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Abstract

Node localization algorithms that can be easily integratealdeployed wireless sensor networks (WSNSs)
and which run seamlessly with proprietary lower layer comioation protocols running on off-the-shelf
modules can help operators of large farms and orchards #weidifficulty, cost and/or time involved with
manual or satellite-based node localization techniquesnEhough the state-of-the-art node localization
algorithms can achieve low error rates using distributedhnieques such as belief propagation (BP),
they are not well suited to WSNs deployed for precision agtice applications with large number of
nodes, few number of landmarks and lack real time updatebdé#paThe algorithm proposed here is
designed for applications such as pest control and irogat large farms and orchards where greater
power efficiency and scalability are required but locaticouaacy requirements are less demanding. Our
algorithm uses received signal strength indicator (RS8l)ies to estimate the distribution of distance
between nodes then updates the location probability massiéun (pmf) of nodes in a distributed manner.
At every time step, the most recently communicated path $assples and location prior pmf received
from neighbouring nodes is sufficient for nodes with unkndegation to update their location pmf. This
renders the algorithm recursive, hence results in lowerptdational complexity at each time step. We
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propose a particular realization of the method in which amie node multicasts at each time step and
neighbouring nodes update their location pmf conditionedatb communicated samples over previous
time steps. This is highly compatible with realistic WSN Hgpnents, e.g., ZigBee which are based
upon the ad hoc on-demand distance vector (AODV) where nftoles route request (RREQ) and route

reply (RREP) packets. Further, beacon signals transnitteittg the network formation and routing table

formulation stage can provide the RSSI information reqlivg the localization algorithm.

Index Terms

Wireless sensor networks, distributed localization, eabgsed localization algorithms, path loss mea-

surements, information aggregation, precision agriceltu
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I. INTRODUCTION
With the advent of short range wireless technologies anddstas in late 1990's variety of wireless

localization techniques for indoor and outdoor applicatithave been developed. Wide range of indoor
localization techniques have emerged based on camerarddfrwireless local area network (WLAN),
ultra wide band (UWB), Bluetooth, and radio-frequency itifezation (RFID) [1] whereas global position-
ing system (GPS) technology revolutionized outdoor laedion. Even though GPS-based localization
technigues are attractive in terms of accuracy, their inggiacoverage in metropolitan environments
and lack of cost-effective scalable solutions sparked gemare of IEEE802.15.4/ZigBee RSSI-based
localization algorithms. These techniques have advantage Bluetooth, UWB and Wi-Fi due to their
energy efficiency and capability to support high-range camication and mesh networking![2].

Localization technigues have been developed for diffetgmés of applications and are compared
in terms of accuracy, coverage, cost, responsiveness apdiaehess to environmental chandes [3], [4].
While some techniques such as laser and camera-based ltgiksare highly accurate and scalable in
terms of coverage, they are usually too expensive to usefge lenvironment applications. Particularly
for large scale outdoor applications such as agricultungirenments, a cost-effective, scalable and fast
localization technique which is robust against season@r@mmental variations, e.g., growing season
changes, is needed. On the other hand, accuracy require@entusually looser because of relatively
high inter-node distances which correspond to distanceelation of the measured features.

One of the rapidly growing WSN areas for outdoor environragatprecision agriculture which
enhances crop management and yield through sophisticaa@@gament of soil, water resources and
applied inputs([6]. WSNs are deployed to improve spatiahdatllection, precision irrigation, variable-
rate technology and supplying data to farmeérs [6]. This iregusampling of critical features such as soil
pH, moisture, electrical conductivity in addition to depheent of actuators to trigger wide variety of
processes varying from drip irrigation to pest managemegt, mating disruption. In order to provide
meaningful feature maps that improve resource managenmnmehtdecision making, it is critical to be
aware of location of the sensors that have generated dateselaccuracy requirements, beside the cost
involved with equipping all sensors with GPS, raise the nieedocalization algorithms which are low
cost, and are compatible with commercial off-the-shelf {SPtransceiver modules.

Anchor-based localization algorithms make use of landsyatkanchor nodes to help localizing
unknown nodes_[7] and are divided into range-based and +fiegetechniques. Range-free algorithms
on the other hand, only take advantage of the connectivitynimation [8], i.e., whether nodes are within

the communication range of each other whereas range-bégadttams exploit time of arrival (TOA),

September 9, 2015 DRAFT



angle of arrival (AOA) or RSSI to estimate the distance betwaodes, so called inter-node distances.
RSSI-based techniques are attractive in the sense thatditiad! hardware is required in order to make
the distance estimationl[9]. Further even though AOA and T@&ed techniques are more precise, they
are more complex in the sense that the former requires rfeubiptennas to detect signal arriving from
different directions whereas the latter demands a largelwiith for better multi path resolution.

This work is a probabilistic distributed and range-basedliaation technique for static WSNs based
on RSSI samples, Bayesian model for information aggregatial particularly suited to precision agricul-
ture applications. Most of the probabilistic distributedalization techniques work based on marginaliza-
tion over a Markov random field (MRF) where joint distributiof nodes locatioq z1, x2, . . . z,,} based
on noisy distance measurements between pairs of nptlglsis expressed as multiplication of node and
pairwise potentialspP(z1, ..., zn[{di;}) o< [ P(dij|zi, ;)] [P(x;) [10]. Message passing algorithms
such as belief propagation (BP), nonpara;fietric belief@gépon (NBP) and their variants are proposed
to estimate the marginalization, hence location of eacler{@@], [11], [12], [13]. BP-based techniques
are vulnerable to loopy graphs which cause them either nobtwerge at all or converge only under
specific circumstances in terms of number of lodps [14]. &ee these techniques have been mostly
used for the scenarios where a few slowly moving or staticesaalong with relatively high number
of anchors, and all equipped with short range transmitrersgler the statistical graph spanning tree or
have few number of loops. Another shortcoming of these tiegtas is the need for global information
from distance measurements to be available so that statigiraph is formed and algorithm could
start to run. These two reasons lead to the fact that evergkhauelatively high accuracy is achieved
with these techniques, remarkable amount of communicati@mhead, at leagd(n) depending on the
technique, is required to form the spanning tree or stasijraph using multi-hop communications.
The second issue is addressed/in| [15], where nodes only mgehaformation with their single hop
neighbours, however the communication and computationhea& required for making spanning trees
with landmarks designated as root and other nodes keepnk &f paths still holds since the procedure
demands for independence of paths that arrive at the updatide. In contrast, in precision agriculture
applications, relatively high number of connected unknavades resulted from high transmit power
level, and underlying IEEE802.15.4 WSNs which work in caowjtion with route discovery phase of
AODV, call for a real-time algorithm which relies on locahgie hop information and is not susceptible
to loops in the network.

Our work is similar to [[15] in the sense that nodes only comitabe with their single hop
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neighbours and update their location in a real time manrthierahan having to make the statistical
graph using multi hop communications as in MRF-based agbesm However our algorithm needs no
initialization in terms of spanning tree construction owing to start from a specific node or landmark
in the field. In other words, the proposed technique is wedlitmned to address self-localization in do
it yourself (DIY) networks which run ZigBee or other propeey mesh networking protocols on top of
IEEE802.15.4 specifications. The reason behind this istti@tlgorithm starts to work in conjunction
with route discovery phase of AODV-based routing protosish as ZigBee where route request packet
(RREQ) originated from an arbitrary source node is floodatiénentire network. We derive a closed-form
recursive relationship for Bayesian update of nodes lonadit a time step during which one or multiple
path loss samples are generated therefore call it a Bayesidel for information aggregation. We prove
that the location constraint resulted from a generated fmf sample is in fact convolution of path
loss likelihood and the most recent location estimationhef generating node. Realistic independence
assumptions, resulted from our measurements, are madewe firat location constraints resulted from
dependent paths (loop forming paths) multiply. This makesalgorithm faster by eliminating spanning
tree construction, intermediate node tracking, and alskimgause of constraints resulted from the paths
traversed by flooding RREQ packets, whereas algorithm'sginless against loops is verified by extensive
simulations.

Since our goal is to devise an algorithm that can work in coction with COTS transceiver
modules, we characterize path loss at 2.45 GHz industié&nsfic and medical (ISM) band. Based
on our measurements in apple orchards, log-normal pathnhasiel is proposed for high density apple
orchards and for different transmitter (Tx) and receivex)(Rntenna heights. Further, Rx was placed
below tree height whereas Tx was fixed below and above thehgight. In the rest of this paper, these
two antenna height modes are called below and above caneplyréspectively. The path loss data was
collected during three measurement campaigns through@utonsecutive summer seasons.

The remainder of this paper is organized as follows: In 8eadll, we formulate the localization
problem, define the notations, include a brief summary fremmeasurement campaigns and explain the
path loss model along with path loss likelihood function ditioned on node locations. In Sectibnl I,
we devise a recursive solution to the problem stated in @&l@liand propose a specific implementation
of this solution based on nodes multicasting in TDMA manfarally we proceed with simulations and

evaluation of our algorithm in Sectidn IV and wrap up the papith conclusion in Sectioh V.
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Il. THE LOCALIZATION PROBLEM AND PATH LOSSLIKELIHOOD FUNCTION

As stated in Introduction, pinpoint localization accuraeyot required for precision agriculture applica-
tions such as pest control since knowing approximate logaif originating sensors suffices to trigger the
relevant actuators. Accordingly, we define the localizapiooblem in a discrete manner which means that
the agricultural field is divided into smaller square celisl éocation of each unknown node is determined
as centroid of one of the cells the field is divided into. Thegsion of the algorithm is adjustable via
number of grid cells inside the field, however precision déilast once grid resolution exceeds a threshold.
Formulation of the localization problem based on aggrafptth loss samples from neighbour nodes is
discussed in Sectidn I[HA and path loss model for orchardrenments is explained briefly in Section
[-BI

A. Problem Formulation

Let S = {S1,...,Sn} be a set of sensors randomly scattered in a square field whidivided into
m x m square cells with equal areas, afid= {1,2,...,m?} be the sample space of all possible cell
coordinates. Our objective is to make use of inter-node comcations and find the grid cell each node
is located in. In the following, we introduce the notatiomsldormalize the localization problem.
Without loss of generality, let the first, nodes be landmarks; = {Si,...,S,,}, and unknown
nodes be represented By, = {S,,+1,...,Sn} while yﬁj is a path loss sample or average of multiple
path loss samples that; collects fromS; atith time step. Note that in general, multiple samples could
be collected in case each calculation time step is made uputiiple communication time slots. Léd,,
denote vector of path loss samples which have been comntedit@tween pairs of connected nodes

during the firstk time steps and ley

f ) represent vector of all path loss samples thahas collected

from its neighbour nodes with index sat; at k-th time step,
O = (yfj) 1=0:k
1<j<Ni€N;- (1)
Yj(k) = (y5)ien,
Note thaty,’jbj is not available in cas§; has not collected any sample frofy, at k-th time step.
Let f(ék) be a random variable defined ov@rrepresenting location estimation §f at k-th time step.
Considering that we are looking to estimate locatiorspht M th time step based on previous aggregated
data®,,,
#; = argmax[P(X{™) = 25|00, 2)

T
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where P(+) is the probability function andrgmax[f(x)] is the set of points: for which f(z) attains its
largest value. In the remainder of this secti%n, path losdehtor agricultural environment which is the
key to generateyﬁj samples©; and Yj(k) is explained. Consequently we derive the path loss likeliho
function that underpins the recursive algorithm descriime8ectionIll. Moreover, we derive likelihood
of yfj given thatS; and S; are estimated to be located @t and z; respectively, i.e.P(yfj\f(J@k) =

T, Xl(k) = .Z'Z)

B. A Representative Path Loss Model for Orchard Environments

In this section, we explain the path loss model resulted foommeasurement campaigns in apple orchards
located at Keremeos, BC, Canada. This underlies the worleatié@[1I-G which explains derivation of
path loss likelihood function expressing path loss distidn conditioned on Tx and Rx locations.

There is an extensive literature on path loss models fosferand agricultural environments. It is claimed
that log-distance path loss model provides a good fit to thasenred path loss in vegetated environments
[16], [17], [18],

d
PL[dB] = PLo +10nlog(~) + X, ©)
0

where X, is a zero-mean normal random variable with standard dewiatj X, ~ N(0,0), whereas
PL represents path loss at reference distaficandn denotes path loss exponent for the specific case
of study.

We carried out the measurements in Dawson orchards at Keser@kanagan, British Columbia.
Measurements were conducted in a 6 hectare (ha) orchardstogsof apple tree rows divided into
standard and high density in terms of vegetation and canemgity with trees being approximately
3 m high. We use the path loss data collected from four dwastiof along, cross30°, 45° and 60°
with respect to tree rows, using different transmitter (&rjgl receiver (Rx) antenna heights. Further, we
conducted measurements with Tx at 2.5 m (below canopy lewral)4 m (above canopy level) heights
and Rx at 2.5 m. This setup is compatible with realistic WSIplofgment scenarios where gateways,
responsible for aggregating data of their neighbouringses) are mounted above canopy whereas sensors
and actuators are placed inside the canopy. As localiz&iooncerned, gateways which have better line
of sight (LOS) are equipped with GPS to play the landmark.rdlee measurements were conducted
throughout three different measurement campaigns, seagnabmbined and spread across two summer
seasons.

Measurements were done in approximate range of 0-100 m atspehich are approximately 10 m
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apart from each other at 9 different parts of the orchard aalfmur directions illustrated in Figurél 1.
Our equipment on the transmitter side, are an Agilent E82@&8&or signal generator (VSG) feeding a
2.45 GHz omnidirectional dipole antenna with 5 multi-tor{esMHz apart from each other) through a
ZVA-213 power amplifier which provides +23 dBm as the antemmat. Whereas on the receiver side,
a Toshiba laptop which runs MATLAB and Agilent connectiorper, specialized proprietary software
for connecting computer to Agilent spectrum analyzer, ismaxted to a N9342C handheld spectrum
analyzer (HSA) via a LAN cable. Extra losses and gains reduitom cables, connectors and antennas

at both Tx and Rx sides have been taken into account for aililor.

Along track

link
O

000000O0C0O0COF .
(a) (b)

Fig. 1: 9 measurement scenarios inside the orchard isriiiest; Transmitter antenna was moved 50 m across the
rows to form a new scenario whereas Rx was moved along fofareift directions of along, cros3)°, 45° and
60° for each scenario and path loss samples were collectedghr@d00 m range and at 10 m apart points.
Rx antenna was placed at 2.5 m elevation (0.5 m below treéht)eidile Tx antenna height was at 2.5 m and
4 m elevation (1 m above canopy level).

Cross track link

The summary of path loss statistics along with statisticehsureR?, which indicates how well
data fits the log-distance model, and 95% confidence intéGialfor PLy andn are expressed in Table
[l whereas path loss samples for two modes are illustratdeigare[3. Note that gateway-to-node and

node-to-node communications comply with above and belawpg level Tx modes respectively.

C. Path Loss Likelihood Function
In this part, we derive likelihood functioriP(yfj|5V(J§k) = :nj,ﬁi(k) = x;) which is a key component of

the algorithm we propose in the next section since it relgth loss values to inter-node distances.
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TABLE I: Path Loss Model characteristics for above and betmmopy level modes

Mode n  PLo[dB] o[dB] R? 95% Clforn 95% CI forPLy
2.45 GHz-Tx below canopy leve 3.61 75 5.27 0.74 3.36-3.86 71-79
2.45 GHz-Tx above canopy level 2.91 72 414 0.78 2.60-3.22 -Tl7

m cells

»
v

m cells

Fig. 2: Location pmf of unknown nodes is updated recursiv&byricultural field is divided intom x m cells with
equal area and probability of an unknown node being locatedié each cell is calculated based on recently
aggregated path loss samples and prior location pmf of @iederodes.

Path loss comparison for below and above canopy Tx scenarios
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[+ Tx above canopy
70 g g > Tx below canopy

Path loss [dB]
& ®
o o
oy,
o™
OMDWO
O @ GBS I
>
N o
OB B> >
>

A
A goa
| 1 ON %)
-100 g8 %
eog o A A
-110t g
(o]
o o
120y 20 40 60 80 100

Distance [m]

Fig. 3: Path loss samples for below and above canopy Tx lev2ld® GHz collected from three measurement
campaigns; The difference between the two above and beloapyamodes, which is due to more line of sight
(LOS) between Tx and Rx in the above canopy case, could be seen
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Assuming log-distance path loss model as discussed ind®élitBl and taking a random point on the
field into account, the probability of path loss sampﬁ; falling in the rangelpl;; — %,plij + %] with

A << pl;; and whens; is located at distancé;; from S; is calculated by

A A CA (pli; —PL(d;j))
Plply—= <yfi<plij+ =|D=dij | = —=e 22 4
<pj 2<yz]<p]+2‘ ]) 27?026 (4)

where PL(d) = PLgy + lOnlog(d%) and C is the normalization constant. Based ém (4), and the fact
that each pair(z;,z;) translates into the corresponding distante sensorsS; calculatesP(yfj =

plij|)~(§i) = xj,f(i(i_l) = x;), Vo;,2; € Q. Further in practice, in order to approximate the above

conditional probability, we collect amplitude of the noidnaéstribution with meanP L(d;;) and standard

deviationo in the range|PL(d;j) — 30, PL(d;;) + 30| at 1 dB steps and normalize the values so that
they sum up to one. Note that the proposed path loss modelatio8dI-Bl is used to derive the path

loss likelihood function and also to generate random patk Eamples in our simulations in Sectiod IV.

[1l. L OCALIZATION ALGORITHM FOR PRECISION AGRICULTURE APPLICATIONS

In this section, we derive an algorithm for the problem stame(2) which works based on Bayesian model
for information aggregation. Therefore, our objective dsdirive a recursive expression fﬁ’r(qu) =
;nj|®k) that explains how location pmf is updated once informat®maggregating in the network or in
other words, the most recent evidence, RSSI sample, isctedleIn Sectior_III-A, we first solve the
problem for general case where at each calculation time atbfirary amount of information or number
of packets, between one or multiple pairs of nodes is exathna Sectior II-A, we proceed with the
special case which is more compatible with route discoveasp of AODV-based routing protocols such

as ZigBee. This is the algorithm we have simulated in Seddn

A. General Case

According to the notation explanation in Sectioh Il and asisilg that at each time step; updates its
location pmf only based on the samples it has received framglesihop neighbours, i.e., not samples

communicated between other pairs of nodes,

PR = 2|00 = PR = 2041, 1), ©

Based on the fact thab;_; L Yj('“),

P(qu) = xj‘@k—hy;'(k)) e\ P(Y}(k)|i§k) = wj7@k—1)P(i§k) = 2j|Or_1). (6)
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Let us recall that in general each calculation time stepdcbel made up of several communication time
slots therefore we have use@‘k) which are the path loss sampl8$ collects from one neighbour or a

set of neighbours at-th time step. Rephrasingl(5) yields the recursive form,

P(X{¥ = zjl0p) oc PV |X = 2, 04-1) PXSY = 25]041). 7

We then simplifyP(}’j(k)|fiJ§k) = xj,0;_1) in the right-hand side of{7). Letting. denote statistical
independence and assuming that
ul L (yh X5, 051)Vim € N, (8)
First term on the right-hand side @f] (7) could be written as
k)| (k < (k
Py PIXM = a;,050) = [ POLIX = 25,000). 9)
ieN;

Our measurements followed by the procedure in [19] verify dissumption in(8). Further our measure-
ments show that shadowing correlation between links in ggetated environment, which is the case of
our study, is very low (below 0.1). This is reasonable dueottgllinks we are dealing with which are
~ 50 m for pest management applications. Due to lack of space aekévance to the main topic, we

spare reader details on shadowing correlation calculation

Based on conditional expectation rule, we simplify the filgand side of[(P),

P(yfj\ijgk) =1;,0,_1) = Zp(yfj|)~(§k) = 5Uj,}~<i(k) =z, @k—l)P(Xi(k) = wz‘!XJgk) = 2;,0,_1)

(10)

In (I0), we use the assumption that® I (i}k”@k_l) and yf 1L (@k_l\)?i(k),)?}k)). The first
assumption results from the fact that given all the prevemggregated information in the network, update
on location ofS; at each time step is independent of thatSef Whereas the second assumption indicates
that given the most recent updates $nand.S;, the path loss betwees andS; is independent of the
previously aggregated data in the network.

Combining [9) and[(10) yields

PP IXM = aj,00m0) = T D [P@EIXP = 2;, X = ) PXM = w0V (1)

i
iGN]‘ Zq
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Finally combining [¥) and{11) completes the recursive tgda
P(X; = xj|0%) o« P(Xj = 2;|01)

H Z [P(ymf(jk) = acj,f(i(k) = mi)P(f(i(k) = xi|®k_1)].
1EN; X

(12)

This means in order to update posterior%f after observation of new samples collected fréin we
need to know priors ob; andS; in addition to channel informatioﬁ’(yfj|)~(§k) = :cj,f(i(k) = x;). With
respect to total number of nodes the algorithm has computational and communication coriylef
O(n) andO(1) per node which renders the algorithm scalable. The conipotdtcomplexity is the same
as BP-based techniques whereas communication overheatl wizsikes up most of power consumption

in WSNs is significantly lower since each node only commueisavith its single-hop neighbours.

B. Localization Algorithm Compatible with Wireless Sensor Networks

In this section, we proceed with a realization of the geneaak algorithm which is a more specific case
of the proposed recursive solution [n112). Moreover we asthat atk-th time step, onlyS;. does the
multicasting and all connected nodes update their locgimsterior based on the observed path loss or

mean of the path loss samples, i)é(,k)

= y’,jj. This means each node is recipient of at most one sample
at a single time step which guarantees compatibility witd veorld deployment of WSNs such as TDMA

or carrier sense multiple access with collision avoidane8MA/CA) where at each time slot, a node
can listen to at most one neighbour node without interfezeiio be more specific, AODV which is the
underlying routing protocol in ZigBee works based on flogdand multicasting route request (RREQ)
packets and receiving routing reply (RREP) messages, hmncproposed localization algorithm can be
integrated in a convenient and inexpensive manner.

Off-the-shelf IEEEB02.15.4 compliant modules such as SBJMICAz and Synapse modules give
firmware engineers and designers the option to program thardniversal Serial Bus (USB), universal
asynchronous receiver/transmitter (UART) ports or overdir (OTA). Even though MICAz and TelosB
motes are widely used for academic and research purposeap§&y modules which are equipped with
light and fast network operating system, SNAP, and a moreepiolvmicrocontroller are more frequent
for outdoor and industrial applications and better suitednibre complex programming (with Python)
and also mesh networking. In the next section, we use nualai@mples to evaluate the performance
of our algorithm based on radio characteristics of Synapd®rfrequency (RF) modules.

Quantization and Compression: There are limitations in terms of maximum payload size

(102 bytes) which is imposed by underlying PHY and MAC laydisis limits us in terms of resolution
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of the exchanged pmf messages in the network and may préwelttdalization algorithm from achieving
the desired accuracy in large orchards. Therefore, theaetriade-off between localization accuracy and
excessive power consumption in addition to delay which a@esed by exchange of multiple packets
between a pair of nodes for the sake of transferring theeeptinf message. Our simulations show that
guantization and compression techniques are applicabtbagopmf messages with more bins fit in a
single packet. Discrete cosine transform (DCT), and 6-bérgization help achieve compression ratio of
up to 8/1 which translates to coverage of a 100 hectare (ldiaadt for high node density (7 nodes/ha)
pest management (mating disruption) application.

Path Loss Model Auto-Tuning: So far we have assumed that there is a global awareness of
path loss model among sensors, however this is not a reatistumption due to remarkable changes
during seasonal environmental variations. [In| [20], Maolepeoposed a path loss exponent estimation
method based on Cayley—Menger determinant technique atetrpanatching. The technique estimates
path loss exponent with a high accuraey £0.2) for the same landmark scenario that we have used
in Section[1V, i.e., landmarks deployed in the corners of fiete, with estimation errors illustrated in
Figured 4h[_4b. Location estimation error could be tolerdde pest management applications for which
the inter-node distance is 40 m-60 m.

Precision Agriculture Accuracy Requirements. Coverage area of the sensors, spatial correlation
of the measured features and required distance betweeat@studetermine inter-node distance for
deterministic grid WSN deployments. Further, inter-nodggathce could vary from 10 m for soil moisture
[21] and electrical conductivity [22], to coarser resabuis, 60 m for pH sensin@ [23] or mating disruption
applications([24]. As will be seen in SectipnllV, our algbnit is mostly suited to pest management and
mating disruption applications where tolerance for errbicl could result from the algorithm simplifying

assumptions or mistuned path loss model.

IV. PERFORMANCEEVALUATION OF THE LOCALIZATION ALGORITHM

In this section, we present the simulation results reggrgierformance of our localization scheme. We
do the simulations for both random and deterministic (gddjployment of WSN on a square field. We
particularly use simulations to show that the average nummbenknown nodes and landmarks each node
connects to, affect the accuracy of the localization atgorifor a specific landmark arrangement. Hence,
we define two parameters, so callagerage landmark degree and average unknown node degree. Let
landmark and unknown node degree of an arbitrary ngdbe the number of landmark and unknown

nodessS; is connected to. Note that node degree in graph theory isgyraelated to connectivity in
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Fig. 4: Path loss exponent and localization estimationreri@med by Mao et al/[20] for randomly scattered
nodes and landmarks in the corners.

the communications context. Further, average unknown dedece depends on deployment density and
transmit power level of unknown nodes whereas transmit paivtandmarks, location of the landmarks
and number of them affect the landmark average degree.r&iffenetrics have been used to evaluate
performance of the localization algorithms [25]. We usedenhe Distance Root Mean Square (2DRMS)
as the accuracy metric for our localization techniqgue wiED&MS=r means there i85% confidence
that the location estimation would fall within a circle witadiusr around the actual node’s location.
Note that location estimation itself is a random variable do random nature of path loss samples,
and generating source node. This is due to event-driven digltgery model which is normally used
for precision agriculture applications which means thateassr transmits data only when a feature
exceeds a predetermined threshold, hence message pagsiagle is different after landmarks advertise
themselves. The random nature of the problem makes 2DRMS&abkuaccuracy metric.

In this work, we do not concentrate on optimizing landmarksation however in the next section
we explain the logic behind our adopted landmark arrangénhethe remainder of this section, first we
explain the simulation setup and assumptions. We will thecged with numerical examples to evaluate

the performance of our algorithm.
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Fig. 5: A schematic view of ZigBee route discovery phase VRREQ packet from source node (orange) being
flooded in the network to reach landmarks (dotted paths) éREMRpackets returning to the source node (solid
arrows). Localization could be done both in conjunctionnRREQ flooding or RREP return phase. Each

number shows the number of times RREQ packet has been nstdtita

A. Methodology

In this section, it is first explained why we opt for placingndéemarks in the corner or middle of border
lines, and continue with justifying assumptions regardidgpted transmit power, orchard size and node
density. For precision agriculture applications insidefs, gateways are placed on the corners and borders
of the field, however in the following we provide some logicwhy this helps towards the improvement
of localization algorithm.

Landmark Arrangement: Even though placing landmarks close to each other and atetieec
of the field yields a higher average landmark degree, thdifat®mn accuracy drops dramatically since
their path loss behaviour has a very high correlation at argidirection and the path loss sample we
collect from them is fairly close to each other at a specifimpof reach. Moreover we place landmarks
on the middle of borderlines or in the corners since the gearent provides more information about
unknown node’s location. In Figufe 6, for a random unknowdentmcation, it can be seen that having a
more landmark degree does not necessarily result in a thettation estimation. This is because distances

in Figure[6a are fairly close to each other and given that aynestimation of them are made based
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on path loss samples, the location estimation will be fas lescurate compared to the arrangement in
Figure[6b. It can be easily shown that this scenario holdsrfost points on the field. Studying other
landmark arrangements could be done accordingly, howeeeawsid to elaborate on it for the sake of
space considerations and since it does not add to evaluaftitve algorithm and is therefore beyond the

scope of this work.

E E | |
=240} S 240y LOS 4
XS] = Unknown
o 100l Unknown Landmark 2 o0l node
S noJ andmarks ST Llod T NLOS
& LO: ¢ g .
o140 14064 B 3
5 5 2
© T . NLOS
< 90 £ 90 E
g 40 7 40 3y
‘ e} ‘ ‘ ‘
40 . 90 140 ~ .19 240
Distan?g in cros%‘%roack dir]é(?t%n[m] 240 Distance in cross track dlrecgon[m]

(a) Landmarks placed in the middle with every one ofb) Landmarks placed on the borders with only two of
them having line of sight to the unknown node them having line of sight to the unknown node

Fig. 6: Two different landmark arrangements; The landmarkragement in pldi 8b provides more information
about location of the unknown node despite having fewer saddwing line of sight to the unknown node

TABLE II: Deployment Scenarios

Orchard size 6 ha, 20 ha
Node density (nodes per hectare) 3,7
Node arrangement Grid
Transmit power level of unknown nodes 0-15 dBm
Transmit power level of landmarks 15 dBm
Transmit power increment step 1dB
Receiver sensitivity for PER=1% -103 dBm
Grid cell dimension 30 m
Number of landmarks 2,3,4,6 and 8
Location of landmarks borders and corners
Landmark degree (6 ha orchard) varying from 1.78 to 6.3
Landmark degree (20 ha orchard) varying from 0.8 to 2.18
Maximum transmission distance for below canopy mode 120 m
Maximum transmission distance for above canopy m 220 m
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7 node/ha grid deployment (40 m internode distance) along with 6 landmarks 7 node/ha random deployment and 8 landmarks inside a 20 ha orchard

N
=}
=%

Distance in along track direction [m]

E
c
S
I3
2
5
X
Q
@
5
o
c
o
@
£
@
o
c
g
g
i
[a]

[N
o
[=1

_ 200 300 _ 200 300
Distance in cross track direction [m] Distance in cross track direction [m]
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Fig. 7: Two different landmark arrangements; unknown ncaatess landmarks are demonstrated with green small
dots and red large diamonds respectively. Location pmftierdesignated unknown node (purple) is illustrated by
heat map.

Localization error

2DRMS [m]
N 5 N
o o

N
vuo

0.5 30

Fig. 8: 2DRMS with respect to average landmark and unknowderdegree is depicted. Surface points are
collected from all deployment scenarios

Deployment Scenarios and Assumptions: In our simulation setup which is summarized in
Table[Il, we adopt two different orchard sizes@®find 20 hectares (ha) with nodes randomly scattered
inside the field at two different densities, 3 nodes/ha, anddes/ha. As discussed in Secfion I, these are
the densities used for pest management applications amslata to 60 m and 40 m inter-node distance

for grid deployment respectively. Grid cell dimension iosan to be 30 m so that both these densities
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Average unknwon degree behaviour with transmit power level
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Fig. 9: average unknown node degree of nodes with respecarisrhit power level of the unknown nodes. Dotted
and solid graphs represent deployment scenarios for 6 h&2@ié orchards respectively.

could be covered. The average size of an apple orchard viades 1 to 20 ha in different regions,
whereas the average size in Canada and the United Stategriximpately 6 ha and 20 ha respectively
according to the United States Department of Agriculturg].[ANlode density and type of deployed RF
modules may vary based on the precision agriculture apfgitand required sampling rande [27]. We
also adopt four landmark arrangements with transmit poesllof unknown nodes varying from to
+15 dBm, receiver sensitivity for packet error rate (PER) to-b)3 dBm, whereas the communication
between landmark and nodes occurs at maximum transmit pewkr dBm). Variation of landmark
degree for different number of landmarks and orchard sikedso expressed in Takilé Il which are based
on the assumption that Synapse RF200 modules are used [28].

We also assume that landmarks (gateways) and unknown nedesofs) are mounted above
and below canopy level respectively. We call and S; connectedd;; < dconnectivity, IN Case the
probability of RSSI falling below receiver sensitivity ilow 1% or connectivity probability is above
99%. This maximum transmission distance is calculated dase our measurement-based path loss
model summarized in Tablé I. In Takilé Il, we have tabulatedttansmission distance of Synapse RF200
module at its maximum transmit power so that connectiviuirement is met [28]. In the next section

we evaluate the performance of our algorithm.

B. Results

In this section, we study the localization error of our aitjon for different simulation scenarios. In

Figure[T7, two landmark arrangements, 6 and 8, along with Ei@rrhinistically and randomly scattered
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2DRMS for 3 node/ha grid deployment and different landmark arrangements
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2DRMS for 7 node/ha random deployment and different landmark arrangements
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Fig. 10: 2DRMS for different node densities and landmarlamagements inside a 20 ha apple orchard; Low and
high density grid deployments translate to 60 m and 40 mroge distance respectively and is well-suited to

mating disruption.

sensors and maximum transmit power are illustrated. Logatistribution of one designated node (purple

node) after the algorithm converges is illustrated.

In Figure[8, we illustrate the behaviour of 2DRMS with redpecaverage landmark and unknown

node degree. As can be seen in the surface plot, error drepsatically with average unknown node

degree increasing. Further, even for a low average landmegkees~ 1.5, an approximate average
unknown node degree 8fyields the desired 2DRMSY 20 m). In Figurel9, we demonstrate how average

unknown node degree increases with transmit power levatkfiown nodes in different simulation setups.
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2DRMS with respect to transmit power level of unknown nodes (3 node/ha) 2DRMS with respect to transmit power level of unknown nodes (7 node/ha)
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Fig. 11: 2DRMS variations with transmit power levgl,; different scenarios in terms of node density and
number of landmarks inside a 20 ha apple orchard are iliestra’he 2 landmark scenario is excluded for the
sake of clarity and lack of space since it achieves a fainly &@curacy. Increasing node density helps towards

achieving low 2DRMS with lower number of landmarks and traitgpower
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These two figures provide an insight on how algorithm workghwilifferent transmit power levels.

In Figure[10, 2DRMS behaviour for different simulation gefuduring course of the algorithm
is demonstrated which shows that the algorithm converges af few messages are multicasted in
the network. As explained in Algorithi 1, the procedure tstavith landmarks advertising themselves
to the entire network. This significantly helps towards éastonvergence of the algorithm since one-
hop neighbours of landmarks achieve a narrower pmf estimadt the first round. As could be seen
in the Figure, generally 6 and 8 landmark/gateway scenamest the accuracy requirement for pest
management, however in order to make the algorithm workdibnsoisture sensing, number of landmarks
or their maximum transmit power needs to increase. In otht@dsy our simulations showed that a finer
pmf resolution does not affect the accuracy in case cell d#iom already supports the application in
terms of inter-node distance. We also observed that thénataber of messages needed for algorithm
to converge grows slower than O(n) which is a promising asfrem the scalability stand of view.
Moreover, in spanning tree variants of BP-based technjcatdsast O(n) messages are required to make
the spanning tree and after that every sensor needs to dotaastilat each iteration with algorithm
taking anywhere between 1 to 3 iterations to converge. Tigiams our algorithm is faster and consumes
less communication energy to converge at the expense ofacu

In Figure[11, localization error for a 20 ha orchard, 40 m afdn® inter-node distances, with
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respect to transmit power level is depicted. Node density tiigher influence at low transmit power
levels which is compatible with our observations from Figi#. Once transmit power increases, at a
fixed landmark degree, average unknown node degree exdeedsduired threshold and error drops
to minimum. Based on the work in_[20] and our simulations, #igorithm meets pest management
(mating disruption) requirements with acceptable prolig{above 90%) inside a 20 ha orchard with 8
landmarks and all unknown nodes running on Synapse RF20Qilemchowever a different transceiver
module may demand for different landmark setups since thdmuanm transmit power level would be

different. More landmarks are needed in larger orchardsdieroto meet the average landmark degree.

V. CONCLUSION

Connectivity to landmarks in static WSNs deployed in largéaultural environments such as farms and
orchards is limited due to excessive path loss and largeo$ite field. Besides, large number of nodes in
the field and nature of higher layer communication algorghmterms of transmit power and multicasting
make connectivity graph for these WSNs very loopy. Mosttingslocalization algorithms are ill-suited
for use in such environments because they are overly comglesceptible to loopy connectivity graphs,
and incapable of real time updates, i.e., all the inter-ndid&nce estimations must be completed before
the algorithm runs.
Our scalable RSSI-based localization algorithm overcothese limitations by:

1) using only local distance estimates with respect to rimghing nodes,

2) a small number of landmarks compared to total number oésod

3) adopting coarser or finer grid of the field based on the agaftin and available processing power at

microcontroller of the transceiver modules and desiredllpation accuracy for a specific precision
agriculture application.

The algorithm uses a Bayesian model for information agdiegado achieve scalable communication
and computational complexity with respect to the number @fas. The computational burden of the
algorithm is divided between nodes and time steps. Besidesalgorithm could be stopped at any time
step to carry out the decision making on the location of nodes
The main strength of our localization algorithm is its cotilpifity with realistic deployment scenarios of
WSNs and the low communication overhead it adds to the ajreagloyed routing protocols. Further,
the route discovery phase of ad hoc on-demand distancerv@&@®V) routing protocols, e.g., ZigBee
and similar schemes, work based on flooding and multicastiote request (RREQ) packets; hence our

proposed localization algorithm can be integrated in a enm@nt and inexpensive manner.
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Algorithm 1 Localization Algorithm For Agricultural Environments
Step 1 Initialization (path loss model auto-tuning if required)
Fori=1,...,n, initializing landmarks locations

e PX{V) ~ 0, (2)
Fori=mn,+1,...,n4 initializing unknown nodes locations

< (0

. PX) =L
Step 2 Landmarks advertise themselves to unknown nodes
Fori=1,...,n4
ForVj € N;

. P(X{V|0;) = P(XJ?‘” 101 Py | X = 2y, X{TY = )
. NormalizeP(f(Jg’) ©:)
« Multicasting and updating witt_(12) continue till all unkmo nodes are covered for each landmark
advertisement.
Step 3 A random nodeS; becomes source and multicasts RREQ packet
Step 4
Forj=n,+1,...,N

o If dij < dconnectivity7 .7 #Z
— Updating rule[(1R)
— Normalization
— §; forwards and multicasts the RREQ packet if hop count allow3S[V)
. else
- P()~(§i) = 1,]0;) = P(Xgi_l) = 1,;|©;_1) no change in location estimation
While RREQ packet has not reached the landmark
1 VjeN;
Redo step 4
Step 5 Landmarks return the RREP packet over the minimum hop rewtards source
For V consecutive pairs ofi, j) on landmark-source route

. P(iﬁlw@z) = P(X‘El_l)‘@l_l)P(yZZj‘X‘El_l) = Xy, ii(i_l) = .Z'Z)
. NormalizeP(f(Jgi) ©:)

« else
- PXP]e;) = PV |0 1)

Go back toStep 3
Step 5 Decision making after M time steps
Forj=n,+1,...,N

o« T = argmaX[P(f(JgM) = z;|0ON)].

Tj
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