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Spatial Prediction Under Location Uncertainty

In Cellular Networks
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Abstract

Coverage optimization is an important process for the operator as it is a crucial prerequisite towards

offering a satisfactory quality of service to the end-users. The first step of this process is coverage

prediction, which can be performed by interpolating geo-located measurements reported to the network

by mobile users equipments. In previous works, we proposed a low complexity coverage prediction

algorithm based on the adaptation of the Geo-statistics Fixed Rank Kriging (FRK) algorithm. We

supposed that the geo-location information reported with the radio measurements was perfect, which

is not the case in reality. In this paper, we study the impact of location uncertainty on the coverage

prediction accuracy and we extend the previously proposed algorithm to include geo-location error in the

prediction model. We validate the proposed algorithm using both simulated and real field measurements.

The FRK extended to take into account the location uncertainty proves to enhance the prediction accuracy

while keeping a reasonable computational complexity.

Index Terms

Location uncertainty, coverage map, spatial prediction, EM algorithm, Monte Carlo integration.

I. INTRODUCTION

With the 3rd Generation Partnership Project (3GPP) Minimization of Drive Test (MDT)

feature [1], user equipments will be able to report (on demand) radio measurements together with

the associated location information. This feature will be deployed soon in operator’s networks

and will offer a new and rich source of information on how end users perceive the radio

environment. Our work deals with exploitation of these geo-located measurements for radio
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network engineering and optimization. We focus in this paper on coverage prediction as this is

the first and crucial step towards offering a satisfactory quality of service to the end -users.

In order to build an accurate and reliable coverage map, a spatial interpolation technique

inspired from geostatistics, namely namely Kriging [2],was introduced in [3]. The interpolation

relies on the spatial correlation between the measured data to build a complete map over the

geographical area of interest. Several papers applied Kriging technique [4] for coverage map

prediction. The applicability of the Kriging and its derivatives to predict the coverage was

investigated in many studies [3], [5], [6], where it has been proved (see e.g. [5] and [6]) that

coverage map prediction based only on the interpolation of geo-located measurements gives very

good performance in terms of prediction accuracy. However the computational complexity of

the algorithm increases exponentially with the number of measurement points (∼ O(N3), where

N is the number of measurement points). Fixed Rank Kriging (FRK), introduced in [7] is a

variant of Kriging, witch reduces the computational cost to the order of O(nr2), N being the

number of measurements and r the ”fixed rank” defined by the user. This technique was applied

to coverage prediction in [8], [9]. Performance assessment on both simulated and real field data

proved that the FRK realizes a good trade-off between the computational complexity and the

prediction accuracy.

Those previous works have always supposed perfect knowledge of the Mobile Equipment (ME)

location. However, the ME location is determined, in the best case, using the Global Positioning

System (GPS)with an error ranging between 5m to 30m depending on the environment [10]; or

geo-location techniques based on radio network metrics with an error ranging between 50m and

300m [11]. It is straightforward that location uncertainty may degrade the prediction accuracy.

In [12], the authors propose to enhance the location accuracy and mitigate the impact of

the location error by performing several measurements (both GPS measurements and radio

power measurements performed by different sensors) around the intended location. The ”exact”

location and the corresponding radio measurement are obtained by combining appropriately

the information reported by the different sensors. . This approach presents good results but

it is obviously not applicable in the case of measurements reported with the MDT feature.

The impact of location uncertainty was also investigated in the case of ad-hoc networks [13].

The authors focused on device to device channel in a forest environment where the location

uncertainty is more important due to foliage. They proposed to use a rice distribution to model

the distance between devices and they investigated the impact of location uncertainty on the
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distance calculation. They proved that for small range communications, the path loss regression

performance decreases due to location uncertainty. In [14], the authors explored the use of

the Gaussian process regression (kriging in geostatiscs) with location uncertainty in order to

predict propagated signal in mobile sensor networks. The paper’s motivation is to use non

parametric approach taking into account the location uncertainty in a Bayesian framework.

Gaussian prediction is defined as a posterior predictive distribution. The main difficulty with

this approach is that there is no analytical closed-form solution, and approximation techniques

such as Monte Carlo sampling or Laplace approximation have to be used. In addition, those

solutions involve a huge computational cost especially in the case of large datasets where the

complexity can vary from O(n4) to O(n3) where n represents the size of the dataset. In [15]

the author proposed to adjust the universal kriging to take into account the location uncertainty

by including a priori knowledge on the reported locations. This approach was applied to remote

sensing of the environment and showed a better performance than the universal kriging. However,

the complexity issue ( O(n3) where n is the size of the dataset) was not tackled in this paper.

In this paper, we propose to extend the FRK algorithm to take into account the location

uncertainty. Introducing the location uncertainty in the FRK model affects the mean and the

covariance functions involved in both the prediction and the calibration of the model. More

explicitly, as the mean function and the covariance terms do not correspond to a single location

but should be integrated over the probabilistic location distribution, we end-up with intractable

quantities. The main challenge in our work is to estimate these quantities while keeping a

reasonable computational complexity. Our main contributions are summarized as follows:

1) By introducing location uncertainty in the model, the observation process is not a Gaussian

process anymore, the best linear unbiased predictor and the conditional expectation predictor

are then different. We study and compare these two predictors.

2) Considering the parameter estimation, the use of the simple Expectation Maximization (EM)

algorithm proposed in [8] is no more possible, since the calculation of the E-step results in

non tractable quantities. We propose to introduce a Stochastic Approximation EM (SAEM)

algorithm. The SAEM combines the stochastic EM with a Gibbs sampling procedure for

intractable quantities calculations [16]. The Gibbs algorithm solves the location probability

density sampling in a parallelized approach which makes it robust (in time) to the size of

the data set.

3) We evaluate the proposed method using simulated data from an accurate Orange planning
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tool. We study the impact of the location uncertainty range and the FRK rank on the

performance.

4) We also assess the performance of our algorithm on real-field measurements obtained

through a dedicated measurement campaign.

The paper is structured as follows. We give a detailed overview of the FRK technique in Sec-

tion II: we first introduce the statistical model with location uncertainty and then the calibration

and prediction technique that take into account this location uncertainty. We then describe our

assumptions related to the application of the FRK to the coverage map prediction in Section III.

In Section III-A we present the numerical results using simulated dataset. Section III-B focuses

on the description of the data collection and the different results obtained.Finally, we summarize

our main conclusions in Section IV.

II. RADIO ENVIRONMENT MAP PREDICTION WITH LOCATION UNCERTAINTY

A. The statistical model

Let dist(x) denote the distance between the Base Station (BS) and the ME, P0 the transmitted

power and κ the path-loss exponent. Set

t(x) =


 1

10 ln10 dist(x)


 , α =


P0

κ


 .

By convention, the vector are column-vectors and AT denotes the transpose of a matrix A.

The received power is modeled as a spatial process
{
Z(x), x ∈ D ⊂ Rd

}
indexed by a set

D ⊂ Rd (in our case d = 2), it is given by

Z(x) = tT (x)α+ ν(x); (1)

In this model tT (x)α describes the large scale variations (i.e. the trend) of the field and the

process {ν(x), x ∈ D} is introduced to model the small-scale spatial variations (also called

shadowing effect). In log-normal modeling it is usually considered as a zero-mean Gaussian

distributed random variable with a given variance (note that the log-normal terminology comes

from the fact that the shadowing term expressed in dB is normally distributed). For the classical

Kriging technique, {ν(x)x ∈ D} is assumed to be a zero mean Gaussian process with a

parametric spatial covariance function. This model implies that two signals Z(x), Z(x′) at
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different locations x, x′ are correlated, with a given covariance coefficient. In our case, we

assume that ν(x) is decomposed as follows:

ν(x) = sT (x)η; (2)

where s : Rd → Rr collects r deterministic spatial basis functions and η is a Rr-valued zero

mean Gaussian vector with covariance matrix K. In practice, the number of basis functions r

and the basis functions s are chosen by the user (see [8] for more details about the choices of

s; see also Section III-A2a below for examples).

We carry out n measurements y = (y1, · · · , yn) received from n terminals. These measure-

ments are modeled as a realization of Y = (Y1, · · · , Yn) where

Yk = Z(xk − Uk) + ε(xk − Uk), for k = 1, · · · , n. (3)

Yk is the measured field Z(x?k) with an additive noise ε(x?k) at some unknown location x?k; the

location xk measured by the mobile is modeled as the exact location x?k in an additive noise Uk.

We assume that {ε(x), x ∈ D} is a white noise process with zero mean function and covariance

function (x, x′) 7→ σ2
ε if x = x′ and zero otherwise, with x, x′ ∈ D; U = {U1, · · · , Un} are

assumed to be Rd-valued independent random variables with density distribution g. This density

distribution does not depend on the (true) location; it captures the environment perturbations

when reporting the location. We also assume that the random variables {ε(x),η,U , x ∈ D} are

independent.

This model depends on some quantities which may be unknown. In the next section, we address

the calibration of the model when α,K and σ2
ε are unknown and the density g is known. As

we have a single observation of η, we propose to use a parametric form of K. Indeed, with

a single observation of the r × 1 vector η, we are not able to estimate the r × r matrix K.

In radio propagation context, we assume the correlation matrix K have an exponential kernel

(it is given in Section III-A2a). Hereafter, we will denote by θ the set of unknown parameters

including α, σ2
ε and the parameters monitoring the parametric covariance matrix K.

B. Calibration of the model

Notations. Throughout this section, the observation vector y is fixed and will be removed

from the notations. All the random variables are defined on a probability space (Ω,A,P); E is
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the associated expectation. We denote by πθ : (u, η) 7→ πθ(u, η) the density of the conditional

distribution of (U ,η) given the observations Y when the parameters of the model are equal to

θ. Eθ denotes the associated expectation.

For u = (u1, · · · , un) ∈ Rn, with ui ∈ Rd for i = 1, . . . , n; we define the n× 2 matrices

T (u) =




tT (x1 − u1)
...

tT (xn − un)


 , T =




E
[
tT (x1 − U)

]

...

E
[
tT (xn − U)

]


 , (4)

and the r × n matrices

S(u) =
[
s(x1 − u1), . . . , s(xn − un)

]
, S =

[
E [s(x1 − U)] , . . . ,E [s(xn − U)]

]
.

Finally, we define the n× n matrix Σ

Σ = S
T
KS + σ2

εIn + ∆ (5)

where In is the n × n identity matrix and ∆ is the diagonal matrix with non-negative entries

given by

∆ii = E
[
sT (xi − U)Ks(xi − U)

]
− E

[
sT (xi − U)

]
KE [s(xi − U)] . (6)

In the literature, two main strategies are proposed for the calibration of the prediction model

with location uncertainty. The first one (see e.g. [15]) assumes that the log-likelihood of the

observations Y is Gaussian. Since the expectation and the variance of Y are resp. Tα and Σ

(see Appendix A), θ is estimated as the maximum of

θ 7→ −1

2
ln DetΣ − 1

2
(Y − Tα)TΣ−1(Y − Tα),

where Σ also depends on θ, see (5). In practice, T is intractable since the expectations are not

explicit, so that T estimated by Monte Carlo estimator. Nevertheless, as shown in Appendix A,

Y is not Gaussian.

The second strategy was proposed in [17], it consists in estimating θ as the maximum of the

log-likelihood of (Y ,U) where the missing data U is replaced by its expectation under the a
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priori distribution: the estimator maximizes the function

θ 7→
∫

ln pc(Y , u1, · · · , un;θ) g(u1) · · · g(un) du1 · · · dun

where pc(·;θ) is the density of the joint vector (Y ,U). When this integral is not tractable, as

in our case, it is advocated to estimate θ as the maximum of θ 7→∑M
t=1 ln pc(Y , U

t
1, · · · , U t

n;θ)

where {U t
k, k ≥ 1, t ≥ 1} are i.i.d. samples from g. In our case, a second Monte Carlo integration

is necessary since ln pc is defined as an expectation w.r.t. to η and this expectation does not

have a closed form (see Appendix B-E for the expression of pc).

We propose a third strategy: the estimator of θ is the maximum of the log-likelihood of

(Y ,U ,η) where the missing data (U ,η) are replaced by their expectation under the a pos-

teriori distribution. Such a calculation uses the information on the missing data given by the

observations Y . Since this a posteriori distribution depends on the unknown parameter θ, the

optimization problem for the estimation of θ is solved by an Expectation-Maximization (EM)

based algorithm [18]. The E-step consists in the computation of the expectation of the log-

likelihood of (Y ,U ,η) when the parameter is θ(l):

Q(θ;θ(l)) = Eθ(l) [ln Pr(Y ,U ,η;θ)|Y ] .

A key observation is that the log-likelihood of (Y ,U ,η) when the parameter is θ, is of the

form Φ1(θ) +
∑4

j=1 〈Ψj(u, η),Φ2,j(θ)〉 (see Appendix B-A) where

Φ1(θ) = −n
2

ln(σ2
ε)−

1

2
ln DetK − 1

2σ2
ε

yTy,

Ψ1(u, η) = ηηT Φ2,1(θ) = −1

2
K−1

Ψ2(u, η) = T T (u)T (u) Φ2,2(θ) = − 1

2σ2
ε

ααT

Ψ3(u, η) = T T (u){y − ST (u)η}, Φ2,3(θ) =
α

σ2
ε

,

Ψ4(u, η) = ηTS(u)ST (u)η − 2yTST (u)η, Φ2,4(θ) = − 1

2σ2
ε

;

For two matrices A,B, the scalar product 〈A,B〉 is equal to Trace(ATB). Recall that the
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dependence upon y is omitted since the observations are fixed. For such statistical model, the

EM algorithm is an iterative algorithm which produces a sequence {θ(`), ` ≥ 0} as follows

(see [18, Chapter 1]: given the current value θ(`),

E-step: Compute the quantity

Q(θ,θ(`)) = Φ1(θ) +
4∑

j=1

〈
Eθ(`) [Ψj(U ,η)] ,Φ2,j(θ)

〉
, (7)

M-step: Update the parameter: choose θ(`+1) such that

Q(θ(`+1),θ(`)) ≥ Q(θ(`),θ(`)). (8)

In practice, the M-step consists in updating the parameter the vector θ(`+1) by the value that

maximizes the EM quantity θ 7→ Q(θ,θ(`)), which can be obtained by a componentwise

maximization. When global maximization is difficult to solve, gradient-based algorithms allow

the computation of θ(`+1) satisfying (8). In our case, the update of α and σ2
ε is explicit (see

Algorithm 1); the update of K is specific to each parametric model (see Section III-A2a for an

example).

The E-step is not tractable due to the expression of πθ(`) . A first idea could be to substitute

this expectation by a Monte Carlo sum, yielding to the so-called Monte Carlo EM algorithm:

Eθ(`) [Ψj(U ,η)] ≈ 1

M`

M∑̀

t=1

Ψj(U
t,ηt)

where {(U t,ηt), t ≥ 1} is a Markov chain with stationary distribution πθ(`) (see e.g. [19]).

Nevertheless, this approach has a high computational cost: first, each EM iteration necessitates

many Monte Carlo samples; second, the convergence results require M` to increase with `

(see [19]). We therefore advocate the use of the Stochastic Approximation EM algorithm (see

[16]) which propagates an estimation of the intractable expectation through the EM iterations.

This yields to the calibration algorithm described by Algorithm 1. For the convergence of this

algorithm towards the same limit points as the EM algorithm, the sequence {γ`, ` ≥ 1} has to

be chosen so that
∑
γk = +∞ and

∑
γ2k < +∞; the sequence {M`, ` ≥ 1} can be constant

(see [16]). Markov chain Monte Carlo methods are algorithms for sampling a Markov chain

with given invariant distribution, when this distribution is known up to a normalizing constant

(see e.g. [20]). In order to obtain the path of a Markov chain with invariant distribution πθ(`)
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Algorithm 1: SAEM algorithm
Input : A positive sequence {γ`, ` ≥ 1}, an integer valued sequence {M`, ` ≥ 1}
Initialization: θ(0), ψ0,j = 0 for j = 0, · · · , 4. ;
repeat

(i) Sample a Markov chain {(U t,ηt), 0 ≤ t ≤M`} of length M`, with invariant distribution
πθ(`);

(ii) For j = 0, · · · , 4, update the estimation of Ψj:

ψ`+1,j = (1− γ`+1)ψ`,j +
γ`+1

M`+1

M`+1∑

t=1

Ψj(U
t,ηt).

(iii) Update α(`+1) and σ2
ε,(`+1) by

α(`+1) = (ψ`+1,2)
−1ψ`+1,3

σ2
ε,(`+1) =

1

n

(
yTy + 〈ψ`+1,2,α(`+1)α

T
(`+1)〉 − 2〈ψ`+1,3,α(`+1)〉+ ψ`+1,4

)
.

(iv) Update K(`+1) such that

Φ1(θ(`+1)) +
4∑

j=1

〈
ψ`+1,j,Φ2,j(θ(`+1))

〉
≥ Φ1(θ(`)) +

4∑

j=1

〈
ψ`+1,j,Φ2,j(θ(`))

〉
.

until convergence of the sequence {θ(`), ` ≥ 0};
Output: the sequence {θ(`), ` ≥ 0}

on Rdn+r, we propose the use of a Metropolis-within-Gibbs sampler. When (U ,η) has the

distribution πθ(`) , (i) the conditional distribution π(1)
θ(`)

(u|η) of U given η has a product form (see

Appendix B-C). This is a fundamental property in our framework when n is large, since sampling

the n components of U can be parallelized. Exact sampling from π
(1)
θ(`)

(u|η) is not possible, so

that it is replaced by a one-step Hastings-Metropolis algorithm with Gaussian proposal kernel

q(x, y) ≡ Nd(x, σ2
q Id). (ii) the conditional distribution π

(2)
θ(`)

(η|u) of η given U is a Gaussian

distribution with covariance matrix given by (see Section B-D).

Γθ(u) =
(
σ−2ε S(u)ST (u) +K−1

)−1
, µθ(u) =

1

σ2
ε

Γθ(u)S(u) {y − T (u)α} ; (9)

The MCMC algorithm is summarized in Algorithm 2.

C. Prediction

In the context of accurate location assumption, the best linear unbiased predictor of Z(x0) at the

location x0 coincides with the conditional expectation of Z(x0) conditionally to the observations
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Algorithm 2: Gibbs sampling algorithm for πθ(u, η)

Initialization: (U 0,η0);
while t ≤M do

(1) for k = 1 : n, in parallel do
(i) Choose a candidate ũk ∼ Nd(ut−1k , σ2

qId);
(ii) Compute the acceptance-rejection ratio

ρk = min

{
1,

π
(1)
θ (ũk|ηt−1)

π
(1)
θ (ut−1k |ηt−1)

}
.

(iii) Set utk = ũk with probability ρk and utk = ut−1k otherwise.

(2) Set U t = (ut1, · · · , utn).
(3) Sample ηt ∼ Nr

(
µθ(U

t),Γθ(U
t)
)
;

Result: the M samples {(U t,ηt), t ≤M}

Y . This property is not valid in our context since the observation vector Y is not Gaussian (see

Appendix A). Therefore, we propose two different prediction methods. The first one is the best

linear unbiased predictor and the second one is the expectation of Z(x0) conditionally to the

observations.

Proposition 1:

(i) The best linear unbiased predictor of Z(x0) is

ẐBLUP(x0) = t(x0)
Tα+ sT (x0)KSΣ

−1 (Y − Tα
)
, (10)

where Σ is given by (5).

(ii) The conditional expectation predictor of Z(x0) given the observations Y is

ẐCEP(x0) = tT (x0)α+ sT (x0)Eθ [η] (11)

Proof 1: The proof is detailed to Appendix C.

It can be easily established that for any x ∈ D and x /∈ {x1, . . . , xn} that

ŶBLUP(x0) = t(x0)
Tα+ sT (x0)KSΣ

−1 (Y − Tα
)
,

and

ŶCEP(x0) = tT (x0)α+ sT (x0)Eθ [η] , (12)



11

where the Y is defined in (3).

The computation of the best linear unbiased predictor Ẑ(x0) necessitates the inversion of the

n × n matrix Σ. The fundamental property, which is a consequence of the fixed rank kriging

approach, is that the computation of Σ−1 only involves the inversion of the r× r matrix K and

n× n diagonal matrices: we have indeed

Σ−1 = V −1 − V −1ST
(
K−1 + SV −1S

T
)−1

SV −1

where V = ∆ + σ2
εIn. Ẑ(x0) also requires the computation of 2n non tractable integrals w.r.t.

the distribution g (the same, whatever x0); they can be approximated by Monte Carlo sums

computed from the same M draws U1, · · · , UM with distribution g.

For the predictor (11), the quantity Eθ [η] can not be computed explicitly (see its expression

in Appendix B-B); it could be approximated by a new Monte Carlo sum. Instead of this, we

learn this expectation along the iterations of the SAEM, by adding in Algorithm 1 the line

(ii′) µ`+1 = (1− γ`+1)µ` +
γ`+1

M`+1

M`+1∑

t=1

ηt.

III. APPLICATION TO COVERAGE MAP PREDICTION

In this section, we evaluate the performance of our algorithm using both simulated data

obtained from an accurate Orange planning tool and real field data collected during measurement

campaign.

We split the available measurements into a learning set and a test set. The calibration of the

model is done as described in Section II-B, by using the learning set. The test set is used to

evaluate the performances of our statistical model. The measurement locations of the test set are

assumed be perfectly known.

We consider the two predictors introduced in II-C, namely the best linear unbiased predictor

and the a posteriori mean predictor, to predict Y (x), for x in the test set T . We evaluate their

performance using the Root Mean Square Error (RMSE):

RMSE =

[
1

|T |
∑

x∈T

(
Ŷ (x)− Y (x)

)2
] 1

2

, (13)

where |T | denotes the cardinal of the test set T .
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A. Validation on simulated measurements

1) Data set description: The simulated measurements are provided by an accurate planning

tool, which uses a sophisticated ray-tracing propagation model developed for operational network

planning [21]. These data are considered as the ground-truth measurements of the received pilot

power, namely the the Long Term Evolution (LTE) Reference Signal Received Power (RSRP),in

an urban area covered by a macro-cell with an omni-directional antenna. Hence, we have N̄ data

(yi, x
?
i )}, where yi is the RSRP at the location x?i . These measurements are regularly spaced on

a cartesian grid of 5m×5m and are are about 24 000 measurement points.

The location of these measurements are perfectly known. We artificially add to each true

location x?i in the learning set, a Gaussian noise with distribution g ≡ N (0, σ2
g I2), and obtain

the corresponding noisy location xi. The noises are assumed to be independent. This yields to

a learning set: {(yi, xi), i ≤ n̄}. Figure 1b shows the locations xi, x?i when σg = 20m. The full

dataset is displayed in Figure 1a.
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(a) RSRP over the geographic area.
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(b) Location error.

Fig. 1. [left] Collected measurements in the considered geographic area. [right] The true locations x?i (in red) and the noisy
ones xi (in black).

2) FRK implementation assumptions:

a) Model specification: In order to explore the robustness of the prediction algorithm to

the location uncertainty, we consider different values of σg in the range [20m, 80m]. We choose

the same basis functions x 7→ s(x) = (s1(x), . . . , sr(x)) as in [22]: x 7→ sl(x) is the bi-square

function centered at locations x′l defined by

sl(x) =





[
1− (‖x− x′l‖ /τ)2

]2
, if ‖x− x′l‖ 6 τ ,

0, otherwise ,
(14)
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‖x− x′‖ is the Euclidean distance between x and x′. Below, the centers x′l are chosen on a

Cartesian grid with unit squares elements of size τ × τ covering the whole geographic area of

interest (thus giving the number r of functions). For example, when τ = 70m, r = 132 and for

τ = 30m, r = 700.

An exponential structure is assumed for K:

K = β−1K̃(φ) , with K̃i,j(φ) = exp

(
−
∥∥x′i − x′j

∥∥
φ

)
, (15)

where (β, φ) ∈ R+ ×R+. β−1 is the variance of each component of the vector η (see Eq. (1));

φ stands for a correlation distance parameter.

b) SAEM Implementation and Convergence: In this section, we discuss the implementation

and illustrate the convergence of the SAEM algorithm.

SAEM is run until convergence of the parameters is detected; in the experiments reported

below, the maximal number of iterations is about 900. There is a burn-in period of 400 iterations:

during this period, γ` = 1 and the length M` of the Gibbs chain is relatively small. This burn-in

allows to find the correct initial values for the parameter. Then, we choose a decreasing step-size

sequence γ` = 1
(`−400)3/4 ; the length of the chain decreases along the iterations, starting from

M` = 1000 to M` ≈ 10. An example of SAEM path is displayed on Figure 2, θ(0): we can

observe that the variation of the paths crucially depends on the choice of (γ`,M`).

At each iteration of the SAEM, the variance σ2
q of the proposal mechanism in the Metropolis-

within-Gibbs sampler is set to σ2
q = 10 which guarantees a mean acceptance rate of 30%.
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Fig. 2. SAEM path with τ = 50m and σg = 30m).

The update equations for α, σ2
ε are given in Algorithm 1. β is updated by the formula

β(`+1) = r〈ψ`+1,1, K̃
−1
(`)〉−1, (16)
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(see [22, Section 2] for a similar computation) where K̃(`) is a shorthand notation for K̃(φ(`)).

The global maximization of φ 7→ Q(`+1)(φ) = Q((α(`+1), σ
2
(`+1),ε, β(`+1), φ);θ(`)) is not tractable.

We therefore proceed by a numerical optimization. Based on [18], we use one iteration of Newton

Raphson to update this parameter which yields

φ(`+1) = φ(`) +
a(`+1)

H(`+1)

Tr
((
〈ψ`+1,1, β(`+1)K̃

−1
(l) 〉 − Ir

)
K̃
−1
(`) D ◦ K̃(`)

)
, (17)

D is the n×n matrix with entries (‖x′i−x′j‖)ij , ◦ denotes the Hadamard product and H(`+1) is

the second order derivative of the function Q(`+1)(φ) evaluated at φ = φ(`) (see again [22, Section

2] for a similar computation). The parameter a(`+1) ∈ [0, 1) is chosen in order to guarantee that

Q(`+1)(φ(`+1)) ≥ Q(θ(`),θ(`)).

3) Prediction error analysis for FRK: The RMSE is computed for each of the k successive

test sets in the cross-validation analysis. In Figures 3a, we report the mean value of the RMSE

over the k partitions for different choices of location error standard deviation when the distance

between basis function is equal to τ = 50m (the resulting number of basis functions is r = 255).

We compare four cases: First, we use for the prediction the classical FRK algorithm (detailed

in [22])on perfectly located learning set measurements. Note that this is equivalent to applying the

calibration method and the prediction algorithm described in Section II with a distribution g equal

to the Dirac mass at zero. In the second case, we apply the same FRK algorithm on measurements

with location errors. This means that location uncertainty is ignored. In the two remaining

cases, we successively consider the best linear unbiased predictor and the conditional expectation

predictor described in Section II on our learning set with artificially added location errors. The

first conclusion from these plots in Figure 3a is that there is a performance degradation when

introducing location uncertainty in the prediction model. We notice the performance decrease

of the classical prediction model, for σg = 30m the RMSE is in the order of 4.89dB compared

to the case with no location uncertainty (RMSE=2.71dB). We Notice that the linear and the

conditional expectation predictors improve the RMSE results for the different choices of σg. The

best unbiased linear predictor has better performance when σg is small; for higher values of σg

the conditional expectation predictor provides significantly better results.

4) Number of basis function versus location uncertainty: In [8], we depicted through simula-

tion results that the rank r defines the trade-off between the computational complexity and the

prediction accuracy; the smaller r is, the more accurate prediction we obtain. In this section, we
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Fig. 3. (a) The RMSE evolution for different scenarios : in light blue line no location uncertainty is added; in black line the
FRK prediction algorithm ignoring the location uncertainty; in blue line the best unbiased linear predictor including location
uncertainty; in red line the conditional expectation predictor. We report the RMSE for different choices of location uncertainty
standard deviation, σg , applied to all the strategies except the first one. The first strategies present a reference giving the best
RMSE we can obtain. (b) The RMSE evolution for different choices of basis function separating distance, τ ; in light blue line
no location uncertainty is added; in blue line the best unbiased linear predictor; in red line the conditional expectation predictor.
The location error standard deviation is fixed to 50m. When τ is equal to 30m, 40m, 50m, 60m, 70m, the resulting number of
basis functions, r, is respectively equal to 700, 400 ,255 ,182 ,132.

aim to check whether this result is still valid with the location uncertainty. More precisely,do

we still gain in accuracy if the location error is in the same order of magnitude than the

distance separating basis functions. For this purpose, we choose the same data set used in

the Section III-A1. We perform a k-fold cross validation [23]. We choose k = 5 with a

uniform data sampling of the subsets. The numerical results are averaged over the k splits. We

compare the RMSE, defined in (13), computed using FRK, with different values of the separating

distance between two consecutive basis functions (i.e. different choices of the number of basis

functions) while keeping the same location uncertainty standard deviation. We display our results

in Figure 3b.

From Figure 3b, we notice that when no location uncertainty is added, the smaller τ is (i.e.

the bigger is the number of basis function, r), the more accurate prediction we obtain. When

adding the location uncertainty, the linear and conditional expectation predictors do not have the

same behavior. One can see that the performances of the two predictors are insensitive to the

increase of the basis function number. It means that, when having a location uncertainty in the

order of 50m, it is better to choose the distance that separates two consecutive basis function

in the same order. No significant performance improve is depicted when choosing smaller basis

function separation distance.
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TABLE I
THE RMSE VALUES IN DB FOR DIFFERENT DISTANCE RANGES BETWEEN THE BS AND ME FOR τ = 40 M

Dist. between ME and BS No location uncertainty FRK ignoring location BLUP CEP
σg = 20

< 300m 3.36 4.91 4.20 3.83
> 300m & < 600 2.39 3.56. 2.78 2.79

> 600m 2.59 3.63 2.53 2.63
σg = 50

< 300m 3.36 7.85 5.81 4.91
> 300m & < 600 2.39 5.36. 5.01 4.47

> 600m 2.59 4.51 4.41 4.15

5) Impact of the location in the cell on the prediction accuracy: The impact of the location

uncertainty on the prediction error can also depend of the location of the intended point in the

cell. In Table I we split the cell into three areas depending on the distance of the considered

points to the base station. The RMSE is then calculated for each area. We notice that the impact

of the location uncertainty as well as the gain obtained using our algorithm is more significant

in the cell center, especially when the location error is high. Indeed, in this area the signal

variation is more important than in the cell edge where the signal is more flat. To generalize

this observation, we expect the location error to have higher impact on the prediction if the

considered signal presents high spatial variations.

B. Evaluation results using real field measurements

Our main focus in this section is to validate the FRK algorithm taking into account location

uncertainty on real field data collected during measurement campaign. We first describe the

measurement campaigns made in an urban environments located in Paris. Then we compare the

FRK algorithm taking into account the location uncertainty to the FRK algorithm where location

uncertainty is not taken into account. We follow the same assumption described above for the

choice of the basis functions In addition, we consider the conditional expectation predictor give

in (12).

1) Measurement campaign description: We collect measurements in the geographic area

located in south Paris and presented in Figure 4. The used UE is a typical 4G smart phone. The

UE has a software able to perform drive test measurements on the wireless network interface. The

measurements are stored in the UE to be later extracted and exploited using a second software.
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Fig. 4. Geographic area of interest; the blue icons represent the location of the different BSs covering the whole area of interest.

Using this software, we can analyze the different network indicators collected in our campaign.

We collect data while walking in the area of interest. Note that the collected measurements are

along the roads.

The considered area of interest is covered by many BSs (see Figure 4). Hence the best serving

BS changes several times during the walk. For our analysis, we fix one BS and we record the

LTE RSRP (receiver pilot power) measurements with respect to this BS.

We have done two types of measurement collections, the obtained data sets are shown in

Figures 5 and 6. The two collected data sets are obtained as follows:

• Measurement Campaign 1: The measurements are collected while walking randomly in

different streets of the considered geographic area. Locations are determined by the UE

GPS. The collected data sets are shown in Figures 5. Notice that the reported locations may

have error and true locations are unknown.
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Fig. 5. (a) Collected measurements overlaid to the considered geographic area; (b) Collected measurements where the BS
location is indicated by a red icon.
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• Measurement Campaign 2: At each measurement point, we report the location measured

by the mobile GPS system . At the same time, we report manually street indications that

allow us to determine the e true location using the Google Earth map. We present the second

data set in Figure 6. Since collecting data with this method is time consuming, we limit

our study case to a data set of 100 measurements.
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Fig. 6. (a) Collected measurements overlaid to the considered geographic area; (b) Collected measurements where the BS
location is indicated by a red icon.
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Fig. 7. (a) The 2-dimensional obtained location error; (b) histogram of the location error.

As we know the true location on the small data set, we calculate the difference term between

reported locations and true locations on each axis, as depicted in Figure 7a. As we can see in

Figure 7b the location error distribution is quite similar to a normal distribution which makes

the Gaussian assumption for the distribution of g, plausible. Based on these measurements, we

estimate the standard deviation of the location error to 12, 6m.
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2) Performance evaluation on the small perfectly located data set : We use the small data

set, depicted in Figure 6b. In this data set, for each measurement we have the true location and

a location reported via the mobile positioning system. We split this data set into a learning set

and a test set. The parameters are estimated using the data in the learning set. The prediction

performances are then evaluated using the test set. We perform a k-fold cross validation with

k = 5, and with a uniform data sampling of the subsets. In Table II, we report the mean

value of the RMSE for the two considered prediction algorithms. Since the true locations of the

measurements are known in the small data set, we compare the three following cases: the FRK

applied to perfectly located learning set; the FRK applied to the learning set with GPS based

location; and our proposed FRK algorithm that takes into account the location uncertainty to the

learning set with GPS based location. For the test set, we always consider true locations.

TABLE II
RMSE RESULTS USING ONLY THE SMALL DATA SET WHERE FOR EACH MEASUREMENT WE HAVE TRUE/GPS REPORTED

LOCATION. THE PARAMETER r DENOTES THE NUMBER OF BASIS FUNCTIONS.

No location FRK taking into account FRK ignoring
uncertainty location uncertainty location uncertainty

RMSE (dB)

τ = 10 m
5.45 6.02 6.33

τ = 5 m
4.88 5.84 6.26

The RMSE is globally high. This can be explained by the small size of the available data

set. As expected, if the prediction is performed with perfectly located measurements, the error

is lower. With GPS located measurements, we can albeit see an improvement when location

uncertainty is taken into account in the prediction model.

3) Performance evaluation using the large GPS located dataset : The large data set collected

during the first measurement campaign where the locations are based on the GPS positioning

technique is used as a learning set. The test set consists in the small set where the measurements

are perfectly located, collected during the second measurement campaign. In Table III, we com-

pare the RMSE of the FRK (ignoring the location uncertainty) to our proposed FRK algorithm

that takes into account the location uncertainty. The same trends as in Table II can be observed.

The RMSE is obviously enhanced as the learning set is larger.
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TABLE III
RMSE RESULTS USING LEARNING SET GIVEN BY THE MEASUREMENTS SET WHERE LOCATION ARE REPORTED BY THE UE
POSITIONING SYSTEM AND FOR THE TEST SET THE LOCATION ARE PERFECTLY KNOWN. THE PARAMETER r DENOTES THE

NUMBER OF BASIS FUNCTIONS.

FRK taking into account FRK ignoring
location uncertainty location uncertainty

RMSE (dB)

τ = 10 m
4.66 4.75

τ = 5 m
4.34 4.76

IV. CONCLUSION

In this paper, we proposed a low complexity coverage prediction technique robust to location

uncertainty. We extended the FRK algorithm, which presents a good trade-off between compu-

tational complexity and prediction accuracy, to take into account the location uncertainty while

keeping a reasonable computational cost. For this purpose, we adapted the expressions of the

mean and covariance terms of the observations to the location uncertainty and used a Monte

Carlo sampling approach to approximate them. We have also proposed an algorithm based on

the stochastic approximated EM algorithm for parameter estimation. The SAEM combines the

stochastic EM with a Gibbs sampling procedure for intractable quantities calculations. The Gibbs

algorithm solves the location probability density sampling in a parallelized approach which

makes it robust (in time) to the size of the data set. We have tested our algorithm using field-like

measurements obtained from a sophisticated planning tool. We have proved that our approach has

a better performance compared to the FRK where location uncertainty is not taken into account

in the model. We have also tested our algorithm on real field data measurements that we collected

during a measurement campaigns in the south of Paris and we observed the same trends as for

simulated data. We also noticed that the impact of location uncertainty and the gain obtained

with our algorithm depends on the environment and particularly on the spatial variation of the

signal. Hence the main next step of this work is to test this algorithm on different environments

using field measurement campaigns and MDT data as soon as this data is available.
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APPENDIX A

ON THE DISTRIBUTION OF THE OBSERVATIONS Y

By (3) and the independence assumptions on η, ε(x) and Uk for k = 1, . . . , n, it holds

P(Yk 6 y) = P (Z(xk − Uk) + ε(xk − Uk) ≤ y) =

∫
P (W (xk − u) 6 y) g(u)du, (18)

where W (x) denotes a Gaussian variable with mean αT t(x) and covariance σ2
ε + s(x)TKs(x).

Hence, Y is not a Gaussian vector.

Since (U1, · · · , Un) are independent of {η, ε(x) x ∈ D} then

E [Yk] = E [E [Z(xk − Uk)|Uk]] = E
[
αT t(xk − Uk)

]
=

∫
αT t(xk − u) g(u)du.

Similarly, the covariance matrix Σ of Y is given by, for any 1 ≤ i, j ≤ n with i 6= j,

Σij = E
[
sT (xi − Ui)ηηTs(xj − Uj)

]
= E

[
sT (xi − Ui)Ks(xj − Uj)

]

=

∫
sT (xi − ui)Ks(xj − uj)g(ui)g(uj)duiduj;

and when i = j we have

Σii = E
[
sT (xi − Ui)ηηTs(xi − Ui)

]
+ σ2

εδii = E
[
sT (xi − Ui)Ks(xi − Ui)

]
+ σ2

εδii

=

∫
sT (xi − u)Ks(xi − u) g(u)du+ σ2

εδii.

Hence, we proved that E [Y ] = Tα and cov [Y ] = Σ where T and Σ are given by (4) and

(5).



22

APPENDIX B

CONDITIONAL DISTRIBUTIONS FROM THE MODEL DESCRIBED BY (1) AND (3)

Set u = (u1, · · · , un) and y = (y1, · · · , yn). Define resp. the distribution of U , η and the

conditional distribution of Y given (U ,η)

pU (u) =
n∏

k=1

g(uk) (19)

pη(η;θ) =
1√

2π
r√

Det(K)
exp

(
−1

2
ηTK−1η

)
(20)

pY |U ,η(y|u, η;θ) =
1√

2π
n
σnε

exp

(
− 1

2σ2
ε

n∑

k=1

{yk −αT t(xk − uk)− ηTs(xk − uk)}2
)

(21)

A. The joint density of (Y ,U ,η)

Using the Bayes rule and since η and U are independent, the joint density of (Y ,U ,η) is

given by

(y,u, η) 7→ pY |U ,η(Y |u, η;θ)pU (u)pη(η;θ). (22)

From (19), (20) and (21), the log-density of (Y ,U ,η) is given by (up to an additive term which

does not depend on θ,u, η)

− n

2
lnσ2

ε −
1

2
ln DetK−1 − 1

2
ηTK−1η − 1

2σ2
ε

yTy − 1

2σ2
ε

αT

(
n∑

k=1

t(xk − uk)tT (xk − uk)
)
α

− 1

2σ2
ε

ηT

(
n∑

k=1

s(xk − uk)sT (xk − uk)
)
η +

1

σ2
ε

αT

(
n∑

k=1

ykt(xk − uk)
)

+
1

σ2
ε

ηT

(
n∑

k=1

yks(xk − uk)
)
− 1

σ2
ε

αT

(
n∑

k=1

t(xk − uk)sT (xk − uk)
)
η +

n∑

k=1

ln g(uk)

B. The distribution of (U ,η) conditionally to Y

From Section B-A, the logarithm of the density πθ(u, η) is equal to (up to a multiplicative

constant)

ln πθ(u, η) = −1

2
ηTK−1η − 1

2σ2
ε

αTT T (u)T (u)α− 1

2σ2
ε

ηTS(u)ST (u)η

+
1

σ2
ε

αTT T (u){y − ST (u)η}+
1

σ2
ε

ηTS(u)y +
n∑

k=1

ln g(uk).
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C. The distribution of U conditionally to (Y ,η)

From Section B-B, the first conditional π(1)
θ (u|η) is given by π

(1)
θ (u|η) ∝ ∏n

k=1 π̃θ,k(uk|η)

where

ln π̃θ,k(u|η) = − 1

2σ2
ε

αT t(xk − u)tT (xk − u)α− 1

2σ2
ε

ηTs(xk − u)sT (xk − u)η

+
1

σ2
ε

αT t(xk − u){yk − sT (xk − u)η}+
1

σ2
ε

ηTs(xk − u)yk + ln g(u).

D. The distribution of η conditionally to (Y ,U)

From Section B-B, the second conditional π(2)
θ (η|u) is given, up to a multiplicative constant,

by

lnπ
(2)
θ (η|u) = −1

2
ηTK−1η − 1

2σ2
ε

ηTS(u)ST (u)η − 1

σ2
ε

αTT T (u)ST (u)η +
1

σ2
ε

ηTS(u)y.

It is a Gaussian distribution with covariance matrix and expectation given by (9).

E. The distribution of (Y ,U)

The density of this joint distribution is given by

pc(u,y;θ) =
1

√
2π

n+r√
Det(K)σnε

n∏

k=1

g(uk) · · ·

×
∫

Rr

exp

(
− 1

2σ2
ε

n∑

k=1

{yk −αT t(xk − uk)− ηTs(xk − uk)}2 −
1

2
ηTK−1η

)
dη

APPENDIX C

PROOF OF PROPOSITION 1

Since η is centered with covariance matrix K

E [Z(x0)] = tT (x0)α, cov (Z(x0)) = sT (x0)Ks(x0). (23)

Denote by γ(x0) the n × 1 vector which collects the covariance cov(Z(x0),Y ). We have, for

k = 1, · · · , n

cov(Z(x0),Y k) = cov
(
sT (x0)η, s

T (xk − Uk)η
)

= sT (x0)K

∫
s(xk − u)g(u)du

where we used that Uk, η and {ε(x), x ∈ D} are independent. Hence, we have γ(x0) =

sT (x0)KS.
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A. Proof of Item (i)

We want Ẑ(x0) of the form λTY + c, where λ ∈ Rn and c ∈ R minimize the mean squared

error E
[(
Z(x0)− Ẑ(x0)

)2]
and satisfy

E [Z(x0)] = λTE [Y ] + c = λTTα+ c (24)

since the estimator is unbiased. By (23), this yields c =
(
tT (x0)− λTT

)
α. On the other hand,

(
Z(x0)− Ẑ(x0)

)2
= (Z(x0)−αT t(x0))2 − 2

(
Z(x0)−αT t(x0)

)
λT
(
Y − Tα

)

+ λT
(
Y − Tα

) (
Y − Tα

)T
λ.

By Section A, E
[
λT
(
Y − Tα

) (
Y − Tα

)T
λ
]

= λTΣλ.

In addition, E
[(
Z(x0)− tT (x0)α

)
λT
(
Y − Tα

)]
= λTγ(x0). Hence, by (23),

E
[(
Z(x0)− Ẑ(x0)

)2]
= sT (x0)Ks(x0)− 2λTγ(x0) + λTΣλ.

This quantity is minimized with λ = Σ−1γ(x0). This yields the expression of Ẑ(x0).

B. Proof of Item (ii)

The predictive mean at a location x0, where no observation is reported, is defined as follows:

Eθ[Z(x0)] = tT (x0)α+ sT (x0)Eθ [η] .
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