly
probabilistic content placement (or caching placement) tadesir- on i) femto-caching with cache-enabled small cells or ac-

ably control cache-based channel selection diversity andetwork  cess points (called as caching helpefs) [3]-[10], ii) devic

interference in a stochastic wireless caching helper netwio, - ; ; ; ; ;
with sophisticated considerations of wireless fading charels, to-device (D2D) caching with mobile terminals [11]-[17],

interactions among multiple users such as interference anthads ] o=
at caching helpers, and arbitrary memory size. Using stochetic  these local caching networks, varieties of content placesne
geometry, we derive optimal caching probabilities in closeé form  (or caching placements) were developed [3]-[6], [8].][11],
to maximize the average success probability of content dekry [15], [18], [20] and for given fixed content placement, the
and propose an efficient algorithm to find the solution in a nose-
limited network. In an interference-limited network, based on
a lower bound of the average success probability of content ’ =
delivery, we find near-optimal caching probabilities in clesed @, [MO], [12]-[14], [1€], [17], [19]. Specifically, conte
form to control the channel selection diversity and the netwrk placement to minimize average downloading delay [3] or
interference. We numerically verify that the proposed conent average BER[[4] was proposed for fixed network topology. In
placement is superior to other comparable content placemen
strategies.

by shortening the communication distance.
In recent years, there have been growing interests in wire-

and iii) heterogeneous cache-enabled netwarks [18]—-R0).

performance of cache-enabled systems with different trans
mission or cache utilization techniques was investigai@d [

a stochastic geometric framework, various content placésne
- _ were also proposed either to minimize the average delay
Index Terms—Probabilistic content placement, caching prob- [g], and average caching failure probabilify [11] or to

ability, stochastic geometry, channel selection diversit maximize total hit probability [18], offloading probabifif20].

However, these caching solutions were developed in limited
|. INTRODUCTION environments; they discarded wireless fading channels and
interactions among multiple users, such as interferenck an
Ads at caching helpers.

. SRecently, the content placement on stochastic geometry
%%deling of caching was studied inl[5].1[6]. A tradeoff

Recent evolution of mobile devices such as smart-pho

Stween content diversity and cooperative gain according t
ontent placement was discovered welllih [5] but the caching
6robabilities were determined with numerical searchegy.onl
Moreover, in [5], cache memory size is restricted to a single
ontent size and loads at caching helpers are not addressed.
1 optimal geographical caching strategy to maximize the
otal hit probability was studied in cellular networks [n].[6
Swever, only hit probability whether the requested cohien
available or not among the covering base stations was invest
éated. None of the previous works successfully addressed th
hannel selection diversity and interactions among mieltip
users such as network interference and loads according to
Bntent placement.
uccess of content delivery in wireless cache network de-

A part of this paper will be presented at the IEEE Int. Worksba Signal pend__s mainly on two factors: a:har_mel select_|on_d|versty gan
Processing Advanced in Wireless Commun. (SPAWC), Edirbuek, Jul. and ii) network interference. For given realization of nodes in

2016. a network, these two factors dynamically vary according to
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offer the shorter geometric communication distance as agll
the better small-scale fading channel for the specific cunte (@)
request, which can be termed as channel selection diversity A

gain. On the contrary, if the nodes cache all contents umifgr p ))

they can cope with all content requests but channel sefectio

diversity gain cannot help being small. Moreover, accagdm E é@

content placement, the serving node for each content reques (([5))

dynamically changes, so the network interference fromrothe S Df

nodes also dynamically varies. Thus, it might be required £

to properly control the channel selection diversity gair an

network interference for each content. ( ’>
Recently, in [4], a tradeoff between content diversity and (([[; ég

channel diversity was addressed in caching helper networks S

where each caching helper is capable of storing aorig
content. However, although pathloss and small-scale fadingy 1 system model
are inseparable in accurately modeling wireless chantteds,
channel diversity was characterized with only small-scale
fading and the effects of pathloss and network interfereigce ence reduction for given content popularity and cache
pending on random network geometry were not well captured. memory size. We also numerically investigate the effects
In this context, we address the problem of content placement of the various system parameters, such as the density
with a more generalized model considering pathloss, nétwor ~ of caching helpers, Nakagami fading parameter, memory
interference according to random network topology based on size, target bit rate, and user density, on the caching
stochastic geometry, small-scale channel fading, andrarpi probability.
cache memory size. In this generalized framework, we develo The rest of this paper is organized as follows. In Section
an efficient content placement to desirably control caciet 1l, we describe the system model and performance metric
channel selection diversity and network interference.mlain considered in this paper. We analyze the average content
contributions of this paper are summarized as follows. delivery success probability and desirable content plac of
S _ caching helpers in a noise- and interference-limited ngtwo
« We model the stochastic wireless caching helper ngf sections 11l and IV, respectively. Numerical examples to
works, where randomly located caching helpers stogjigate the analytical results and to investigate thectsfef

contents independently and probabilis_tically in theirténi ¢ system parameters are provided in Section V. Finalgy, th
cache memory and each user receives the contentcghciusion of this paper is given in Section VI.

interest from the caching helper with the largest instan-
taneous channel power gain. Our framework generalizes ||. SYSTEM MODEL AND PERFORMANCE METRIC

the previous caching helper network modéls [4], [S] by \ve consider a downlink wireless video service network,

simultaneously colnS|der|ng small—scalg channel fadingy are the caching helpers are capable of caching some con-
pathlpss, network interference, and arbitrary cache mefi i« in their limited caching storage, as depicted in Flg. 1
ory SIZ€. . ) We assume that all contents have the same size normalized to
« With stochastic geometry, we characterize the channgle ¢, analytic simpliciff. The caching helpers are randomly
selection diversity gain according to content placemergcated and modeled @D homogeneous Poisson point pro-
of caching helpers by deriving the cumulative distributioeess (PPP) with intensity. The caching helpers are equipped
fuqcti_on of the smqllest reciprocal of the_ channel POWElith a single antenna and their cache memory sizeViis
gan in a n0|se-_l|_rr_1|ted network. We _derlve the optimal, 5/ gifferent contents can be cached at each helper since
caching probabilities for each file in closed form Q5. content has unit size. The total number of contents is
maximize the_average contentdehv_ery success probabllgy(> M) and the set (library) of content indices is denoted as
for. given f|n|fce cach_e memory size, an(_j Propose ag _ 11 2 ... F}. The contents have own populaftand
eff!C|ent algonth.m.to find the optimal sglutlon. their popularity distributions are assumed to follow thefZi
« Ininterference-limited networks, we derive a lower boungictrinution as in literature [4] 5] [T13]:
of the average content delivery success probability in -~
closed form. Based on this lower bound with Rayleigh fi = Fl/l
fading, we derive near-optimal caching probabilities for ijl 1/57
each content in closed form to appropriately control the

channel selection diversity and the network interference Unequal content sizes are not addressed in this paper bubégual sized
contents, each content can be partitioned into small chohkise same size.

depending on content placement. Each chunk can be treated as an individual content of the saaend then
o Our numerical results demonstrate that the propost analytic framework of this paper might be applicable.

content placement is superior to other content placemeniThe contents have own popularity which is assumed to be gtiyfe
own. However, given time-varying content popularity nagtical scenarios,

. _ k
strategies because th.e pro_pose@ method eff|C|e.ntIy Q orporation of estimation errors of content popularitight be required and
ances channel selection diversity and network interfereuld be an interesting topic although this paper does notess it.

, for ie F, (1)



F=5 by ®, = {z;1} wherek € N. The typical user requests

! one amongF’ contents according to the content popularity
5 | Do the content with a higher popularity is requested with highe

| likelihood. If the typical user requests contérand selects a
serving helper to maximize the instantaneous channel power
Ps M=3 gain among the helpers storing contént F, the received
signal power becomes

Plh, |2z~ 2
gle‘c}gl |2, 2

P2

P3 P4 Ps

1 whereP is the transmit power of a caching helpkg, and |x|
0.7 denote the channel fading coefficient and the distance fhem t
typical user to the caching helper locatedzatrespectively,

Fig. 2. An example of the probabilistic caching methbHl [6lenhs — 3 @nda(> 2) is the path loss exponent.

andF =5 For each content, we denote a set of the reciprocals
of the channel power gains from; to the typical user
in ascending order as; = &, = ‘hr—kkp,k € N, where

where the parameter(> 0) reflects the popularity distribution €1 < &o < ---. The notationr; and hix represent the

skewness. For examplejf= 0, the popularity of the contents distance and the channel fading coefficient from the typical
is uniform. The lower indexed content has higher popularityser to the caching helper with theth smallest recipro-
i.e., fi > f; if i < j. Note that our content popularitycal channel power gain among the caching helpers storing
profile is not necessarily confined to the Zipf distributiant b content i, respectively. Note that the caching helper with
can accommodate any discrete content popularity distoibut the largest instantaneous channel power gain is equivedent
The users are also randomly located and modele@-Bs that with the smallest reciprocal of the channel power gain
homogeneous Poisson point process (PPP) with intensity (i.e., & ;). Assuming Gaussian signaling and time/frequency
Based on Slivnyak’s theorern [21] that the statistics ols@rvresource sharing among the users associated with the same
at a random point of a PPP is the same as those observed afaching helper, the mutual information between the typical
the origin in the proces® U {0}, we can focus on a referenceuser requesting contentand its serving caching helper is
user located at the origin, calledtgpical user. 1 P

In this paper, we adopandom content placement where the R; = N logy <1 +— AT ))> , 3
caching helpers independently cache contevith probability ! Gia (o i(&in
p; (0 < p; < 1) for all i € F. According to the caching where N; is the load of the serving caching helpef, is the
probabilities (or policies)p;}, each caching helper randomlynoise power variance, anfi(¢; 1) is the interference received
builds a list of up toM contents to be cached by theat the typical user, given by
probabilistic content caching method proposed [ih [6]. Fig. _a _
2 presents an example of the probabilistic caching method Ji(&i1) = Z Phy[*ly| ™ + Z Pz )
[6] and illustrates how a caching helper randomly chooses yees 2€5i\&i

M contents to be cached among tofalcontents according where ®¢(£ @ \ ;) is the set of caching helpers which do
to the caching probabilityp;} when the cache memory sizenot cache content in their cache memory. The small-scale
is M = 3 and total number of contents i = 5. In this  channel fading terms of the desired link and the interfering
scheme, the cache memory of sixe s equally divided into |inks follow the independent Nakagami-m distributions twit

L (< M) blocks of unit size. Then, starting from content 1parametersn, andm;, respectively.

each content sequentially fills the/ discontinuous memory  gimilar to [5], [7], we define the average content delivery
blocks by the amount op; from the first block. If a block syccess probability as a performance metric to properly ac-

is filled up in the filling process of content the remaining count for the success events of content delivery as
portion of contentj continuously fills the next block. Then,

we select a random number withj, 1] and the contents at a

the position specified by the ranEjonl number in each block b= Zfi PR 2 pil, ®)
are selected. Because one content is selected from eadh bloc _ = _ o _

by the selected random number, tofal(< M) contents can Where f; is the content requesting probability apd is the
be selected in a probabilistic sense accordingtg. In this target bit rate of content [bits/s/Hz] to successfully support

way, in Fig.[2, the content§l, 3,5} are chosen to be cached!he real-time video streaming service of conténwithout
playback delay.

The contents selected in a probabilistic sense at eachrhelpe
are cached in advance by either its request or overhearify: PROPOSEDCONTENT PLACEMENT IN NOISE-LIMITED
The caching helpers storing contenhtcan be modeled as NETWORK
independent PPP with intensity;(£ p;\) and the locations  In this section, in order to investigate how channel sebecti
of the caching helpers storing contentan be representeddiversity affects the optimal caching solution, we first sioler



a noise-limited network; when the number of active users
much smaller than the number of caching helpers, the imp
of interference is negligible compared to the noise power a
the typical user can be served without resource sharing w
other users.

In noise-limited networks, assuming Gaussian signalimg, 1
mutual information between the typical user requestingemn
1 and its serving helper is obtained as

). ®

1 P n
R, =1o 1+——>—lo (l—i—
82 < &g 02 82 &

wheren = P/o? is the signal-to-noise ratio (SNR).

A. Analysis of content delivery success probability
The power gain distribution of a Nakagami; fading

channel is given by

flzyms) =

Mg
mg

F(ms)

whereI'(t) = [ ' ‘e "dx is the gamma functiony >
0, andm, (> %) is the fading parameter for link where
s € {D, I} represents either the desired linR) or the i.i.d.
interfering links (). If m, = 1, the power gain distribution
follows the exponential distribution corresponding to Réyh

Mg

™" Lexp (—mgr), (7)

fading. Form, — oo, the channel is a deterministic ChanneIWhereEi[O,g) denotes the number point & in a circle with

When the typical user receives contérfrom the caching

helper with the smallest reciprocal of the channel power
gain (i.e., the largest channel power gain), the cumulativepamgrk: As pi) or E[|h; 1|2] =

distribution function (CDF) of the smallest reciprocal et
channel power gain (i.e&; 1) is derived in Lemma 1.

Lemma 1: The CDF of the smallest reciprocal of the chan

nel power gaing; 1, in a Nakagaminp fading channel is
given by

Ffi,l (5) =1—exp (—"ﬁpifé) » (8)
LOtmo) ands = 2,

— T
wherex = ﬂ-)\m%F(mD)
Proof: Fori € F, let ¥; = {rf, (= |z;x|*), k € N}
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Fig. 3. The CDF of the smallest reciprocal of the channel pogan for
content: whena = 2.5 andp; = 1

3
=1—-exp <_/0 Az, (y)dl/)

=1 exp(—kpit’)

(13)

(14)

F((5+mD)
m&T(mp)”

a radius¢ andx = 7w\ O

L0+mp) jncreases, the
myT'(mp)

CDF of & ; grows faster to 1 because the intensity, of
PPPZ=; is proportional to them. In other words, as the number
of caching helpers that are storing the content of interest
and accessible by the typical user increases or the small-
scale fading channel becomes more deterministic, thesitjen

of PPPZ=; representing the reciprocal channel power gains
grows and thus the smallest recipro€al becomes smaller.
Especially, for givem\ andm p, the largest channel power gain
(i.e.,1/&.1) grows asp; increases, which implies an increase

helpers caching conterit From the mapping theorem [The-

placement.

orem 2.34,[[22]], ¥; is a non-homogeneous PPP and its Fig.[d validates the accuracy of Lemma 1 for varyingnd

intensity function is given by
Ay, (z) = pAmda®™t, x € RT,

whered = 2/a. Note that{¥,},Vi € F are also mutually
independent due to independence amddg}. Using the

mp. The CDF of¢; ; increases faster to 1 as eitheor mp
increases. However, the CDF ¢f; depends more on than
onmp, so optimal caching probabilities are affected more by
the density of caching helpers than channel fading.

From Lemma 1, the average success probability for content

displacement theorem [Theorem 2.33.1[22]], we can alstglivery is derived in the following theorem.

derive the intensity function oE; = {glk = ‘,:—:‘2} for a
general Nakagaminp fading channel as '

F(§ + mD)

A= ,
m%l"(mD)

=4 (10)

(y) = pidmoy® ! y > 0.

Since the PPP ob; is transformed by the displacement and
mapping theorems;; is also a PPF_[22]. Therefore, the CDF

of & 1 is obtained as

Fﬁi,l (5) =P (gi,l < 5) )
=1-P(50,¢) =0)

(11)
(12)

Theorem 1. When the typical user receives contérftom
the caching helper with the largest instantaneous channel
power gain, the average success probability for content de-
livery Ps in a Nakagaminp fading channel is obtained as

F " s
Po=1-Y g (7)) (15)
=1

_ L(6+mp) 5 _
wherex = W)\W(mi), =

bit rate of content.

2 n= 2L, andp; is the target



Proof: After differentiatingZ({p; }, w, {u:}) with respect tg;, we
can obtain the necessary conditions for optimal caching-pro

PR, > p] =P [10g2 (1 + gn ) > pi:| (16) ability, i.e., Karush-Kuhn-Tucker (KKT) condition as follows:
7,1
’ OL{pi},w, {mi}) B
_ . n = —firTie P +w+p; >0, (26)
- P |:§z,l S 20i _ 1:| (17) (*)pz
n {—fikTie™™" T 0+ pi}y pi = 0, (27)
Sin <2P'L — 1) (18) F
N w(ZPz‘—M> =0, (28)
=1- e‘“’”’(W) , (19) i=1
: : . _ pi(pi—1)=0. (29)
where [19) is obtained from Lemma 1. Substituting] (19) into
(), we obtain[(Ib). 7 From the constraint if_(27), the optimal caching probabiit
From Lemma 1, we know that the channel selection d€ given by
versity gain for a specific content increases as the number of 1 kT \1T
caching helpers storing the content increasesi;encreases. Pi(w, i) = L&T' 0 (w " u)] (30)

However, due to limited memory spadé, i.e., the constraint 1
S ¥ pi < M, storing the same content at more caching = llog (fikT;) — log (w+u)) ", Vie F, (31)
helpers f; increases) loses the chance of storing the other kT
contents and the corresponding channel diversity gains. where[z]" = max{z,0}. The caching probability of content
Therefore, for given finite memory size and content popu-grows as the content popularitfy becomes large, but is
larity, the average success probability of content defivean regulated by the term dbg(w+ ;). For the constraint i (28),
be maximized by controlling the channel selection divgrsitv is not necessarily zero because the optimal solution should
gains for each content. This can be achieved by optimally daways satisfyzzilpi = M. Based on the KKT conditions
termining caching probabilities in random content placeme in (28)-(29), Lagrangian multipliers andy; range, according
Consequently, the corresponding optimization problemhman to p;, as [32), which is placed at the top of next page.
formulated as (32) reveals that the caching probability is determined
7 s according to Lagrangian multiplies only sincey; is a func-
Pl: {p}} = argmaxy_ f; {1 _ewiz)"| | (20) tion of wiif w < min{ly, -+, lr} wherel; = firT;e T,
; thenp; = 1 Vi € F and thus) , ,pi(w,p;) = F. If

i

i=1

F s w > max{uy, - ,up} whereu; = f;xT;, thenp;, = 0 Vi €

= argmianie_ﬁpi(ﬁ) , (21) F and thustzlpi(w,ui) = 0. Whenmin{ly, - ,lp} <

R w < max{uy, -+ ,ur}, Zi}pi(w,ui) is bounded by0 <

_ F Zf;lpi(w,ui) < F since) ;_, pi(w, u;) is decreasing with

subject toy _p; < M, (22)  respect tav. Therefore, using the fact that ", p; (w*, uf) =
=1 M for the optimalw*, one-dimensional bisection search can

pisl VielF, (23)  find the optimaks* and the correspondinp; (w*, 1)} given

pi>0 VieF. (24) by
p; = min ([pi(w*, )T, 1) , VieF. (33)

B. Optimal caching probabilities . i . .
. _ _ _ _ The proposed algorithm to find the optimal caching prob-
In this subsection, we derive the optimal solution of Prable gpjjities {ps(w*, u*)} is presented in Algorithm 1. Conse-

P1, the optimal caching probabilities, in closed form. Fogyently, the content delivery success probability maxadiz
eachi, the functiong;(p;) £ e (775)" is convex with With {pi(w*, uy)} becomes

respect top; since dg—;gi(pi) > 0. Since a weighted sum of F WY

convex functions is also convex function, ProbldM is a pPr = Zfi [1 _ P (w=5) ) (34)
constrained convex optimization problem and thus a unique i=1

optimal solution exists. The Lagrangian function of prable
Plis

L({pi},w, {i}) IV. PROPOSEDCONTENT PLACEMENT IN
o INTERFERENCELIMITED NETWORK

F F
= Zfie*"piT%w (Z Pi — M) +Zm (pi—1), (25) In the previous section, the cache-based channel selection
i=1 i=1 i=1 diversity gain for each content has been highlighted and the
§ optimal caching probabilities to balance them were derived
where T; £ (ﬁ) is a constantw and y; are the without consideration of interference. In this section,tlie
nonnegative Lagrangian multipliers for constrairffs] (28)l a presence of network interference, we derive near-optimad c
23). tent placement and analyze the effects of network intemfaze



w < fikTie ", pi = [fisTie T —w]™  for p; =1,
fikTie " < w < fikT;, ;=0 for 0 <p; <1, (32)
w > fiKT;, i =0 for p; = 0.

Algorithm 1. A bisection method for finding; where NI" is a random load of the tagged caching helper

1ta <+ min{ly, - ,Ir}, _ o . when an arbitrary user receives conténfrom the caching
b rffz({ul’ ~+,up} > a,b: two initial boundaries helper with the largest instantaneous channel power gain.
w4 S > w: Initial guess ofw To characterize[{37), we require both the probability mass
2:fori=1,..- F N function (PMF) of the load at the tagged caching helper
3 pi = [l —w] ™ and the SIR distribution when multiple contents are cached
‘51 end Compute (31), i.e.,pi(w, 11:) at each helper and the association is based on the instanta-

neous channel power gains. However, unfortunately, thetexa
_ i level statistics of the required information are unavailableaose
> ¢ error tolerance leve they are complicatedly determined by many interactingofiaGt
70 i piw, ) > M, thena « w : : :
: i=1 p;? ) Hi ' such as multiple cached contents, locations of cachingehelp
8: else if ), pi(w, i) < M, then b < w and users, content request of users, instantaneous channel

6: while | S| pi(w, ;) — M| > e do

9: endif \ fading gains, etc. Thus, the optimal caching probabilites
10: w ¢ 42 maximize [3¥) have to be found by numerical searches of
11: Repeat:Step 2 - 5 which complexity is prohibitively high for a huge number
12: end while

of contents. In this context, we propose near-optimal aunte
placement to obtain some useful insights in interference-
limited scenarios. To this end, we first approximatd (37hwit

the average load of the tagged caching hel —[25] as
on the content placement. We assume that the density of users g 99 g helper [23]-{25]

is much higher than that of caching helpers, iJg,,> A, so F 1 P
the effect of noise is almost negligible relative to inteefece. s = D fiP {W log, (1 + m) > pi] . (38)
) i i,14\Si,

13: pf < pi(w, p;) for Vie F

A. Analysis of content delivery success probability where NS is the average load of the tagged caching helper

When the typical user receives conterfrom the caching When the user requests conteno the caching helper with
helper with the smallest reciprocal of the instantaneowmch the largest instantaneous channel power gain. The validity
nel power among the caching helpers storing conerthe apprOX|ma_t|on[(3I8) is demonstrated in Fﬁ@._4, where red star
other caching helpers interfere with the typical user beea®"d PIue circle represent the Monte-Carlo simulation (3i) a
they are assumed to serve other users. Then, the receif@fPProximation[(38), respectively. This figure verifiesitt
signal-to-interference ratio (SIR) at the typical user ép-r the approximation(38) is quite tight tb (37) for arbitrapy.
resented as Moreover, a lowerbound of (88) is obtained in the following

p theorem.
N e e (35) Theorem 2: When the typical user receives the requesting
§i - Jil&ia) content from the caching helper with the smallest recigroca
where J;(&;,1) is the interfering signal power and given by of instantaneous channel power gain, the average success

_a _ probability of content delivery is bounded below by
Ji€a) =P Y b Plym+P D 27 (36)

e ) F
yeds 2€2:\&i1 PS > Zfz/

where®$(2 @\ ®;) is a set of the caching helpers which do i—1 0
not cache content andZ; is a set of the reciprocals of the dF
channel power gains fron;. Note that the interfering signal 7ok £1:(8)ls=mp p-trire fiay (r)dr,  (39)
power dynamically changes according to content placenfent o v , ) ,
caching helpers since it is a functiongf; and®$. Therefore, Wherer; = 2 n Le (.Z 1) is a constant independent of
optimal caching probabilities are expected to be obtained Bnd makes the |nequa_l|ty h_°|d for all ranges{pt}, mp ‘?‘”d
optimally controlling channel selection diversity andwetk "7 are the_ Nakagami f_adlng parameters of the desired and
interference for given content popularity and cache memo'r@}erfe”ng links, respectively, and

oo mp—1

Z % (—mDP_lTiTa)k X
k=0

size. o0 my
In interference-limited networks, the average succesb-pro £7.(5) = exp (_2”)‘/0 {1 " (sPvo mI)ml] vdv
ability of content delivery in[(b) is represented by

r mr
P, = F Pl—1 _ L ) 37 ' 27TpiA/o {1 ~ (sPve +m1)7’”] vdv) - (40)
s ; fi {W 082 (1 + gi,lji(§i71)> = pi] , (37) flz:)(r) = 2mpi Ar exp (—Fpi)\TQ) ) (41)




With arbitrary cache memory size @ff at each helper, the
alternative optimization problem2 is rewritten as

091 b

N Pi
P3: {p;}=argmax » f; 7
{pi} ; (1—Tf/a0n,a) pit Tf/aCa
F
subject tOZpi < M,
=1
pi <1 VieF,

08

0.7

06

osr / *  Monte-Carlo Simulation (37) | Pi Z 0 Vi e F. (44)
/ O Approximation (38)
0.4f Approximatedly bounded (52) |4 Now we show that the objective function 3 is concave
— — — Lowerbound (53) with c=40 .. . . .
and optimization problen#3 is also the constrained convex
%3 01 02 03 04 05 06 07 08 09 1 0pt|m|zat|0n problem.
Py If we defineg;(p;) as
Fig. 4. Average content delivery success probabilities afnid-Carlo gi(pl-) 2 #, (45)
simulation [3Y) and our approximatiors 138).1(5£).]1(53) emenpared versus (1—Ai)pi + B;
p1 = 1—pa, When) = 10p (unitsim?), Ay, = 20y (unitsin?), Vp; = 0.001 ) )
(bits/siHz),y =1, mp =m; =1, M =1, and F = 2. where4; = 7; /“CTW(> 0) andB; = ; /(’Ca(> 0), its first

derivative isg/(p;) = MW > 0 becauseB; > A;

always holds and1 — A4;)p; + B; > 0 for 0 < p; < 1. Note

Proof: See AppendiXA. L that0 < A; < 1 for all i because
Based on the lower-bounded average success probability .
of content delivery, we formulate an alternative optimizat 2/a 2/a [T 1
Aj=7""Cra =T, ———du
problem as i i i 1+ uo/?
F2 e
P2: {p:} = argmax @9, < Tf/a/ C ldu=1, (46)
F 0 Fo2e
subject tOZpi <M, A = 2o T?/a/ ' 1 du
i1 7 7 Ti, & 7 0 1+ ua/2
pi <1 Vi € F, 2/a 7_;2/04
pi>0 VieF. (42) = /0 Odu = 0. (47)
Although it is still non-trivial to obtain the solution of ih The second derivative af;(p;) is g/ (p;) = %
. L . g —Ai)pi+Bi|” —
alternative optimization problem, fortunately, whemp = ( and thusg;(p;) is a strictly increasing concave function.

mr = 1,i.e., a Rayleigh fading channel, the objective functioBince a weighted sum of concave functions still satisfies
(i-e., the lower bound of delivery success probability)dmes concavity, optimization problen3 is a constrained convex
more tractable and sheds ||ght on |ntu|t|Ve|y Understa@d"bptimization prob'em_ App|y|ng the same approach in Sectio

the impacts of network interference on content placemeiizg] we obtain the optimal caching probability of problem
Therefore, in the following subsection, we focus on the cages g5

of mp =m; =1 (i.e., Rayleigh fading).

+
B; iBi .
P, pi) = _1—A‘+\/(1—A’{2(W*+u*) Ties, 49)
B. Caching probabilities in Rayleigh fading channels ! ! +Z
Corollary 1: For Rayleigh fading channels (i.emp = _ L s [iBi Vie F (49)
my = 1), the lower-bound of delivery success probability in 1-A; ! wrtpr |’ ’

(39) is simplified as _ . .
where Lagrangian multipliers andu; range, according tp;,

F s as [BD), which is placed at the top of next page.
Ps > Zfi ' (1 "oy, ) T (43)  Replacing [(31) with[[49) and letting = ufﬁ% and
=t i Yrea) Pt T T u; = 4 in Algorithm 1, we can find the optimal* and i}

with one-dimensional bisection search and the correspgndi
near-optimal caching probabiliti€®; (w*, 1)} given by

where 7, = 2 — 1, C, = Zcsc(Z), Cpa =
7-1._2/(” oFy (1,251 + %,—Ti) and o Fy(-) is the Gauss hy-
pergeometric function. . .

Proof: We omit the proof since it can be readily obtained i =M1 1—4,

by substitutingmp = m; =1 in Theorem 2. O

+

iBi .
/ 1|, vieF. (s1)

wr -y

~Bi+




+
f1 B'L . ¢ -~ o
w S'(lfAi+Bi)27 Hi = |:(17Ai+Bi)2 w for pi =1,
e <w<g, =0 for 0.<p; <1, (50)
w5 pi =0 for p; = 0.
1 _— . | |
| —o— A=0.05, mD=1
09l 0ol e ro0s mns||
085 4 osf — & A=0.01, m =1 |
: ——%— A=0.01, mD=5
07t |

0.7

06 0.6

»

a 05f 0.5
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Fig. 5. Comparison of average content delivery successapitities among F19- 6. Optimal caching probability of each content for vagyA andmp

the proposed content placement, UC, and MPC versus thentquapularity
exponenty where F' = 20 and M = 5.
This figure demonstrates that the proposed content plademen
_ ] o ) in 33) is superior to both UC and MPC in terms of average
Remark: Unlike noise-limited networks, the solution ofgyccess probability of content delivery. MPC is closer te th

content placement obtained il {51) is independent of the,,,sed content placement than UC for higland vice versa
transmit power of caching helpers. The caching probabilig, |ow 5.

is a function ofc, f; and7; = 2 — 1. In other words,
the content placement is determined by the pathloss exponen

content popularity, and target bit rate. B. Effects of channel power gains
For varying A and mp, the optimal caching probability
V. NUMERICAL RESULTS of each content in a noise-limited network is plotted in

In this section, we evaluate the average success probabif-8, where the lower index indicates the higher popyarit
ity of content delivery to validate our analytical results i€ fi = fj if i < j. As A ormp increases, the optimal
the previous sections. We also examine how various systéafhing probability becomes more uniform. It implies that
parameters, such &NR, content popularity exponenty, it would pe beneficial to increase hitting probapll|ty f(?ﬂ all
Nakagami fading parametem(, andm;), pathloss exponent COntents msteqd of focusing on c;hannel selection diyersit
(), density of caching helpers\), user density X,), max- for. a few speC|f.|c contents. This is because chan_nel power
imum target content bit ratep{,.), and cache memory size92iNS become higher as either the number of ga_ch_lng helpers
(M) affect on caching probabilities. Unless otherwise stateffcreases or channels become more deterministic although

the baseline setting of simulation environments is as vito channel selection diversity can be limited. This figure also
v =1,F =10, M = 3, mp = m; = 1, SNR = 20 (dB), exhibits that the optimal caching probability depends more

a = 3, A = 0.05 (unitsin?), \, = 0.002 (unitsin?) and ON the geometric path loss than on small-scale fading, which
pmax = 1 (bits/s/Hz). The target bit rate for each conterftatches the implication of Fig 3.

is uniformly generated ag; € (0, pmax] and all simulation
results are averaged over 10,000 realizations. C. Effects of target bit rate

, , ) , Fig.[4 shows the optimal caching probability of each content
A. Comparison among three different caching strategies i in a noise-limited network for varying maximum target bit
Fig.[H compares the average success probabilities of donterie ppax. AS pmax grows, the optimal caching probability
delivery in a noise-limited network for three different ¢ent becomes biased toward caching the most popular contents.
placement strategies; i) caching thé most popular contents If p.... is large, increasing channel selection diversity gains
(MPC), ii) caching the contents uniformly (UC), and iii)of the most popular contents is more beneficial to improve
proposed content placement found by Algorithm 1 (Propaseglccess probability of content delivery.
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Fig. 7. Optimal caching probability of each content for vagymaximum Fig. 9. Comparison of average success probabilities ofecondelivery

target bit rat€pmax with Monte-Carlo simulation with optimgb*, Monte-Carlo simulation with
sub-optimalp*, and lowerbound with sub-optima* versusVp; = p, when
A =1x 1075 (unitsin?), M =1, and F = 2.

—o—M=2
| large gap between the lower bound [n1(39) afAd the gap

1 between the average content delivery success probabilitta
the optimalp* and the proposed* is small for an arbitrary
target bit rate because(37) ahd](39) have quite similareshap
Consequently, the proposed sub-optimal caching prolaksli
close to optimal caching probability although the sub-ojati

caching probability is found from the lower bound [n}39).

o
©

o
©
T

o
3

o o
n o
T T

Optimal caching probability (pl*}

F. Comparison among three different caching strategies in
interference-limited network

Fig. [T compares the average content delivery success

T T T probabilities among the proposed content placement scheme
file index i with numerically foundc yielding a tight lower bound and
with ¢ = 22« UC, and MPC versus the content popularity
Fig. 8. Optimal caching probability of each content for vegy M exponenty. Although the value of: needs to be numerically

found, any suboptimal solution even with the valusvhich
. does not always satisfy the inequality [n}39) yields a lower
D. Effects of cache memory size average success probability of content delivery becausis of
In Fig.[8, the optimal caching probability of each conterguboptimality. From this fact, a suboptimal solution can be
i in a noise-limited network is plotted for varying cachdound by setting the value af to be the average load of a
memory sizeM . The optimal caching probabilities scale withtypical caching helper as = MTM for simplicity. Fig. [0
the cache memory sizé/, but they become more uniformdemonstrates that that both the proposed content placement
as M increases. This is because less popular contents gggemes with numerically foundandc = % are superior
accommodated in memory of larger size. to both UC and MPC in terms of average content delivery
success probability for general The average content delivery

E. \alidation of the proposed near-optimal content placement ~ success probability with = 22« is quite similar to that with

Fig.[d compares the average success probabilities of domngmencaIIy foundc and outperforms UC and MPC.
delivery with optimalp* obtained from[(37) by brute-force .
searches, with the proposed sub-optimal obtained from G- Effects of user density
P3, and the lower bound (89) with the sub-optingdl versus In an interference-limited network, for varying user dépsi
Yp; = p, when\ = 1 x 1075y (unitsin?), vy =1, M =1, \,, the proposed caching probability of each contértb-
and F' = 2. For eachp and \,, the value ofc for a tighter tained by solving the convex optimization problemR3 is
lower bound is numerically found. Since the content plaagmeplotted in Fig[Il, where the value ofyielding a tight lower
obtained from the lower bound is sub-optimal, the averagp@und is numerically found. As the user densitydecreases,
content delivery success probability with the sub-optigtal the optimal content placement tends to cache all conterts wi
is bounded below that with optimal*. Although there is a more uniform probabilities.
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maximize the lower bound. Our numerical results verified tha
the proposed content placement is superior to the conveitio
caching strategies because the proposed scheme efficiently
controls the channel selection diversity gain and the feter
ence reduction. We also numerically analyzed the effects of
various system parameters, such as caching helper darssty,
density, Nakagami: fading parameter, memory size, target bit
rate, and user density, on the content placement.
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0.7}
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0.4r

APPENDIXA

—©—MPC PROOF OFTHEOREM 2
0.2 —A—UC 1

~—5— Prop with numerically found c| | Since the pathloss dominates the small-scale fading effect
—%— Prop with c=MA,/A according to Lemma 1N/ is approximated as the load of
% 05 1 15 2 25 3 the tagged caching helper with the largest channel power gai
Y averaged over fading (i.e., the load based on the assatiatio
' _ _ with long-term channel power gains);" ~ N;. Moreover,
Fig. 10. - Comparison of average content delivery successapilities among - the recejved SIR with the association based on instantaneou
the proposed content placement schemes with numericaligdfo yielding . . . .
a tight lower bound and witle = 2=, UC, and MPC versus the content channel power gains is larger than that with the association

popularity exponent;, whereX = 1 x10~5 (unitsin?), P = 20(dB), F = 5, based on long-term channel power gains. Accordindly] (38)

0.3F

0.1r

M =1, andVp; = 0.001 (bits/s/Hz) can be further bounded below as
F
1 Plhg, |||
05 , , , : : @E)ZZfi'P{ﬁilog2<1+17i >pi|, (52)
—o— ) =1x10° i=1
045 u 4
—A— )\u:5x10'5 where
044 —6— A,=10x10° | 1

I; = Z P|hy|2|y|’°‘,
yeP\z;
which is also validated in Fid.] 4, where blue circle and green
solid line represent(38) anf_(52), respectively. B
In case ofM = 1, a closed form expression a¥; is
available asV; = 1 + 1.2_8-’;'7’\; [@]_—ﬂﬁ], but \{vith multiple
contents {/ >> 2) analytic evaluation ofl{52) is hard due to
the complicated form ofV,. To circumvent this difficulty, we

o
w
a

o
w

o
N}

Proposed caching probability {p‘*)
[=} [=}
= N
(5 (5]

o
[

0.05 1 again take a lower bound df (52) as
0 . : ! F
1 2 3 A 5 6 7 1 P|hg, [2|a;]
file index i ) Z ; fi -P |:E 10g2 (1 + 171 sz ) (53)

Fig. 11. The proposed sub-optimal caching probability atheaontent: . . ,
obtained by solving the convex optimization probldm](44) ¥arying user wherec (Z 1) IS a constant mdependent ofand makes the

density A, when X\ = 1 x 10~5 (unitsin?), P = 20(dB), M = 1, F = 7, inequality hold for all ranges ofp;}, andr; = 2’ — 1. Note
andVp; = 0.001 (bits/s/Hz) that since[(BB) is a decreasing function with respeat tmd
bounded below by zero, there must exist a certain value of
¢ (< oo) which makes the inequality hold. The value of
yielding a tight lower bound can be numerically determined;
We studied probabilistic content placement to desirably generalc becomes larger afp;} diminishes andy grows.
control cache-based channel selection diversity and mktwdrig. [4 validates [(33), where green and black dotted lines
interference in a wireless caching helper network, with-speepresent[(32) and our lower bound [n](53), respectively. It
cific considerations of path loss, small-scale channelnfadi is verified that there exists a finite value efyielding a
network interference according to random network topolodgwer bound of [[5R) regardless dfp;}. In our setting, the
based on stochastic geometry, and arbitrary cache memuayue of ¢ for a tighter lower bound is: =~ 40. Although
size. In a noise-limited case, we derived the optimal caghithere exists a gap betweeh [37) and its lower bodind (53),
probabilities for each content in closed form in terms of théhe shape of those two functions looks quite similar and thus
average success probability of content delivery and prgboghe caching probabilities obtained froin [53) are close ® th
a bisection based search algorithm to efficiently reach tbetimal caching probabilities.
optimal solution. In an interference-limited case, we @i The equation[{33) can be written by
a lower bound on the average success probability of content; ) Plh [2lp o
delivery. Then, we found the near-optimal caching proba-z fi P {E log, (1+ |he; .|a?1| ) > pl} (54)

bilities in closed form in Rayleigh fading channels, which = I;

VI. CONCLUSIONS




(55)

(i) Zfz /OOOEH |:1—‘(mD, TI’LDP_lTiTO‘Ii)]flwil(r)dr7 (56)

wherer; = 2% — 1, T'(s) is the Gamma function defined
asI(s) = [, t""'e~'dt, I'(s,z) is the upper incomplete

Gamma function defined aS(s,z) = [t~ le~'dt, z; is

the location of the nearest caching helper storing content
fiz:|(r) (= 2mp; Ar exp (—7p; Ar?)) is the PDF of the distance

to the nearest caching helper storing conterand

L= > Pyl
yEP\z;
= > PPl + > Pyl (57)
yE’i’f y6<I>7\17

The equality (a) is obtained from the Nakagamj fading
channel power gain.

Since”ﬁﬁy] — eyl miyk we have
T(mp,mpP~1rr*1L;)

E 58
mp—1

_ i l(m Pl Ry, [[Femmo Pl (59

= %l D T ) I |45 ¢€ ( )
k=0
mp—1 k

(_b) 1 1 a\k d

= 2 g (o) g L o) o (60

where (b) is fromL, s, (s) = (—1)k £
the Laplace transform of; given by

L1,(s) =B [e*5] = E [ Zveons, P

and Ly, (s) is
(61)

Ye| ] Ene [efsmhy\?\yra} (62)

yedP\z;

@ exp (—27rpi/\/oo [1 —-E, [efspgvfa” vdv)
X exp (—27r(1—pi))\/oo {1—Eg [e_spgvfaﬂ vdv) (63)
0

0 —« my __
© exp <—27Tpi/\/ (sPv”® + my) i vdv)

(sPv= +my)m™
X exp (—27r(1 —pi))\/o vdv) (64)

C(sPv=“+my)™ —my
0 Py« my __
= exp (—27r)\/ (sPv* + my) uii vdv)
0

(sPv=%+my)m™
(sPv= +my)m™

" (sPv™® +mp)™ —my
27\ dv), (65
X exp ( gy /0 - vdv (65)

11

dk
x ﬁﬁﬁ (S) |S:mD P-lgra f|m1\ (T‘)dT‘, (66)

wheremp andm; are the Nakagami fading parameters of the

desired and interfering links, respectively, and

— _ - _ mr
L5, (s) =exp ( 27T/\/0 [1 P+ mj)mf} vdv
T my
+27rp1/\/0 [1 — P+ mj)mf} vdv) , (67)

(68)

flas (r) = 27p; Ar exp (—7piAr?) .
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