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Abstract

Heterogeneous wireless networks (HetNets) provide a powerful approach to meet the dramatic

mobile traffic growth, but also impose a significant challenge on backhaul. Caching and multicasting

at macro and pico base stations (BSs) are two promising methods to support massive content delivery

and reduce backhaul load in HetNets. In this paper, we jointly consider caching and multicasting in a

large-scale cache-enabled HetNet with backhaul constraints. We propose a hybrid caching design con-

sisting of identical caching in the macro-tier and random caching in the pico-tier, and a corresponding

multicasting design. By carefully handling different types of interferers and adopting appropriate

approximations, we derive tractable expressions for the successful transmission probability in the

general region as well as the high signal-to-noise ratio (SNR) and user density region, utilizing tools

from stochastic geometry. Then, we consider the successfultransmission probability maximization by

optimizing the design parameters, which is a very challenging mixed discrete-continuous optimization

problem. By using optimization techniques and exploring the structural properties, we obtain a near

optimal solution with superior performance and manageablecomplexity. This solution achieves better

performance in the general region than any asymptotically optimal solution, under a mild condition.

The analysis and optimization results provide valuable design insights for practical cache-enabled

HetNets.
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I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered an unprecedented growth of

the global mobile data traffic. HetNets have been proposed asan effective way to meet

the dramatic traffic growth by deploying short range small-BSs together with traditional

macro-BSs, to provide better time or frequency reuse [1]. However, this approach imposes a

significant challenge of providing expensive high-speed backhaul links for connecting all the

small-BSs to the core network [2].

Caching at small-BSs is a promising approach to alleviate the backhaul capacity requirement

in HetNets [3]–[5]. Many existing works have focused on optimal cache placement at small-

BSs, which is of critical importance in cache-enabled HetNets. For example, in [6] and [7],

the authors consider the optimal content placement at small-BSs to minimize the expected

downloading time for files in a single macro-cell with multiple small-cells. File requests

which cannot be satisfied locally at a small-BS are served by the macro-BS. The optimization

problems in [6] and [7] are NP-hard, and low-complexity solutions are proposed. In [8], the

authors propose a caching design based on file splitting and MDS encoding in a single macro-

cell with multiple small-cells. File requests which cannotbe satisfied locally at a small-BS

are served by the macro-BS, and backhaul rate analysis and optimization are considered. Note

that the focuses of [6]–[8] are on performance optimizationof caching design.

In [9]–[11], the authors consider caching the most popular files at each small-BS in large-

scale cache-enabled small-cell networks or HetNets, with backhaul constraints. The service

rates of uncached files are limited by the backhaul capacity.In [12], the authors propose

a partion-based combined caching design in a large-scale cluster-centric small-cell network,

without considering backhaul constraints. In [13], the authors consider two caching designs,

i.e., caching the most popular files and random caching of a uniform distribution, at small-

BSs in a large-scale cache-enabled HetNet, without backhaul constraints. File requests which

cannot be satisfied at a small-BS are served by macro-BSs. In [14], the authors consider

random caching of a uniform distribution in a large-scale cache-enabled small-cell network,

without backhaul constraints, assuming that content requests follow a uniform distribution.

Note that the focuses of [9]–[14] are on performance analysis of caching designs.

On the other hand, enabling multicast service at BSs in HetNets is an efficient way to

deliver popular contents to multiple requesters simultaneously, by effectively utilizing the

broadcast nature of the wireless medium [15]. In [16] and [17], the authors consider a single
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macro-cell with multiple small-cells with backhaul costs.Specifically, in [16], the optimization

of caching and multicasting, which is NP-hard, is considered, and a simplified solution

with approximation guarantee is proposed. In [17], the optimization of dynamic multicast

scheduling for a given content placement, which is a dynamicprogramming problem, is

considered, and a low-complexity optimal numerical solution is obtained.

The network models considered in [6]–[8], [16], [17] do not capture the stochastic natures

of channel fading and geographic locations of BSs and users.The network models considered

in [9]–[14] are more realistic and can reflect the stochasticnatures of signal and interference.

However, the simple identical caching design considered in[9]–[11], [13] does not provide

spatial file diversity; the combined caching design in [12] does not reflect the popularity

differences of files in each of the three categories; and the random caching design of a

uniform distribution in [13], [14] cannot make use of popularity information. Hence, the

caching designs in [9]–[14] may not lead to good network performance. On the other hand,

[18]–[21] consider analysis and optimization of caching inlarge-scale cache-enabled single-

tier networks. Specifically, [18] considers random cachingat BSs, and analyze and optimize

the hit probability. Reference [19] considers random caching with contents being stored at

each BS in an i.i.d. manner, and analyzes the minimum offloading loss. In [20], the authors

study the expected costs of obtaining a complete content under random uncoded caching and

coded caching strategies, which are designed only for different pieces of a single content.

In [21], the authors consider analysis and optimization of joint caching and multicasting.

However, the proposed caching and multicasting designs in [18]–[21] may not be applicable

to HetNets with backhaul constraints. In summary, to facilitate designs of practical cache-

enabled HetNets for massive content dissemination, further studies are required to understand

the following key questions.

• How do physical layer and content-related parameters fundamentally affect performance

of cache-enabled HetNets?

• How can caching and multicasting jointly and optimally assist massive content dissemi-

nation in cache-enabled HetNets?

In this paper, we consider the analysis and optimization of joint caching and multicasting

to improve the efficiency of massive content dissemination in a large-scale cache-enabled

HetNet with backhaul constraints. Our main contributions are summarized below.

• First, we propose a hybrid caching design with certain design parameters, consisting of
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identical caching in the macro-tier and random caching in the pico-tier, which can provide

spatial file diversity. We propose a corresponding multicasting design for efficient content

dissemination by exploiting broadcast nature of the wireless medium.

• Then, by carefully handling different types of interferersand adopting appropriate ap-

proximations, we derive tractable expressions for the successful transmission probability

in the general region and the asymptotic region, utilizing tools from stochastic geometry.

These expressions reveal the impacts of physical layer and content-related parameters on the

successful transmission probability.

• Next, we consider the successful transmission probabilitymaximization by optimizing

the design parameters, which is a very challenging mixed discrete-continuous optimization

problem. We propose a two-step optimization framework to obtain a near optimal solution

with superior performance and manageable complexity. Specifically, we first characterize the

structural properties of the asymptotically optimal solutions. Then, based on these properties,

we obtain the near optimal solution, which achieves better performance in the general region

than any asymptotically optimal solution, under a mild condition.

• Finally, by numerical simulations, we show that the near optimal solution achieves a

significant gain in successful transmission probability over some baseline schemes.

II. NETWORK MODEL

We consider a two-tier HetNet where a macro-cell tier is overlaid with a pico-cell tier, as

shown in Fig. 1. The locations of the macro-BSs and the pico-BSs are spatially distributed

as two independent homogeneous Poisson point processes (PPPs)Φ1 andΦ2 with densities

λ1 andλ2, respectively, whereλ1 < λ2. The locations of the users are also distributed as an

independent homogeneous PPPΦu with densityλu. We refer to the macro-cell tier and the

pico-cell tier as the1st tier and the2nd tier, respectively. Consider the downlink scenario.

Each BS in thejth tier has one transmit antenna with transmission powerPj (j = 1, 2), where

P1 > P2. Each user has one receive antenna. All BSs are operating on the same frequency

band of total bandwidthW (Hz). Consider a discrete-time system with time being slotted and

study one slot of the network. We consider both large-scale fading and small-scale fading.

Due to large-scale fading, a transmitted signal from thejth tier with distanceD is attenuated

by a factor 1
D

αj , whereαj > 2 is the path loss exponent of thejth tier. For small-scale fading,

we assume Rayleigh fading channels [22], [23].
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Fig. 1. Network model. The 1st tier corresponds to a Voronoi tessellation (cf. black dashed line segments),

determined by the locations of all the macro-BSs. Each filen ∈ Fc
2 corresponds to a Voronoi tessellation (cf.

solid line segments in the same color as the file), determinedby the locations of all the pico-BSs storing this

file.

Let N , {1, 2, · · · , N} denote the set ofN files (e.g., data objects or chucks of data

objects) in the HetNet. For ease of illustration, assume that all files have the same size.1

Each file is of certain popularity, which is assumed to be identical among all users. Each

user randomly requests one file, which is filen ∈ N with probability an ∈ (0, 1), where
∑

n∈N an = 1. Thus, the file popularity distribution is given bya , (an)n∈N , which is

assumed to be known apriori. In addition, without loss of generality (w.l.o.g.), assumea1 >

a2 > . . . > aN .

The HetNet consists of cache-enabled macro-BSs and pico-BSs. Each BS in thejth tier

is equipped with a cache of sizeKc
j < N to store different files. AssumeKc

1 + Kc
2 ≤ N .

Each macro-BS is connected to the core network via a wirelinebackhaul link of transmission

capacityKb
1 < N (files/slot), i.e., each macro-BS can retrieve at mostKb

1 different files from

the core network in each slot.2 Note thatKc
1, K

c
2 andKb

1 reflect the storage and backhaul

resources in the cache-enabled HetNet.

III. JOINT CACHING AND MULTICASTING

We are interested in the case where the storage and backhaul resources are limited, and

may not be able to satisfy all file requests. In this section, we propose a joint caching

1Files of different sizes can be divided into chunks of the same length. Thus, the results in this paper can be extended to

the case of different file sizes.

2Note that storing or retrieving more than one copies of the same file at one BS is redundant and will waste storage or

backhaul resources.
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and multicasting design with certain design parameters, which can provide high spatial file

diversity and ensure efficient content dissemination.

A. Hybrid Caching

To provide high spatial file diversity, we propose ahybrid caching designconsisting of

identical caching in the 1st tier and random caching in the 2nd tier, as illustrated in Fig. 1.

Let F c
j ⊆ N denote the set ofF c

j , |F c
j | files cached in thejth tier. Specifically, our hybrid

caching design satisfies the following requirements: (i)non-overlapping caching across tiers:

each file is stored in at most one tier; (ii)identical caching in the 1st tier: each macro-BS

stores the same setF c
1 of Kc

1 (different) files; and (iii)random caching in the 2nd tier: each

pico-BS randomly storesKc
2 different files out of all files inF c

2 , forming a subset ofF c
2 .

Thus, we have the following constraint:

F c
1 ,F

c
2 ⊆ N , F c

1 ∩ F c
2 = ∅, F c

1 = Kc
1, F c

2 ≥ Kc
2. (1)

To further illustrate the random caching in the 2nd tier, we first introduce some notations.

We say everyKc
2 different files inF c

2 form a combination. Thus, there areI ,
(
F c
2

Kc
2

)
different

combinations in total. LetI , {1, 2, · · · , I} denote the set ofI combinations. Combination

i ∈ I can be characterized by anF c
2 -dimensional vectorxi , (xi,n)n∈Fc

2
, wherexi,n = 1

indicates that filen ∈ F c
2 is included in combinationi and xi,n = 0 otherwise. Note that

there areKc
2 1’s in eachxi. DenoteNi , {n ∈ F c

2 : xi,n = 1} ⊆ F c
2 as the set ofKc

2

files contained in combinationi. Each pico-BS stores one combination at random, which is

combinationi ∈ I with probability pi satisfying:3

0 ≤ pi ≤ 1, i ∈ I, (2)
∑

i∈I

pi = 1. (3)

Denotep , (pi)i∈I. To facilitate the analysis in later sections, based onp, we also define

the probability that filen ∈ F c
2 is stored at a pico-BS, i.e.,

Tn ,
∑

i∈In

pi, n ∈ F c
2 , (4)

3In this paper, to understand the natures of joint caching andmulticasting in cache-enabled HetNets, we shall first pose

the analysis and optimization on the basis of all the file combinations inI (for the 2nd tier). Then, based on the insights

obtained, we shall focus on reducing complexity while maintaining superior performance.

April 11, 2016 DRAFT



6

whereIn , {i ∈ I : xi,n = 1} denotes the set ofIn ,
(
F c
2
−1

Kc
2
−1

)
combinations containing file

n ∈ F c
2 . DenoteT , (Tn)n∈Fc

2
. Note thatp andT depend onF c

2 . Thus, in this paper, we

usep(F c
2) andT(F c

2) when emphasizing this relation. Therefore, the hybrid caching design

in the cache-enabled HetNet is specified by the design parameters (F c
1 ,F

c
2 ,p).

To efficiently utilize backhaul links and ensure high spatial file diversity, we only retrieve

files not stored in the cache-enabled HetNet via backhaul links. LetF b
1 ⊆ N denote the set

of F b
1 , |F b

1| files which can be retrieved by each macro-BS from the core network. Thus,

we have the following constraint:

F b
1 = N \ (F c

1 ∪ F c
2). (5)

Therefore, the file distribution in the cache-enabled HetNet is fully specified by the hybrid

caching design(F c
1 ,F

c
2,p).

B. Multicasting

In this part, we propose a multicasting design associated with the hybrid caching design

(F c
1 ,F

c
2 ,p). First, we introduce the user association under the proposed hybrid caching design.

In the cache-enabled HetNet, a user accesses to a tier based on its desired file. Specifically,

each user requesting filen ∈ F c
1 ∪F b

1 is associated with the nearest macro-BS and is referred

to as a macro-user. While, each user requesting filen ∈ F c
2 is associated with the nearest

pico-BS storing a combinationi ∈ In (containing filen) and is referred to as a pico-user.

The associated BS of each user is called its serving BS, and offers the maximum long-term

average receive power for its desired file [23]. Note that under the proposed hybrid caching

design(F c
1 ,F

c
2 ,p), the serving BS of a macro-user is its nearest macro-BS, while the serving

BS of a pico-user (affected byp) may not be its geographically nearest BS. We refer to

this association mechanism as thecontent-centric associationin the cached-enabled HetNet,

which is different from the traditionalconnection-based association[23] in HetNets.

Now, we introduce file scheduling in the cache-enabled HetNet. Each BS will serve all

the cached files requested by its associated users. Each macro-BS only serves at mostKb
1

uncached files requested by its associated users, due to the backhaul constraint for retrieving

uncached files. In particular, if the users of a macro-BS request smaller than or equal toKb
1

different uncached files, the macro-BS serves all of them; ifthe users of a macro-BS request

greater thanKb
1 different uncached files, the macro-BS will randomly selectKb

1 different

April 11, 2016 DRAFT
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requested uncached files to serve, out of all the requested uncached files according to the

uniform distribution.

We consider multicasting4 in the cache-enabled HetNet for efficient content dissemination.

Suppose a BS schedules to serve requests fork different files. Then, it transmits each of

the k files at rateτ (bit/second) and over1
k

of total bandwidth W using FDMA. All the

users which request one of thek files from this BS try to decode the file from the single

multicast transmission of the file at the BS. Note that, by avoiding transmitting the same file

multiple times to multiple users, this content-centric transmission (multicast) can improve the

efficiency of the utilization of the wireless medium and reduce the load of the wireless links,

compared to the traditional connection-based transmission (unicast).

From the above illustration, we can see that the proposed multicasting design is also

affected by the proposed hybrid caching design(F c
1 ,F

c
2 ,p). Therefore, the design parameters

(F c
1 ,F

c
2 ,p) affect the performance of the proposed joint caching and multicasting design.

IV. PERFORMANCE METRIC

In this paper, w.l.o.g., we study the performance of the typical user denoted asu0, which

is located at the origin. We assume all BSs are active. Suppose u0 requests filen. Let j0

denote the index of the tier to whichu0 belongs, and letj0 denote the other tier. Letℓ0 ∈ Φj0

denote the index of the serving BS ofu0. We denoteDj,ℓ,0 and hj,ℓ,0
d
∼ CN (0, 1) as the

distance and the small-scale channel between BSℓ ∈ Φj andu0, respectively. We assume the

complex additive white Gaussian noise of powerN0 at u0. Whenu0 requests filen and file

n is transmitted by BSℓ0, the signal-to-interference plus noise ratio (SINR) ofu0 is given by

SINRn,0 =
D

−αj0

j0,ℓ0,0
|hj0,ℓ0,0|

2

∑

ℓ∈Φj0
\ℓ0

D
−αj0

j0,ℓ,0
|hj0,ℓ,0|

2 +
∑

ℓ∈Φ
j0

D
−αj0

j0,ℓ,0

∣
∣
∣hj0,ℓ,0

∣
∣
∣

2 Pj0

Pj0

+ N0

Pj0

, n ∈ N . (6)

Whenu0 requests filen ∈ F c
1 (n ∈ F b

1), let Kc
1,n,0 ∈ {1, · · · , Kc

1} (K
c

1,n,0 ∈ {0, · · · , Kc
1})

and K
b

1,n,0 ∈ {0, · · · , F b
1} (Kb

1,n,0 ∈ {1, · · · , F b
1}) denote the numbers of different cached

and uncached files requested by the users associated with BSℓ0 ∈ Φ1, respectively. Whenu0

requests filen ∈ F c
2 , let Kc

2,n,0 ∈ {1, · · · , Kc
2} denote the number of different cached files re-

quested by the users associated with BSℓ0 ∈ Φ2. Note thatKc
1,n,0, K

b

1,n,0, K
c

1,n,0, K
b
1,n,0, K

c
2,n,0

are discrete random variables, the probability mass functions (p.m.f.s) of which depend ona,

4Note that in this paper, the multicast service happens once every slot, and hence no additional delay is introduced.
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q1(F
c
1 ,F

c
2) =

∑

n∈Fc
1

anPr

[

W

Kc
1,n,0 +min{Kb

1,K
b

1,n,0}
log2 (1 + SINRn,0) ≥ τ

]

+
∑

n∈Fb
1

anPr

[

W

K
c

1,n,0 +min{Kb
1,K

b
1,n,0}

log2 (1 + SINRn,0) ≥ τ, n is selected

]

(8)

q2(F
c
2 ,p) =

∑

n∈Fc
2

anPr

[

W

Kc
2,n,0

log2 (1 + SINRn,0) ≥ τ

]

(9)

λu and the design parameters(F c
1 ,F

c
2 ,p). In addition, if n ∈ F c

1 ∪ F c
2 , BS ℓ0 will transmit

file n for sure; if n ∈ F b
1 , for given Kb

1,n,0 = kb ≥ 1, BS ℓ0 will transmit file n with

probability min{kb,Kb
1
}

kb
. Given that filen is transmitted, it can be decoded correctly atu0 if

the channel capacity between BSℓ0 and u0 is greater than or equal toτ . Requesters are

mostly concerned with whether their desired files can be successfully received. Therefore,

in this paper, we consider the successful transmission probability of a file requested byu0

as the network performance metric. By total probability theorem, the successful transmission

probability under the proposed scheme is given by:

q(F c
1 ,F

c
2 ,p) = q1(F

c
1 ,F

c
2) + q2(F

c
2 ,p), (7)

whereF b
1 is given by (5), andq1(F c

1 ,F
c
2) andq2(F c

2 ,p) are given by (8) and (9), respectively.

Note that in (8) and (9), each term multiplied byan represents the successful transmission

probability of file n.

Later, we shall see that under the proposed caching and multicasting design for content-

oriented services in the cache-enabled HetNet, the successful transmission probability is suffi-

ciently different from the traditional rate coverage probability studied for connection-oriented

services [23]. In particular, the successful transmissionprobability considered in this paper

not only depends on the physical layer parameters, such as the macro and pico BS densitiesλ1

andλ2, user densityλu, path loss exponentsα1 andα2, bandwidthW , backhaul capacityKb
1

and transmit signal-to-noise ratios (SNRs)P1

N0
and P2

N0
, but also relies on the content-related

parameters, such as the popularity distributiona, the cache sizesKc
1 andKc

2, and the design

parameters(F c
1 ,F

c
2 ,p(F

c
2)). While, the traditional rate coverage probability only depends on

the physical layer parameters. In addition, the successfultransmission probability depends on

the physical layer parameters in a different way from the traditional rate coverage probability.
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For example, the content-centric association leads to different distributions of the locations

of serving and interfering BSs; the multicasting transmission results in different file load

distributions at each BS [23]; and the cache-enabled architecture makes content availability

related to BS densities.

V. PERFORMANCE ANALYSIS

In this section, we study the successful transmission probability q (F c
1 ,F

c
2 ,p) under the

proposed caching and multicasting design for given design parameters(F c
1 ,F

c
2 ,p(F

c
2)). First,

we analyze the successful transmission probability in the general region. Then, we analyze

the asymptotic transmission probability in the high SNR anduser density region.

A. Performance Analysis in General Region

In this part, we would like to analyze the successful transmission probability in the general

region, using tools from stochastic geometry. In general, file loadsKc
1,n,0, K

b

1,n,0, K
c

1,n,0, K
b
1,n,0,

Kc
2,n,0 and SINRSINRn,0 are correlated in a complex manner, as BSs with larger association

regions have higher file load and lower SINR (due to larger user to BS distance) [24]. For

the tractability of the analysis, as in [23] and [24], the dependence is ignored. Therefore, to

obtain the successful transmission probability in (7), we analyze the distributions ofKc
1,n,0,

K
b

1,n,0, K
c

1,n,0, K
b
1,n,0, K

c
2,n,0 and the distribution ofSINRn,0, separately.

First, we calculate the p.m.f.s ofKc
1,n,0 andK

b

1,n,0 for n ∈ F c
1 as well as the p.m.f.s of

K
c

1,n,0 andKb
1,n,0 for n ∈ F b

1. In calculating these p.m.f.s, we need the probability density

function (p.d.f.) of the size of the Voronoi cell ofℓ0 w.r.t. file m ∈ F c
1 ∪ F b

1 \ {n}. Note

that this p.d.f. is equivalent to the p.d.f. of the size of theVoronoi cell to which a randomly

chosen user belongs. Based on a tractable approximated formof this p.d.f. in [25], which is

widely used in existing literature [23], [24], we obtain thep.m.f.s ofKc
1,n,0, K

b

1,n,0, K
c

1,n,0

andKb
1,n,0.

Lemma 1 (p.m.f.s ofKc
1,n,0 K

b

1,n,0, K
c

1,n,0 andKb
1,n,0): The p.m.f.s ofKc

1,n,0 andK
b

1,n,0 for

April 11, 2016 DRAFT
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n ∈ F c
1 and the p.m.f.s ofK

c

1,n,0 andKb
1,n,0 for n ∈ F b

1 are given by

Pr
[
Kc

1,n,0 = kc
]
= g(F c

1,−n, k
c − 1), kc = 1, · · · , Kc

1, (10)

Pr
[

K
b

1,n,0 = kb
]

= g(F b
1, k

b), kb = 0, · · · , F b
1 , (11)

Pr
[
K

c

1,n,0 = kc
]
= g(F c

1 , k
c), kc = 0, · · · , Kc

1, (12)

Pr
[
Kb

1,n,0 = kb
]
= g(F b

1,−n, k
b − 1), kb = 1, · · · , F b

1 , (13)

whereg(F , k) ,
∑

X∈{S⊆F :|S|=k}

∏

m∈X

(

1−
(

1 + amλu

3.5λ1

)−4.5
)
∏

m∈F\X

(

1 + amλu

3.5λ1

)−4.5

,

F c
1,−n , F c

1 \ {n} andF b
1,−n , F b

1 \ {n}.

Proof: Please refer to Appendix A.

Next, we obtain the p.m.f. ofKc
2,n,0 for n ∈ F c

2 . In calculating the p.m.f. ofKc
2,n,0,

we need the p.d.f. of the size of the Voronoi cell ofℓ0 w.r.t. file m ∈ Ni \ {n} when ℓ0

contains combinationi ∈ In. However, this p.d.f. is very complex and is still unknown.

For the tractability of the analysis, as in [21], we approximate this p.d.f. based on a tractable

approximated form of the p.d.f. of the size of the Voronoi cell to which a randomly chosen user

belongs [25], which is widely used in existing literature [23], [24]. Under this approximation,

we obtain the p.m.f. ofKc
2,n,0.

Lemma 2 (p.m.f. ofKc
2,n,0): The p.m.f. ofKc

2,n,0 for n ∈ F c
2 is given by

Pr
[
Kc

2,n,0 = kc
]

=
∑

i∈In

pi

Tn

∑

X∈{S⊆Ni,−n:|S|=kc−1}

∏

m∈X

(

1−

(

1 +
amλu

3.5Tmλ2

)−4.5
)

∏

m∈Ni,−n\X

(

1 +
amλu

3.5Tmλ2

)−4.5

,

kc = 1, · · · , Kc
2, (14)

whereNi,−n , Ni \ {n}.

Proof: Please refer to Appendix B.

The distributions of the locations of desired transmittersand interferers are more involved

than those in the traditional connection-based HetNets. Thus, it is more challenging to analyze

the p.d.f. ofSINRn,0. Whenu0 is a macro-user, as in the traditional connection-based HetNets,

there are two types of interferers, namely, i) all the other macro-BSs besides its serving

macro-BS, and ii) all the pico-BSs. Whenu0 is a pico-user, different from the traditional

connection-based HetNets, there are three types of interferers, namely, i) all the other pico-

BSs storing the combinations containing the desired file ofu0 besides its serving pico-BS,
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ii) all the pico-BSs without the desired file ofu0, and iii) all the macro-BSs. By carefully

handling these distributions, we can derive the p.d.f. ofSINRn,0, for n ∈ F c
1∪F

b
1 andn ∈ F c

2 ,

respectively.

Then, based on Lemma 1 and Lemma 2 as well as the p.d.f. ofSINRn,0, we can derive

the successful transmission probabilityq (F c
1 ,F

c
2 ,p).

Theorem 1 (Performance):The successful transmission probabilityq (F c
1 ,F

c
2 ,p) of u0 is

given by

q (F c
1 ,F

c
2 ,p) =

∑

n∈Fc
1

an

Kc
1∑

kc=1

F b
1∑

kb=0

Pr[Kc
1,n,0 = kc] Pr[K

b

1,n,0 = kb]f1,kc+min{Kb
1
,kb}

+
∑

n∈Fb
1

an

Kc
1∑

kc=0

F b
1∑

kb=1

Pr[K
c

1,n,0 = kc] Pr[Kb
1,n,0 = kb]

min{Kb
1, k

b}

kb
f1,kc+min{Kb

1
,kb}

+
∑

n∈Fc
2

an

Kc
2∑

kc=1

Pr[K2,n,0 = kc]f2,kc(Tn), (15)

where the p.m.f.s ofKc
1,n,0 K

b

1,n,0, K
c

1,n,0, Kb
1,n,0 and Kc

2,n,0 are given by Lemma 1 and

Lemma 2,f1,k and f2,k(Tn) are given by (16) and (17), andTn is given by (4). Here,

B
′
(x, y, z) ,

∫ 1

z
ux−1 (1− u)y−1 du andB(x, y) ,

∫ 1

0
ux−1 (1− u)y−1 du denote the com-

plementary incomplete Beta function and the Beta function,respectively.

Proof: Please refer to Appendix C.

From Theorem 1, we can see that in the general region, the physical layer parametersα1,

α2, W , λ1, λ2, λu, P1

N0
, P2

N0
, and the design parameters(F c

1 ,F
c
2 ,p) jointly affect the successful

transmission probabilityq (F c
1 ,F

c
2 ,p). The impacts of the physical layer parameters and the

design parameters onq (F c
1 ,F

c
2 ,p) are coupled in a complex manner.

B. Performance Analysis in Asymptotic Region

In this part, to obtain design insights, we focus on analyzing the asymptotic successful

transmission probability in the high SNR and user density region. Note that in the remaining

of the paper, when considering the high SNR region, we assumeP1 = βP andP2 = P for

someβ > 1 and P > 0, and let P
N0

→ ∞. On the other hand, in the high user density

region whereλu → ∞, discrete random variablesKc
1,n,0, K

c

1,n,0 → Kc
1, K

b

1,n,0, K
b
1,n,0 →

F b
1 and Kc

2,n,0 → Kc
2 in distribution. Defineq1,∞ (F c

1 ,F
c
2) , lim P

N0
→∞,λu→∞ q1 (F c

1 ,F
c
2),

q2,∞ (F c
2 ,T) , lim P

N0
→∞,λu→∞ q2 (F

c
2 ,p), andq∞ (F c

1 ,F
c
2 ,T) , lim P

N0
→∞,λu→∞ q(F c

1 ,F
c
2 ,p).
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f1,k ,2πλ1

∫ ∞

0

d exp

(

−
(

2
kτ
W − 1

)

dα1
N0

P1

)

exp

(

−
2πλ2

α2
d

2α1

α2

(
P2

P1

(

2
kτ
W − 1

))
2

α2

B

(
2

α2
, 1−

2

α2

))

× exp

(

−
2πλ1

α1
d2
(

2
kτ
W − 1

) 2

α1

B
′

(
2

α1
, 1−

2

α1
, 2−

kτ
W

))

exp
(
−πλ1d

2
)
dd. (16)

f2,k(x) ,2πλ2x

∫ ∞

0

d exp

(

−
(

2
kτ
W − 1

)

dα2
N0

P2

)

exp

(

−
2πλ1

α1
d

2α2

α1

(
P1

P2

(

2
kτ
W − 1

))
2

α1

B

(
2

α1
, 1−

2

α1

))

× exp

(

−
2πλ2

α2
d2
(

2
kτ
W − 1

) 2

α2

(

xB
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

)

+ (1− x)B

(
2

α2
, 1−

2

α2

)))

× exp
(
−πλ2xd

2
)
dd. (17)

f1,k,∞ ,2πλ1

∫ ∞

0

d exp
(
−πλ1d

2
)
exp

(

−
2πλ2

α2
d

2α1

α2

(
1

β

(

2
kτ
W − 1

))
2

α2

B

(
2

α2
, 1−

2

α2

))

× exp

(

−
2πλ1

α1
d2
(

2
kτ
W − 1

) 2

α1

B
′

(
2

α1
, 1−

2

α1
, 2−

kτ
W

))

dd. (18)

f2,k,∞(x) ,2πλ2x

∫ ∞

0

d exp
(
−πλ2xd

2
)
exp

(

−
2πλ1

α1
d

2α2

α1

(

β
(

2
kτ
W − 1

)) 2

α1

B

(
2

α1
, 1−

2

α1

))

× exp

(

−
2πλ2

α2
d2
(

2
kτ
W − 1

) 2

α2

(

xB
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

)

+ (1− x)B

(
2

α2
, 1−

2

α2

)))

dd.

(19)

Note that whenλu → ∞, q2 and q become functions ofT instead ofp. From Theorem 1,

we have the following lemma.

Lemma 3 (Asymptotic Performance):When P
N0

→ ∞ andλu → ∞, we haveq∞ (F c
1 ,F

c
2,T)

= q1,∞ (F c
1 ,F

c
2)+q2,∞ (F c

2 ,T), whereq1,∞ (F c
1 ,F

c
2) = f1,Kc

1
+min{Kb

1
,F b

1
},∞

(
∑

n∈Fb
1

min{Kb
1
,F b

1
}

F b
1

an

+
∑

n∈Fc
1
an

)

andq2,∞ (F c
2 ,T) =

∑

n∈Fc
2
anf2,Kc

2
,∞(Tn). Here,f1,k,∞ andf2,k,∞(Tn) are given

by (18) and (19), andTn is given by (4).

Proof: Please refer to Appendix D.

Note that f1,Kc
1
+min{Kb

1
,F b

1
},∞ represents the successful transmission probability for file

n ∈ F c
1 ∪ F b

1 (given that this file is transmitted), andf2,Kc
2
,∞(Tn) represents the successful

transmission probability for filen ∈ F c
2 , in the asymptotic region. For given(F c

1 ,F
c
2 ,T),

we interpret Lemma 3 below. WhenF b
1 ≤ Kb

1, the successful transmission probability of file

n1 ∈ F c
1 is the same as that of filen2 ∈ F b

1 . In other words, when backhaul capacity is

sufficient, storing a file at a macro-BS or retrieving the file via the backhaul link makes no

April 11, 2016 DRAFT



13

difference in successful transmission probability. WhenF b
1 > Kb

1, the successful transmission

probability of filen1 ∈ F c
1 is greater than that of filen2 ∈ F b

1 . In other words, when backhaul

capacity is limited, storing a file at a macro-BS is better than retrieving the file via the backhaul

link. Note thatf2,k,∞(x) is an increasing function (Please refer to Appendix E for theproof).

Thus, for anyn1, n2 ∈ F c
2 satisfyingTn1

> Tn2
, the successful transmission probability of

file n1 ∈ F c
2 is greater than that of filen2 ∈ F c

2 . That is, a file of higher probability being

cached at a pico-BS has higher successful transmission probability. Later, in Section VII, we

shall see that the structure ofq∞ (F c
1 ,F

c
2 ,T) facilitates the optimization ofq (F c

1 ,F
c
2 ,p).

Next, we further study the symmetric case whereα1 = α2 , α in the high SNR and user

density region. From Lemma 3, we have the following lemma.

Lemma 4 (Asymptotic Performance Whenα1 = α2): When α1 = α2 = α, P
N0

→ ∞ and

λu → ∞, we haveq∞ (F c
1 ,F

c
2 ,T) = q1,∞ (F c

1 ,F
c
2) + q2,∞ (F c

2 ,T), whereq1,∞ (F c
1 ,F

c
2) =

1
ω
Kc

1
+min{Kb

1
,Fb

1
}

(
∑

n∈Fc
1
an +

min{Kb
1
,F b

1
}

F b
1

∑

n∈Fb
1
an

)

and q2,∞ (F c
2 ,T) =

∑

n∈Fc
2

anTn

θ2,Kc
2
+θ1,Kc

2
Tn

.

Here,Tn is given by (4), andωk, θ1,k andθ2,k are given by

ωk =
2

α

(

2
kτ
W − 1

) 2

α

B′

(
2

α
, 1−

2

α
, 2

−kτ
W

)

+
2λ2

αλ1

(
1

β

(

2
kτ
W − 1

))
2

α

B

(
2

α
, 1−

2

α

)

+ 1,

(20)

θ1,k =
2

α

(

2
kτ
W − 1

) 2

α

B′

(
2

α
, 1−

2

α
, 2

−kτ
W

)

−
2

α

(

2
kτ
W − 1

) 2

α

B

(
2

α
, 1−

2

α

)

+ 1, (21)

θ2,k =
2

α

(

2
kτ
W − 1

) 2

α

B

(
2

α
, 1−

2

α

)

+
2λ1

αλ2

(

β
(

2
kτ
W − 1

)) 2

α

B

(
2

α
, 1−

2

α

)

. (22)

Proof: Please refer to Appendix D.

From Lemma 4, we can see that in the high SNR and user density region, whenα1 = α2 =

α, the impact of the physical layer parametersα, β andW , captured byωk, θ1,K andθ2,K , and

the impact of the design parameters(F c
1 ,F

c
2 ,p) on the successful transmission probability

q∞ (F c
1 ,F

c
2 ,T) can be easily separated. Later, in Section VII, we shall see that this separation

greatly facilitates the optimization ofq (F c
1 ,F

c
2 ,p).

Fig. 2 plots the successful transmission probability versus the transmit SNRP
N0

and the

user densityλu. Fig. 2 verifies Theorem 1 and Lemma 3 (Lemma 4), and demonstrates the

accuracy of the approximations adopted. Fig. 2 also indicates thatq∞ (F c
1 ,F

c
2 ,T) provides

a simple and good approximation forq (F c
1 ,F

c
2 ,T) in the high transmit SNR region (e.g.,

P
N0

≥ 100 dB) and the high user density region (e.g.,λu ≥ 3× 10−5).
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Fig. 2. Successful transmission probability versus transmit SNRP
N0

and user densityλu. N = 10, Kc
1 = 3,

Kc
2 = 2, Kb

1 = 1, Fc
1 = {1, 2, 3}, Fb

1 = {7, 8, 9, 10}, Fc
2 = {4, 5, 6}, p = (0.7, 0.2, 0.1), N1 = {4, 5},

N2 = {4, 6}, N3 = {5, 6}, λ1 = 5 × 10−7, λ2 = 3 × 10−6, P1 = 101.5P , P2 = P , α1 = α2 = 4,

W = 20× 106, τ = 2× 104, andan = n−γ
∑

n∈N
n−γ with γ = 1. In this paper, to simulate the large-scale HetNet,

we use a 2-dimensional square of area150002, which is sufficiently large in our case. Note that if the simulation

window size is not large enough, the observed interference would be smaller than the true interference due to

the edge effect, resulting in larger successful transmission probability than the true value. In addition, the Monte

Carlo results are obtained by averaging over105 random realizations.

VI. OPTIMIZATION PROBLEM FORMULATION

In this section, we formulate the optimal caching and multicasting design problem to

maximize the successful transmission probabilityq (F c
1 ,F

c
2 ,p), which is a mixed discrete-

continuous optimization problem. To facilitate the solution of this challenging optimization

problem in the next section, we also formulate the asymptotically optimal caching and

multicasting design problem to maximize the asymptotic successful transmission probability

q∞ (F c
1 ,F

c
2 ,T) in the high SNR and user density region.

A. Optimization Problem

The caching and multicasting design fundamentally affectsthe successful transmission

probability via the design parameters(F c
1 ,F

c
2 ,p). We would like to maximizeq (F c

1 ,F
c
2 ,p)

by carefully optimizing(F c
1 ,F

c
2 ,p).
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Problem 1 (Performance Optimization):

q∗ , max
Fc

1
,Fc

2
,p

q (F c
1 ,F

c
2 ,p)

s.t. (1), (2), (3),

whereq (F c
1 ,F

c
2 ,p) is given by (15).

Note that Problem 1 is a mixed discrete-continuous optimization problem with two main

challenges. One is the choice of the sets of filesF c
1 andF c

2 (discrete variables) stored in the

two tiers, and the other is the choice of the caching distribution p(F c
2) (continuous variables)

of random caching for the 2nd tier. We thus propose an equivalent alternative formulation of

Problem 1 which naturally subdivides Problem 1 according tothese two aspects.

Problem 2 (Equivalent Optimization):

q∗ = max
Fc

1
,Fc

2

q1(F
c
1 ,F

c
2) + q∗2 (F

c
2) (23)

s.t. (1).

q∗2(F
c
2) , max

p
q2 (F

c
2 ,p) (24)

s.t. (2), (3).

For givenF c
2 , the optimization problem in (24) is in general a non-convexoptimization

problem with a large number of optimization variables (i.e., I =
(
F c
2

Kc
2

)
optimization variables),

and it is difficult to obtain the global optimal solution and calculateq∗2 (F
c
2). Even given

q∗2 (F
c
2), the optimization problem in (23) is a discrete optimization problem over a very large

constraint set, and is NP-complete in general. Therefore, Problem 2 is still very challenging.

B. Asymptotic Optimization Problem

To facilitate the solution of the challenging mixed discrete-continuous optimization prob-

lem, we also formulate the optimization of the asymptotic successful transmission probability

q∞ (F c
1 ,F

c
2 ,T) given in Lemma 3, i.e., which has a much simpler form thanq (F c

1 ,F
c
2 ,p)

given in Theorem 1. Equivalently, we can consider the asymptotic version of Problem 2 in

the high SNR and user density region.

Problem 3 (Asymptotic Optimization):

q∗∞ = max
Fc

1
,Fc

2

q1,∞(F c
1 ,F

c
2) + q∗2,∞ (F c

2) (25)

s.t. (1).
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The optimal solution to the optimization in (25) is written as (F c∗
1 ,F c∗

2 ) and q∗2,∞(F c
2) is

given by

q∗2,∞(F c
2) , max

p
q2,∞ (F c

2 ,p) (26)

s.t. (2), (3), (4),

where the optimal solution to the optimization in (26) is written asp∗(F c
2). The optimal

solution to Problem 3 is given by(F c∗
1 ,F c∗

2 ,p∗(F c∗
2 )), which is the asymptotic optimal

solution to Problem 2 (Problem 1).

Based on Lemma 2 in [21], we know that the optimization in (26)is equivalent to the

following optimization for givenF c
2

q∗2,∞(F c
2) , max

T
q2,∞ (F c

2 ,T) (27)

s.t. 0 ≤ Tn ≤ 1, n ∈ F c
2 , (28)

∑

n∈Fc
2

Tn = Kc
2, (29)

where the optimal solution is written asT∗(F c
2). In addition, anyp∗(F c

2) in convex polyhedron

P∗(F c
2) , {p∗(F c

2) : (2), (3), (30)} is an optimal solution to the optimization in (26), where

(30) is given by:
∑

i∈In

p∗i (F
c
2) = T ∗

n(F
c
2), n ∈ F c

2 . (30)

The vertices of the convex polyhedronP∗(F c
2) can be obtained based on the simplex method,

and anyp∗(F c
2) ∈ P∗(F c

2) can be constructed from all the vertices using convex combination.

Thus, when optimizing the asymptotic performance for givenF c
2 , we can focus on the

optimization in (27) instead of the optimization in (26).

VII. N EAR OPTIMAL SOLUTION

In this section, we propose a two-step optimization framework to obtain a near optimal

solution with manageable complexity and superior performance in the general region. We first

characterize the structural properties of the asymptotically optimal solutions. Then, based on

these properties, we obtain a near optimal solution in the general region.

A. Asymptotically Optimal Solution

In this part, we study the continuous part and the discrete part of the asymptotic optimization

in Problem 3, respectively, to obtain design insights into the solution in the general region.
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f ′
2,k,∞(x) ,2πλ2x

∫ ∞

0

d exp

(

−
2πλ2

α2
d2
(

2
kτ
W − 1

) 2

α2

(

xB
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

)

+ (1− x)B

(
2

α2
, 1−

2

α2

)))

× exp
(
−πλ2xd

2
)
exp

(

−
2πλ1

α1
d

2α2

α1

(
P1

P2

(

2
kτ
W − 1

))
2

α1

B

(
2

α1
, 1−

2

α1

))

×

(

−πλ2d
2 −

2πλ2

α2
d2
(

2
kτ
W − 1

) 2

α2

(

B
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

)

−B

(
2

α2
, 1−

2

α2

)))

dd

+
f2,k,∞(x)

x
. (32)

1) Continuous Optimization:As the structure ofq2,∞ (F c
2 ,T) is very complex, it is difficult

to obtain the closed-form optimal solutionT∗(F c
2) to the optimization in (27). By exploring

the structural properties ofq2,∞ (F c
2 ,T), we know that files of higher popularity get more

storage resources.

Lemma 5 (Structural Property of Optimization in(27)): Given anyF c
2 ⊆ N satisfyingF c

2 ≥

Kc
2 andn1, n2 ∈ F c

2 , if n1 < n2, thenT ∗
n1
(F c

2) ≥ T ∗
n2
(F c

2).

Proof: Please refer to Appendix E.

Now, we focus on obtaining a numerical solution to the optimization in (27). For given

F c
2 ⊆ N satisfyingF c

2 ≥ Kc
2, the optimization in (27) is a continuous optimization of a

differentiable functionq2,∞ (F c
2 ,T) over a convex set. In general, it is difficult to show the

convexity off2,k,∞(x) in (19). A stationary point to the optimization in (27) can beobtained

using standard gradient projection methods [26, pp. 223]. Here, we consider the diminishing

stepsize [26, pp. 227] satisfying

ǫ(t) → 0 as t → ∞,

∞∑

t=1

ǫ(t) = ∞,

∞∑

t=1

ǫ(t)2 < ∞, (31)

and propose Algorithm 1. In Step 2 of Algorithm 1,
∂q2,∞(Fc

2 ,T(t))
∂Tn(t)

= anf
′
2,k,∞(x), where

f ′
2,k,∞(x) is given by (32). Step 3 is the projection ofT̄n(t+ 1) onto the set of the variables

satisfying the constraints in (28) and (29). It is shown in [26, pp. 229] thatT(t) in Algorithm 1

converges to a stationary point of the optimization in (27) as t → ∞.

On the other hand, as illustrated in the discussion of Lemma 3, f2,k,∞(x) is actually a

cumulative density function (c.d.f.), and is concave in most of the cases we are interested

in. If f2,k,∞(x) in (17) is concave w.r.t.x, the differentiable functionq2,∞ (F c
2 ,T) is concave

w.r.t. T, and hence, the optimization in (27) is a convex problem. Then, T(t) in Algorithm 1
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Algorithm 1 Asymptotically Optimal Solution
1: Initialize t = 1 andTn(1) =

1
F c

2

for all n ∈ Fc
2 .

2: For all n ∈ Fc
2 , computeT̄n(t + 1) according toT̄n(t + 1) = Tn(t) + ǫ(t)

∂q2,∞(Fc
2
,T(t))

∂Tn(t)
, where{ǫ(t)}

satisfies (31).

3: For all n ∈ Fc
2 , computeTn(t + 1) according toTn(t + 1) = min

{[
T̄n(t+ 1)− ν∗

]+
, 1
}

, whereν∗

satisfies
∑

n∈Fc
2

min
{[

T̄n(t+ 1)− ν∗
]+

, 1
}

= Kc
2.

4: Set t = t+ 1 and go to Step 2.

converges to the optimal solutionT∗(F c
2) to the optimization in (27) ast → ∞. In other

words, under a mild condition (i.e.,f2,k,∞(x) is convex), we can obtain the optimal solution

T∗(F c
2) to the optimization in (27) using Algorithm 1.

Next, we consider the symmetric case, i.e.,α1 = α2 = α, in the high SNR and user density

region. In this case, we can easily verify thatq2,∞ (F c
2 ,T) =

∑

n∈Fc
2

anTn

θ2,Kc
2
+θ1,Kc

2
Tn

(given in

Lemma 4) is convex and Slater’s condition is satisfied, implying that strong duality holds.

Using KKT conditions, we can obtain the closed-form solution to the optimization in (27) in

this case.

Lemma 6 (Asymptotically Optimal Solution whenα1 = α2): For givenF c
2 , whenα1 = α2 =

α, P
N0

→ ∞ andλu → ∞, the optimal solution to the optimization in (27) is given by

T ∗
n(F

c
2) = min

{[

1

θ1,Kc
2

√

anθ2,Kc
2

ν∗
−

θ2,Kc
2

θ1,Kc
2

]+

, 1

}

, n ∈ F c
2 , (33)

where[x]+ , max{x, 0} andν∗ satisfies

∑

n∈Fc
2

min

{[

1

θ1,Kc
2

√

anθ2,Kc
2

ν∗
−

θ2,Kc
2

θ1,Kc
2

]+

, 1

}

= Kc
2. (34)

Here,θ1,k andθ2,k are given by (21) and (22), respectively.

Proof: Please refer to Appendix F.

As the water-level in the traditional water-filling power control, the rootν∗ to the equation

in (34) can be easily solved. Thus, by Lemma 6, we can efficiently computeT∗(F c
2) when

α1 = α2.

Lemma 6 can be interpreted as follows. As illustrated in Fig.3, T∗(F c
2) given by Lemma 6

has a reverse water-filling structure. The file popularity distribution{an : n ∈ F c
2} and the

physical layer parameters (captured inθ1,Kc
2

andθ2,Kc
2
) jointly affect ν∗. Givenν∗, the physical

layer parameters (captured inθ1,Kc
2

andθ2,Kc
2
) affect the caching probabilities of all the files in
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Fig. 3. Illustration of the optimality structure in Lemma 6. In thisexample,Fc
1 ∪ Fb

1 = {3, 4 · · · , n− 1}, and

Fc
2 = {1, 2, n, n+ 1, · · · , N} for somen ∈ N .

the same way, while the popularity of filen ∈ F c
2 (i.e.,an) only affects the caching probability

of file n (i.e., T ∗
n ). From Lemma 6, we know that for anyn1, n2 ∈ F c

2 such thatn1 < n2,

we haveT ∗
n1

> T ∗
n2

, asan1
> an2

. In other words, files inF c
2 of higher popularity get more

storage resources in the 2nd tier. In addition, there may exist n̄ ∈ F c
2 such thatT ∗

n > 0 for

all n ∈ F c
2 andn < n̄, andT ∗

n = 0 for all n ∈ F c
2 andn ≥ n̄. In other words, some files in

F c
2 of lower popularity may not be stored in the 2nd tier. For a popularity distribution with

a heavy tail, more different files inF c
2 can be stored in the 2nd tier.

2) Discrete Optimization:Given q∗2,∞(F c
2) = q2,∞(F c

2 ,T
∗(F c

2)), the optimization in (25)

is a discrete optimization. It can be shown that the number ofpossible choices for(F c
1 ,F

c
2)

satisfying (1) is given by
∑N−Kc

1

F c
2
=Kc

2

(
N

F c
2

)(
N−F c

2

Kc
1

)
= Θ(NN ). Thus, a brute-force solution to

the discrete optimization in (25) is not acceptable. Now, weexplore the structural properties

of the discrete optimization in (25) to facilitate the design of low-complexity asymptotically

optimal solutions.

Theorem 2 (Structural Properties of Optimization in(25)): There exists an optimal solu-

tion (F c∗
1 ,F c∗

2 ) to the optimization in (25) satisfying the following conditions: (i) F c∗
2 ∈

{F c∗
2,lb, F

c∗
2,lb + 1, · · · , N −Kc

1}, whereF c∗
2,lb , max{Kc

2, N −Kc
1 −Kb

1}; and (ii) there exists

nc
1 ∈ {1, 2, · · · , F c∗

2 + 1}, such thatF c∗
1 = {nc

1, n
c
1 + 1, · · · , nc

1 +Kc
1 − 1} andF c∗

2 = N \
(
F c∗

1 ∪ F b∗
1

)
, whereF b∗

1 = {nc
1 +Kc

1, n
c
1 +Kc

1 + 1, · · · , nc
1 +Kc

1 +N − (Kc
1 + F c∗

2 )− 1}.

Proof: Please refer to Appendix G.

Theorem 2 can be interpreted as follows. Property (ii) indicates that there is an optimal

solution(F c∗
1 ,F c∗

2 ) to the optimization in (25) satisfying that the files inF c∗
1 , F b∗

1 andF c∗
1 ∪

F b∗
1 are consecutive, and the files inF c∗

1 are more popular than those inF b∗
1 . This can
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Fig. 4. Illustration of the structural properties in Theorem 2 and Lemma 7.Kc
1 = 3, Kb

1 = 2 andKc
2 = 2.

be easily understood from Fig. 4. It can be shown that the number of possible choices for

(F c
1 ,F

c
2) satisfying the properties in Theorem 2 is given by

∑N−Kc
1

F c
2
=F c∗

2,lb

∑F c
2
+1

nc
1
=1 1 = Θ(N2),

which is much smaller than the number of possible choices just satisfying (1), i.e.,Θ(NN ). By

restricting to the choices for(F c
1 ,F

c
2) satisfying the properties in Theorem 2, we can greatly

reduce the complexity for solving the optimization in (25) without losing any optimality.

In some special cases, we can obtain extra properties other than those in Theorem 2.

Lemma 7 (Structural Properties of Optimization in(25) in Special Cases):(i) If f1,Kc
1
+Kb

1
,∞

> f2,Kc
2
,∞(1), thennc

1 in Theorem 2 satisfiesnc
1 = 1; (ii) If f1,Kc

1
,∞ < f2,Kc

2
,∞

(
Kc

2

N−Kc
1

)

, then

nc
1 in Theorem 2 satisfiesnc

1 ≥ 2.

Proof: Please refer to Appendix H.

Lemma 7 can be interpreted as follows. Property (i) implies that the most popular files are

served by the 1st tier (cf. Case 1 in Fig. 4), iff1,Kc
1
+Kb

1
,∞ > f2,Kc

2
,∞(1). This condition holds

when P1

P2
and λ1

λ2
are above some thresholds, respectively. In this case, macro-BSs intend to

multicast the most popular files, as they can offer relatively higher receive power, and hence

higher successful transmission probability for the most popular files. Note that when the

condition in (i) holds, by Theorem 2 and Lemma 7, we can directly determine(F c∗
1 ,F c∗

2 ).

Property (ii) implies that the most popular file, i.e., file 1,is not served by the 1st tier (cf. Cases

2-4 in Fig. 4), if f1,Kc
1
,∞ < f2,Kc

2
,∞

(
Kc

2

N−Kc
1

)

. This condition holds whenP1

P2
and λ1

λ2
are below

some thresholds, respectively. In this case, pico-BSs intend to multicast the most popular file,

as they can offer relatively higher receive power, and hencehigher successful transmission

probability for the most popular file. When the condition in (ii) holds, we can use Lemma 7

together with Theorem 2 to reduce the set of possible choicesfor (F c
1 ,F

c
2), to further reduce

the complexity for solving the optimization in (25) withoutlosing any optimality.
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q2 (F
c
2 ,p

∗)

=
∑

i∈I




∑

n∈Ni

an

T ∗
n

Kc
2∑

kc=1

f2,kc(T ∗
n)

∑

X∈{S⊆Ni,−n:|S|=kc−1}

∏

m∈X

(

1−

(

1 +
amλu

3.5T ∗
mλ2

)−4.5
)

∏

m∈Ni,−n\X

(

1 +
amλu

3.5T ∗
mλ2

)−4.5




, q2 (F
c
2 ,p

∗,T∗) (35)

B. Near Optimal Solution in General Region

First, we consider the near optimal solution for the continuous part (for givenF c
2). As

illustrated in Section VII-A, based onT∗(F c
2) obtained using Algorithm 1 or Lemma 6

(whenα1 = α2), we can determineP∗(F c
2). As illustrated in Section VI-B, anyp∗ ∈ P∗(F c

2)

is an optimal solution to the optimization in (26). In other words, for givenF c
2 , we have a

set of asymptotically optimal solutions in the high SNR and user density region. Substituting

p∗ satisfying (30) intoq2 (F c
2 ,p) in Theorem 1, we haveq2 (F c

2 ,p
∗,T∗) given in (35). For

given F c
2 (and T∗(F c

2)), we would like to obtain the best asymptotically optimal solution

which maximizes the successful transmission probabilityq2 (F
c
2 ,p

∗,T∗) in the general region

among all the asymptotically optimal solutions inP∗(F c
2).

Problem 4 (Optimization ofp∗ under GivenF c
2 (andT∗)):

q
†
2(F

c
2) , max

p∗
q2(F

c
2 ,p

∗,T∗)

s.t. (2), (3), (30).

The optimal solution is denoted asp†(F c
2).

Problem 4 is a linear programming problem. To reduce the complexity for solving Prob-

lem 4, we first derive some caching probabilities which are zero based on the relationship

betweenp and T. In particular, for all i ∈ In and n ∈ {n ∈ F c
2 : T ∗

n = 0}, we have

p
†
i(F

c
c ) = 0; for all i 6∈ In andn ∈ {n ∈ F c

2 : T ∗
n = 1}, we havep†i(F

c
c ) = 0. Thus, we have

p
†
i (F

c
c ) = 0, i ∈ I ′, (36)

whereI ′ , ∪n∈{n∈Fc
2
:T ∗

n=0}In∪
(
I \ ∪n∈{n∈Fc

2
:T ∗

n=1}In

)
. Then, we can compute the remaining

caching probabilities for the combinations inI \I ′ using the simplex method (refer to Step 6

of Algorithm 2 for details). Therefore, using the above approach, for givenF c
2 , we can obtain

the best asymptotically optimal solutionp†(F c
2) in P∗(F c

2) to the optimization in (24).
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Next, we consider the near optimal solution for the discretepart. Specifically, after obtaining

q
†
2(F

c
2) using the above approach for the continuous part, we consider the optimization of

q1(F c
1 ,F

c
2) + q

†
2(F

c
2) over the set of(F c

1 ,F
c
2) satisfying Theorem 2 (and Lemma 7). Let

(F c†
1 ,F c†

2 ) andq† denote the optimal solution and the optimal value.

Finally, combining the above discrete part and continuous part, we can obtain the near

optimal solution(F c†
1 ,F c†

2 ,p†(F c†
2 )) to Problem 1 (Problem 2), as summarized in Algorithm 2.

We can show that in the general region, under a mild condition(i.e., f2,k,∞(x) is convex),

the near optimal solution(F c†
1 ,F c†

2 ,p†(F c†
2 )) obtained by Algorithm 2 achieves the successful

transmission probabilityq† = q(F c†
1 ,F c†

2 ,p†(F c†
2 )) greater than or equal to that of any optimal

solution to Problem 3, i.e., any asymptotically optimal solution to Problem 1 (Problem 2).

Lemma 8:We haveq(F c†
1 ,F c†

2 ,p†(F c†
2 )) ≥ q(F c∗

1 ,F c∗
2 ,p∗(F c∗

2 )), for all p∗(F c∗
2 ) ∈ P∗(F c∗

2 ),

where(F c∗
1 ,F c∗

2 ,p∗(F c∗
2 )) is an optimal solution to Problem 3.

Algorithm 2 Near Optimal Solution
1: Initialize q† = 0.

2: for F c
2 = max{Kc

2, N −Kc
1 −Kb

1} : N −Kc
1 do

3: for nc
1 = 1 : F c

2 + 1 do

4: ChooseFc
1 andFc

2 according to Theorem 2 (and Lemma 7).

5: Obtain the optimal solutionT∗(Fc
2) to the optimization in (27) using Algorithm 1 or Lemma 6 (when

α1 = α2).

6: DetermineI ′ and choosep†i (F
c
2) = 0 for all i ∈ I ′ according to (36). Then, obtain{p†i : i ∈ I \ I ′}

andq†2(F
c
2) by solving Problem 4 (under the constraint in (36)) using thesimplex method.

7: Computeq1(Fc
1 ,F

c
2) + q

†
2 (F

c
2) , q∞. If q†∞ < q∞, set q†∞ = q∞ and (Fc†

1 ,Fc†
2 ,p†(Fc†

2 )) =

(Fc
1 ,F

c
2 ,p

†(Fc
2)).

8: end for

9: end for

VIII. N UMERICAL RESULTS

In this section, we compare the proposed near optimal designgiven by Algorithm 2 with

three schemes. Baseline 1 (most popular) refers to the design in which each macro-BS selects

the mostKc
1 + Kb

1 popular files to store and fetch, and each pico-BS selects themostKc
2

popular files to store [9]–[11]. Baseline 2 (i.i.d. file popularity) refers to the design in which

each macro-BS selectsKc
1 +Kb

1 files to store and fetch, and each pico-BS selectsKc
2 files

April 11, 2016 DRAFT



23

Pico BS Cache Size K
2
c (K

1
c=K

2
c+10)

5 10 15 20 25 30

S
u

cc
es

sf
u

l T
ra

n
sm

is
si

o
n

 P
ro

b
ab

ili
y

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

proposed
most popular
i.i.d. file popularity
uniform comb. dist.
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(c) User density atKc
2 = 10 andγ = 1.

Fig. 5. Successful transmission probability versus cache sizeKc
1 andKc

2 , Zipf exponentγ and user density

λu. Kc
1 = Kc

2 + 10, Kb
1 = 15, λ1 = 5 × 10−7, λ2 = 3 × 10−6, P1

P2
= 16dB, α1 = α2 = 4, W = 20 × 106,

τ = 2× 104 andN = 100.

to store, in an i.i.d. manner with filen being selected with probabilityan [19]. Note that

under this scheme, each (macro or pico) BS may cache multiplecopies of one file, leading to

storage waste, and each macro-BS may fetch multiple copies of one file, leading to backhaul

waste. Baseline 3 (uniform comb. dist.) refers to the designin which each macro-BS randomly

selects a combination ofKc
1+Kb

1 different files to store and fetch, and each pico-BS randomly

selects a combination ofKc
2 different files to store, according to the uniform distribution [13],

[14]. Under the three baseline schemes, each user requesting file n is associated with the BS

which stores filen and offers the maximum long-term average receive power at this user. In

addition, the three baseline schemes also adopt the same multicasting scheme as in our design.

In the simulation, we assume the popularity follows Zipf distribution, i.e.,an = n−γ
∑

n∈N n−γ ,

whereγ is the Zipf exponent.
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Fig. 5 illustrates the successful transmission probability versus different parameters. From

Fig. 5, we can observe that the proposed design outperforms all the three baseline schemes.

In addition, the proposed design, Baseline 2 and Baseline 3 have much better performance

than Baseline 1, as they provide file diversity to improve thenetwork performance, when

the storage and backhaul resources are limited and the cache-enabled HetNet with backhaul

constraints may not be able to satisfy all file requests.

Specifically, Fig. 5 (a) illustrates the successful transmission probability versus the cache

sizesKc
1 and Kc

2. We can see that the performance of all the schemes increaseswith Kc
1

and Kc
2. This is because asKc

1 and Kc
2 increase, each BS can store more files, and the

probability that a randomly requested file is cached at a nearby BS increases. Fig. 5 (b)

illustrates the successful transmission probability versus the Zipf exponentγ. We can observe

that the performance of the proposed design, Baseline 1 and Baseline 2 increases with

the Zipf exponentγ faster than Baseline 3. This is because whenγ increases, the tail of

popularity distribution becomes small, and hence, the average network file load decreases.

The performance increase of Baseline 3 withγ only comes from the decrease of the average

network file load. While, under the proposed design, Baseline 1 and Baseline 2, the probability

that a randomly requested file is cached at a nearby BS increases withγ. Thus, the performance

increases of the proposed design, Baseline 1 and Baseline 2 with γ are due to the decrease of

the average network file load and the increase of the chance ofa requested file being cached

at a nearby BS. Fig. 5 (c) illustrates the successful transmission probability versus the user

densityλu. We can see that the performance of all the schemes decreaseswith λu. This is

because the probability of a cached file being requested by atleast one user increases, asλu

increases.

IX. CONCLUSION

In this paper, we considered the analysis and optimization of caching and multicasting in

a large-scale cache-enabled HetNet with backhaul constraints. We proposed a hybrid caching

design and a corresponding multicasting design to provide high spatial file diversity and

ensure efficient content dissemination. Utilizing tools from stochastic geometry, we analyzed

the successful transmission probability in the general region and the asymptotic region. Then,

we formulated a mixed discrete-continuous optimization problem to maximize the successful

transmission probability by optimizing the design parameters. By exploring the structural
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properties, we obtained a near optimal solution with superior performance and manageable

complexity, based on a two-step optimization framework. The analysis and optimization results

offered valuable design insights for practical cache-enabled HetNets.

APPENDIX A: PROOF OFLEMMA 1

When typical useru0 requests filen ∈ F c
1 ∪F b

1 , let random variableYm,n ∈ {0, 1} denote

whether filem ∈ F c
1 ∪F b

1 \ {n} is requested by the users associated with serving macro-BS

ℓ0. Specifically, whenu0 requests filen ∈ F c
1 , we haveKc

1,n,0 = 1 +
∑

m∈Fc
1
\{n} Ym,n and

K
b

1,n,0 =
∑

m∈Fb
1
Ym,n. Whenu0 requests filen ∈ F b

1 , we haveK
c

1,n,0 =
∑

m∈Fc
1
Ym,n and

Kb
1,n,0 = 1 +

∑

m∈Fb
1
\{n} Ym,n. Thus, we have

Pr
[
Kc

1,n,0 = kc
]
=

∑

X∈g(Fc
1,−n,k

c−1)

∏

m∈X

(1− Pr[Ym,n = 0])
∏

m∈Fc
1,−n\X

Pr[Ym,n = 0], kc = 1 · · ·Kc
1,

Pr
[

K
b

1,n,0 = kb
]

=
∑

X∈g(Fb
1
,kb)

∏

m∈X

(1− Pr[Ym,n = 0])
∏

m∈Fb
1
\X

Pr[Ym,n = 0], kb = 0 · · ·F b
1 ,

Pr
[

K
c

1,n,0 = kc
]

=
∑

X∈g(Fc
1
,kc)

∏

m∈X

(1− Pr[Ym,n = 0])
∏

m∈Fc
1
\X

Pr[Ym,n = 0], kc = 0 · · ·Kc
1 ,

Pr
[
Kb

1,n,0 = kb
]
=

∑

X∈g(Fb
1,−n,k

b−1)

∏

m∈X

(1 − Pr[Ym,n = 0])
∏

m∈Fb
1,−n\X

Pr[Ym,n = 0], kb = 1 · · ·F b
1 .

To prove (10), (11), (12) and (13), it remains to calculatePr[Ym,n = 0]. The p.m.f. ofYm,n

depends on the p.d.f. of the size of the Voronoi cell of macro-BS ℓ0, i.e., the p.d.f. of the size

of the Voronoi cell to which a randomly chosen user belongs [25]. Thus, we can calculate

the p.m.f. ofYm,n using Lemma 3 of [25] as follows

Pr[Ym,n = 0] =

(

1 + 3.5−1amλu

λ1

)−4.5

, m ∈ Fc
1 ∪ Fb

1 \ {n}. (37)

Therefore, we complete the proof.

APPENDIX B: PROOF OFLEMMA 2

When typical useru0 requests filen ∈ F c
2 , let random variableYm,n,i ∈ {0, 1} denote

whether filem ∈ Ni \ {n} is requested by the users associated with serving pico-BSℓ0 when

pico-BS ℓ0 contains combinationi ∈ In. Whenu0 requests filen ∈ F c
2 and serving pico-BS

ℓ0 contains combinationi ∈ In, we haveKc
2,n,0 = 1 +

∑

m∈Ni,−n
Ym,n,i. Thus, we have

Pr
[
Kc

2,n,0 = kc|pico-BSℓ0 contains combinationi ∈ In
]

=
∑

X∈g(Ni,−n,kc−1)

∏

m∈X

(1 − Pr[Ym,n,i = 0])
∏

m∈Ni,−n\X

Pr[Ym,n,i = 0], kc = 1, · · · ,Kc
2. (38)
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The probability that pico-BSℓ0 contains combinationi ∈ In is pi
Tn

. Thus, by the law of total

probability, we have

Pr
[
Kc

2,n,0 = kc
]
=
∑

i∈In

pi

Tn

Pr
[
Kc

2,n,0 = kc|pico-BSℓ0 contains combinationi ∈ In
]
, kc = 1, · · · ,Kc

2.

Thus, to prove (14), it remains to calculatePr[Ym,n,i = 0]. The p.m.f. ofYm,n,i depends on

the p.d.f. of the size of the Voronoi cell of pico-BSℓ0 w.r.t. file m ∈ Ni,−n when pico-BS

ℓ0 contains combinationi ∈ In, which is unknown. We approximate this p.d.f. based on the

known result of the p.d.f. of the size of the Voronoi cell to which a randomly chosen user

belongs [25]. Under this approximation, we can calculate the p.m.f. ofYm,n,i using Lemma

3 of [25] as follows

Pr[Ym,n,i = 0] =

(

1 + 3.5−1 amλu

Tmλ2

)−4.5

, m ∈ Ni,−n, i ∈ In. (39)

APPENDIX C: PROOF OFTHEOREM 1

Based on (7), to prove Theorem 1, we calculateq1 (F c
1 ,F

c
2) andq2 (F c

2 ,p), respectively.

Calculation ofq1 (F c
1 ,F

c
2)

When u0 is a macro-user, as in the traditional connection-based HetNets, there are two

types of interferers, namely, i) all the other macro-BSs besides its serving macro-BS, and ii)

all the pico-BSs. Thus, we rewrite the SINR expression in (6)as follows:

SINRn,0 =
D−α1

1,ℓ0,0
|h1,ℓ0,0|

2

∑

ℓ∈Φ1\{ℓ0}
D−α1

1,ℓ,0 |h1,ℓ,0|
2
+
∑

ℓ∈Φ2
D−α2

2,ℓ,0 |h2,ℓ,0|
2 P2

P1
+ N0

P1

=
D−α1

1,ℓ0,0
|h1,ℓ0,0|

2

I1 + I2
P2

P1

+ N0

P1

, n ∈ Fc
1 ∪ Fb

1 ,

(40)

whereI1 ,
∑

ℓ∈Φ1\{ℓ0}
D−α1

1,ℓ,0 |h1,ℓ,0|
2 andI2 ,

∑

ℓ∈Φ2
D−α2

2,ℓ,0 |h2,ℓ,0|
2.

Next, we calculate the conditional successful transmission probability of filen ∈ F c
1 ∪F b

1

requested byu0 conditioned onD1,ℓ0,0 = d when the file load isk, i.e.,

qk,n,D1,ℓ0,0
(d) , Pr

[
W

k
log2 (1 + SINRn,0) ≥ τ

∣
∣
∣D1,ℓ0,0 = d

]

(a)
= EI1,I2

[

Pr

[

|h1,ℓ0,0|
2 ≥

(

2
kτ
W − 1

)

Dα1

1,ℓ0,0

(

I1 + I2
P2

P1
+

N0

P1

) ∣
∣
∣D1,ℓ0,0 = d

]]

(b)
= EI1,I2

[

exp

(

−
(

2
kτ
W − 1

)

dα1

(

I1 + I2
P2

P1
+

N0

P1

))]

(c)
= EI1

[

exp
(

−
(

2
kτ
W − 1

)

dα1I1

)]

︸ ︷︷ ︸

,LI1
(s,d)|

s=

(

2

kτ
W −1

)

dα1

EI2

[

exp

(

−
(

2
kτ
W − 1

)

dα1I2
P2

P1

)]

︸ ︷︷ ︸

,LI2
(s,d)|

s=

(

2

kτ
W −1

)

dα1

× exp

(

−
(

2
kτ
W − 1

)

dα1
N0

P1

)

, (41)
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where(a) is obtained based on (40), (b) is obtained by noting that|h1,ℓ0,0|
2 d
∼ exp(1), and

(c) is due to the independence of the Rayleigh fading channels and the independence of the

PPPs. To calculateqk,n,D1,ℓ0,0
(d) according to (41), we first calculateLI1(s, d) andLI2(s, d),

respectively. The expression ofLI1(s, d) is calculated as follows:

LI1(s, d) = E



exp



−s
∑

ℓ∈Φ1\{ℓ0}

D−α1

1,ℓ,0 |h1,ℓ,0|
2







 = E




∏

ℓ∈Φ1\{ℓ0}

exp
(

−sD−α1

1,ℓ,0 |h1,ℓ,0|
2
)





(d)
= exp

(

−2πλ1

∫ ∞

d

(

1−
1

1 + sr−α1

)

rdr

)

(e)
= exp

(

−
2π

α1
λ1s

2

α1 B
′

(
2

α1
, 1−

2

α1
,

1

1 + sd−α1

))

, (42)

where (d) is obtained by utilizing the probability generating functional of PPP [27, Page

235], and(e) is obtained by first replacings−
1

α1 r with t, and then replacing 1
1+t−α1

with w.

Similarly, the expression ofLI2(s, d) is calculated as follows:

LI2 (s, d) =E

[

exp

(

−s
∑

ℓ∈Φ2

D−α2

2,ℓ,0 |h2,ℓ,0|
2 P2

P1

)]

= E

[
∏

ℓ∈Φ2

exp

(

−sD−α2

2,ℓ,0 |h2,ℓ,0|
2 P2

P1

)]

=exp

(

−2πλ2

∫ ∞

0

(

1−
1

1 + P2

P1
sr−α2

)

rdr

)

=exp

(

−
2π

α2
λ2

(
P2

P1
s

) 2

α2

B

(
2

α2
, 1−

2

α2

))

. (43)

Substituting (42) and (43) into (41), we obtainqk,n,D1,ℓ0,0
(d) as follows:

qk,n,D1,ℓ0,0
(d) = exp

(

−
2π

α1
λ1d

2
(

2
kτ
W − 1

) 2

α1

B
′

(
2

α1
, 1−

2

α1
, 2−

kτ
W

))

exp

(

−
(

2
kτ
W − 1

)

dα1
N0

P1

)

× exp

(

−
2π

α2
λ2d

2α1

α2

(
P2

P1

(

2
kτ
W − 1

))
2

α2

B

(
2

α2
, 1−

2

α2

))

. (44)

Now, we calculateq1 (F c
1 ,F

c
2) by first removing the condition ofqk,n,D1,ℓ0,0

(d) onD1,ℓ0,0 = d.

Note that we have the p.d.f. ofD1,ℓ0,0 asfD1,ℓ0,0
(d) = 2πλ1d exp (−πλ1d

2). Thus, we have:
∫ ∞

0

qk,n,D1,ℓ0,0
(d) fD1,ℓ0,0

(d)dd

=2πλ1

∫ ∞

0

d exp

(

−
2π

α1
λ1d

2
(

2
kτ
W − 1

) 2

α1

B
′

(
2

α1
, 1−

2

α1
, 2−

kτ
W

))

exp

(

−
(

2
kτ
W − 1

)

dα1
N0

P1

)

× exp

(

−
2π

α2
λ2d

2α1

α2

(
P2

P1

(

2
kτ
W − 1

))
2

α2

B

(
2

α2
, 1−

2

α2

))

exp
(
−πλ1d

2
)
dd. (45)

Therefore, by (8) and by lettingk = kc + kb in (45), we have

q1 (F
c
1 ,F

c
2) =

∑

n∈Fc
1

an

Kc
1∑

kc=1

F b
1∑

kb=0

Pr[Kc
1,n,0 = kc] Pr[K

b

1,n,0 = kb]

∫ ∞

0

qk,n,D1,ℓ0,0
(d) fD1,ℓ0,0

(d)dd

+
∑

n∈Fb
1

an

Kc
1∑

kc=0

F b
1∑

kb=1

Pr[K
c

1,n,0 = kc] Pr[Kb
1,n,0 = kb]

min{Kb
1, k

b}

kb

∫ ∞

0

qk,n,D1,ℓ0,0
(d) fD1,ℓ0,0

(d)dd.

(46)
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Calculation ofq2 (F c
2 ,p)

Whenu0 is a pico-user, different from the traditional connection-based HetNets, there are

three types of interferers, namely, i) all the other pico-BSs storing the combinations containing

the desired file ofu0 besides its serving pico-BS, ii) all the pico-BSs without the desired file

of u0, and iii) all the macro-BSs. Thus, we rewrite the SINR expression in (6) as follows:

SINRn,0 =
D−α2

2,ℓ0,0
|h2,ℓ0,0|

2

∑

ℓ∈Φ2,n\{ℓ0}
D−α2

2,ℓ,0 |h2,ℓ,0|
2
+
∑

ℓ∈Φ2,−n
D−α2

2,ℓ,0 |h2,ℓ,0|
2
+
∑

ℓ∈Φ1
D−α1

1,ℓ,0 |h1,ℓ,0|
2 P1

P2

+ N0

P2

=
D−α2

2,ℓ0,0
|h2,ℓ0,0|

2

I2,n + I2,−n + I1
P1

P2

+ N0

P2

, n ∈ N , (47)

whereΦ2,n is the point process generated by pico-BSs containing file combinationi ∈ In,

Φ2,−n is the point process generated by pico-BSs containing file combinationi 6∈ In, I2,n ,
∑

ℓ∈Φ2,n\{ℓ0}
D−α2

2,ℓ,0 |h2,ℓ,0|
2, I2,−n ,

∑

ℓ∈Φ2,−n
D−α2

2,ℓ,0 |h2,ℓ,0|
2 and I1 ,

∑

ℓ∈Φ1
D−α1

1,ℓ,0 |h1,ℓ,0|
2.

Due to the random caching policy and independent thinning [27, Page 230], we obtain that

Φ2,n is a homogeneous PPP with densityλ2Tn andΦ2,−n is a homogeneous PPP with density

λ2 (1− Tn).

Next, we calculate the conditional successful transmission probability of file n ∈ F c
2

requested byu0 conditioned onD2,ℓ0,0 = d when the file load isk, denoted as

qk,n,D2,ℓ0,0
(p, d) , Pr

[
W

k
log2 (1 + SINRn,0) ≥ τ

∣
∣
∣D2,ℓ0,0 = d

]

.

Similar to (41) and based on (47), we have:

qk,n,D2,ℓ0,0
(p, d)

= EI2,n,I2,−n,I1

[

Pr

[

|h2,ℓ0,0|
2 ≥

(

2
kτ
W − 1

)

Dα2

2,ℓ0,0

(

I2,n + I2,−n + I1
P1

P2
+

N0

P2

) ∣
∣
∣D2,ℓ0,0 = d

]]

= EI2,n

[

exp
(

−
(

2
kτ
W − 1

)

dα2I2,n

)]

︸ ︷︷ ︸

,LI2,n
(s,d)|

s=

(

2

kτ
W −1

)

dα2

EI2,−n

[

exp
(

−
(

2
kτ
W − 1

)

dα2I2,−n

)]

︸ ︷︷ ︸

,LI2,−n
(s,d)|

s=

(

2

kτ
W −1

)

dα2

× EI1

[

exp

(

−
(

2
kτ
W − 1

)

dα2I1
P1

P2

)]

︸ ︷︷ ︸

,LI1
(s,d)|

s=

(

2

kτ
W −1

)

dα2

exp

(

−
(

2
kτ
W − 1

)

dα2
N0

P2

)

. (48)

To calculateqk,n,D2,ℓ0,0
(p, d) according to (48), we first calculateLI2,n(s, d), LI2,−n

(s, d) and

LI1(s, d) , respectively. Similar to (42) and (43), we have:

LI2,n(s, d) = exp

(

−
2π

α2
Tnλ2s

2

α2 B
′

(
2

α2
, 1−

2

α2
,

1

1 + sd−α2

))

, (49)

LI2,−n
(s, d) = exp

(

−
2π

α2
(1− Tn)λ2s

2

α2 B

(
2

α2
, 1−

2

α2

))

, (50)
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LI1(s, d) = exp

(

−
2π

α1
λ1

(
P1

P2
s

) 2

α1

B

(
2

α1
, 1−

2

α1

))

. (51)

Substituting (49), (50) and (51) into (48), we obtainqk,n,D2,ℓ0,0
(p, d) as follows:

qk,n,D2,ℓ0,0
(p, d) = exp

(

−
2π

α2
Tnλ2d

2
(

2
kτ
W − 1

) 2

α2

B
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

))

exp

(

−
(

2
kτ
W − 1

)

dα2
N0

P2

)

× exp

(

−
2π

α2
(1− Tn) λ2d

2
(

2
kτ
W − 1

) 2

α2

B

(
2

α2
, 1−

2

α2

))

× exp

(

−
2π

α1
λ1d

2α2

α1

(
P1

P2

(

2
kτ
W − 1

))
2

α1

B

(
2

α1
, 1−

2

α1

))

. (52)

Now, we calculateq2 (F c
2 ,p) by first removing the condition ofqk,n,D2,ℓ0,0

(p, d) onD2,ℓ0,0 =

d. Note that we have the p.d.f. ofD2,ℓ0,0 asfD2,ℓ0,0
(d) = 2πTnλ2d exp (−πTnλ2d

2), as pico-

BSs storing filen form a homogeneous PPP with densityTnλ2. Thus, we have:
∫ ∞

0

qk,n,D2,ℓ0,0
(p, d) fD2,ℓ0,0

(d)dd

=2πTnλ2

∫ ∞

0

d exp

(

−
2π

α2
Tnλ2d

2
(

2
kτ
W − 1

) 2

α2

B
′

(
2

α2
, 1−

2

α2
, 2−

kτ
W

))

exp

(

−
(

2
kτ
W − 1

)

dα2
N0

P2

)

× exp

(

−
2π

α2
(1− Tn)λ2d

2
(

2
kτ
W − 1

) 2

α2

B

(
2

α2
, 1−

2

α2

))

exp
(
−πTnλ2d

2
)

× exp

(

−
2π

α1
λ1d

2α2

α1

(
P1

P2

(

2
kτ
W − 1

))
2

α1

B

(
2

α1
, 1−

2

α1

))

dd. (53)

Therefore, by (9) and by lettingk = kc in (53), we have

q2 (F
c
2 ,p) =

∑

n∈Fc
2

an

Kc
2∑

k=1

Pr[Kc
2,n,0 = kc]

∫ ∞

0

qk,n,D2,ℓ0,0
(p, d) fD2,ℓ0,0

(d)dd. (54)

APPENDIX D: PROOF OFLEMMA 3 AND LEMMA 4

Proof of Lemma 3

When P
N

→ ∞, exp
(

−
(

2
kτ
W − 1

)

dαN0

P1

)

→ 1 and exp
(

−
(

2
kτ
W − 1

)

dαN0

P2

)

→ 1. When

λu → ∞, discrete random variablesKc
1,n,0, K

c

1,n,0 → Kc
1, K

b

1,n,0, K
b
1,n,0 → F b

1 andKc
2,n,0 →

Kc
2 in distribution. Thus, whenP1 = βP , P2 = P , P

N0
→ ∞, and λu → ∞, we can

showf1,Kc
1
+min{Kb

1
,F b

1
} → f1,Kc

1
+min{Kb

1
,F b

1
},∞ andf2,Kc

2
(x) → f2,Kc

2
,∞(x). Thus, we can prove

Lemma 3.
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Proof of Lemma 4

WhenP1 = βP , P2 = P , P
N0

→ ∞, λu → ∞, andα1 = α2 = α we have:

f1,Kc
1
+min{Kb

1
,F b

1
},∞ =2πλ1

∫ ∞

0

d exp
(

−πλ1ωKc
1
+min{Kb

1
,F b

1
}d

2
)

dd =
1

ωKc
1
+min{Kb

1
,F b

1
}

, (55)

f2,Kc
2
,∞(x) =2πλ2

∫ ∞

0

d exp
(
−πλ2d

2
(
θ2,Kc

2
+ xθ1,Kc

2

))
dd =

x

θ2,Kc
2
+ θ1,Kc

2
x
, (56)

whereωk, θ1,k andθ2,k are given by (20), (21) and (22). Noting that
∫∞

0
d exp (−cd2) dd = 1

2c

(c is a constant), we can solve integrals in (18) and (19). Thus,by Lemma 3, we can prove

Lemma 4.

APPENDIX E: PROOF OFLEMMA 5

To prove Lemma 5, we first have the following lemma.

Lemma 9 (Monotonicity off2,k,∞(x)): f2,k,∞(x) is an increasing function ofx.

Proof: By replacingexp (−πxλ2d
2) with y in (19), we have:

f2,k,∞(x) =

∫ 1

0

y
− 2

α2

(

2
kτ
W −1

) 2

α2

(

B
(

2

α2
,1− 2

α2

)

−B
′
(

2

α2
,1− 2

α2
,2−

kτ
W

))

y
2

α2x

(

2
kτ
W −1

) 2

α2
B
(

2

α2
,1− 2

α2

)

× y

(

− ln y
πλ2

)

α2
α1

−1
2

α1
( 1

x )
α2
α1

λ1

λ2

(

P1

P2

) 2

α1

(

2
kτ
W −1

) 2

α1
B
(

2

α1
,1− 2

α1

)

dy. (57)

Wheny ∈ (0, 1) anda ∈ (0,∞), ya is a decreasing function ofa. BecauseB
(

2
α2
, 1− 2

α2

)

,

B
(

2
α1
, 1− 2

α1

)

and2
kτ
W −1 > 0, and 1

x
and

(
1
x

)α2
α1 are decreasing functions ofx. The integrand

is an increasing function ofx for all y ∈ (0, 1). Therefore, we can show thatf2,k,∞(x) is an

increasing function ofx.

Now, we prove Lemma 5. Let(F c∗
1 ,F c∗

2 ,T∗) denote an optimal solution to Probelm 3.

Considern1, n2 ∈ F c∗
2 satisfyingan1

> an2
. SupposeT ∗

n1
< T ∗

n2
. Based on Lemma 9, we

have f2,Kc
2
,∞(T ∗

n1
) < f2,Kc

2
,∞(T ∗

n2
). Now, we construct a feasible solution(F c′

1 ,F
c′

2 ,T
′
) to

Problem 3 by choosingF c′

1 = F c∗
1 , F c′

2 = F c∗
2 , T ′

n1
= T ∗

n2
, T ′

n2
= T ∗

n1
, andT

′

n = T ∗
n for all

n ∈ F c
2 \ {n1, n2}. Thus, by Lemma 3 and the optimality of(F c∗

1 ,F c∗
2 ,T∗), we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∞ (Fc∗
1 ,Fc∗

2 ,T∗) = (an1
− an2

)
(
f2,Kc

2
,∞(T ∗

n2
)− f2,Kc

2
,∞(T ∗

n1
)
)
≤ 0. (58)

Sincean1
> an2

, by (58), we havef2,Kc
2
,∞(T ∗

n2
) − f2,Kc

2
,∞(T ∗

n1
) ≤ 0, which contradicts the

assumption. Therefore, by contradiction, we can prove Lemma 5.
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APPENDIX F: PROOF OFLEMMA 6

For givenF c
2 , when α1 = α2 = α, P

N0
→ ∞, and λu → ∞, the Lagrangian of the

optimization in (27) is given by

L(T,λ,η, ν) =
∑

n∈Fc
2

anTn

θ2,Kc
2
+ θ1,Kc

2
Tn

+
∑

n∈Fc
2

λnTn +
∑

n∈Fc
2

ηn(1− Tn) + ν



Kc
2 −

∑

n∈Fc
2

Tn



 ,

whereλn and ηn ≥ 0 are the Lagrange multipliers associated with (28),ν is the Lagrange

multiplier associated with (29),λ , (λn)n∈Fc
2
, andη , (ηn)n∈Fc

2
. Thus, we have

∂L

∂Tn

(T,λ,η, ν) =
anθ2,Kc

2

(θ2,Kc
2
+ θ1,Kc

2
Tn)2

+ λn − ηn − ν.

Since strong duality holds, primal optimalT∗ and dual optimalλ∗, η∗, ν∗ satisfy KKT

conditions, i.e., (i) primal constraints: (28), (29), (ii)dual constraintsλn ≥ 0 andηn ≥ 0 for

all n ∈ F c
2 , (iii) complementary slacknessλnTn = 0 andηn(1− Tn) = 0 for all n ∈ F c

2 , and

(iv)
anθ2,Kc

2

(θ2,Kc
2
+θ1,Kc

2
Tn)2

+ λn − ηn − ν = 0 for all n ∈ F c
2 . By (ii), (iii), and (iv), whenTn = 0,

we haveλn ≥ 0, ηn = 0, and ν ≥ an
θ2,Kc

2

; when 0 < Tn < 1, we haveλn = 0, ηn = 0,

Tn = 1
θ1,Kc

2

√
anθ2,Kc

2

ν
−

θ2,Kc
2

θ1,Kc
2

, and
anθ2,Kc

2

(θ2,Kc
2
+θ1,Kc

2
)2

< ν < an
θ2,Kc

2

; when Tn = 1, we haveλn = 0,

ηn ≥ 0, and ν ≤
anθ2,Kc

2

(θ2,Kc
2
+θ1,Kc

2
)2

. Therefore, we haveT ∗
n = min

{[

1
θ1,Kc

2

√
anθ2,Kc

2

ν∗ −
θ2,Kc

2

θ1,Kc
2

]+

, 1

}

.

Combining (29), we can prove Lemma 6.

APPENDIX G: PROOF OFTHEOREM 2

Proof of Property(i) of Theorem 2

By constraints (1) and (5), we haveKc
2 ≤ F c∗

2 , F c∗
2 = N−Kc

1−F b∗
1 and0 ≤ F b∗

1 . To prove

property (i) of Theorem 2, it remains to proveF b∗
1 ≤ Kb

1. Suppose there exists an optimal

solution(F c∗
1 ,F c∗

2 ,T∗) to Probelm 3 satisfyingF b∗
1 > Kb

1, Then we have:

q∗∞ = f1,Kc
1
+Kb

1
,∞




∑

n∈Fc∗
1

an +Kb
1

∑

n∈Fb∗
1

an

F b∗
1



+
∑

n∈Fc∗
2

anf2,Kc
2
,∞(T ∗

n). (59)

Now, we construct a feasible solution(F c′

1 ,F
c′

2 ,T
′
) to Problem 3, whereF b′

1 consists of the

mostKb
1 popular files ofF b∗

1 , F c′

1 = F c∗
1 , F c′

2 = F c∗
2 ∪ (F b∗

1 \ F b′

1 ), T
′
n = T ∗

n for all n ∈ F c∗
2

andT ′
n = 0 for all n ∈ F b∗

1 \ F b′

1 . By Lemma 3, we have:

q∞(Fc′

1 ,Fc′

2 ,T
′

)− q∗∞ = f1,Kc
1
+Kb

1
,∞




1

Kb
1

∑

n∈Fb′

1

an −
1

F b
1

∑

n∈Fb∗
1

an



Kb
1 > 0. (60)

Thus, (F c∗
1 ,F c∗

2 ,T∗) is not an optimal solution, which contradicts the assumption. There-

fore, by contradiction, we can proveF b∗
1 ≤ Kb

1 for any optimal solution(F c∗
1 ,F c∗

2 ,T∗)

to Probelm 3. SinceF c∗
2 ≥ Kc

2, F c∗
2 = N − Kc

1 − F b∗
1 and 0 ≤ F b∗

1 ≤ Kb
1, we have

max{Kc
2, N−Kc

1−Kb
1} ≤ F c∗

2 ≤ N−Kc
1. Therefore, We can prove property (i) of Theorem 2.
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Proof of Property(ii) of Theorem 2

First, we prove that there exists an optimal solution(F c∗
1 ,F c∗

2 ,T) to Problem 3, such that

files in F c∗
1 ∪ F b∗

1 are consecutive. By Lemma 3 andF b∗
1 ≤ Kb

1 shown in the proof of

Property(i) , we have:

q∗∞ = f1,Kc
1
+F b∗

1
,∞

∑

n∈Fc∗
1

∪Fb∗
1

an +
∑

n∈Fc∗
2

anf2,Kc
2
,∞(T ∗

n). (61)

Let n1(n2) denote the most (least) popular file inF c∗
1 ∪F b∗

1 . Suppose for any optimal solution

(F c∗
1 ,F c∗

2 ,T∗) to Probelm 3, files inF c∗
1 ∪F b∗

1 are not consecutive, i.e., there existsn3 ∈ F c∗
2

satisfyingn1 < n3 < n2. Now, we can construct a feasible solution(F c′

1 ,F
c′

2 ,T
′) to Probelm 3

where files inF c′

1 ∪ F b′

1 are consecutive as follows.

• If f1,Kc
1
+F b∗

1
,∞ < f2,Kc

2
,∞(T ∗

n3
), chooseF c′

1 ∪ F b′

1 = F c∗
1 ∪ F b∗

1 ∪ {n3} \ {n1}, F c′

2 =

F c∗
2 ∪ {n1} \ {n3}, T ′

n1
= T ∗

n3
andT ′

n = T ∗
n for all n ∈ F c∗

2 \ {n3}. By Lemma 3, we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∗∞ = (an1
− an3

)
(

f2,Kc
2
,∞(T ∗

n3
)− f1,Kc

1
+F b∗

1
,∞

)

> 0, (62)

where the inequality is due ton1 < n3 andf1,Kc
1
+F b∗

1
,∞ < f2,Kc

2
,∞(T ∗

n3
).

• If f1,Kc
1
+F b∗

1
,∞ > f2,Kc

2
,∞(T ∗

n3
), chooseF c′

1 ∪ F b′

1 = F c∗
1 ∪ F b∗

1 ∪ {n3} \ {n2}, F c′

2 =

F c∗
2 ∪ {n2} \ {n3}, T ′

n2
= T ∗

n3
andT ′

n = T ∗
n for all n ∈ F c∗

2 \ {n3}. By Lemma 3, we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∗∞ = (an2
− an3

)
(

f2,Kc
2
,∞(T ∗

n3
)− f1,Kc

1
+F b∗

1
,∞

)

> 0, (63)

where the inequality is due ton3 < n2 andf2,Kc
2
,∞(T ∗

n3
) < f1,Kc

1
+F b∗

1
,∞.

• If f1,Kc
1
+F b∗

1
,∞ = f2,Kc

2
,∞(T ∗

n3
), chooseF c′

1 ∪ F b′

1 = F c∗
1 ∪ F b∗

1 ∪ {n3} \ {n1}, F c′

2 =

F c∗
2 ∪ {n1} \ {n3}, T ′

n1
= T ∗

n3
andT ′

n = T ∗
n for all n ∈ F c∗

2 \ {n3}. By Lemma 3, we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∗∞ = (an1
− an3

)
(

f2,Kc
2
,∞(T ∗

n3
)− f1,Kc

1
+F b∗

1
,∞

)

= 0, (64)

By (62), (63) and (64), we know that iff1,Kc
1
+F b∗

1
,∞ < f2,Kc

2
,∞(T ∗

n3
) or f1,Kc

1
+F b∗

1
,∞ >

f2,Kc
2
,∞(T ∗

n3
), (F c∗

1 ,F c∗
2 ,T∗) is not an optimal solution, which contradicts the assumption; and

if f1,Kc
1
+F b∗

1
,∞ = f2,Kc

2
,∞(T ∗

n3
), we can always construct an optimal solution

(
F c′

1 ,F
c′

2 ,T
′)

,

satisfying that files inF c′

1 ∪ F b′

1 are consecutive. Thus, we can prove that there exists an

optimal solution(F c∗
1 ,F c∗

2 ,T) to Problem 3, such that files inF c∗
1 ∪ F b∗

1 are consecutive.

In addition, by (61), we know that whether filen ∈ F c∗
1 ∪F b∗

1 belongs toF c∗
1 or F b∗

1 makes

no difference in the optimal successful transmission probability. Therefore, we can prove the

property (ii) of Theorem 2.
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APPENDIX H: PROOF OFLEMMA 7

Proof of Property(i) of Lemma 7

We prove that iff1,Kc
1
+Kb

1
,∞ > f2,Kc

2
,∞(1), the most popular filen = 1 belongs toF c∗

1 ∪F b∗
1

for any optimal solution(F c∗
1 ,F c∗

2 ,T∗) to Problem 3. Suppose that there exists an optimal

solution(F c∗
1 ,F c∗

2 ,T∗) to Problem 3, such that the most popular filen = 1 belongs toF c∗
2 .

Let n2 denote a file inF c∗
1 ∪F b∗

1 . Now, we can construct a feasible solution(F c′

1 ,F
c′

2 ,T
′) to

Probelm 3, whereF c′

1 ∪ F b′

1 = F c∗
1 ∪ F b∗

1 ∪ {1} \ {n2}, F c′

2 = F c∗
2 ∪ {n2} \ {1}, T ′

n2
= T ∗

1

andT ′
n = T ∗

n for all n ∈ F c∗
2 \ {1}. By Lemma 3, we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∗∞ = (a1 − an2
)
(

f1,Kc
1
+min{Kb

1
,F b∗

1
},∞ − f2,Kc

2
,∞(T ∗

1 )
)

. (65)

Sincea1 > an2
and f1,Kc

1
+min{Kb

1
,F b∗

1
},∞ ≥ f1,Kc

1
+Kb

1
,∞ > f2,Kc

2
,∞(1) ≥ f2,Kc

2
,∞(T ∗

1 ), we have

q∞
(
F c′

1 ,F
c′

2 ,T
′)
− q∗∞ > 0. Thus,(F c∗

1 ,F c∗
2 ,T∗) is not an optimal solution to Problem 3,

which contradicts the assumption. By contradiction, we prove that iff1,Kc
1
+Kb

1
,∞ > f2,Kc

2
,∞(1),

the most popular filen = 1 belongs toF c∗
1 ∪ F b∗

1 for any optimal solution(F c∗
1 ,F c∗

2 ,T∗) to

Problem 3, and hencenc
1 in Theorem 2 (ii) satisfiesnc

1 = 1.

Proof of Property(ii) of Lemma 7

We prove that iff1,Kc
1
,∞ < f2,Kc

2
,∞(

Kc
2

N−Kc
1

), the most popular filen = 1 belongs toF c∗
2

for any optimal solution(F c∗
1 ,F c∗

2 ,T∗) to Problem 3. Suppose that there exists an optimal

solution(F c∗
1 ,F c∗

2 ,T∗) to Problem 3, such that filen = 1 belongs toF c∗
1 ∪F b∗

1 . Let n2 denote

the most popular file inF c∗
2 . Based on Lemma 5, we haveT ∗

n2
≥ T ∗

n for anyn ∈ F c∗
2 \ {n2},

and henceT ∗
n2

≥
Kc

2

N−Kc
1

. Now, we can construct a feasible solution(F c′

1 ,F
c′

2 ,T
′) to Probelm 3,

whereF c′

1 ∪ F b′

1 = F c∗
1 ∪ F b∗

1 ∪ {n2} \ {1}, F c′

2 = F c∗
2 ∪ {1} \ {n2}, T ′

1 = T ∗
n2

andT ′
n = T ∗

n

for all n ∈ F c∗
2 \ {n2}. By Lemma 3, we have:

q∞

(

Fc′

1 ,Fc′

2 ,T
′
)

− q∗∞ = (a1 − an2
)
(

f2,Kc
2
,∞(T ∗

n2
)− f1,Kc

1
+min{Kb

1
+Fb∗

1
},∞

)

. (66)

Sincea1 > an2
andf1,Kc

1
+min{Kb

1
+Fb∗

1
},∞ ≤ f1,Kc

1
,∞ < f2,Kc

2
,∞(

Kc
2

N−Kc
1

) ≤ f2,Kc
2
,∞(T ∗

n2
), we have

q∞
(
F c′

1 ,F
c′

2 ,T
′)
− q∗∞ > 0. Thus,(F c∗

1 ,F c∗
2 ,T∗) is not an optimal solution to Problem 3,

which contradicts the assumption. Therefore, we prove thatif f1,Kc
1
,∞ < f2,Kc

2
,∞(

Kc
2

N−Kc
1

), the

most popular filen = 1 belongs toF c∗
2 for any optimal solution(F c∗

1 ,F c∗
2 ,T∗) to Problem 3,

and hencenc
1 in Theorem 2 (ii) satisfiesnc

1 ≥ 2.
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