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Abstract

Wireless network virtualization has been well recognized as a way to improve the flexibility of

wireless networks by decoupling the functionality of the system and implementing infrastructure and

spectrum as services. Recent studies have shown that caching provides a better performance to serve the

content requests from mobile users. In this paper, we propose thatcaching can be applied as a service

in mobile networks, i.e., different service providers (SPs) cache their contents in the storages of wireless

facilities that owned by mobile network operators (MNOs). Specifically, we focus on the scenario of

small-cell networks, where cache-enabled small-cell base stations (SBSs) are the facilities to cache

contents. To deal with the competition for storages among multiple SPs, we design a mechanism based

on multi-object auctions, where the time-dependent feature of system parameters and the frequency of

content replacement are both taken into account. Simulation results show that our solution leads to a

satisfactory outcome.
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I. INTRODUCTION

Wireless network virtualizationhas been proposed in recent years to improve the flexibility of

traditional wireless networks against the tremendous growth of diversified online services [2].

Similar to the traditional wired network virtualization [3], wireless network virtualization sep-

arates wireless networks into physical infrastructures and online services [4]. In wireless net-

works, the parties that operate the wireless physical infrastructures are called mobile network

operators (MNOs), and the parties that provide online services for users are called service

providers (SPs). SPs can typically create their own virtualnetworks to serve their users by

aggregating resources from MNOs, where theresourcesusually have a broad scope, ranging

from the spectrum, the infrastructure, to the air interface[5]. With the help of virtualization,

multiple heterogeneous virtual networks that dynamicallycomposed by different SPs can coexist

together in isolation from each other [4]. Therefore, once the system is properly designed,

wireless network virtualization can maximize the system utilization, facilitate the updating of

existed services and alleviate the difficulty of applying new ones [6].

Since the services provided by SPs depend on the resources that allocated to them, resource

allocation becomes one of the important issues, i.e. how to effectively allocate the limited

resources to different SPs [2]. In most early studies, spectrum was considered as the most

basic kind of resource in wireless network virtualization.The authors in [7] [8] discussed the

spectrum allocation problem in both time domain and frequency domain, and the works in [9]

[10] dealt with the competition for spectrum among SPs by using game theory. Apart from the

spectrum, another kind of important resource that being considered in previous works was the

infrastructure, such as the wireless building premises, RFantennas, and network routers, etc [2].

Several studies showed the ongoing trends of the virtualization of wireless infrastructures [11]

[12]. Moreover, the combination of spectrum and infrastructure sharing was proposed asfull

network sharing, which was detailedly classified in [13].

However, there are still potential resources that are not discussed in wireless network virtu-

alization, such as the storages of wireless facilities [14]. The storage-enabled wireless facilities

were proposed in [15]–[22], where the pre-cached contents in small-cell base stations (SBSs) can

bring better system performance, showing an effective way to deal with the low-speed backhaul
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link of SBSs [23]. This proposal was first given in [15], wherea sub-optimal strategy of caching

content was provided. Based on this, authors of [16]–[18] considered a more detailed physical

layer model. Other studies in [19] [20] further discussed the network layer coding technique.

Moreover, the works in [21] [22] also took into account the social ties and the mobilities of

users respectively.

Although small-cell caching has been discussed from many aspects, few existing studies focus

on the decision layer, where multiple SPs may exist. Since all the SPs only intend to better serve

their own users by caching their own contents to reduce the average delay, they are likely to

compete for limited caching storages. Thus a proper mechanism should be designed to deal with

the competition among SPs and guarantee the overall performance at the same time. To solve the

aforementioned problem, we propose to design an effective caching mechanism, which enables

caching as a servicein wireless networks. Specifically, the storages of wireless facilities can be

virtualized and shared among multiple SPs, and these SPs canutilize the storages as caching

spaces to cache their own contents for their users. With the help of caching, the average delay

of content requests from users can be lowered, such that the quality-of-service can be improved.

Here we have to clarify the differences between our work and the studies in [24], [25] and [26],

where the authors of [24] and [25] take wireless channels instead of caching storages as the

objects to be auctioned, and the authors of [26] propose thatcaching services are provided by

the MNO who cache the contents in a centralized way instead ofby multiple SPs who have to

compete with each other for their own users.

Without loss of generality, in this paper, we focus on a scenario where small-cell base stations

are the facilities that used to cache contents [15]. We formulate the multiple SPs’ small-cell

caching problem by taking into account the overlapping among SBSs. Since SPs have to compete

for the caching storages on behalf of their own contents, a nature solution is to apply auctions

[27], where each SP has to evaluate its contents and bid for caching storages. We propose our

own mechanism based on multi-object auctions, where the mechanism organizes a serial of multi-

object auctions to complete the caching scheme. Each multi-object auction can be solved by the

market matching algorithm [28], which takes valuations as input and takes allocation results and

prices as output. Considering that the system parameters are time-dependent, storages of SBSs
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may change contents to adapt to the variation, which also burdens the backhaul link of SBSs.

To cope with this problem, we also present a novel approach toreduce the frequency of content

replacement. Simulation results have shown the effectiveness of our solution.

The main contributions of our work are listed below:

1) We come up with a novel approach that caching can be appliedas a service in the mobile

networks with the help of wireless network virtualization,where each SP has to pay for

the storages of the infrastructure that owned by MNOs.

2) We focus on the small-cell caching scenario and formulatethe caching problem with the

objective to minimize average delay, where the overlappingamong SBSs and the competition

among SPs are considered.

3) By using multi-object auctions in our mechanism, we provide a sub-optimal solution and

also find a way to reduce the frequency of content replacementbetween adjacent hours.

The rest of our paper is organized as follows. Section II presents our system model of small-

cell caching. Section III provides the problem formulationand the theoretical analysis on the

system parameters. Section IV introduces our auction mechanism. Section V shows the simulation

results which prove the effectiveness of our solution and testify our theoretical analysis. Finally,

we conclude our paper in Section VI.

II. SYSTEM MODEL

Provider

Content

Caching

Storage

User

SBS SBS SBS1 2 3

Fig. 1. System model for small-cell caching among multiple providers. For each request from any user, the delay can be

lowered as long as the requested content is cached in a nearbySBS.

In this paper, we study a small-cell network, which involvesI SBSs in an area andL SPs
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that provide different contents for users, as shown in Fig. 1. We use SBSi to denote theith SBS,

and SPl to denote thelth service provider, where1 ≤ i ≤ I and 1 ≤ l ≤ L. These SPs intend

to cache their own contents into SBSs, where the storage capacity of SBSi is given byHi.

For the rest part of this section, we model our system in four aspects: the coverage region of

SBSs, the distribution of users, the contents of SPs, and thetraffic latency of content requests.

Coverage regions: We assume that the SBSs are distributed in a 2-dimensional area, and the

coverage regions of SBSs overlap with each other, as shown inFig. 2. We define a region as a

simplest regionif it is not crossed by any curves in such a figure. In our model,simplest regions

are denoted byΩj , 1 ≤ j ≤ J , whereJ is the total number of simplest regions. SinceΩj is

covered by a set of SBSs, we useFj to denote the set of SBSs that coverΩj . For the example

shown in Fig. 2, we haveF1 = {1},F2 = {1, 2},F3 = {2}.

SBS1

Ω3Ω2Ω1

SBS2

Fig. 2. A demonstration of coverage regions of two overlapping SBSs, where three simplest regions are included.

Users’ distribution : The distribution of mobile users is described by user density, which

can be space-dependent as well as time-dependent. And it canbe estimated by some statistical

methods [29] with the help of the data collected by SBSs. In order to better reflect the time-

dependent characteristics, we uset to represent a specific time slot, wheret ≥ 1. And without

loss of generality, we assume the length of a time slot is an hour1. We useut(x) to denote the

average user density at thetth hour at locationx, wherex is a two dimensional vector in space.

Thus, the average user number at thetth hour in the regionΩj can be given by

U t
j =

∫∫

Ωj

ut(x)dx. (1)

1One hour’s length is a reasonable choice for caching replacement, because one hour can be precise enough to describe the

overall variation of user density and content popularity. Although shorter time slot might be a better choice, the key point of

our paper is not to choose the best time slot but to solve the problem with given length of time slot.
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The average user number at thetth hour under SBSi is

U t,i =
∑

j|i∈Fj

∫∫

Ωj

ut(x)dx. (2)

And similarly, the total user number at thetth hour can be calculated as:

U t
sum =

J
∑

j=1

∫∫

Ωj

ut(x)dx. (3)

Contents of SPs: We assume that SPs possess different sets of contents, and the contents may

have different sizes. Thekth content of SPl is denoted byCl,k, and the size ofCl,k is denoted

by Sl,k, where1 ≤ k ≤ Kl andKl is the number of contents possessed by SPl. At the tth hour,

the possibility ofCl,k being requested by each single user is described by itspopularity, denoted

by φt
l,k. And we also have

φt
sum =

∑

l,k

φt
l,k, (4)

whereφt
sum is not necessary to be normalized to one, since each user can request several contents

in an hour. A greaterφt
sum implies more requests from users in an hour. Note that the trend of

the variation of content popularity can also be predicted with some learning mechanisms [30].

Since contents can be divided into sequential blocks for caching, we useCl,k,n to denote the

nth block of Cl,k, andSl,k,n to denote the size of it, where1 ≤ n ≤ Nl,k, andNl,k is the number

of blocks thatCl,k is divided. Note that this content division procedure does not change users’

requesting probability, therefore, all the blocks from thesame original contentCl,k have the

same possibility to be requested, i.e., they share the same popularityφt
l,k. Also notice that if one

block is being requested, other blocks from the same contentare also being requested at the

same time, thus their requesting possibility is inter-dependent.

Traffic latency: If the content requested by a certain user is cached in one ofhis nearby

SBSs, then the request can be served by this SBS, which leads to a lower delay. Otherwise, one

of the nearby SBSs can serve the user by setting up backhaul connections to the core network

and downloading the content from the server. Therefore, thedelay model of backhaul-link (from

SBSs to SPs) and the delay model of downlink (from SBSs to users) should be constructed.

Here, we assume that the delay of backhaul-linkθtback is proportional toU t
sum, since the load

of the backhaul network and the core network mainly depends on the total number of connected
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users. And for SBSi, we assume that the delay of its downlinkθt,idown is proportional toU t,i, i.e.,

the number of user that SBSi covers2. So we have

θtback = β1 · U t
sum, (5)

θt,idown = β2 · U t,i. (6)

For a specific user that covered by several SBSs, it will choose a SBS with the lowest delay

to download its desired content (since the content may only be cached in a few of these SBSs).

In the “choosing” procedure, additional delay may be induced, and we assume this kind of delay

depends on the number of available SBSs for the user. And we give the following definition:

θjchoose = β3 · |Fj|, (7)

where |Fj| is the number of SBSs by whichΩj is covered. The more SBSs cover a user, the

more time will be spent to choose the best downloading SBS. And we callθtchoose as “choosing

delay” later in our paper.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we first formulate the problem and provide the objective function, then analyse

the impact of three system parameters, which are the total number of the contents, the average

storage capacity of SBSs, and the overlapping percentage.

A. Problem Formulation

We first useΓ to denote the allocation matrix, the definition of its elements is given below:

γt,i
l,k,n =







1, if Cl,k,n is cached in SBSi at t,

0, if Cl,k,n is not cached in SBSi at t.
(8)

For a user in the regionΩj , if he requestsCl,k at t, the delay can be calculated as:

θt,jl,k =

Nl,k
∑

n=1

Sl,k,n

Sl,k

min
i|i∈Fj

[

θt,idown + (1− γt,i
l,k,n)θ

t
back

]

+ θjchoose, (9)

2Based on the result of [31], the transmission delay is mainlyinfluenced by the number of connected users, and this relationship

can be approximately regarded as a linear one. On the other hand, a specific user in the overlapping area of two SBSs can

contribute incremental delay to both SBSs, no matter which SBS it is connected to. This is because SBSs may use the same

bandwidth and this user takes up a specific channel of both SBSs. Therefore,θt,idown = β2 · U t,i is a reasonable assumption.
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where
Sl,k,n

Sl,k

is the weight of thenth block ofCl,k, and the average delay of requesting a specific

content should be the weighted summation of the delay of requesting its blocks (which conforms

to user experience).

Our main objective is to minimize the average delay of content requests from users at each

hour by properly designing the allocation of caching storages. Based on (1), (3), (4) and (9), the

average delay at thetth hour can be written as:

D(t) =
1

φt
sumU

t
sum

∑

l,k,j

θt,jl,k · U t
j · φt

l,k. (10)

Finally, we give the objective function and its constraint as:

min
Γ

1

φt
sumU

t
sum

∑

l,k,j

θt,jl,k · U t
j · φt

l,k, ∀t, (11)

s.t.
∑

l,k,n

γt,i
l,k,n · Sl,k,n ≤ Hi, ∀i, ∀t. (12)

This problem is hard to optimize, even a much simpler versionof this problem given in [15] is

also proved to be NP-hard by reducing to a k-Disjoint Set Cover Problem [32]. The mechanism

given in Section III is a sub-optimal solution based on optimizing a sequence of sub-problems.

B. Theoretical Analysis of System Parameters

In this subsection, we analyse some of the parameters which can affect the performance of

the system at each certain hour. Since the competition for limited caching storages among SPs

is the core issue, the total number of the contents to be cached and the storage capacity of SBSs

are the two most concerns. Besides, the degree of overlapping among SBSs can also affect the

outcome, which was never quantitatively discussed in earlyworks. Therefore we analyse three

parameters here: the total number of the contents, denoted by K; the average storage capacity

of SBSs, denoted byH; and the overlapping percentage, denoted byO. We define them as:

K =
L
∑

l=1

Kl , (13)

H =
I

∑

i=1

Hi

/

I , (14)

O =
[

I
∑

i=1

Ai −Atotal

]/

Atotal , (15)



9

whereAi is the area of the coverage region of SBSi, andAtotal is the total area of SBSs’ coverage

regions. Due to the overlap of SBSs, we have
∑I

i=1Ai ≥ Atotal, which meansO ≥ 0. The

system performance is mainly reflected and measured by the average delay given in (10). Here,

we provide three propositions on the influence of these parameters and proof them respectively.

Proposition 1. With a certain distribution of user density and content popularity, the total number

of the contentsK has a positive correlation with the average delayD(t).

Proof: Suppose that there are initiallyK contents in the system and we denote the set of

these content asC. The average delay can be calculated after allocation, and we have

D(t) =
1

φt
sumU

t
sum

∑

l,k,j

θt,jl,k · U t
j · φt

l,k =
1

φt
sumU

t
sum

·D(t, C), (16)

whereD(t, C) represents the un-normalized total delay of requesting contents inC.

When additional set of contentsC′ with the same popularity distribution is added, supposing

|C′| = K ′ = xK andx > 0, we can provideφt ′
sum = (1 + x)φt

sum, because the distribution of

content popularity are fixed. The new caching result makes the average delay change in the form

as below:

D ′(t) =
1

φt ′
sumU

t
sum

· [D′(t, C) +D′(t, C′)] (17)

where theD′(t, C) represents the un-normalized total delay of requesting original contents, and

D′(t, C′) represents the un-normalized total delay of requesting newly added contents.

Due to the competition brought by additional contents, someof the original contents are evicted

from the caching storage, which leads toD(t, C) > D′(t, C). And due to the same popularity

distribution ofC andC′, the proportion that contents fromC are cached and the proportion that

contents fromC′ are cached are similar. SinceD(t, C) is the un-normalized delay, we have

D′(t, C′) : D′(t, C) = |C′| : |C| = x. (18)

Based on the expressions above, we can deduce that

D ′(t) =
1

φt ′
sumU

t
sum

· [D′(t, C) +D′(t, C′)] =
1

φt ′
sumU

t
sum

· (1 + x) ·D′(t, C)

<
1

φt ′
sumU

t
sum

· (1 + x) ·D(t, C) = 1

φt
sumU

t
sum

·D(t, C) = D(t).

This result can also be intuitively comprehended that the increase in content number leads to

the decrease in caching percentage, making the caching system less efficient.
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Proposition 2. With fixed distributions of users, SBSs and content popularity, supposing that

the storage capacities of SBSs are the same, then average storage capacityH has a negative

correlation with average delayD(t).

Proof: Assume that the average delay with storage capacityH is D(t), and the average

delay with storage capacityH ′ is D ′(t), whereH ′ > H. Since the caching result ofH ′ can

be derived from the given caching result ofH, additional contents can be added to the caching

storages, which directly makesθt,j ′
l,k ≤ θt,jl,k. Note that at least one set ofl, k leadsθt,j ′

l,k < θt,jl,k,

thus we haveD ′(t) < D(t).

Unlike the analysis on number of content or storage capacity, the influence of overlapping is

abstruse due to the complicated geographic distribution ofSBSs. We have to first assume that

SBSs with fixed coverage radius are uniformly distributed ina cellular grid, where we control

the overlapping percentage by making the cellular grid denser or sparser. An illustration is shown

in Fig. 3. To further simplify the problem to be analyzed, we only consider a special case where

the parameterβ3 in the equation (7) equals to zero, i.e., the choosing delay is ignored.

Fig. 3. A top view of the overlapping regions of SBSs with radiusR. The distance of two adjacent SBSs is2Rc wherec is

the compress factor. We letc ∈ [1/
√
3, 1] to make sure that overlapping regions of four or more SBSs don’t exist.

Proposition 3. In an approximately infinite cellular grid where SBSs with fixed coverage radius

are uniformly distributed, given the constraint that 1) users density is uniform, 2) no coverage

regions of four or more SBSs exist, and 3) the choosing delay can be ignored, the average delay

based on a fixed caching result decreases when the overlapping percentage increases.

Proof: The detailed proof of this proposition is given in the Appendix.

These three propositions can be verified by our simulation results provided in section V. From

the theoretical analysis above, we can have a rough idea of how well the caching can benefit

the system under different circumstances. Although the total number of contents are not under
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control in a real world, we can still achieve a better result by enlarging the storage capacity

of SBSs. Besides, the performance can be improved if the overlapping percentage of SBSs is

greater, as long as the choosing delay is ignorable.

IV. A UCTION MECHANISM DESIGN

In this section, we propose an auction-based mechanism to solve the caching problem. In

this mechanism, the caching scheme for each hour is determined by a series ofmulti-object

auctions, where the objects are the storages of SBSs that owned by MNOs, and the bidders

are the SPs who possess different sets of contents. Since thecontents have different sizes, it

is difficult to apply auctions directly based on the originalcontents. Therefore, MNOs should

announce astandard caching sizeS in the auctions. With this standard, the storages of SBSs are

divided into multiple blocks with size ofS, and the contents of each SP are transformed into

S-sized independent content blocks. In addition, we also proposeadditional pricesare charged

to properly reduce the frequency of content replacement between hours.

For the rest of this section, we first provide the setup of multi-object auctions at each hour,

then introduce the market matching algorithm for each auction, and finally we discuss some

properties of our mechanism. The whole procedure of our mechanism is shown in Algorithm 1.

Algorithm 1: The proposed auction-based caching mechanism.

begin
MNOs announce the standard caching sizeS;
Auctions setup att = 1;
while true do

Each SP transforms its own contents to form multipleS-sized content blocks;
for j is from 1 to max

i
{Hi/S} do

The jth storage blocks in all SBSs are regarded as objects;
SPs estimate the utility of caching each of their content blocks to each of SBSs;
Create the valuation matrix based on current allocations and additional prices;
Run themarket matching algorithmto complete one single multi-object auction;

end
Let t = t + 1, continue to determine the caching result in the next hour;

end
end
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A. Multi-object Auction Setup

In this subsection, we first provide a method of transformingcontents into equal-sized content

blocks, then demonstrate the auctions at each hour and the valuations without additional prices,

and finally take addition prices into account and provide thefinal valuations.

1) Transforming contents into equal-sized content blocks:

Since the caching problem we’ve formulated is similar to theclassical knapsack problem [33],

the transforming procedure that we propose is inspired by one of the greedy algorithm. For a

given SP, we sort all of its contents in the descending order of popularity to size ratio, and put

them together to form a one-dimensional long “data ribbon”,as shown in Fig. 4. And based on the

given standard caching sizeS, we cut this “data ribbon” from the left side into multipleS-sized

content blocks. Here we ignore the minor problem that whether the length of the “data ribbon”

can be divisible byS, since the most right side usually consists of low-popularity contents and

they have little impact to the caching performance.
Equal-sized 

independent

content blocks

Random-sized 

original contents 

of a certain SP

Sort in the descending order of popularity/size

Fig. 4. The method of transforming random-sized original contents of a certain SP into equal-sized independent contentblocks.

Due to the huge number of contents in reality, we recommend that S is set greater than the

largest original content, in which way the computational complexity can be reduced to some

extent. And as a result, each content is divided into no more than two content blocks. Notice

that the newly formed content blocks are independent from each other, which means that no two

content blocks share a common slice of data.

Here, we useBt
l,r to denote therth content block of SPl at thetth hour. And the popularity of

Bt
l,r can be calculated asϕt

l,r =
∑

k

ηtl,r,k · φt
l,k, where0 ≤ ηtl,r,k ≤ 1, representing the percentage

that the original contentCl,k is contained in the content blockBt
l,r. This equation is essentially

to linearly add up the weighted popularity of the contained contents, which conforms to the

linear additive formulation given in equation (9).
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In the multi-object auctions, we only consider the content blocks as the whole caching objects,

and we useγt,i
l,r to represent the allocation matrix of content blocks. Note that this denotation

differs from γt,i
l,k,n in equation (8), which stands for the allocation of originalcontents.

2) A serial of multi-object auctions for each hour:

The caching problem for each hour is solved by holding a serial of multi-object auctions.

Specifically, we auction formax{Hi

S
} times, where thejth memory block in all the SBSs are

auctioned off in thejth auction. This process is essentially to auction the storages of all SBSs

concurrently with multiple steps, as shown in Fig. 5. In eachmulti-object auction, SPs play the

roles of bidders and storages of SBSs play the roles of objects. After the each auction, each SP

obtains a certain amount of caching spaces in each SBSs. Theneach SP can place its contents

into SBSs according to the caching result (can be done automatically by its server).

Empty memory Ocuppied memory

Fig. 5. The mechanism for each hour’s caching, where a dashedcircle indicates the coverage region of a SBS.

However, before each auction, SPs have to estimate the utility of caching each of their content

blocks to each of the SBSs and bid for them. Based on equations(9) and (10), we give the

expression to calculate the marginal utility of caching each content block into each SBS during

the auction procedure as:

V t,i
l,r =

∑

j|i∈Aj

−∆θt,jl,r · U t
j · ϕt

l,r, (19)

where−∆θt,jl,r is the average decrease of latency for the users inΩj requesting contents inBt
l,r,

if Bt
l,r is newly added into the storage of SBSi during the procedure of allocation.

3) Additional prices for content replacement between hours:

Since content popularity and user density are time variant,caching results in different hours

may differ a lot. When a SBS changes its caching contents, additional instantaneous traffic load
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burdens the backhaul. Regardless the specific technique to change or pre-cache contents, we

defineλt as thereplacement percentageat thetth hour to indicate this additional load, given by

λt =
1

I

I
∑

i=1

1

Bi

∑

l,r

S · (1− εt,il,r) · γ
t,i
l,r, (20)

whereεt,il,r represents the percentage of data inBt
l,r that was cached in SBSi at t− 1. Therefore,

λt shows the average percentage of the storages of SBSs that arereplaced.

In order to reduceλt, additional prices are charged for replacing the original contents if the

new ones weren’t cached in this SBS in the last hour. Here, we design the additional price as

∆pt,il,r = ω · (1−εt,il,r) · θtback, which indicates heavier traffic needs higher additional prices to limit

the replacement percentage. And the constantω is defined asadditional price coefficient.

The introduction of additional price results in an adjustment to the valuations given above.

ForBt
l,r, the valuation is calculated byV t,i

l,r −∆pt,il,r. This is because onceBt
l,r obtains the caching

storage in SBSi, it will lose another∆pt,il,r because of additional price.

To simplify the denotations later in this section, we useCn to represent thenth content block

(among all the content blocks from all the SPs), where1 ≤ n ≤ N , and useDm to represent

the mth storage block (i.e., the storage block that provided byx SBSm), where1 ≤ m ≤ M .

The valuation ofCn for Dm is denoted byvn,m, which can be calculated by the corresponding

expression ofV t,i
l,r and∆pt,il,r, given byvn,m = V t,i

l,r −∆pt,il,r.

B. Market Matching Algorithm

To solve a single multi-object auction, we provide themarket matching algorithm, which

is originated from [28] and is able to match the content blocks and the storage blocks with

maximum total utility3. For writing simplicity, we use the word “content” instead of “content

block” and use “storage” instead of “storage block” in the rest of this subsection.

3The original market matching algorithm was proved to satisfy the VCG principle [34], where bidders’ best strategy is to bid

truthfully. However, in our situation, where we regard eachcontent as the corresponding bidder in the original algorithm, the

utility of each SP may not be maximized by truthful biding. Different content blocks may belong to the same SP, who aims to

maximize its overall utility. Therefore, SP’s best strategy may not be truth-telling. But in reality, SPs do not know thevaluations

of others, so truth-telling still remains a good strategy, because the average utility is excepted to decrease if a SP randomly vary

its bids from the true valuations. Therefore, it is reasonable for us to use valuations as the bids in our algorithm.
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To be brief, this algorithm takes the valuations as the input, uses bipartite graph to get a perfect

matching between contents and storages4, and outputs the allocation results and the prices of

storages. This algorithm can be described by 7 steps as follows. Step 1 and Step 2 introduce the

initialization process, Step 3 to Step 6 provide the iteration process to find a perfect matching

between contents and storages, and Step 7 provides the outcome of the algorithm.

Step 1: GivenN contents andM storages (N > M), addN −M virtual storages.

This step is to equalize the number of contents and the numberof storages, which is a necessary

condition for the following steps. Due to the unworthiness of virtual storages, the valuations of

them are confined as zero and the contents that obtains a virtual objects actually obtains nothing.

And for clearer writing, we assumeN = M later in the algorithm introduction.

Step 2: Initialize the prices of all storages as zero, i.e.,pm = 0, ∀m ∈ [1,M ].

The price of a storage represents the money that has to be paidby the SP whose content

obtains this storage. And these prices will gradually increase in the process of the algorithm.

Definition 1. In a bipartite graph where a set of content nodesC is connected to a set of storage

nodesD, the edge betweenCn and Dm exists if and only if(vn,m − pm) is the largest for any

m with a fixedn, then the bipartite graph is called apreferred-storage graph.

Step 3: Based on the valuations and the prices, a preferred-storagegraph can be built. To

put it simple, the preferred-storage graph shows which are the most preferred storages of each

content. ForCn, if the profit of acquiringDm is highest, then there will be an edge betweenCn

andDm. Note that for each content, there may be serval most preferred storages.

Definition 2. Given a graphG = (V,E), a matchingis a subset edges ofE such that no two

edges in this subset share a same vertex.

Definition 3. Given a graph and a matching of it, analternating pathis a serial of consecutively

connected edges such that these edges are alternately contained or not contained in the matching.

And an alternating path is anaugmenting pathif and only if the two end-vertices in the

alternating path are unmatched.

4Since the algorithm is based on matching, one content cannotget more than 1 storage in each auction. Therefore a problem

may arise ifI > min{Hi}, i.e., a content with great popularity is unable to be cachedin every SBSs. Hence, we assume

I ≤ min{Hi}, which can be satisfied in most real-world situations because the storages are usually large enough.
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Step 4: In the preferred-storage graph, we use augmenting paths to expand the matching until

no augmenting paths can be found.

The classical breadth-first-search (BFS) algorithm [35] isapplied to find augmenting paths

from any of an unmatched content node. Given a matchingM and a certain augmenting path,

we denoted all the edges in the augmenting path asE . The edges both inE andM are denoted

as E1, and the edges inE but not inM are denoted asE2. By addingE2 to the matching and

deletingE1 from the matching, a greater matching can be formed, because|E2| = |E1|+ 1. The

matching achieves maximum when there are no augmenting paths can be found.

Step 5:Based on the matching in the last step, if all the nodes are matched, i.e., the maximum

matching is a perfect matching, then jump to the step 7. Otherwise, a constricted set can be

found, which forbids us to get a perfect matching. The constricted set is defined as below:

Definition 4. In a preferred-storage graph, givenC′ as a subset of the content nodes, denote the

directly connected storage nodes as setD′. If |C′| > |D′|, then{C′,D′} forms aconstricted set.

A preferred-storage graph 

with perfect matching.

A preferred-storage graph 

without perfect matching.

C1

C2

C3

C4

D1

D2

D3

D4

C1

C2

C3

C4

D1

D2

D3

D4

Contents Storages Contents Storages

Fig. 6. Two preferred-storage graphs. The left one has a perfect matching, while the right one is confined by a constrictedset

shown in the dashed box.

Intuitively, the constricted set cannot form a perfect matching in itself because the number

of storages is larger. Therefore, the whole bipartite graphfails to form a perfect matching if

a constricted set is contained. [36] shows that the equivalence condition of a bipartite graph

having a perfect matching is that there are no constricted sets. The process of searching for a

constricted set is simple. When the algorithm fails to find anaugmenting path during BFS, the

nodes that being visited by BFS automatically form a constricted set [36]. Two examples of

perfect matching and constricted set are shown in Fig. 6.
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Step 6: Once a constricted set{C′,D′} is found, the algorithm raises the prices of storages in

D′ uniformly, until at least one content changes its preferred-storages so that a new preferred-

storage graph can be built. Ifmin{pm = δ > 0}, let pm = pm−δ for all m. This step is necessary

to keep the price as the lowest market-clearing price to obeythe VCG principle [28]. After that,

the algorithm goes back to step 3 and continues to build a new preferred-storage graph.

Step 7:The algorithm ends. The matching shows the allocation between contents and storages.

As a summary, an overview of the whole algorithm is given in Algorithm 2.

Algorithm 2: Market matching algorithm for each multi-object auction.

Input : Valuation matrixVN×M (N : contents,M : storages,N > M).
Output : Allocation matrixΓN×M and price vectorPM .
begin

Expand the valuation matrix fromVN×M to VN×N with zeros (add virtual storages);
Initialize the price vectorPN as zero;
while true do

Build a preferred-storage graphG(C,D, E) based onVN×N andPN ;
Find a maximum matchingM in this preferred-storage graph;
if M is a perfect matchingthen

Break the while loop;
else

Find a constricted set(C′,D′) in G(C,D, E);
Find the minimum priceδp, which can changeG once added to storages inD′;
Let pn = pn + δp for all n that satisfiesDn ∈ D′;
Let pn = pn −min {pn} for all 1 ≤ n ≤ N ;

end
end
The allocation matrixΓN×M shows the caching result;

end

C. Properties of the mechanism

In this subsection, we first discuss the influence of additional prices, then prove the convergence

of the algorithm, and finally calculate its complexity.
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1) Influence of Additional Prices:

The proposal of additional prices can limit the frequency ofcontent replacement, especially

at busy hours. Although the advantage of setting additionalprices is non-trivial as shown in

section V, the disadvantage still exists. Whenω is too high, the caching result may not change

between adjacent hours, which leads to an inefficient performance due to the time-dependent

content popularity and user density. Therefore, choosing properω for the system is actually a

tradeoff between the load of content replacement and the effectiveness of caching in each hour.

2) Convergence of the Market Matching Algorithm:

Proposition 4. Given that the valuations are presented by decimals with finite precision and

finite upper-bound, the algorithm has convergence.

Proof: We definethe content’s potential profit, P n
c as the maximum profit that contentCn

can currently obtain from any one of the storages, and definethe storage’s potential profitPm
s

as the price of the storageDm. The sum of all the potential profit of contents and storagesPsum

represents the current maximum possible social welfare. Note that the existence of constricted

set {C′,D′} makes it unable to satisfy all theCn ∈ C′ obtaining their profits, soPsum may be

exaggerated. At the beginning of the algorithm,P beg
sum ≥ 0 becauseP n

c ≥ 0 andPm
s ≥ 0 for

any n andm. And at the end of the algorithm, we have0 ≤ P end
sum ≤ P beg

sum because a possible

social welfare is lower than an exaggerated one. In the algorithm, once the minimum price is

above zero, we reduce the prices of all storages. This step doesn’t changePsum becauseN = M

and the total decrease ofPm
s equals to that ofPm

c . But when to raise the prices of storages

in a constricted set{C′,D′}, Psum decreases by∆P because|C′| > |D′|. Since∆P > 0 and

≤ P beg
sum − P end

sum is finite, Psum can finally decrease toP end
sum after certain amounts of iterations.

3) Complexity of the Market Matching Algorithm:

The proof of its convergence shows that the complexity of this algorithm depends on the

precision of valuations. We define the quantification accuracy asα = V/D, whereV is the

maximum possible valuation andD is the minimum division of valuations. For the case that

maximum possible valuation is 100 and minimum division of value is 0.1, we haveα = 1000.

Proposition 5. GivenN as the total number of content blocks, the complexity of the market
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matching algorithm isO(αN4).

Proof: The algorithm requires no more thanα · N times of iterations to get a perfect

matching, since0 ≤ P end
sum ≤ P beg

sum ≤ V N and∆P ≥ D. At the beginning of each iteration,

a preferred-storage graph is constructed in the complexityof O(N2). Then, less thanN times

of BFS are executed, which takesO(N3). Finally, a constricted set is found and prices are

changed inO(N2). Therefore, the algorithm takesO(N3) in each iteration, implying that the

whole algorithm isO(αN4).

As shown in our simulations, the practical complexity of this algorithm is not as high as

O(αN4). Moreover, we can set the standard caching sizeS greater, to adapt to the enormous

number of content.

V. SIMULATION RESULTS

In this section, we simulate the performance of the proposedmechanism, the impact of system

parameters, and the influence of the quantification accuracy. The simulation parameters are set in

the first subsection, the simulation results and discussions are provided in the second subsection.

A. Simulation Parameters

Without loss of generality, we setHi = H for all 1 ≤ i ≤ I. According to [37], the traffic

loads in different days have the similar profile, so we set thevariation of average user density

u(t) in a similar way, as shown in Table I. At each hour, the user density of each region conforms

to Poisson distribution with mean value ofu(t).

Since the popularity ofCl,kx is time-dependent, we assume that it has a similar time-evolutionary

profile with the log-normal probability density function. This assumption accords with the study

of [38] in characterizing the slow fading popularity of contents from time domain. And it also

guarantees that the popularity distribution of large amount of contents at any given time conforms

to Zipf-like distribution [39]. The log-normal probability density function is given by

f(x) =







1√
2πσx

exp
[

−(lnx−µ)2

2σ2

]

, x > 0,

0, x ≤ 0,
(21)

where the parameterµ andσ can be properly selected. Note that the maximum popularity and

lifespan of different contents can be distinct from each other, therefore, we add extra parameters
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TABLE I

SIMULATION PARAMETERS

Popularity parameterµ andσ 1 and0.5

Popularity parametera, b and t0 U [0, 3], U [4, 12], andU [−75, 25]

Average user densityu(t) in 24

hours respectively (10−5m−2)

380,210,110,110,140,200,300,650,1100,1260,1400,1570,

1530,1370,1310,1250,900,800,940,1100,1200,1070,610,450

Delay parameterβ1, β2, β3 (ms) 1, 5, from 0 to 400

Number of SBSsI 24

Radius of SBSsR (m) 50

Total content numberK from 10000 to 20000

Overlapping percentageO from 20% to 100%

Size of contentsSl,k (GB) U [0.1, 1]
Average storage capacityH (GB) from 0 to 1000

Size of content blocksS (GB) 20

Additional price coefficientω from 0 to 4

Quantification accuracyα from 10 to 1000

to the original function asφt
l,k = af( t−t0

b
), where a determines the maximum popularity,b

represents the lifespan, andt0 is the time whenCl,k is uploaded.
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Fig. 7. Two SBSs-distribution settings. The left figure shows an example of the uniformly randomly generated distribution of

20 SBSs. The right figure shows a fixed uniform distribution of24 SBSs.

The SBSs are set in two different ways, as shown in Fig. 7, the random distribution and the

uniform distribution. Here, we make sure that no more than three SBSs overlaps with each other,

which is both for reality and simplicity.5

5The goal of deploying SBSs is to provide higher data transmission rate and larger coverage area, so it is unwise to put too

many SBSs within a small region. In addition, the property wediscussed in Proposition 3 intuitively has the same trend when

we extend the area of overlapping from 3 to four or more, thus this constraint does not lose any generality.
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Table I shows a more detailed list of parameters, whereU [P,Q] means that the probability

density is uniformly distributed fromP to Q.

B. Simulation Results and Discussions

We first simulate a one-day situation to show how the average delay changes in a day, as

given in Fig. 8, whereO = 54%, K = 10000, H = 1000GB, β3 = 0ms, andω = 0. The

uppermost curve shows how the average delay changes during aday without caching according

to the predefined values in Table I. And the other three curvesshows the average delay with

different caching strategies.Highest popularitymeans caching the most popular contents in each

SBS. Greedy cachingcomes from the algorithm proposed in [15], which allocates only one

content block in each round (while our algorithm allocatesI content blocks in each round). The

outcome of our mechanism and the greedy caching algorithm are quite similar, and both surpass

the highest popularity algorithm. Note that, among these caching schemes, only our mechanism

is designed to solve the problems of multiple SPs. The reasonwe put them in the same figure is

to show the effectiveness of our mechanism by comparing it with the existing caching schemes.
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Fig. 8. Average delay profile in one day, whereO = 54%, K = 10000, H = 1000GB, β3 = 0ms andω = 0.

The impact ofH and K is shown in Fig. 9, where we setO = 54%, β3 = 0ms, ω = 0,

and letK = 20000, 15000, 10000 respectively. Here we useD to denote the average delay in

24 hours, given byD =
1

24

∑24
t=1D(t), whereD(t) is the average delay of each hour. In this

figure, we can see that whenH gets greater,D decreases but the change rate ofD decreases

as well. So the same amount of storage makes greater difference in a low-capacity situation. It

can also be observed that a greater number of contentsK makes it more difficult to achieve low

latency. Therefore, the simulation on the impact ofK andH agrees with Propositions 1 and 2.
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Fig. 9. Average delayD verses storage capacityH , with K = 20000, 15000, 10000, respectively.

The impact ofO is shown in Fig. 10, whereH = 1000GB, K = 10000, and β3 =

0ms, 200ms, 400ms, respectively. Here we controlO of uniformly distributed SBSs by mul-

tiplying the coordinates of SBSs with a constant, which is detailedly described in the Appendix.

From all of the three subplots, we can see that the advantage of our mechanism overhighest

popularitybecomes greater ifO is higher. In Fig. 10 (a), where the choosing delayβ3 is ignorable,

we find thatD decreases withO, which agrees with Proposition 3. However, in Fig. 10 (b),

whereβ3 is set as200ms, the curve ofD is becomes flat. And finally in Fig. 10 (c), where

β3 = 400ms, the correlation ofO andD changes to positive instead of negative. These results

imply that, the delay in overlapping regions can make a greatdifference on the average outcome.

The caching efficiency can be further improved if we can shorten the “SBS choosing” procedure

of mobile users in a practical cellular system.
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Fig. 10. Average delayD verses overlapping percentageO, whereβ3 = 0ms, 200ms, 400ms, respectively.

In Fig. 11, we also provide the influence ofO in the case of randomly distributed SBSs,

with β3 = 0. Since the number of possible random distributions of SBSs is infinite, and the

distributions of SBSs andO have no one-to-one correspondence, we use the uniformly distributed
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SBSs as the benchmark to observe the outcome of randomly distributed SBSs. Here,100 random

cases are generated, and the results are presented by the star points on the figure. It can be

observed that, for a certainO, the caching performance is not fixed. But roughly speaking,

the correlation ofO and D is similar to that of the uniform distribution, and the correlation

coefficient in this simulation is around−0.8. We can also conclude that the floating range of

D depends onO: A greaterO brings D more uncertainty. And since the line of uniformly

distributed SBSs separates most of the star points to the upward side, we can regard the uniform

distribution as an effective way to deploy SBSs.
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Fig. 11. Average delayD verses overlapping percentageO, for uniformly distributed and randomly distributed SBSs.
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Fig. 12. The influence of additional price coefficientω on average replacement percentageλ and average delayD.

Then, we analyse the impact ofω, where we defineλ =
∑24

t=1 λ
t. In Fig. 12, the relation ofω

andλ as well as the relation ofω andD are given respectively, withH = 1000GB, N = 10000

andO = 54%. It indicates that a higher additional price coefficient leads to a lower replacement

percentage, but results in a higher average delay. Whenω < 2, λ decreases sharply butD

increases slowly. This implies that a proper choice ofω can greatly reduce the load brought by

content replacement, with only a trivial cost on the averagedelay.
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Fig. 13. The influence of quantization accuracyα on average iteration timesη and average delay ratioD , with K = 10000

andK = 20000, respectively, whereO = 34%, B = 100.

Finally, we analyse the influence of quantification accuracyα, on the time complexity of the

algorithm and on the average delay of caching. Fig. 13 (a) shows the average running time (by

seconds) of the market matching algorithm to complete each round of auction, where two curves

with K = 10000 andK = 20000 are given. And in Fig. 13 (b), we count the average iteration

numberT of this algorithm, i.e., the times of rebuilding preferred-storage graphs to achieve

perfect matching. It can be observed that,α does not contribute toT linearly as the theoretical

analysis given by Proposition 5 (T = O(αN)). What’s more, the curve ofK = 20000 is even

below the curve ofK = 10000, which indicates thatT = O(αN) is an over estimated upper

bound. Thus, the practical complexity of running this algorithm can be far belowO(αN4). To give

another aspect of the impact ofα, Fig. 13. (c) shows howα influences the system performance.

It can be observed that whenα > 10, the two curves become almost flat and converged to certain

values. Therefore, this algorithm can guarantee its efficiency even the quantification accuracy is

not high enough, which can further reduce the practical complexity of executing the algorithm.

VI. CONCLUSIONS

In this paper, we proposed that caching can be applied as a service provided by SPs in mobile

networks. We focused on the small-cell caching scenario andformulate the caching problem as

how to minimize the average delay in consideration of the competition among SPs for caching

storages. In the theoretical analysis, we found that average delay has a positive correlation

with total content number and a negative correlation with average storage capacity. In addition,
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overlapping percentage can also benefit the performance, aslong as the choosing delay can be

ignored. To solve the caching problem, we designed a mechanism that based on multi-object

auctions, where the convergence of the algorithm can be guaranteed as long as the valuations

are presented with finite precision. Simulation results testified the theoretical analysis and also

showed that our solution leads to a better system performance, e.g., the average delay is reduced

by 50% whenK = 10000, H = 1000GB, O = 54%.
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APPENDIX

Proposition 3. In an approximately infinite cellular grid where SBSs with fixed coverage radius

are uniformly distributed, given the constraint that 1) user density is uniform, 2) no coverage

regions of four or more SBSs exist, and 3) the choosing delay can be ignored, the average delay

based on a fixed caching result decreases when the overlapping percentage increases.

Proof: We assume that the coverage radius of a SBS isR and the distance of two adjacent

SBSs is2Rc, wherec is thecompress factorwhich has a negative correlation with the overlapping

percentageO. A smallerc indicates a smaller cellular grid and results in a greaterO. To satisfy

the constraint that no coverage regions of four or more SBSs exist, we let1/
√
3 < c < 1. In

the rest part of this proof, we discuss the influence ofc instead of the influence ofO.

Based on equation (5) and the assumption that user density isuniform, θtback is only pro-

portional to the area of the total coverage region of SBSs. When the parameterc gradually

decreases from1 to 1/
√
3, we can deduce thatθtback is also decreased. Therefore,θtback has

a positive correlation withc, and we rewriteθtback as θtback(c) to express this inter-dependent

character, where we have
∂θtback(c)

∂c
> 0, 1/

√
3 < c < 1. (22)
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The average delay can be seen as the function ofθtback(c) and c, given by

D(t) = D
(

θtback(c), c
)

, 1/
√
3 < c < 1. (23)

Based on equations (9) and (10), we can give that

∂D
(

θtback(c), c
)

∂θtback(c)
≥ 0, 1/

√
3 < c < 1. (24)

For any1/
√
3 < c1 < c2 < 1, we can getθtback(c1) < θtback(c2) by using inequality (22) and

getD
(

θtback(c1), c1
)

≤ D
(

θtback(c2), c1
)

by further using inequality (24). If we had the condition

thatD
(

θtback(c2), c1
)

≤ D
(

θtback(c2), c2
)

, then the conclusionD
(

θtback(c1), c1
)

≤ D
(

θtback(c2), c2
)

could be obtained and we would have found the monotonicity betweenD(t) and c. Therefore,

in the rest part of this section, we prove that, with constantθtback, there is a positive correlation

betweenc andD(t).

Based on equation (6) and the assumption of uniform user density, we can see thatθt,jdown

doesn’t change withc. Along with the condition of fixedθtback and the condition that choosing

delay is zero, based on equation (9), we conclude that the delay of requesting a certain content is

a fixed value, independent of the location of users. Since thecaching allocation is also fixed, the

only thing that influencesD(t) is the coverage percentage of any subset of SBSs in the whole

region. Therefore we focus on howAs/At changes withc, whereAs is the area of a subset of

SBSs andAt is the total area of all SBSs.

To simplify the expressions ofAs andAt, we introduce another variableθ, wherec = cos θ

and θ ∈ (0, arccos 1√
3
). Note that∂c/∂θ < 0 in its definition domain. So our objective is to

prove∂(As/At)/∂θ > 0, which can also be denoted asf ′(θ) > 0, wheref(θ) = As/At is the

area percentage function.

As the demonstration of the top view shown in the Fig. 3, we need to consider two different

situations in the definition domain ofθ. The first one only involves 2-overlapping regions where

0 < θ < π
6
, while the other one involves both 2-overlapping regions and 3-overlapping regions

at the same time whereπ
6
< θ < arccos 1√

3
.

We denote the area of the coverage region of one SBS asA1, the area of 2-overlapping region

asA2, and the area of 3-overlapping region asA3. Their expressions can be simplified as:

A1 = πR2, θ ∈ (0, arccos
1√
3
), (25)
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A2 = 2R2(θ − cos θ sin θ), θ ∈ (0, arccos
1√
3
), (26)

A3 =











0, θ ∈ (0,
π

6
),

R2
[

3(θ − π

6
) +

√
3 cos2 θ − 3 sin θ cos θ

]

, θ ∈ (
π

6
, arccos

1√
3
).

(27)

Now we useA1, A2, andA3 to expressAs andAt. For At as the total area, we assume that

the number of hexagons in the cellular grid is approximatelyinfinite so that the influence of

its boundary can be ignored. To get the proportion of the numbers ofA1, A2, andA3, we find

a minimum repeated unit in the infinite grid. This process is the same as finding a cell in the

molecular structure of graphite, leadingA1 : A2 : A3 = 1 : 3 : 2. Thus we have

At = Mt · (A1 − 3A2 + 2A3), (28)

whereMt is a large integer to represent the total number of SBSs. In this way,At is expressed

by its equivalent average coverage area of a single SBS.

ForAs as the area of a subset of SBSs, the proportions ofA2, andA3 in As is less than those

in At, because hexagons at the boundary have less overlapping regions. Hence, we have

As = Ms · (A1 − xA2 + yA3), (29)

where0 ≤ x < 3, 0 ≤ y < 2 andMs is the number of the SBSs in the given subset. Another

constraint ofx andy is introduced later.

SinceA3 has different expressions in different situations, we discuss θ ∈ (0, π
6
) and θ ∈

(π
6
, arccos 1√

3
) respectively. The former case only involves 2-overlappingregions but the latter

case involves 3-overlapping regions as well as 2-overlapping regions, as shown in the Fig. 3.

Case 1: θ ∈
(

0,
π

6

)

.

f ′(θ) =
Ms

Mt

(

A1 − xA2

A1 − 3A2

)′
=

Ms

Mt

(3− x)A1A
′
2

(A1 − 3A2)2
. (30)

SinceA′
2 = 2R2(1− cos 2θ) > 0, 3− x > 0 andA1 − 3A2 > 0, we can easily getf ′(θ) > 0.

Case 2: θ ∈
(π

6
, arccos

1√
3

)

.
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f ′(θ) =
Ms

Mt

(

A1 − xA2 + yA3

A1 − 3A2 + 2A3

)′
=

Ms

Mt

√
3 sin θ

6 cos3 θ

[

(2− y)(π − 2θ) + 4θ(1 + y − x)

]

. (31)

In this case, we need another constraint ofx andy to complete the proof. Given a subset of

SBSs, we regard each SBS as a vertex in the planar graph. Each 2-overlapping region is an edge

between two adjacent SBSs, and each 3-overlapping region isa face enclosed by three adjacent

2-overlapping regions. This abstraction process is illustrated in the Fig. 14.

The SBS in a given subset

Fig. 14. The transformation from a real situation to a planargraph, where adjacent SBSs in the subset are connected by

2-overlapping regions. The given case indicates thatV = 7, F = 3, E = 8 andC = 2.

The Eular Formula in the planar graph [40] is given by

V + (F + 1)− E = C + 1, (32)

whereV is the number of vertexes,F is the number of faces,E is the number of edges andC

is the number of connected subgraphs. Thus, the instance in the Fig. 14 impliesV = 7, F = 3,

E = 8 andC = 2. And for any given subset of SBSs,C ≥ 0 can be satisfied.

We apply the Eular Formula on our model as:

(V + F −E) = C ≥ 0 ↔ (V + F −E)/V ≥ 0 ↔ 1 + y − x > 0. (33)

Sincey < 2 andθ ∈ (0, π/2), based on the equation (31), we finally havef ′(θ) > 0.

Conclusion: In both cases the area percentage functionf(θ) has a positive correlation with

θ respectively. Whenθ = π
6
, S3 remains its continuality, implying thatf(θ) is continuous. Thus

f(θ) increases withθ in (0, arccos 1√
3
). Therefore, the coverage percentage of any given subset

of SBSs in the whole area decreases whenc gets greater in( 1√
3
, 1).

As a result, the necessary conditionD
(

θtback(c2), c1
)

≤ D
(

θtback(c2), c2
)

mentioned above can

be obtained and the positive correlation betweenD(t) andc can be proved.
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