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Abstract

Node localization algorithms that can be easily integratedinto deployed wireless sensor networks (WSNs)

and which run seamlessly with proprietary lower layer communication protocols running on off-the-shelf

modules can help operators of large farms and orchards avoidthe difficulty, cost and/or time involved with

manual or satellite-based node localization techniques. Even though the state-of-the-art node localization

algorithms can achieve low error rates using distributed techniques such as belief propagation (BP),

they are not well suited to WSNs deployed for precision agriculture applications with large number of

nodes, few number of landmarks and lack real time update capability. The algorithm proposed here is

designed for applications such as pest control and irrigation in large farms and orchards where greater

power efficiency and scalability are required but location accuracy requirements are less demanding. Our

algorithm uses received signal strength indicator (RSSI) values to estimate the distribution of distance

between nodes then updates the location probability mass function (pmf) of nodes in a distributed manner.

At every time step, the most recently communicated path losssamples and location prior pmf received

from neighbouring nodes is sufficient for nodes with unknownlocation to update their location pmf. This

renders the algorithm recursive, hence results in lower computational complexity at each time step. We

propose a particular realization of the method in which onlyone node multicasts at each time step and

neighbouring nodes update their location pmf conditioned on all communicated samples over previous

time steps. This is highly compatible with realistic WSN deployments, e.g., ZigBee which are based

upon the ad hoc on-demand distance vector (AODV) where nodesflood route request (RREQ) and route

reply (RREP) packets. Further, beacon signals transmittedduring the network formation and routing table

formulation stage can provide the RSSI information required by the localization algorithm.

Index Terms

Wireless sensor networks, distributed localization, range-based localization algorithms, path loss mea-

surements, information aggregation, precision agriculture
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I. INTRODUCTION

With the advent of short range wireless technologies and standards in late 1990’s variety of wireless

localization techniques for indoor and outdoor applications have been developed. Wide range of indoor

localization techniques have emerged based on camera, infrared, wireless local area network (WLAN),

ultra wide band (UWB), Bluetooth, and radio-frequency identification (RFID) [1] whereas global position-

ing system (GPS) technology revolutionized outdoor localization. Even though GPS-based localization

techniques are attractive in terms of accuracy, their impaired coverage in metropolitan environments

and lack of cost-effective scalable solutions sparked emergence of IEEE802.15.4/ZigBee RSSI-based

localization algorithms. These techniques have advantageover Bluetooth, UWB and Wi-Fi due to their

energy efficiency and capability to support high-range communication and mesh networking [2].

Localization techniques have been developed for differenttypes of applications and are compared

in terms of accuracy, coverage, cost, responsiveness and adaptiveness to environmental changes [3], [4].

While some techniques such as laser and camera-based technologies are highly accurate and scalable in

terms of coverage, they are usually too expensive to use for large environment applications. Particularly

for large scale outdoor applications such as agricultural environments, a cost-effective, scalable and fast

localization technique which is robust against seasonal environmental variations, e.g., growing season

changes, is needed. On the other hand, accuracy requirements are usually looser because of relatively

high inter-node distances which correspond to distance correlation of the measured features.

One of the rapidly growing WSN areas for outdoor environments is precision agriculture which

enhances crop management and yield through sophisticated management of soil, water resources and

applied inputs [5]. WSNs are deployed to improve spatial data collection, precision irrigation, variable-

rate technology and supplying data to farmers [6]. This requires sampling of critical features such as soil

pH, moisture, electrical conductivity in addition to deployment of actuators to trigger wide variety of

processes varying from drip irrigation to pest management,e.g., mating disruption. In order to provide

meaningful feature maps that improve resource management and decision making, it is critical to be

aware of location of the sensors that have generated data. Loose accuracy requirements, beside the cost

involved with equipping all sensors with GPS, raise the needfor localization algorithms which are low

cost, and are compatible with commercial off-the-shelf (COTS) transceiver modules.

Anchor-based localization algorithms make use of landmarks or anchor nodes to help localizing

unknown nodes [7] and are divided into range-based and range-free techniques. Range-free algorithms

on the other hand, only take advantage of the connectivity information [8], i.e., whether nodes are within

the communication range of each other whereas range-based algorithms exploit time of arrival (TOA),
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angle of arrival (AOA) or RSSI to estimate the distance between nodes, so called inter-node distances.

RSSI-based techniques are attractive in the sense that no additional hardware is required in order to make

the distance estimation [9]. Further even though AOA and TOA-based techniques are more precise, they

are more complex in the sense that the former requires multiple antennas to detect signal arriving from

different directions whereas the latter demands a large bandwidth for better multi path resolution.

This work is a probabilistic distributed and range-based localization technique for static WSNs based

on RSSI samples, Bayesian model for information aggregation and particularly suited to precision agricul-

ture applications. Most of the probabilistic distributed localization techniques work based on marginaliza-

tion over a Markov random field (MRF) where joint distribution of nodes location{x1, x2, . . . xn} based

on noisy distance measurements between pairs of nodes{dij} is expressed as multiplication of node and

pairwise potentials,P (x1, . . . , xn|{dij}) ∝
∏
(i,j)

P (dij |xi, xj)
∏
j

P (xj) [10]. Message passing algorithms

such as belief propagation (BP), nonparametric belief propagation (NBP) and their variants are proposed

to estimate the marginalization, hence location of each node [10], [11], [12], [13]. BP-based techniques

are vulnerable to loopy graphs which cause them either not toconverge at all or converge only under

specific circumstances in terms of number of loops [14]. Therefore these techniques have been mostly

used for the scenarios where a few slowly moving or static nodes along with relatively high number

of anchors, and all equipped with short range transmitters,render the statistical graph spanning tree or

have few number of loops. Another shortcoming of these techniques is the need for global information

from distance measurements to be available so that statistical graph is formed and algorithm could

start to run. These two reasons lead to the fact that even though a relatively high accuracy is achieved

with these techniques, remarkable amount of communicationoverhead, at leastO(n) depending on the

technique, is required to form the spanning tree or statistical graph using multi-hop communications.

The second issue is addressed in [15], where nodes only exchange information with their single hop

neighbours, however the communication and computation overhead required for making spanning trees

with landmarks designated as root and other nodes keeping track of paths still holds since the procedure

demands for independence of paths that arrive at the updating node. In contrast, in precision agriculture

applications, relatively high number of connected unknownnodes resulted from high transmit power

level, and underlying IEEE802.15.4 WSNs which work in conjunction with route discovery phase of

AODV, call for a real-time algorithm which relies on local single hop information and is not susceptible

to loops in the network.

Our work is similar to [15] in the sense that nodes only communicate with their single hop
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neighbours and update their location in a real time manner rather than having to make the statistical

graph using multi hop communications as in MRF-based approaches. However our algorithm needs no

initialization in terms of spanning tree construction or having to start from a specific node or landmark

in the field. In other words, the proposed technique is well positioned to address self-localization in do

it yourself (DIY) networks which run ZigBee or other proprietary mesh networking protocols on top of

IEEE802.15.4 specifications. The reason behind this is thatthe algorithm starts to work in conjunction

with route discovery phase of AODV-based routing protocolssuch as ZigBee where route request packet

(RREQ) originated from an arbitrary source node is flooded inthe entire network. We derive a closed-form

recursive relationship for Bayesian update of nodes location at a time step during which one or multiple

path loss samples are generated therefore call it a Bayesianmodel for information aggregation. We prove

that the location constraint resulted from a generated pathloss sample is in fact convolution of path

loss likelihood and the most recent location estimation of the generating node. Realistic independence

assumptions, resulted from our measurements, are made to prove that location constraints resulted from

dependent paths (loop forming paths) multiply. This makes the algorithm faster by eliminating spanning

tree construction, intermediate node tracking, and also making use of constraints resulted from the paths

traversed by flooding RREQ packets, whereas algorithm’s robustness against loops is verified by extensive

simulations.

Since our goal is to devise an algorithm that can work in conjunction with COTS transceiver

modules, we characterize path loss at 2.45 GHz industrial, scientific and medical (ISM) band. Based

on our measurements in apple orchards, log-normal path lossmodel is proposed for high density apple

orchards and for different transmitter (Tx) and receiver (Rx) antenna heights. Further, Rx was placed

below tree height whereas Tx was fixed below and above the treeheight. In the rest of this paper, these

two antenna height modes are called below and above canopy level respectively. The path loss data was

collected during three measurement campaigns throughout two consecutive summer seasons.

The remainder of this paper is organized as follows: In Section II, we formulate the localization

problem, define the notations, include a brief summary from our measurement campaigns and explain the

path loss model along with path loss likelihood function conditioned on node locations. In Section III,

we devise a recursive solution to the problem stated in Section II and propose a specific implementation

of this solution based on nodes multicasting in TDMA manner.Finally we proceed with simulations and

evaluation of our algorithm in Section IV and wrap up the paper with conclusion in Section V.
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II. T HE LOCALIZATION PROBLEM AND PATH LOSSL IKELIHOOD FUNCTION

As stated in Introduction, pinpoint localization accuracyis not required for precision agriculture applica-

tions such as pest control since knowing approximate location of originating sensors suffices to trigger the

relevant actuators. Accordingly, we define the localization problem in a discrete manner which means that

the agricultural field is divided into smaller square cells and location of each unknown node is determined

as centroid of one of the cells the field is divided into. The precision of the algorithm is adjustable via

number of grid cells inside the field, however precision flattens once grid resolution exceeds a threshold.

Formulation of the localization problem based on aggregated path loss samples from neighbour nodes is

discussed in Section II-A and path loss model for orchard environments is explained briefly in Section

II-B.

A. Problem Formulation

Let S = {S1, . . . , SN} be a set of sensors randomly scattered in a square field which is divided into

m ×m square cells with equal areas, andΩ = {1, 2, . . . ,m2} be the sample space of all possible cell

coordinates. Our objective is to make use of inter-node communications and find the grid cell each node

is located in. In the following, we introduce the notations and formalize the localization problem.

Without loss of generality, let the firstna nodes be landmarksSl = {S1, . . . , Sna
}, and unknown

nodes be represented bySu = {Sna+1, . . . , SN} while ylij is a path loss sample or average of multiple

path loss samples thatSj collects fromSi at lth time step. Note that in general, multiple samples could

be collected in case each calculation time step is made up of multiple communication time slots. LetΘk

denote vector of path loss samples which have been communicated between pairs of connected nodes

during the firstk time steps and letY (k)
j represent vector of all path loss samples thatSj has collected

from its neighbour nodes with index setNj at k-th time step,





Θk = (ylij) l = 0 : k

1 ≤ j ≤ N, i ∈ Nj

Y
(k)
j = (ykij)i∈Nj

· (1)

Note thatykmj is not available in caseSj has not collected any sample fromSm at k-th time step.

Let X̃(k)
j

be a random variable defined overΩ representing location estimation ofSj at k-th time step.

Considering that we are looking to estimate location ofSj atM th time step based on previous aggregated

dataΘM ,

x̃j = argmax
xj

[P (X̃
(M)
j

= xj
∣∣ΘM )], (2)
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whereP (·) is the probability function andargmax
x

[f(x)] is the set of pointsx for which f(x) attains its

largest value. In the remainder of this section, path loss model for agricultural environment which is the

key to generateylij samples,Θk andY (k)
j is explained. Consequently we derive the path loss likelihood

function that underpins the recursive algorithm describedin Section III. Moreover, we derive likelihood

of ylij given thatSi and Sj are estimated to be located atxi and xj respectively, i.e.,P (ykij
∣∣X̃(k)

j =

xj, X̃
(k)
i = xi).

B. A Representative Path Loss Model for Orchard Environments

In this section, we explain the path loss model resulted fromour measurement campaigns in apple orchards

located at Keremeos, BC, Canada. This underlies the work in Section II-C which explains derivation of

path loss likelihood function expressing path loss distribution conditioned on Tx and Rx locations.

There is an extensive literature on path loss models for forests and agricultural environments. It is claimed

that log-distance path loss model provides a good fit to the measured path loss in vegetated environments

[16], [17], [18],

PL[dB] = PL0 + 10n log(
d

d0
) +Xσ, (3)

whereXσ is a zero-mean normal random variable with standard deviation σ, Xσ ∼ N(0, σ), whereas

PL0 represents path loss at reference distanced0 andn denotes path loss exponent for the specific case

of study.

We carried out the measurements in Dawson orchards at Keremeos, Okanagan, British Columbia.

Measurements were conducted in a 6 hectare (ha) orchard consisting of apple tree rows divided into

standard and high density in terms of vegetation and canopy density with trees being approximately

3 m high. We use the path loss data collected from four directions of along, cross,30◦, 45◦ and 60◦

with respect to tree rows, using different transmitter (Tx)and receiver (Rx) antenna heights. Further, we

conducted measurements with Tx at 2.5 m (below canopy level)and 4 m (above canopy level) heights

and Rx at 2.5 m. This setup is compatible with realistic WSN deployment scenarios where gateways,

responsible for aggregating data of their neighbouring sensors, are mounted above canopy whereas sensors

and actuators are placed inside the canopy. As localizationis concerned, gateways which have better line

of sight (LOS) are equipped with GPS to play the landmark role. The measurements were conducted

throughout three different measurement campaigns, seven days combined and spread across two summer

seasons.

Measurements were done in approximate range of 0-100 m at points which are approximately 10 m
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apart from each other at 9 different parts of the orchard along four directions illustrated in Figure 1.

Our equipment on the transmitter side, are an Agilent E8267Dvector signal generator (VSG) feeding a

2.45 GHz omnidirectional dipole antenna with 5 multi-tones(5 MHz apart from each other) through a

ZVA-213 power amplifier which provides +23 dBm as the antennainput. Whereas on the receiver side,

a Toshiba laptop which runs MATLAB and Agilent connection expert, specialized proprietary software

for connecting computer to Agilent spectrum analyzer, is connected to a N9342C handheld spectrum

analyzer (HSA) via a LAN cable. Extra losses and gains resulted from cables, connectors and antennas

at both Tx and Rx sides have been taken into account for calibration.

(a) (b)

Fig. 1: 9 measurement scenarios inside the orchard is illustrated; Transmitter antenna was moved 50 m across the
rows to form a new scenario whereas Rx was moved along four different directions of along, cross,30◦, 45◦ and
60◦ for each scenario and path loss samples were collected through 0-100 m range and at≈ 10 m apart points.
Rx antenna was placed at 2.5 m elevation (0.5 m below tree height) while Tx antenna height was at 2.5 m and

4 m elevation (1 m above canopy level).

The summary of path loss statistics along with statistical measureR2, which indicates how well

data fits the log-distance model, and 95% confidence interval(CI) for PL0 andn are expressed in Table

I, whereas path loss samples for two modes are illustrated inFigure 3. Note that gateway-to-node and

node-to-node communications comply with above and below canopy level Tx modes respectively.

C. Path Loss Likelihood Function

In this part, we derive likelihood functionP (ykij
∣∣X̃(k)

j = xj, X̃
(k)
i = xi) which is a key component of

the algorithm we propose in the next section since it relatespath loss values to inter-node distances.
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TABLE I: Path Loss Model characteristics for above and belowcanopy level modes

Mode n PL0[dB] σ[dB] R2 95% CI for n 95% CI forPL0

2.45 GHz-Tx below canopy level 3.61 75 5.27 0.74 3.36-3.86 71-79
2.45 GHz-Tx above canopy level 2.91 72 4.14 0.78 2.60-3.22 67-77

Fig. 2: Location pmf of unknown nodes is updated recursively. Agricultural field is divided intom×m cells with
equal area and probability of an unknown node being located inside each cell is calculated based on recently

aggregated path loss samples and prior location pmf of connected nodes.
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Fig. 3: Path loss samples for below and above canopy Tx level at 2.45 GHz collected from three measurement
campaigns; The difference between the two above and below canopy modes, which is due to more line of sight

(LOS) between Tx and Rx in the above canopy case, could be seen.
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Assuming log-distance path loss model as discussed in Section II-B and taking a random point on the

field into account, the probability of path loss sampleykij falling in the range[plij − ∆
2 , plij +

∆
2 ] with

∆ << plij and whenSj is located at distancedij from Si is calculated by

P

(
plij −

∆

2
< ykij < plij +

∆

2

∣∣∣∣D = dij

)
=

C∆√
2πσ2

e−
(plij−PL(dij))

2σ2 , (4)

wherePL(d) = PL0 + 10n log( d
d0
) and C is the normalization constant. Based on (4), and the fact

that each pair(xi, xj) translates into the corresponding distancedij , sensorSj calculatesP (ykij =

plij|X̃(i)
j = xj , X̃

(i−1)
i = xi), ∀xi, xj ∈ Ω. Further in practice, in order to approximate the above

conditional probability, we collect amplitude of the normal distribution with meanPL(dij) and standard

deviationσ in the range
[
PL(dij)− 3σ, PL(dij) + 3σ

]
at 1 dB steps and normalize the values so that

they sum up to one. Note that the proposed path loss model in Section II-B is used to derive the path

loss likelihood function and also to generate random path loss samples in our simulations in Section IV.

III. L OCALIZATION ALGORITHM FOR PRECISION AGRICULTURE APPLICATIONS

In this section, we derive an algorithm for the problem stated in (2) which works based on Bayesian model

for information aggregation. Therefore, our objective is to derive a recursive expression forP (X̃
(k)
j

=

xj
∣∣Θk) that explains how location pmf is updated once information is aggregating in the network or in

other words, the most recent evidence, RSSI sample, is collected. In Section III-A, we first solve the

problem for general case where at each calculation time step, arbitrary amount of information or number

of packets, between one or multiple pairs of nodes is exchanged. In Section III-A, we proceed with the

special case which is more compatible with route discovery phase of AODV-based routing protocols such

as ZigBee. This is the algorithm we have simulated in SectionIV.

A. General Case

According to the notation explanation in Section II and assuming that at each time step,Sj updates its

location pmf only based on the samples it has received from single hop neighbours, i.e., not samples

communicated between other pairs of nodes,

P (X̃
(k)
j = xj

∣∣Θk) = P (X̃
(k)
j = xj

∣∣Θk−1, Y
(k)
j ). (5)

Based on the fact thatΘk−1 ⊥⊥ Y
(k)
j ,

P (X̃
(k)
j

= xj
∣∣Θk−1, Y

(k)
j ) ∝ P (Y

(k)
j

∣∣X̃(k)
j

= xj ,Θk−1)P (X̃
(k)
j

= xj
∣∣Θk−1). (6)
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Let us recall that in general each calculation time step could be made up of several communication time

slots therefore we have usedY (k)
j which are the path loss samplesSj collects from one neighbour or a

set of neighbours atk-th time step. Rephrasing (5) yields the recursive form,

P (X̃
(k)
j = xj

∣∣Θk) ∝ P (Y
(k)
j

∣∣X̃(k)
j = xj,Θk−1)P (X̃

(k)
j = xj

∣∣Θk−1). (7)

We then simplifyP (Y
(k)
j

∣∣X̃(k)
j = xj,Θk−1) in the right-hand side of (7). Letting⊥⊥ denote statistical

independence and assuming that

ykij ⊥⊥
(
ykmj

∣∣X̃(k)
j ,Θk−1

)
∀i,m ∈ Nj , (8)

First term on the right-hand side of (7) could be written as

P (Y
(k)
j

∣∣X̃(k)
j = xj ,Θk−1) =

∏

i∈Nj

P (ykij
∣∣X̃(k)

j = xj ,Θk−1). (9)

Our measurements followed by the procedure in [19] verify the assumption in (8). Further our measure-

ments show that shadowing correlation between links in the vegetated environment, which is the case of

our study, is very low (below 0.1). This is reasonable due to long links we are dealing with which are

≈ 50 m for pest management applications. Due to lack of space and irrelevance to the main topic, we

spare reader details on shadowing correlation calculation.

Based on conditional expectation rule, we simplify the right-hand side of (9),

P (ykij
∣∣X̃(k)

j
= xj ,Θk−1) =

∑

xi

P (ykij
∣∣X̃(k)

j
= xj , X̃

(k)
i

= xi,Θk−1)P (X̃
(k)
i

= xi
∣∣X̃(k)

j
= xj ,Θk−1)

=
∑

xi

P (ykij
∣∣X̃(k)

j
= xj , X̃

(k)
i

= xi)P (X̃
(k)
i

= xi
∣∣Θk−1).

(10)

In (10), we use the assumption thatX̃(k)
i ⊥⊥ (X̃

(k)
j

∣∣Θk−1) and ykij ⊥⊥
(
Θk−1

∣∣X̃(k)
i , X̃

(k)
j

)
. The first

assumption results from the fact that given all the previousaggregated information in the network, update

on location ofSi at each time step is independent of that ofSj. Whereas the second assumption indicates

that given the most recent updates onSi andSj, the path loss betweenSi andSj is independent of the

previously aggregated data in the network.

Combining (9) and (10) yields

P (Y
(k)
j

∣∣X̃(k)
j

= xj,Θk−1) =
∏

i∈Nj

∑

xi

[
P (ykij

∣∣X̃(k)
j

= xj , X̃
(k)
i

= xi)P (X̃
(k)
i

= xi
∣∣Θ(k−1)

j )
]
. (11)
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Finally combining (7) and (11) completes the recursive update,

P (X̃j = xj
∣∣Θk) ∝ P (X̃j = xj

∣∣Θk−1)×
∏

i∈Nj

∑

xi

[
P (ykij

∣∣X̃(k)
j

= xj, X̃
(k)
i

= xi)P (X̃
(k)
i

= xi
∣∣Θk−1)

]
.

(12)

This means in order to update posterior ofSj after observation of new samples collected fromSi, we

need to know priors ofSi andSj in addition to channel informationP (ykij
∣∣X̃(k)

j
= xj , X̃

(k)
i

= xi). With

respect to total number of nodesn, the algorithm has computational and communication complexity of

O(n) andO(1) per node which renders the algorithm scalable. The computational complexity is the same

as BP-based techniques whereas communication overhead which makes up most of power consumption

in WSNs is significantly lower since each node only communicates with its single-hop neighbours.

B. Localization Algorithm Compatible with Wireless Sensor Networks

In this section, we proceed with a realization of the generalcase algorithm which is a more specific case

of the proposed recursive solution in (12). Moreover we assume that atk-th time step, onlySk does the

multicasting and all connected nodes update their locationposterior based on the observed path loss or

mean of the path loss samples, i.e.,Y
(k)
j = ykkj. This means each node is recipient of at most one sample

at a single time step which guarantees compatibility with real world deployment of WSNs such as TDMA

or carrier sense multiple access with collision avoidance (CSMA/CA) where at each time slot, a node

can listen to at most one neighbour node without interference. To be more specific, AODV which is the

underlying routing protocol in ZigBee works based on flooding and multicasting route request (RREQ)

packets and receiving routing reply (RREP) messages, henceour proposed localization algorithm can be

integrated in a convenient and inexpensive manner.

Off-the-shelf IEEE802.15.4 compliant modules such as TelosB, MICAz and Synapse modules give

firmware engineers and designers the option to program them via Universal Serial Bus (USB), universal

asynchronous receiver/transmitter (UART) ports or over-the-air (OTA). Even though MICAz and TelosB

motes are widely used for academic and research purposes, Synapse modules which are equipped with

light and fast network operating system, SNAP, and a more powerful microcontroller are more frequent

for outdoor and industrial applications and better suited to more complex programming (with Python)

and also mesh networking. In the next section, we use numerical examples to evaluate the performance

of our algorithm based on radio characteristics of Synapse radio frequency (RF) modules.

Quantization and Compression: There are limitations in terms of maximum payload size

(102 bytes) which is imposed by underlying PHY and MAC layers. This limits us in terms of resolution
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of the exchanged pmf messages in the network and may prevent the localization algorithm from achieving

the desired accuracy in large orchards. Therefore, there isa trade-off between localization accuracy and

excessive power consumption in addition to delay which are caused by exchange of multiple packets

between a pair of nodes for the sake of transferring the entire pmf message. Our simulations show that

quantization and compression techniques are applicable sothat pmf messages with more bins fit in a

single packet. Discrete cosine transform (DCT), and 6-bit quantization help achieve compression ratio of

up to 8/1 which translates to coverage of a 100 hectare (ha) orchard for high node density (7 nodes/ha)

pest management (mating disruption) application.

Path Loss Model Auto-Tuning: So far we have assumed that there is a global awareness of

path loss model among sensors, however this is not a realistic assumption due to remarkable changes

during seasonal environmental variations. In [20], Mao et al. proposed a path loss exponent estimation

method based on Cayley–Menger determinant technique and pattern matching. The technique estimates

path loss exponent with a high accuracy (≈ ±0.2) for the same landmark scenario that we have used

in Section IV, i.e., landmarks deployed in the corners of thefield, with estimation errors illustrated in

Figures 4a, 4b. Location estimation error could be tolerated for pest management applications for which

the inter-node distance is 40 m-60 m.

Precision Agriculture Accuracy Requirements: Coverage area of the sensors, spatial correlation

of the measured features and required distance between actuators determine inter-node distance for

deterministic grid WSN deployments. Further, inter-node distance could vary from 10 m for soil moisture

[21] and electrical conductivity [22], to coarser resolutions, 60 m for pH sensing [23] or mating disruption

applications [24]. As will be seen in Section IV, our algorithm is mostly suited to pest management and

mating disruption applications where tolerance for error which could result from the algorithm simplifying

assumptions or mistuned path loss model.

IV. PERFORMANCEEVALUATION OF THE LOCALIZATION ALGORITHM

In this section, we present the simulation results regarding performance of our localization scheme. We

do the simulations for both random and deterministic (grid)deployment of WSN on a square field. We

particularly use simulations to show that the average number of unknown nodes and landmarks each node

connects to, affect the accuracy of the localization algorithm for a specific landmark arrangement. Hence,

we define two parameters, so calledaverage landmark degree and average unknown node degree. Let

landmark and unknown node degree of an arbitrary nodeSi be the number of landmark and unknown

nodesSi is connected to. Note that node degree in graph theory is strongly related to connectivity in
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(a) path loss exponent estimation error (b) Location estimation error

Fig. 4: Path loss exponent and localization estimation error claimed by Mao et al. [20] for randomly scattered
nodes and landmarks in the corners.

the communications context. Further, average unknown nodedegree depends on deployment density and

transmit power level of unknown nodes whereas transmit power of landmarks, location of the landmarks

and number of them affect the landmark average degree. Different metrics have been used to evaluate

performance of the localization algorithms [25]. We use Twice the Distance Root Mean Square (2DRMS)

as the accuracy metric for our localization technique where2DRMS=r means there is95% confidence

that the location estimation would fall within a circle withradiusr around the actual node’s location.

Note that location estimation itself is a random variable due to random nature of path loss samples,

and generating source node. This is due to event-driven datadelivery model which is normally used

for precision agriculture applications which means that a sensor transmits data only when a feature

exceeds a predetermined threshold, hence message passing schedule is different after landmarks advertise

themselves. The random nature of the problem makes 2DRMS a suitable accuracy metric.

In this work, we do not concentrate on optimizing landmarks location however in the next section

we explain the logic behind our adopted landmark arrangement. In the remainder of this section, first we

explain the simulation setup and assumptions. We will then proceed with numerical examples to evaluate

the performance of our algorithm.
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Fig. 5: A schematic view of ZigBee route discovery phase withRREQ packet from source node (orange) being
flooded in the network to reach landmarks (dotted paths) and RREP packets returning to the source node (solid

arrows). Localization could be done both in conjunction with RREQ flooding or RREP return phase. Each
number shows the number of times RREQ packet has been multicasted.

A. Methodology

In this section, it is first explained why we opt for placing landmarks in the corner or middle of border

lines, and continue with justifying assumptions regardingadopted transmit power, orchard size and node

density. For precision agriculture applications inside farms, gateways are placed on the corners and borders

of the field, however in the following we provide some logic onwhy this helps towards the improvement

of localization algorithm.

Landmark Arrangement: Even though placing landmarks close to each other and at the centre

of the field yields a higher average landmark degree, the localization accuracy drops dramatically since

their path loss behaviour has a very high correlation at a given direction and the path loss sample we

collect from them is fairly close to each other at a specific point of reach. Moreover we place landmarks

on the middle of borderlines or in the corners since the arrangement provides more information about

unknown node’s location. In Figure 6, for a random unknown node location, it can be seen that having a

more landmark degree does not necessarily result in a betterlocation estimation. This is because distances

in Figure 6a are fairly close to each other and given that a noisy estimation of them are made based
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on path loss samples, the location estimation will be far less accurate compared to the arrangement in

Figure 6b. It can be easily shown that this scenario holds formost points on the field. Studying other

landmark arrangements could be done accordingly, however we avoid to elaborate on it for the sake of

space considerations and since it does not add to evaluationof the algorithm and is therefore beyond the

scope of this work.
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(a) Landmarks placed in the middle with every one of
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(b) Landmarks placed on the borders with only two of
them having line of sight to the unknown node

Fig. 6: Two different landmark arrangements; The landmark arrangement in plot 6b provides more information
about location of the unknown node despite having fewer nodes having line of sight to the unknown node

TABLE II: Deployment Scenarios

Orchard size 6 ha, 20 ha
Node density (nodes per hectare) 3, 7

Node arrangement Grid
Transmit power level of unknown nodes 0-15 dBm

Transmit power level of landmarks 15 dBm
Transmit power increment step 1 dB

Receiver sensitivity for PER=1% -103 dBm
Grid cell dimension 30 m

Number of landmarks 2,3,4,6 and 8
Location of landmarks borders and corners

Landmark degree (6 ha orchard) varying from 1.78 to 6.3
Landmark degree (20 ha orchard) varying from 0.8 to 2.18

Maximum transmission distance for below canopy mode 120 m
Maximum transmission distance for above canopy mode 220 m
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Fig. 7: Two different landmark arrangements; unknown nodesand landmarks are demonstrated with green small
dots and red large diamonds respectively. Location pmf for the designated unknown node (purple) is illustrated by

heat map.
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Fig. 8: 2DRMS with respect to average landmark and unknown node degree is depicted. Surface points are
collected from all deployment scenarios

Deployment Scenarios and Assumptions: In our simulation setup which is summarized in

Table II, we adopt two different orchard sizes of6 and 20 hectares (ha) with nodes randomly scattered

inside the field at two different densities, 3 nodes/ha, and 7nodes/ha. As discussed in Section III, these are

the densities used for pest management applications and translate to 60 m and 40 m inter-node distance

for grid deployment respectively. Grid cell dimension is chosen to be 30 m so that both these densities
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Fig. 9: average unknown node degree of nodes with respect to transmit power level of the unknown nodes. Dotted
and solid graphs represent deployment scenarios for 6 ha and20 ha orchards respectively.

could be covered. The average size of an apple orchard variesfrom 1 to 20 ha in different regions,

whereas the average size in Canada and the United States is approximately 6 ha and 20 ha respectively

according to the United States Department of Agriculture [26]. Node density and type of deployed RF

modules may vary based on the precision agriculture application and required sampling range [27]. We

also adopt four landmark arrangements with transmit power level of unknown nodes varying from0 to

+15 dBm, receiver sensitivity for packet error rate (PER) to be−103 dBm, whereas the communication

between landmark and nodes occurs at maximum transmit power(+15 dBm). Variation of landmark

degree for different number of landmarks and orchard sizes is also expressed in Table II which are based

on the assumption that Synapse RF200 modules are used [28].

We also assume that landmarks (gateways) and unknown nodes (sensors) are mounted above

and below canopy level respectively. We callSi and Sj connected,dij < dconnectivity, in case the

probability of RSSI falling below receiver sensitivity is below 1% or connectivity probability is above

99%. This maximum transmission distance is calculated based on our measurement-based path loss

model summarized in Table I. In Table II, we have tabulated the transmission distance of Synapse RF200

module at its maximum transmit power so that connectivity requirement is met [28]. In the next section

we evaluate the performance of our algorithm.

B. Results

In this section, we study the localization error of our algorithm for different simulation scenarios. In

Figure 7, two landmark arrangements, 6 and 8, along with 150 deterministically and randomly scattered
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(b) Low density random deployment
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(c) High density grid deployment
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Fig. 10: 2DRMS for different node densities and landmark arrangements inside a 20 ha apple orchard; Low and
high density grid deployments translate to 60 m and 40 m internode distance respectively and is well-suited to

mating disruption.

sensors and maximum transmit power are illustrated. Location distribution of one designated node (purple

node) after the algorithm converges is illustrated.

In Figure 8, we illustrate the behaviour of 2DRMS with respect to average landmark and unknown

node degree. As can be seen in the surface plot, error drops dramatically with average unknown node

degree increasing. Further, even for a low average landmarkdegrees,≈ 1.5, an approximate average

unknown node degree of8 yields the desired 2DRMS (≈ 20 m). In Figure 9, we demonstrate how average

unknown node degree increases with transmit power level of unknown nodes in different simulation setups.
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Fig. 11: 2DRMS variations with transmit power levelPtx; different scenarios in terms of node density and
number of landmarks inside a 20 ha apple orchard are illustrated. The 2 landmark scenario is excluded for the
sake of clarity and lack of space since it achieves a fairly low accuracy. Increasing node density helps towards

achieving low 2DRMS with lower number of landmarks and transmit power

These two figures provide an insight on how algorithm works with different transmit power levels.

In Figure 10, 2DRMS behaviour for different simulation setups during course of the algorithm

is demonstrated which shows that the algorithm converges after a few messages are multicasted in

the network. As explained in Algorithm 1, the procedure starts with landmarks advertising themselves

to the entire network. This significantly helps towards faster convergence of the algorithm since one-

hop neighbours of landmarks achieve a narrower pmf estimation at the first round. As could be seen

in the Figure, generally 6 and 8 landmark/gateway scenariosmeet the accuracy requirement for pest

management, however in order to make the algorithm work for soil moisture sensing, number of landmarks

or their maximum transmit power needs to increase. In other words, our simulations showed that a finer

pmf resolution does not affect the accuracy in case cell dimension already supports the application in

terms of inter-node distance. We also observed that the total number of messages needed for algorithm

to converge grows slower than O(n) which is a promising aspect from the scalability stand of view.

Moreover, in spanning tree variants of BP-based techniques, at least O(n) messages are required to make

the spanning tree and after that every sensor needs to do a multicast at each iteration with algorithm

taking anywhere between 1 to 3 iterations to converge. This means our algorithm is faster and consumes

less communication energy to converge at the expense of accuracy.

In Figure 11, localization error for a 20 ha orchard, 40 m and 60 m inter-node distances, with
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respect to transmit power level is depicted. Node density has higher influence at low transmit power

levels which is compatible with our observations from Figure 8. Once transmit power increases, at a

fixed landmark degree, average unknown node degree exceeds the required threshold and error drops

to minimum. Based on the work in [20] and our simulations, thealgorithm meets pest management

(mating disruption) requirements with acceptable probability (above 90%) inside a 20 ha orchard with 8

landmarks and all unknown nodes running on Synapse RF200 modules, however a different transceiver

module may demand for different landmark setups since the maximum transmit power level would be

different. More landmarks are needed in larger orchards in order to meet the average landmark degree.

V. CONCLUSION

Connectivity to landmarks in static WSNs deployed in large agricultural environments such as farms and

orchards is limited due to excessive path loss and large sizeof the field. Besides, large number of nodes in

the field and nature of higher layer communication algorithms in terms of transmit power and multicasting

make connectivity graph for these WSNs very loopy. Most existing localization algorithms are ill-suited

for use in such environments because they are overly complex, susceptible to loopy connectivity graphs,

and incapable of real time updates, i.e., all the inter-nodedistance estimations must be completed before

the algorithm runs.

Our scalable RSSI-based localization algorithm overcomesthese limitations by:

1) using only local distance estimates with respect to neighbouring nodes,

2) a small number of landmarks compared to total number of nodes,

3) adopting coarser or finer grid of the field based on the application and available processing power at

microcontroller of the transceiver modules and desired localization accuracy for a specific precision

agriculture application.

The algorithm uses a Bayesian model for information aggregation to achieve scalable communication

and computational complexity with respect to the number of nodes. The computational burden of the

algorithm is divided between nodes and time steps. Besides,the algorithm could be stopped at any time

step to carry out the decision making on the location of nodes.

The main strength of our localization algorithm is its compatibility with realistic deployment scenarios of

WSNs and the low communication overhead it adds to the already deployed routing protocols. Further,

the route discovery phase of ad hoc on-demand distance vector (AODV) routing protocols, e.g., ZigBee

and similar schemes, work based on flooding and multicastingroute request (RREQ) packets; hence our

proposed localization algorithm can be integrated in a convenient and inexpensive manner.
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Algorithm 1 Localization Algorithm For Agricultural Environments
Step 1: Initialization (path loss model auto-tuning if required)
For i = 1, . . . , na initializing landmarks locations

• P (X̃
(0)
i ) ∼ δxi

(x)

For i = na + 1, . . . , nt initializing unknown nodes locations

• P (X̃
(0)
i ) = 1

m2

Step 2: Landmarks advertise themselves to unknown nodes
For i = 1, . . . , na

For ∀j ∈ Ni

• P (X̃
(i)
j

∣∣Θi) = P (X̃
(i−1)
j

∣∣Θi−1)P (yiij
∣∣X̃(i−1)

j = xj , X̃
(i−1)
i = xi)

• NormalizeP (X̃
(i)
j

∣∣Θi)
• Multicasting and updating with (12) continue till all unknown nodes are covered for each landmark

advertisement.

Step 3: A random nodeSi becomes source and multicasts RREQ packet
Step 4:
For j = na + 1, . . . , N

• If dij < dconnectivity, j 6= i

– Updating rule (12)
– Normalization
– Sj forwards and multicasts the RREQ packet if hop count allows (AODV)

• else
– P (X̃

(i)
j

= xj
∣∣Θi) = P (X̃

(i−1)
j

= xj
∣∣Θi−1) no change in location estimation

While RREQ packet has not reached the landmark
i← ∀j ∈ Ni

Redo step 4
Step 5: Landmarks return the RREP packet over the minimum hop routetowards source
For ∀ consecutive pairs of(i, j) on landmark-source route

• P (X̃
(i)
j

∣∣Θi) = P (X̃
(i−1)
j

∣∣Θi−1)P (yiij
∣∣X̃(i−1)

j
= xj , X̃

(i−1)
i

= xi)

• NormalizeP (X̃
(i)
j

∣∣Θi)

• else

– P (X̃
(i)
j

∣∣Θi) = P (X̃
(i−1)
j

∣∣Θi−1)

Go back toStep 3
Step 5: Decision making after M time steps
For j = na + 1, . . . , N

• x̃j = argmax
xj

[P (X̃
(M)
j

= xj
∣∣ΘN )].
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