
1

Finite-Horizon Throughput Region for Wireless
Multi-User Interference Channels

Yirui Cong, Student Member, IEEE, Xiangyun Zhou, Member, IEEE, and Rodney A. Kennedy, Fellow, IEEE

Abstract—This paper studies a wireless network consisting of
multiple transmitter-receiver pairs where interference is treated
as noise. Previously, the throughput region of such networks was
characterized for either one time slot or an infinite time horizon.
We aim to fill the gap by investigating the throughput region
for transmissions over a finite time horizon. Unlike the infinite-
horizon throughput region, which is simply the convex hull of the
throughput region of one time slot, the finite-horizon throughput
region is generally non-convex. Instead of directly characterizing
all achievable rate-tuples in the finite-horizon throughput region,
we propose a metric termed the rate margin, which not only
determines whether any given rate-tuple is within the throughput
region (i.e., achievable or unachievable), but also tells the amount
of scaling that can be done to the given achievable (unachievable)
rate-tuple such that the resulting rate-tuple is still within (brought
back into) the throughput region. Furthermore, we derive an
efficient algorithm to find the rate-achieving policy for any given
rate-tuple in the finite-horizon throughput region.

Index Terms—Throughput region, finite time horizon, rate
margin, Gaussian interference channels, A* search algorithm.

I. INTRODUCTION

A. Motivation

The capacity region of a general wireless multi-user network
is largely an open research problem. Since the information-
theoretic capacity of a multi-user wireless network is ex-
tremely challenging to study due to many unsolved problems
of network information theory, an alternative approach has
been taken from a network-layer perspective to analyze the set
of all achievable rates between the communication pairs of the
network under any given modulation and coding strategy [1].
Such studies commonly assume that the interference in the
network is treated as noise, hence the capacity of each link is
determined by signal-to-interference-plus-noise ratio (SINR).
Even under the assumption of treating interference as noise,
the set of all achievable rate-tuples in a multi-user network,
which we will name as throughput region1 in this work, is still
not well understood.

Interference from concurrent transmissions leads to highly
nonlinear couplings among transmitter-receiver pairs, which
makes the throughput region difficult to determined. Many
studies have been devoted to maximizing the sum rate or

Y. Cong, X. Zhou and R. Kennedy are with the Research School of
Engineering, Australian National University, Australia (Email: {yirui.cong,
xiangyun.zhou, Rodney.Kennedy}@anu.edu.au).

1In [1] and other related work, the throughput region is also called
the (network-layer) capacity region. The reason for using the nomenclature
“throughput region” is to distinguish it from the capacity region in the
information theoretic sense.

proportional fairness, with either centralized or distributed
power control algorithms, and typically consider one time
slot2 only (see [2], [3] and references therein). Apart from
interference, another key challenge is from the consideration
of multiple time slots. It is well known that, in a point-to-
point system, knowing the achievable rate in one time slot
is sufficient to derive the achievable rate for any number
of time slots. However, this is not the case for networks
with multiple transmitter-receiver pairs where the couplings of
their transmission policies among multiple time slots must be
taken into account. Indeed, the multi-slot throughput region is
generally larger than the single-slot throughput region [4] for
multi-user interference channels. Noticing this challenge, the
set of all achievable rate-tuples in multi-user wireless networks
was studied for the case of an infinite number of time slots [5],
[6], which we name as the infinite-horizon throughput region3.

Despite the significant efforts made on studying the achiev-
able rate-tuple and throughput region for both one time slot
and infinite horizon, significantly less is known about the
throughput region over a finite horizon. In wireless networks,
the network traffic, channel condition and even network topol-
ogy change with time [4]. It is desirable to design transmission
for a finite time duration such that the network and channel
information used in the design is timely and matches with
the condition during the actual transmission. Moreover, there
are many wireless applications in which the nodes only
communicate for a short period of time, e.g., wireless sensor
networks [7] where sensors have a short period of transmission
mode followed by sleep mode. Therefore, it is necessary to
study the finite-horizon throughput region which directly tells
whether a given rate-tuple can be achieved or not within any
given number of time slots. To the best of our knowledge,
the finite-horizon throughput region of a multi-user wireless
network has not yet been investigated.

Another important reason for considering the finite-horizon
throughput region is the guaranteed delay. For example, if
a rate-tuple is achievable in a five-slot throughput region,
then the time delay for the transmitted packets is at most
five time slots. On the contrary, any rate-tuple in an infinite-
horizon throughput region can possibly cause an unacceptably
large delay. This also motivates us to study the finite-horizon
throughput region of a multi-user wireless network.

2A time slot is the duration of a codeword consisting of multiple channel
uses.

3In this paper, the term “infinite horizon” refers to an infinite number of
time slots and “finite horizon” refers to a finite number of time slots.

ar
X

iv
:1

61
1.

01
96

9v
1

 [
cs

.I
T

]
 7

 N
ov

 2
01

6

2

B. Related Work

Since this is the first work that rigorously studies the finite-
horizon throughput region, the most related prior works are
the ones on infinite-horizon throughput region. Specifically,
the seminal work in [5], [6] introduced the infinite-horizon
throughput region and gave two important results: the infinite-
horizon throughput region is the convex hull of one-slot
throughput region; and the max-weight algorithm can achieve
any given rate-tuple in the throughput region. In [1], the
infinite-horizon throughput region was generalized and applied
to time-varying wireless networks, and a max-weight algo-
rithm based transmission policy was designed. We recommend
the tutorials in [4], [8], [9] to readers who are interested in
the infinite-horizon throughput region.

Some recent studies focused on reducing the delay by
shrinking the infinite-horizon throughput region [10]–[13],
where the average delay was studied in [10], [11], and the
worst-case delay was analyzed in [12], [13]. It was observed
by [10]–[13] that choosing a rate-tuple closer to the boundary
of the infinite-horizon throughput region causes a larger delay,
and hence, shrinking the throughput region removes those
rate-tuples near the boundary corresponding to large delays.
Furthermore, the effect of finite buffer size was consider
in [14]–[16], and it turned out that the required buffer size
increases with the rate-tuple. Indeed, by Little’s law, the
average length of data queue is proportional to the delay.
Hence, this line of work also demonstrated the delay caused
by the rate-tuples in the infinite-horizon throughput region.

We stress that in light of the studies on infinite-horizon
throughput region, a small number of studies have introduced
the concept of finite-horizon throughput region. However, they
did not analyze any property of the finite-horizon throughput
region: The work in [17] proposed a T -slot lookahead utility
which helped to analyze the short-term performance for the
proposed opportunistic scheduling algorithm, but no analysis
on finite-horizon throughput region was presented; In [12],
the rate-tuple over a finite time horizon was defined, but it
was only employed to derive the infinite-horizon throughput
region when the number of time slots goes to infinity. A
possible reason for the lack of study on the finite-horizon
throughput region might be that the finite-horizon throughput
region was thought to have similar properties as its infinite-
horizon counterpart. As we will discuss in this work, however,
the finite-horizon throughput region behaves very differently
as compared with the infinite-horizon throughput region.

C. Our Contributions

In this work, we investigate the finite-horizon throughput
region of a wireless network consisting of multiple transmitter-
receiver pairs. It should be noted that studying the finite-
horizon throughput region is far more challenging than its
infinite-horizon counterpart for the following reasons: (i) Un-
like the convex throughput region for the infinite horizon,
the finite-horizon throughput region is non-convex and the
computational complexity for determining it is exponentially
increasing with the number of time slots. (ii) As we will
show, a rate-tuple that is achievable in T1 time slots may

not be achievable in T2 (T2 > T1) time slots. This is in
contrast with the fact that any achievable rate-tuple over a
finite horizon is also achievable over the infinite horizon. This
property prevents us from using a result for one throughput
region to obtain a result for another throughput region with a
different number of time slots.

Instead of directly characterizing the throughput region by
finding the set of all achievable rate-tuples, we provide an
efficient method to determine whether an arbitrary given rate-
tuple is achievable or not. More specifically:

• We propose a metric termed the rate margin. By comput-
ing the rate margin of any given rate-tuple, we are able
to tell whether a given rate-tuple is achievable within the
considered finite horizon. Furthermore, the rate margin
also provides information to the system designer on: (i)
how much one can scale up the given achievable rate-
tuple so that the resulting rate-tuple is still within the
finite-horizon throughput region; (ii) how much one can
scale down the given unachievable rate-tuple so that the
resulting rate-tuple is brought back into the finite-horizon
throughput region.

• We provide the rate-achieving policy for any achievable
rate-tuple in a finite-horizon throughput region by deter-
mining the transmit power and rate for each communica-
tion pair in each time slot.

• We formulate an optimization problem for computing
the rate margin and deriving the rate-achieving policy.
The solution inevitably requires a search. To reduce the
complexity while maintain the optimality of the search,
we use three techniques among which the most important
one is the proposed admissible heuristic function that
allows the highly-efficient A* search algorithm to be
employed. The simulation result demonstrates the com-
putational efficiency of our algorithm.

D. Paper Organization

The system model and problem description are given in
Section II and Section III, respectively. In Section IV, an
optimization problem is defined to solve rate margin and rate-
achieving policy, and an efficient solution method for this
problem is also proposed. The numerical examples are given
in Section V to illustrate the effectiveness of our approach and
corroborate our analytical results.

E. Notation

Throughout this paper, for a vector a = [a(1), . . . , a(N)]T

(where T is the transpose operator), (a)+ denotes
max{a(n), 0} for all n ∈ {1, . . . , N}. The cardinality
of a set A is |A|. For x1 = [x

(1)
1 , . . . , x

(N)
1]T and

x2 = [x
(1)
2 , . . . , x

(N)
2]T, x1 � (�,�,≺) represents x(n)

1 ≥
(>,≤, <) x

(n)
2 for all n ∈ {1, . . . , N}. x1 � (�) x2

means x1 � (�) x2 but x1 6= x2. RN+ (RN+) means{
x ∈ RN : x � (�)0

}
. 0 stands for the zero vector with

proper dimension. For x ∈ R, bxc returns the largest integer
not greater than x.

3

II. SYSTEM MODEL AND THROUGHPUT REGION

We consider N transmitter-receiver pairs in a wireless
network, where Txn and Rxn denote the transmitter and
receiver of the nth communication pair. The channel is mem-
oryless, and the relationship between channel input Xm ∈ R
(corresponding to Txm, and m ∈ {1, . . . , N} =: N) to output
Yn (n ∈ N) is

Yn =
∑
m∈N

√
hmnXm + Zn, n ∈ N , (1)

where hmn is the channel gain between Txm and Rxn; and Zn
is Gaussian white noise with power Wn. When decoding, Rxn
treats the interference

∑
m 6=n

√
hmnXm as noise. We can see

that our channel is indeed a multi-user Gaussian interference
channel, as shown in Fig. 1.

1X

2X

1Y

2Y





1Z

2Z

NX
NY

NZ

11h

12h

1Nh

… … …

Fig. 1. Channel model for n transmitter-receiver pairs.

The time is slotted and each time slot contains L channel
uses for transmitting and receiving a codeword (i.e., the length
of a codeword, or simply the blocklength, is L). We consider
a finite time horizon of T time slots and assume that the
channel gains hmn remain constant over the T time slots.
In each time slot, every transmitter-receiver pair chooses to
transmit or not. That is, for time slot t ∈ {1, . . . , T} =: T ,
the transmitter Txn (n ∈ N) chooses its transmit power s(n)

t

from the transmit-power set S(n), where 0 is included for
representing no transmission. Since the number of available
transmit power options in a practical communication system
is usually finite (e.g., see the discrete power control in [18],
[19]), we model S(n) as a finite set. Furthermore, we label
st =

[
s

(1)
t , . . . , s

(N)
t

]T
, and S := S(1) × · · · × S(N). Hence,

st ∈ S, and we call S the transmit-power-tuple set.
For time slot t, the SINR for each transmitter-receiver pair

is determined by

γn(st) =
hnns

(n)
t

Wn +
∑
m 6=n hmns

(m)
t

, n,m ∈ N , (2)

where the interference is treated as noise. Given the SINR
γn(st), blocklength L, and error probability ε, the maximum
achievable rate for transmitter-receiver pair n is defined as

µ(n)
max(γn(st), L, ε) =

1

L
log2M

∗(L, ε), (3)

where M∗(L, ε) represents the maximal code size as defined
in [20], [21]. In our numerical results, we use the following
accurate approximation of µ

(n)
max(γn(st), L, ε) for Gaussian

channels [20]:

µ(n)
max(γn(st), L, ε) ≈

1

2
log2(1 + γn(st))−

√
V

L
Q−1(ε), (4)

where Q−1 is the inverse of standard Gaussian complimentary
CDF, and V is the channel dispersion

V =
log2

2 e

2

[
1− 1

(1 + γn(st))2

]
. (5)

We stress that all the analytical results in this paper hold for
both the generic expression in (3) and the explicit approxima-
tion in (4), where (4) is primarily used to obtain numerical
results.

For transmitter-receiver pair n, in time slot t, any rate
µ

(n)
t ∈

[
0, µ

(n)
max(γn(st), L, ε)

]
is achievable, i.e., there exist

some channel codes with rate µ(n)
t such that the decoding error

probability is bounded by ε. Under a given transmit-power-
tuple st, all achievable rate-tuples for N transmitter-receiver
pairs form the following set{[

µ
(1)
t , . . . , µ

(N)
t

]
:

µ
(n)
t ∈

[
0, µ(n)

max(γn(st), L, ε)
]
, n ∈ N

}
. (6)

By defining µt =
[
µ

(1)
t , . . . , µ

(N)
t

]
and

µmax(st, L, ε)

=
[
µ(1)

max(γ1(st), L, ε), . . . , µ
(N)
max(γN (st), L, ε)

]
, (7)

equation (6) can be rewritten in the compact form

{µt : µt � µmax(st, L, ε)} . (8)

Note that (8) contains all achievable rate-tuples in one time slot
for one transmit-power-tuple st. Then, the 1-slot throughput
region is defined as the region of all achievable rate-tuples for
all possible transmit-power-tuples, and the 1-slot throughput
region for time slot t is

Λ[1],t =
⋃
st∈S
{µt : 0 � µt � µmax(st, L, ε)} , (9)

where S is the set of all possible transmit-power-tuples. Note
that Λ[1],t are the same for all t, and thus, for simplicity, we
label Λ[1],1 = · · · = Λ[1],T = Λ[1].

Similar to the one-slot throughput region, the finite-horizon
throughput region for T time slots is defined as follows.

Definition 1 (Finite-Horizon Throughput Region). The T -slot
throughput region Λ[T] is the set of average rate-tuples that
can be achieved in T time slots, i.e.,

Λ[T] =

{
µ[T] : µ[T] =

1

T

T∑
t=1

µt, µt ∈ Λ[1]

}
. (10)

For a clear illustration of finite-horizon throughput region,
we define the weak Pareto frontier and Pareto frontier in Def-
inition 2 which also plays an important role in the analytical
results in this paper.

4

Definition 2 (Weak Pareto Frontier and Pareto Frontier). For
a given set A, the weak Pareto frontier is

B = {b ∈ A : {a ∈ A : a � b} = ∅} , (11)

and the Pareto Frontier is

B = {b ∈ A : {a ∈ A : a � b} = {b}} . (12)

It should be noted that B ⊆ B.

With Definition 2, we define the weak Pareto frontier
and Pareto frontier of Λ[T] as M[T] and M[T], respectively.
Additionally, we say the rate-tuples on the weak Pareto frontier
are the boundary rate-tuples.

Three examples are given in Fig. 2 to illustrate the shape of
finite-horizon throughput region. We consider two transmitter-
receiver pairs, so the throughput regions are in two dimensions.
The detailed network parameters are given in the caption of
Fig. 2. Using the same network parameters, Fig. 2(a), Fig. 2(b),
and Fig. 2(c) illustrate the throughput regions for T = 1,
T = 2, and T = 3, respectively. We use the rate-tuples µ′,
µ′′, and µ′′′ (whose values are given in the caption of Fig. 2)
to compare the differences among finite-horizon throughput
regions for different T :
• µ′ is in Λ[1], Λ[2] and Λ[3].
• µ′′ is in Λ[2], but not in Λ[1] or Λ[3].
• µ′′′ is in Λ[3], but not in Λ[1] or Λ[2].

We take µ′′′ as an example. From the caption, µ′′′ =
[1.4, 0.6]T and it can be achieved within 3 time slots by

µ′′′ =
1

3

([
2.1
0

]
+

[
2.1
0

]
+

[
0

1.8

])
, (13)

which means letting communication pair 1 transmitting at the
rate of 2.1 in the first two time slots and communication
pair 2 transmitting at the rate of 1.8 in the third time slot.
Note that µ′′′ is not achievable within T = 1 or T = 2
time slots. Intuitively, if T1 < T2, the relationship between
their throughput regions seems to be Λ[T1] ⊆ Λ[T2] (e.g.,
Λ[1] ⊆ Λ[2]). However, this intuition turns out to be incorrect,
as µ′′ is in Λ[2] but not in Λ[3].

Remark 1 (Uncertain-Inclusion Property). For the conve-
nience of discussion, we label limT→∞ Λ[T] as Λ[∞]. It is
easy to verify that Λ[T] ⊆ Λ[∞] holds for any finite T , since
Λ[∞] is a convex hull of Λ[1] (as shown in [4]). However, in
general, if T1 < T2, the proposition Λ[T1] ⊆ Λ[T2] does not
always hold true. We call this property the uncertain-inclusion
property of the finite-horizon throughput region. Specifically, it
can be proved that if T1 is an factor of T2, then Λ[T1] ⊆ Λ[T2];
but if T1 is not an factor of T2, then Λ[T1] ⊆ Λ[T2] does not
hold in general, which highly depends on the structure of Λ[1].

The uncertain-inclusion property prevents us from analyzing
Λ[T2] based on the information from Λ[T1] in general, and
therefore we cannot determine whether a rate-tuple achievable
in T1 slots is still achievable in T2 slots.

III. PROBLEM DESCRIPTION: RATE MARGIN AND
RATE-ACHIEVING POLICY

In this work, we propose an important metric to characterize
Λ[T], termed the rate margin. The rate margin has three useful
properties:

• The rate margin determines whether a given rate-tuple is
achievable or not within T time slots.

• If a rate-tuple is achievable, the rate margin gives the
headroom for scaling up the rate-tuple that remains
achievable.

• Similarly, if a rate-tuple is unachievable, the rate margin
tells exactly by what extent the rate-tuple needs to be
scaled down to be achievable.

We also study the rate-achieving policy, which gives a method
to achieve any given rate-tuple in Λ[T].

Now, we give the definition of the rate margin.

Definition 3 (Rate Margin). For a 1-slot throughput re-
gion Λ[1] and T time slots, the rate margin δT (·) : RN+ →
R+

⋃
{∞} is a function of rate-tuple µ[T] that

δT (µ[T]) = max
µ′

[T]
∈M[T]

min
n∈N

µ
′(n)
[T]

µ
(n)
[T]

 , (14)

where µ(n)
[T] and µ′(n)

[T] are the nth component of µ[T] and µ′[T],
respectively. Note that the rate margin can be infinite.

The rate margin has several useful properties, which are
given in Proposition 1, Proposition 2, Proposition 3, and
Corollary 1. Firstly, the rate margin can be used to determine
whether a given rate-tuple is achievable or not:

Proposition 1. ∀µ[T] ∈ Λ[T] if and only if δT (µ[T]) ≥ 1.

Proof: Necessity. ∀µ[T] ∈ Λ[T], there exists at least one
µ′[T] ∈M[T] such that

min
n∈N

µ
′(n)
[T]

µ
(n)
[T]

 ≥ 1, (15)

since it otherwise contradicts (12) in the Pareto frontier
definition. Thus, δT (µ[T]) ≥ 1 in (14).

Sufficiency. If δT (µ[T]) ≥ 1, but we assume µ[T] 6∈ Λ[T],
then there would be at least one component index n such that
µ

(n)
[T] > µ

′(n)
[T] (µ′[T] ∈M[T]). Thus, ∀µ′[T] ∈M[T],

min
n∈N

µ
′(n)
[T]

µ
(n)
[T]

 < 1, (16)

which implies δT (µ[T]) < 1, and this contradicts δT (µ[T]) ≥
1. Therefore, µ[T] ∈ Λ[T].

Another important property of rate margin is that it quanti-
fies the extent of which an achievable rate-tuple can be linearly
scaled-up while remaining achievable.

Proposition 2. ∀µ[T] ∈ Λ[T], the rate margin gives the
maximum scalar ρ such that ρµ[T] is still an achievable rate-
tuple, i.e.,

max
ρµ[T]∈Λ[T]

ρ = δT (µ[T]) ≥ 1. (17)

Proof: For convenience, we label ρ∗ = max
ρµ[T]∈Λ[T]

ρ for

the left-hand-side of (17). Let µ′[T] = ρ∗µ[T], and we have
µ′[T] ∈ Λ[T]. In addition, by setting µ′′[T] = δT (µ[T])µ[T], the
proof starts as follows.

5

(1)

[1]

(2)

[1]

μ
μ

1b

1c

o

1a

μ

1

1

2

2

0.5

0.5

1.5

1.5

[1]

[1]

[1] 1 1 1, ,a b c

[]

(a)

(1)

[2]

(2)

[2]

μ

μ

2b

2c

o

2a

μ

1

1

2

2

0.5

0.5

1.5

1.5

2d

2e

[2]

[2]

[2] 2 2, ,a e

[]

(b)

(1)

[3]

(2)

[3]

μ
μ

3b

3c

o

3a

μ

1

1

2

2

0.5

0.5

1.5

1.5

3d

3e

3f
3g

[3]

[3]

[3] 3 3, ,a g

[]

(c)

Fig. 2. Examples of throughput regions of two transmitter-receiver pairs. The network parameters are: channel gains h11 = h22 = 1, h12 = h21 = 0.3,
transmit-power sets S(1) = S(2) = {0, 3}, powers of white noises W1 = W2 = 0.1, blocklength L = 100, and error probability ε = 0.001. By
using the maximum rate approximation in (4), the 1, 2, and 3-slot throughput regions are shown in (a), (b), and (c), respectively. We consider rate-tuples
µ′ = [0.3, 0.4]T, µ′′ = [1.08, 1.08]T, and µ′′′ = [1.4, 0.6]T. In each finite-horizon throughput region, the pink circles compose the Pareto frontier, and the
purple (thick) lines form the weak Pareto frontier, and the shaded area is the interior of a throughput region. Note that the finite-horizon throughput region
includes both the interior and weak Pareto frontier (Pareto frontier is in the weak Pareto frontier as mentioned in Definition 2). For the dash-dotted lines, they
are the Pareto frontier of the well-known infinite-horizon throughput region (see [4]), which is the convex hull of Λ[1].

i). δT (µ[T]) ≥ ρ∗: assume δT (µ[T]) < ρ∗, then δT (µ′′[T]) <
δT (µ′[T]) ≤ 1. It implied δT (µ′′[T]) < 1, which contradicts to
the following derivation

δT (µ′′[T]) = max
µ′′′

[T]
∈M[T]

min
n∈N

µ
′′′(n)
[T]

µ
′′(n)
[T]


=

1

δT (µ[T])
max

µ′′′
[T]
∈M[T]

min
n∈N

µ
′′′(n)
[T]

µ
′′(n)
[T]

 = 1. (18)

Therefore, δT (µ[T]) ≥ ρ∗ holds.
ii). δT (µ[T]) ≤ ρ∗: assume δT (µ[T]) > ρ∗, and the proof is

similar to that in i) (equation (18) still holds).
To sum up, δT (µ[T]) = ρ∗. According to Proposition 1,

δT (µ[T]) ≥ 1 and (17) is satisfied.
With Proposition 2, we can also derive an important prop-

erty that the rate margin quantifies the extent of which an
unachievable rate-tuple should be linearly scaled down to
become achievable.

Proposition 3. ∀µ[T] 6∈ Λ[T], the rate margin gives the
minimum scalar r such that µ[T]/r becomes an achievable
rate-tuple, i.e.,

min
µ[T]/r∈Λ[T]

r =
1

δT (µ[T])
> 1. (19)

Proof: Since the proof is similar to that in Proposition 2,
we omit it here.

Last but not least, the rate margin is an indictor for those
rate-tuples on the weak Pareto frontier, which is also very
useful for results to be derived later.

Corollary 1. µ[T] ∈M[T] if and only if δT (µ[T]) = 1.

Proof: Based on Proposition 2 and Proposition 3, the
proof is straightforward.

Remark 2 (Properties of Rate Margin). We use a numer-
ical example to summarize the properties of rate margin.
Specifically, we test three rate-tuples, i.e., µ′[3], µ

′′
[3] and µ′′′[3],

whose values are shown in the caption of Fig. 3. Using
Proposition 1, we have δ3(µ′[3]) ≥ 1, δ3(µ′′[3]) ≥ 1, and
δ3(µ′′′[3]) < 1, hence we know that µ′[3] ∈ Λ[3], µ′′[3] ∈ Λ[3], and
µ′′′[3] 6∈ Λ[3]. These conclusions are correct as shown in Fig. 3.
Proposition 2 implies that µ′[3] can be linearly scaled up by
at most δ3(µ′[3]) = 1.9046 and remains achievable. Similarly,
Proposition 3 tells that µ′′′[3] should be linearly scaled down
by at least δ3(µ′′′[3]) = 0.6006 and becomes achievable. By
Corollary 1, δ3(µ′′[3]) = 1 (hence µ′′[3] ∈M[3]), and there is no
room for µ′′[3] to be linearly scaled up and remains achievable.

(1)

[3]

(2)

[3]

[3]
μ

[3]
μ

b
c

o

a

[3]
μ1

1

2

2

0.5

0.5

1.5

1.5

[3]

[3]

[3] , ,a g

[]

d

e

f

g




[3
]

[3
]

T





μ

μ

 [3] [3]T  μ μ

Fig. 3. Illustration of rate margin. The network parameters are the same as
those in Fig. 2(c), but the chosen rate-tuples are different: µ′

[3]
= [0.5, 0.5]T,

µ′′
[3]

= [1.6729, 0.2316]T, and µ′′′
[3]

= [2, 1.2]T. µ′
[3]

is in Λ[3]\M[3] (i.e.,
the interior of Λ[3]), and µ′′

[3]
is in M[3], but µ′′′

[3]
is not in Λ[3]. The rate

margins are δ3(µ′
[3]

) = 1.9046, δ3(µ′′
[3]

) = 1, and δ3(µ′′′
[3]

) = 0.6006.

Now, we give the definition of rate-achieving policy.

Definition 4 (Rate-Achieving Policy). For a given transmit-

6

power-tuple set S and T time slots, ∀µ[T] ∈ Λ[T], the rate-
achieving policy for µ[T] is a sequence of rate-power pairs

PT = (µt, st)
T
t=1 , st ∈ S, (20)

with the maximum rate constraints

µt � µmax(st, L, ε), (21)

such that µ[T] can be achieved, i.e.,

µ[T] =
1

T

T∑
t=1

µt. (22)

Equation (21) means that: for each transmitter-receiver pair,
the transmission rate should not exceed the corresponding
maximum rate.

Remark 3. Definition 4 tells that if µ[T] ∈ Λ[T] (or equiv-
alently δT (µ[T]) ≥ 1, see Proposition 1), then there always
exist some policies PT described by (20), (21), and (22) to
achieve µ[T]. To be more specific, a power sequence (st)

T
t=1

provides the maximum rates to support the rate-tuple µ[T]

(see (21)), which is eventually achieved by rate-tuple sequence
(µt)

T
t=1 (see (22)). The existence of PT is exactly guaranteed

by (10) in Definition 1 and (9) that: ∀µt ∈ Λ[1], there at
least exists one µmax(st, L, ε) such that µt ∈ µmax(st, L, ε).
Nevertheless, Definition 4 just only states the existence of
PT for an achievable rate-tuple, but how to find an efficient
algorithm to find PT is yet to be investigated.

After defining the rate margin and rate-achieving policy, we
now focus on two key problems
• How to efficiently compute the rate margin δT (µ[T]).
• If δT (µ[T]) ≥ 1, how to design a rate-achieving policy

with high computational efficiency.

IV. DERIVATION OF RATE MARGIN AND RATE-ACHIEVING
POLICY

Although deriving the rate margin and rate-achieving policy
are two different problems, we carefully formulate them into
the following joint problem (see Problem 1) from the view-
point of data transmission. Note that achieving a given average
rate-tuple µ[T] over T time slots is the same as transmitting
Tµ[T]L amount of data from data queues within T time slots
(recall that L is the blocklength).

Problem 1. For a given transmit-power-tuple set S and T
time slots, we consider the following problem:

minimize
(st)

p
t=1, st∈S

p+ max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st), L, ε)L

]
subject to Qt = (Qt−1 − µmax(st, L, ε)L)

+
,

Q0 = Tµ[T]L,

Qp−1 6= 0,
Qp = 0,

(23)

where t ∈ {1, . . . , p}. The data queues are Qt =

[Q
(1)
t , . . . , Q

(N)
t]T, each Q(n)

t ∈ R+ is the length of the data
queue for transmitter n after st is applied in time slot t

(t ∈ {1, . . . , p}). In addition, Q0 = Tµ[T]L is the initial
lengths of queues before applying s1, which means the given
rate-tuple µ[T] = [µ

(1)
[T], . . . , µ

(N)
[T]]T at which transmission

must take place in order to send a total of Tµ[T]L amount
of data, and L is the blocklength. Note that p denotes the
number of time slots for transmission (since Qp−1 6= 0 and
Qp = 0) and is a variable dependent on (st)

p
t=1. The optimal

solution (not unique for T > 1) is denoted as (s∗t)
p∗

t=1. The
corresponding data-queues sequence under optimal solution
is (Q∗t)

p∗

t=1. The optimal objective is

p∗ + max
n∈N

[
Q

(n)
0∑p∗

t=1 µ
(n)
max(γn(s∗t), L, ε)L

]
. (24)

The following two lemmas explain the meaning of the first
and second items in (24), respectively.

Lemma 1. p∗ in (24) is the minimum number of time slots
that clears the data queues Q0.

Proof: By (23), p is the number of time slots that clears
Q

(n)
0 , which implies the following

max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st), L, ε)L

]
≤ 1. (25)

Then p∗ in (24) is the optimal number of time slots to clear
Q

(n)
0 . This is because we can never find a p′ < p∗ such that

p′ + max
n∈N

[
Q

(n)
0∑p′

t=1 µ
(n)
max(γn(s′∗t), L, ε)L

]

≥ p∗ + max
n∈N

[
Q

(n)
0∑p∗

t=1 µ
(n)
max(γn(s∗t), L, ε)L

]
(26)

holds with (25) (since p′ and p∗ are integers).
The value of p∗ tells the rate-achievability: If p∗ ≤ T , then it

is possible to transmit Tµ[T]L amount of data within T slots.
In other words, the rate-tuple µ[T] is achievable within T slots.
If p∗ > T , then it implies the rate-tuple µ[T] is unachievable
within T slots.

Lemma 2. The rate margin for µ[p∗] in Λ[p∗] is the reciprocal
of the second item in (24), i.e.,

δp∗(µ[p∗]) =
1

max
n∈N

[
Q

(n)
0∑p∗

t=1 µ
(n)
max(γn(s∗t),L,ε)L

] . (27)

Proof: With the definition of the rate margin (see Defini-
tion 3) and replacing T with p∗, we can derive

1

δp∗(µ[p∗])

(a)
= min

µ′
[p∗]∈M[p∗]

max
n∈N

µ
(n)
[p∗]

µ
′(n)
[p∗]


= min

µ′
[p∗]∈M[p∗]

max
n∈N

 p∗µ
(n)
[p∗]L

p∗µ
′(n)
[p∗]L

 ,

(28)

where (a) follows from that the max (min) of µ′(n)
[p∗]/µ

(n)
[p∗] is

the min (max) of µ(n)
[p∗]/µ

′(n)
[p∗] . Since p∗µ(n)

[p∗]L = Q
(n)
0 , there

7

exists (st)
p∗

t=1 such that

p∗µ
′(n)
[p∗]L =

p∗∑
t=1

µ
′(n)
t L

(b)
=

p∗∑
t=1

µ(n)
max(γn(st), L, ε)L, (29)

where (b) holds for µ′[p∗] ∈M[p∗]. Thus, we rewrite (28) as

1

δp∗(µ[p∗])
= min

(st)
p∗
t=1

max
n∈N

[
Q

(n)
0∑p∗

t=1 µ
(n)
max(γn(st), L, ε)L

]
(c)
= max

n∈N

[
Q

(n)
0∑p∗

t=1 µ
(n)
max(γn(s∗t), L, ε)L

]
,

(30)

where (c) follows from Lemma 1 and the objective in (23).
Therefore, (27) holds.

Note that the reciprocal of the second item in (24) is the
rate margin for p∗ time slots. However, we want to derive
the rate margin for T time slots (p∗ is not necessarily equal
to T). In the rest of this section, we discuss how to derive
the rate margin for any given T time slots (see Section IV-A)
based on the optimal objective of Problem 1. Furthermore, by
the optimal solution of Problem 1 the rate-achieving policy
is derived (see Section IV-B). Finally, an efficient solution
method of Problem 1 is given in Section IV-C.

A. Deriving Rate Margin

This subsection proposes a method to derive the rate margin
by iteratively solving Problem 1.

Firstly, if we find p∗ = T after solving Problem 1, then
the rate margin can be derived directly from Lemma 2, since
δT (µ[T]) = δp∗(µ[p∗]) in this case.

If p∗ 6= T , we can use an iteration strategy to derive
rate margin δT (µ[T]). To distinguish p∗ (and Q0) in different
iterations, we label p∗k (and Q0,k) as the p∗ (and Q0) for the
kth iteration. Now, the main idea of our iteration strategy is
given as follows: based on the information from Lemma 2,
we linearly scale the initial condition Q0,k in Problem 1 for
each iteration k ∈ {1, . . . ,K}, until p∗K = T , in which
case, δT (µ[T]) = δp∗K (µ[p∗K]). As such, the rate margin
can be finally determined recursively in a finite number of
steps whenever K is finite. The iteration strategy is given in
Algorithm 1, and proved in Theorem 1.

Theorem 1 (Calculation of Rate Margin). For µ[T] � 0,4 the
rate margin can be obtained by Algorithm 1 involving a finite
number of K iterations, upper bounded by

K ≤


T − p∗1 + 1 p∗1 < T,

1 p∗1 = T,

T − p∗2 + 2 p∗1 > T.

(31)

Proof: See Appendix A.

Remark 4. The inequality in (31) gives an upper bound on
the number of iterations. For example, considering the case

4Algorithm 1 is valid for rate-tuple µ[T] whose components are all greater
than 0. This is without loss of generality because the zero components stand
for zero transmissions, and hence we can remove these inactive transmitter-
receiver pairs from the network model.

Algorithm 1 Deriving Rate Margin
Input: T : the number of time slots; N : the number of transmitter-receiver

pairs; µ[T]: the given average rate-tuple; S: the transmit-power-tuple set;
L: the blocklength; ε: the error probability.

Output: δT (µ[T]): the rate margin.
1: Initialization: k = 1; Q0,k = Tµ[T]L; p∗k = 0; flag = 0; ε = 10−7

{comments: ε is the precision for rate-tuple calculation}.
2: while p∗k 6= T do
3: Solve Problem 1 with Q0 = Q0,k , and derive δp∗

k
(µ[p∗

k
],k) by

Lemma 2;
4: if p∗k < T then
5: Q0,k+1 = Q0,kδp∗

k
(µ[p∗

k
],k)bT/p∗kc+Rkρµ[T], where Rk :=

T mod p∗k , and ρ = δ1(µ[T]); flag = 1;
6: if bT/p∗kc == 1 and ρ == 0 then
7: Q0,k+1 = Q0,k + εT ;
8: end if
9: else if p∗k > T and flag == −1 then

10: Q0,k+1 = 0; p∗k = T {comments: condition for ending the loop};
11: else if p∗k > T and flag == 0 then
12: Q0,k+1 = T max{ρ, ε}µ[T], where ρ = δ1(µ[T]); flag = −1;
13: else if p∗k > T and flag == 1 then
14: Q0,k+1 = Q0,k − εT ; p∗k = T ;
15: else
16: Q0,k+1 = Q0,kδp∗

k
(µ[p∗

k
],k); {comments: p∗k = T}

17: end if
18: K = k; k = k + 1; {comments: K is the total iteration number.}
19: end while
20: return δT (µ[T]) = Q

(1)
0,K+1/Q

(1)
0,1.

p∗1 < T , we have K ≤ T − p∗1 + 1, which means that the rate
margin requires solving Problem 1 at most T − p∗1 + 1 times.

Before closing this subsection, we give a useful corollary.
The proof can be easily obtained by Proposition 1 and the
proof of Theorem 1.

Corollary 2. The following three statements are equivalent:
i) µ[T] ∈ Λ[T]; ii) δT (µ[T]) ≥ 1; iii) p∗1 ≤ T .

B. Deriving Rate-Achieving Policy

In this subsection, we derive a rate-achieving policy for
any given achievable rate-tuple. It should be noted that our
method is complete, i.e., for any given achievable rate-tuple,
the corresponding rate-achieving policy can be obtained.

We present a rate-achieving policy for all rate-tuples in the
T -slot throughput region as follows.

Theorem 2 (Rate-Achieving Policy for All Achievable Rates).
Given a transmit-power-tuple set S and a finite horizon of T
time slots, then:

i) If µ[T] ∈ Λ[T], then p∗ ≤ T , and the rate-achieving policy
is PT = (µt, st)

T
t=1 with

(µt, st) =

{(
Q∗t−1−Q

∗
t

L , s∗t

)
1 ≤ t ≤ p∗,

(0,0) p∗ < t ≤ T,
(32)

where (s∗t)
p∗

t=1, is an optimal solution to Problem 1 and
Q∗t is the corresponding data queue vector in time slot t
when applying the optimal solution.

ii) If µ[T] 6∈ Λ[T], then solving Problem 1 gives p∗ > T .

Proof: See Appendix B.

8

C. Solution for Problem 1

In Section IV-A and Section IV-B, all main results are based
on the solution of Problem 1. Therefore, designing an efficient
algorithm to solve this problem can directly improve the
efficiency of deriving rate margin and rate-achieving policy. In
this subsection, we discuss how to efficiently solve Problem 1.

To solve (23) in Problem 1, intuitively, we could use
dynamic programming to search from Qp = 0 to Q0 =
Tµ[T]L (backwards) or employ other uninformed search
strategies [22]. However, in such searching methods, the
complexity is O(|S|p∗), where S is the transmit-tuple set, and
p∗ is the minimum transmission time (see Lemma 1) which
can be larger than T .

For example, if we start the search from Q0 = Tµ[T]L, for
the first step, we will calculate all possible

Q1 = (Q0 − µmax(st, L, ε)L)
+
, (33)

for all s1 ∈ S. Thus, the number of leaf nodes is |S| for
the depth t = 1. Similarly, for every Q1 in (33), we have |S|
possible Q2, and thus the leaf nodes for t = 2 is |S|2. As such,
the number of leaf nodes for depth t = p∗ (since the optimal
transmission time is p∗, see Lemma 1, and we need compare
all the objective functions in this depth) is |S|p∗ . Thus, the
complexity of such searching methods is O(|S|p∗).

In this subsection, we use the following three steps to
significantly improve the computational efficiency in solving
Problem 1. The resulting complexity is O(Bmin{p∗,T}), where
B (the effective branching factor5) is a much smaller number
compared to |S|, and p∗ is reduced to min{p∗, T} for the case
p∗ > T .

For the convenience of applying our search algorithm, we
modify the objective in (23) as

p− 1 + max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st), L, ε)L

]
, (34)

by adding −1 to the original objective. It is readily to see
that this modification does not affect the optimal solution (i.e.,
the original and modified objectives have the same optimal
solution).

Step 1: Firstly, we reduce the branching factor from |S| to
|M[1]|, which is given in Proposition 4.

Proposition 4. There exists a sequence (st)
p∗

t=1, where
µmax(st, L, ε) ∈ M[1], t ∈ {1, . . . , p∗}, such that (st)

p∗

t=1

itself is an optimal solution of Problem 1.

Proof: Let (s∗t)
p∗

t=1 be any optimal solution of Problem 1,
we have Qp∗ = 0, which implies

Tµ[T]L �
p∗∑
t=1

µmax(st, L, ε)L. (35)

Let (st)
p∗

t=1 be the sequence that µmax(st, L, ε) ∈ M[1], t ∈
{1, . . . , p∗}, and µmax(s∗t , L, ε) � µmax(st, L, ε). Thus, (35)

5It is a very popular metric for characterizing the efficiency of a searching
method, see Section 3.6.1 in [22].

can be rewritten as

Tµ[T]L �
p∗∑
t=1

µmax(s∗t , L, ε)L �
p∗∑
t=1

µmax(st, L, ε)L, (36)

which implies Qp∗ = 0 when applying (st)
p∗

t=1. Therefore,
(st)

p∗

t=1 is an optimal solution of Problem 1.

Remark 5. Proposition 4 tells that we only need to consider
the transmit powers corresponding to the rate-tuple on the
Pareto frontier of the 1-slot throughput region, instead of all
possible transmit powers. Hence, the transmit-power-tuple set
S in Problem 1 can be substituted by S, called the refined
transmit-power-tuple set, such that µmax(st, L, ε) ∈ M[1]

holds for all st ∈ S. Therefore, the branching factor is
|S| = |M[1]|.

Step 2: More importantly, A* search is employed to further
improve the searching efficiency while maintaining the opti-
mality for Problem 1. A brief description is given here on the
application of A* search in solving Problem 1, while we refer
the readers to Chapter 3.5.2 in [22] for a complete description
of the A* search algorithm.

For the A* search (or any searching algorithm in general),
a node is a fundamental concept. In our case, the node is
(Qt, (si)

t
i=1), which depends on Qt the state, and (si)

t
i=1 is

the path to achieve this state from initial node (Q0, ∅). The
A* search requires five components to be implemented:

• Initial node. The node for starting the search, which is
(Q0, ∅).

• Action space. The set of actions that move from a node
to all possible child nodes. In our case, the action space
is S.

• Goal. The condition for stopping the search. In our case,
the goal is Qp = 0, or simply denoted as 0.

• Step cost. The step cost is the cost for each searching
step. In Problem 1, it is

ct =

1 t < p,

max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st),L,ε)L

]
t = p.

(37)

• Evaluation function. It records the path cost (the sum-
mation of step cost) from the past and estimates the path
cost in the future. To be more specific, for a given node
(Qt, (si)

t
i=1), the evaluation function F (·, ·) is

F
(
Qt, (si)

t
i=1

)
= G

(
(si)

t
i=1

)
+ E(Qt), (38)

where G ((si)
t
i=1) returns the path cost from initial node

to node (Qt, (si)
t
i=1) and E(Qt), called a heuristic

function, estimates the path cost from (Qt, (si)
t
i=1) to

the goal 0. The A* search always expands the node with
the smallest F .

It should be noted that the core of the A* search is to
construct a function E(·) satisfying E(Qt) ≤ E∗(Qt) for
every Qt, where E∗(Qt) is the actual cost from Qt to the
goal 0. This constructed function is known as the admissible
heuristic function in the artificial intelligence literature [22].

9

In this work, we propose the interference-free based heuristic
function as follows

EI (Qt) = max
n∈N

Q
(n)
t

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

, (39)

where t ∈ {1, . . . , p}, s(n)
max = maxS(n), and

γ′n(s(n)
max) =

hnns
(n)
max

Wn
, n ∈ N . (40)

We call this heuristic function interference-free based, since
compared to (2), the expression (40) does not consider the in-
terferences from other transmitters. The following proposition
shows that EI(·) is admissible.

Proposition 5. Let the actual cost to reach the goal Qp = 0
be

E∗ (Qt) :=p− 1 + max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st),L,ε)L

]
− t t < p,

0 t = p,
(41)

where t ∈ {1, . . . , p}. Then EI (Qt) ≤ E∗ (Qt) holds for
every Qt.

Proof: See Appendix C.

Remark 6. Based on Proposition 5, EI(Qt) in (39) provides
an A* search for Problem 1, which improves the computa-
tional efficiency and maintains the optimality. Note that the
heuristic function in an A* search and the heuristic method
in optimization are two totally different concepts: the latter is
often suboptimal, while the former is always optimal once it
is admissible. Thus, Proposition 5 indeed gives the optimality
of our search algorithm. In terms of the computational effi-
ciency, since an A* search reduces the number of nodes to
be expanded, it avoids many redundant calculations, which
improves the efficiency (see Section V). We stress that the
computational efficiency is high in the cases interferences are
strong or zero, because for these cases the optimal choice of
node has a smaller EI(Qt) than that in other nodes so that
our A* search tends to have significantly fewer steps.

Step 3: Finally, we propose two pruning strategies to further
improve the searching efficiency of the A* search:
• After a node is selected by the evaluation function (38),

say (Qt1 , (si)
t1
i=1), we will check whether the condition

“t1 = T and Qt1 6= 0” holds. If this condition holds,
then we delete this node from the fringe (or called open
set, more details can be found in [22]). This is because
the condition “t1 = T and Qt1 6= 0” corresponds to
the node whose data queue has not been cleared in the
T th time slot, and there is no need to expand such a
node. This consideration is reasonable, since: for the rate
margin, Algorithm 1 does not need to know any exact
value of p∗ for p∗ > T , i.e., any node with transmission
time greater than T is not considered: and for the rate-
achieving policy deriving, we just need to consider the
nodes with transmission time not greater than T .

• After selecting a node (Qt1 , (si)
t1
i=1) to expand, we delete

those nodes with t ≥ t1 but with (µmax(si, L, ε))
t
i=1 �

(µmax(si, L, ε))
t1
i=1 in the fringe, since those nodes’ child

nodes are suboptimal.
To sum up, our algorithm for solving Problem 1 is given

in Algorithm 2, where the A* search algorithm, with our
pruning strategy, is

A∗(initial node, action space, goal,

step cost, evaluation function). (42)

We omit the details of the A* search here, since, other than
the pruning strategy we already illustrated, the other parts of
the A* search algorithm can be found in standard textbooks
(e.g. [22]).

Algorithm 2 Solving Problem 1 with A* Search
Input: T number of time slots; N the number of transmitter-receiver pairs;

µ[T] the given average rate-tuple;
S the constrained transmit-power-tuple set.

Output: (s∗t)p
∗

t=1 the optimal solutions for Problem 1;
p∗ and max

n∈N

{
Q

(n)
0 /

[∑p
t=1 µ

(n)
max(γn(st), L, ε)L

]}
for the optimal

objective in Problem 1.
1: Q0 = Tµ[T]L;

2:
[
(s∗t)p

∗

t=1, p
∗,max

n∈N

{
Q

(n)
0 /

∑p∗

t=1 µ
(n)
max(γn(s∗t), L, ε)L

}]
=

A∗
(
(Q0, ∅) ,S,0, ct, F (·)

)
;

3: return (s∗t)p
∗

t=1, p∗ and max
n∈N

{
Q

(n)
0 /

∑p∗

t=1 µ
(n)
max(γn(s∗t), L, ε)L

}
.

Remark 7 (Measuring the Searching Efficiency). We propose
the Effective Branching Ratio (EBR) as the metric for evaluat-
ing the search efficiency of our solution method of Problem 1:

EBR =
B

|S|
, (43)

where B is the effective branching factor of our method, and
the |S| is the branching factor of the original search tree (see
the discussion at the beginning of this subsection). B is a
metric on expanded nodes such that if the total number of
expanded nodes is U , then

U =

p∗∑
t=1

Bt. (44)

We can see that B increases with U , which means the smaller
EBR is, the more efficient in our algorithm performs. We will
use the proposed EBR in Section V to examine the searching
efficiency.

V. NUMERICAL RESULTS

To corroborate our theoretical results, numerical results are
presented. In this section, firstly, we give two illustrative
examples on achievable/unachievable rate-tuples, respectively:
For the achievable rate-tuple, we give the rate-achieving policy
and calculate the rate margin followed by the explanation
of its meaning. For the unachievable rate, we calculate the
rate margin and explain its meaning. Secondly, we conduct
the Monte Carlo simulation to highlight the computational
efficiency of our methods. Note that in this section, the

10

maximum achievable rate-tuple for transmitter-receiver pair
n ∈ N is calculated by (4).

Consider the transmission-rate design for a given network
with N = 3 transmitter-receiver pairs within T = 5 time slots,
each contains L = 100 channel uses. The following parameters
are at hand (the corresponding units are normalized): The
transmit-power sets of these 3 transmitter-receiver pairs are
S(1) = S(2) = S(3) = {0, 5}, each having an on-off structure.
The power gains are h11 = 0.8, h22 = 0.7, h33 = 0.9,
h12 = h21 = 0.15, h13 = h31 = 0.25 and h23 = h32 = 0.3.
The noise powers are W1 = W2 = W3 = 0.1.

Now consider whether the rate-tuple µ[5] = [0.5, 0.5, 0.5]T

can be achieved with error probability ε = 0.001. Using
Theorem 2, µ[5] can be achieved, and the rate-achieving
policy is P5 = (µt, st)

5
t=1, where µ1 = [0, 2.2698, 0]T,

µ2 = [0, 0, 2.4466]T, µ3 = [2.3636, 0, 0]T, µ4 =
[0.1364, 0.2302, 0.0534]T, µ5 = 0, and s1 = [0, 5, 0]T,
s2 = [0, 0, 5]T, s3 = [5, 0, 0]T, s4 = [5, 5, 5]T, s5 = 0. This
result means that the required rate-tuple can be met in this
network. Furthermore, transmission finish in 4 time slots, since
in time slot 5, all transmitter-receiver pairs transmit nothing.

To maximally utilize the throughput region of this given
network, we can linearly scale up µ[5] so that each transmitter-
receiver pair enjoys a rate increase without changing the
fairness (i.e., the direction of rate-tuple). We employ Theo-
rem 1 (details are shown in Algorithm 1) to compute the rate
margin δ5(µ[5]) = 1.2554. Hence, the boundary rate-tuple is
δ5(µ[5])µ[5] = [0.6277, 0.6277, 0.6277]T.

Secondly, we consider whether the rate-tuple µ′[5] =

[0.3, 1, 1]T can be achieved in this network. Unfortunately,
by Theorem 2, the rate-tuple µ′[5] is not achievable, since
δ5(µ′[5]) = 0.9079 < 1. However, Theorem 1 says that in
the case of not changing the parameters of the network, µ′[5]

should be at least linearly scaled down to δ5(µ′[5]) = 0.9079 of
µ′[5] to become achievable. Otherwise, the network should be
redesigned (e.g., enlarge the maximum power of transmitter-
receiver pairs).

To corroborate the efficiency of our methods, we conduct
the Monte Carlo simulations. The Average Iteration Number
(AIN) and the Average Effective Branching Ratio (AEBR) for
deriving rate margin are employed to measure the behaviors:
The AIN represents on average how many iterations are
required to derive the rate margin (see Theorem 1), and the
AEBR reveals the searching efficiency for solving Problem 1
in every iteration.

The simulation parameters are given as follows. The number
of transmitter-receiver pairs are N = 3, and the transmit-
power sets are S(1) = S(2) = S(3) = {0, 1, 2}. The power
gains are h11 = h22 = h33 = 0.5, and h12 = h21 =
h13 = h31 = h23 = h32 = 0.3. The noise powers are
W1 = W2 = W3 = 0.1. Similar to two above examples, the
blocklength is L = 100, and the error probability is ε = 0.001.
Simulations are conducted for T ∈ {2, 3, 4, 5}, and for each T ,
we randomly and uniformly select 1000 different µ[T] from
Λ[∞] to calculate the rate margin δT (µ[T]). The results are
shown in Table I.

From Table I, we can see that the AINs are reasonably small.

TABLE I
AVERAGE ITERATION NUMBER AND THE AVERAGE EFFECTIVE

BRANCHING RATIO

T = 2 T = 3 T = 4 T = 5

AIN 1.802 1.844 2.163 2.627
AEBR 0.385 0.231 0.146 0.095

For the searching efficiency in each iteration, the AEBRs are
small and decrease with T . To give an intuitive illustration,
we take T = 5 as an example: AIN equals 2.556 means that
we need 2.556 iterations on average to derive the rate margin.
AEBR is 0.095 implies that if we assume p∗ = T = 5, the
total number of nodes (except for the start node) of original
search tree is

∑5
t=1 |S|t =

∑5
t=1 27t = 1.490 × 107, while,

for our A* search, only
∑5
t=1(0.095 ∗ 27)t = 180 number

of nodes are expanded on average. It can be seen that our
algorithm significantly improves the computational efficiency.

VI. CONCLUSION

In this paper, the finite-horizon throughput region for a
wireless multi-user interference network has been studied.
We proposed the rate margin as a metric to determine the
achievability of any given rate-tuple and measure the ability
to scale up (down) for any achievable (unachievable) rate-
tuple so that the resulting rate-tuple is still within (brought
back into) the finite-horizon throughput region. Also, we
provided a complete algorithm for finding a rate-achieving
policy for any achievable rate-tuple. Both the rate margin and
the rate-achieving policy can be derived very efficiently by
using a modified A* search algorithm, where the interference-
free based heuristic function plays an important role. This
work represents a significant step towards understanding the
network throughput region over a finite time horizon beyond
the simplest one-time-slot scenario. It also demonstrates the
fundamental differences in the throughput region between
finite and infinite horizon.

More importantly, the presented work serves as the first
step to develop more comprehensive results on finite-horizon
throughput region in the future:

• The rate margin defined in this paper resolves how
to do rate-scaling when preserving fairness. If some
of the transmitter-receiver pairs have more priority for
scaling, then a generalization or different definitions of
rate margin can be used to reflect the rate scalability
from different design perspectives. For example, if a
transmitter-receiver pair is predominant, then we need
to consider the maximum scalability of one component
corresponding to this communication pair, while keeping
other components unchanged.

• It is worth trying to relax or remove the assumption
of treating interference as noise. If one considers in-
terference decoding (e.g., [23], [24]), the finite-horizon
throughput region will be enlarged. It would be very
interesting to consider interference decoding in the finite
blocklength regime.

11

• Ultimately, it would be desirable to generalize the
finite-horizon throughput region towards an information-
theoretic setting which contains all possible cod-
ing/decoding strategies. One potential approach is the
deterministic approximation approach (see [25], [26]) to
derive an easy-to-compute approximated finite-horizon
throughput region.

APPENDIX A
PROOF OF THEOREM 1

Before starting the proof, we give a brief flow chart of
Algorithm 1 in Fig. 4. With this figure, we can clearly see
the flow of Algorithm 1: the algorithm starts from s and ends
at three possible terminals b, d, and e (more details can be
found in the caption). We divide the proof into several cases
according to Fig. 4 which is shown as follows.

a b c d es

flag 0 flag 1 flag 1 

*

1p T

*

1p T

*

1p T

*

kp T

*

kp T

*

kp T

*

kp T

*

kp T *

kp T

Fig. 4. A brief version of flow chart for Algorithm 1. The nodes with
a,b, c,d, e represent Lines 5-8, Line 10, Line 12, Line 14, Line 16 in
Algorithm 1, respectively, and the node with s stands for the starting point of
Algorithm 1. For s, the value of flag is 0. After arriving at node a, the value
of flag becomes 1. After arriving at node c, the value of flag becomes −1.
There are three possible terminals corresponding to nodes b, d, and e.

1) p∗1 = T . In this case, the program directly goes from
node s to e, and we can easily get δT (µ[T]) = Q

(1)
0,k/Q

(1)
0,1 =

Q
(1)
0,K+1/Q

(1)
0,1 = δT (µ[T]) in Line 20, which means Algo-

rithm 1 returns the correct result. Note that K = 1.
2) p∗1 < T . Initially, the program goes from s to a. Then

(for k = 2), it has three possible destinations, i.e., nodes a,
d, and e. However, the program cannot always stay in node
a, and it must end either at d or e. This is because p∗k at
least increases by 1 for each time arriving at a (recall that
a corresponds to Lines 5-8). For Line 5, if bT/p∗kc > 1 or
ρ > 0, then Q0,k+1 � Q0,kδp∗k(µ[p∗k],k) (due to µ[T] � 0),
which implies Q0,k+1 cannot be cleared within p∗k time slots,
and therefore p∗k+1 ≥ p∗k + 1. Similarly, if bT/p∗kc == 1
and ρ == 0, Line 7 returns Q0,k+1 � Q0,kδp∗k(µ[p∗k],k), and
p∗k+1 ≥ p∗k + 1 still holds. Hence, the program must stop at
node d or e, and the number of iterations is upper bounded
by K ≤ T − p∗1 + 1, i.e., at least goes to e (corresponding to
p∗K = T).

2-1) Ends at node d. From Line 5, we know that p∗k ≤ T
always holds, because the corresponding Q0,k+1 can always
be cleared. Thus, if the program goes to node d (p∗k > T),
Line 7 must have run, i.e., the increment εT makes p∗k > T ,
where k = K. This means that Q0,K−1 in the (K − 1)th

iteration corresponds to the maximum data queue can be
cleared within T time slots. Then, subtracting the increment
εT from the current data queue, we can derive Q0,K+1 =
Q0,K−1. Since Q0,K+1 is the maximum data queue that can
be cleared within T time slots in the direction of µ[T], we have
Q0,K+1 = µ[T]δT (µ[T])T . Observe that Q0,1 = µ[T]T , we
have δT (µ[T]) = Q

(1)
0,k/Q

(1)
0,1 = Q

(1)
0,K+1/Q

(1)
0,1 = δT (µ[T]) in

Line 20, which means Algorithm 1 returns the correct result.
2-2) Ends at node e. In this case, we directly have

Q0,K+1 = µ[T]δT (µ[T])T , and Line 20 returns the correct
rate margin similar to that in 2-1).

3) p∗1 > T . Initially, the program goes from s to c. Then
(for k = 2), it has three possible destinations, i.e., nodes a, b,
and e.

3-1) Goes to node a. This case is similar to 2-1): Algo-
rithm 1 returns the rate margin correctly, and the iteration
number is upper bounded by K ≤ T − p∗2 + 2 (the program
reaches node a for k = 2 rather than k = 1).

3-2) Ends at node b. In this case, the rate margin δT (µ[T]) is
zero, since in the last iteration K − 1, the updated data queue
is Q0,K−1+1 = Q0,K = εT returned by Line 12, and the
“smallest” rate-tuple ε = Q0,K/T (i.e., its component reach
the precision of calculation) in the direction of µ[T] is not
achievable.

3-3) Ends at node e. This case is similar to 2-2): Algo-
rithm 1 returns the rate margin correctly, and the iteration
number is upper bounded by K ≤ T − p∗2 + 2.

APPENDIX B
PROOF OF THEOREM 2

i) ∀µ[T] ∈ Λ[T], then the data queue can be cleared with
some p ≤ T , which implies p∗ ≤ p ≤ T holds. Based on
p∗ ≤ T , we prove that (32) is exactly the rate-achieving policy
for µ[T]. By (32), the average rate over T slots is

1

T

T∑
t=1

Q∗t−1 −Q∗t
L

=
Q0

TL
=
Tµ[T]L

TL
= µ[T], (45)

which means the rate is achieved by rate sequence
((Q∗t−1 −Q∗t)/L)p

∗

t=1. Additionally, since the following holds
for every t ∈ {1, . . . , p∗}

Q∗t−1 −Q∗t
L

� µmax(st, L, ε), (46)

the maximum rate constraints (see Definition 4) are satisfied.
Therefore, µ[T] can be achieved by the policy PT .

ii) ∀µ[T] 6∈ Λ[T], it follows from Corollary 2 that p∗ > T .

APPENDIX C
PROOF OF PROPOSITION 5

∀Qt, let sk =
[
s

(1)
k , . . . , s

(n)
k

]
, k ∈ {t + 1, . . . , p} be any

possible action (transmit power) from Qk−1. We then divide
EI (Qt) into two parts to prove the admissibility, i.e., p−1−t
and max

n∈N

[
Q

(n)
0 /

∑p
t=1 µ

(n)
max(γn(st), L, ε)L

]
. For the first part,

∀n ∈ N , we have

p− 1− t =

p−1∑
k=t+1

1 ≥
p−1∑
k=t+1

Q
(n)
k−1 −Q

(n)
k

µ
(n)
max(γn(sk), L, ε)L

. (47)

12

Additionally, since s(n)
k ≤ s(n)

max, the following holds

γn(sk) =
hnns

(n)
k

Wn +
∑
m6=n hmns

(m)
k

≤ hnns
(n)
max

Wn
= γ′n(s(n)

max).

(48)

Then, we have µ(n)
max(γn(sk), L, ε) ≤ µ(n)

max(γ′n(s
(n)
max), L, ε) for

all n ∈ N . Thus, (47) can be further bounded as

p− 1− t ≥
p−1∑
k=t+1

Q
(n)
k−1 −Q

(n)
k

µ
(n)
max(γn(sk), L, ε)L

≥
p−1∑
k=t+1

Q
(n)
k−1 −Q

(n)
k

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

,

(49)

for all n ∈ N , which implies

p− 1− t ≥ max
n∈N

p−1∑
k=t+1

Q
(n)
k−1 −Q

(n)
k

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

= max
n∈N

[
Q

(n)
t −Q(n)

p−1

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

]
.

(50)

For the second part, we have for all n ∈ N

Q
(n)
0∑p

t=1 µ
(n)
max(γn(st), L, ε)L

(a)

≥
Q

(n)
p−1

µ
(n)
max(γn(sp), L, ε)L

(b)

≥
Q

(n)
p−1

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

,

(51)

where, for Q
(n)
p−1 6= 0, inequality (a) holds with

Q
(n)
0 =

∑p
t=1(Q

(n)
t−1 − Q

(n)
t) and

∑p−1
t=1 (Q

(n)
t−1 − Q

(n)
t) =∑p−1

t=1 µ
(n)
max(γn(st), L, ε)L. For Q(n)

p−1 = 0, inequality (a) is
satisfied by following that Q(n)

0 /
∑p
t=1 µ

(n)
max(γn(st), L, ε)L is

nonnegative. Additionally, inequality (b) holds with γn (sp) ≤
γ′n(s

(n)
max). From (51), we have

max
n∈N

[
Q

(n)
0∑p

t=1 µ
(n)
max(γn(st), L, ε)L

]

≥ max
n∈N

[
Q

(n)
p−1

µ
(n)
max(γ′n(s

(n)
max), L, ε)L

]
, (52)

which, added by (50), implies EI (Qt) ≤ E∗ (Qt) holds.

REFERENCES

[1] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[2] D. Gesbert, S. Kiani, A. Gjendemsjo, and G. Øien, “Adaptation, co-
ordination, and distributed resource allocation in interference-limited
wireless networks,” Proc. IEEE, vol. 95, no. 12, pp. 2393–2409, Dec.
2007.

[3] C. W. Tan, M. Chiang, and R. Srikant, “Fast algorithms and performance
bounds for sum rate maximization in wireless networks,” IEEE/ACM
Trans. Netw., vol. 21, no. 3, pp. 706–719, June 2013.

[4] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Found. Trends Netw., 2006.

[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[6] L. Tassiulas, “Dynamic link activation scheduling in multihop radio
networks with fixed or changing connectivity,” Ph.D. dissertation, Uni-
versity of Maryland, College Park, MD, USA, 1991.

[7] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Networks, vol. 52, no. 12, pp. 2292 – 2330, Aug. 2008.

[8] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization
in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp.
1452–1463, Aug. 2006.

[9] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commun.
Netw., vol. 3, no. 1, pp. 1–211, 2010.

[10] K. Kar, S. Sarkar, A. Ghavami, and X. Luo, “Delay guarantees for
throughput-optimal wireless link scheduling,” IEEE Trans. Autom. Con-
trol, vol. 57, no. 11, pp. 2906–2911, Nov. 2012.

[11] C. Boyaci and Y. Xia, “Delay analysis of the approximate maximum
weight scheduling in wireless networks,” in Proc. of the 9th Int. Wireless
Commun. and Mobile Computing Conf. (IWCMC), July 2013, pp. 41–46.

[12] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM
Trans. Netw., vol. 21, no. 1, pp. 41–54, Feb. 2013.

[13] D. Xue and E. Ekici, “Delay-guaranteed cross-layer scheduling in
multihop wireless networks,” IEEE/ACM Trans. Netw., vol. 21, no. 6,
pp. 1696–1707, Dec. 2013.

[14] L. B. Le, E. Modiano, and N. Shroff, “Optimal control of wireless
networks with finite buffers,” IEEE/ACM Trans. Netw., vol. 20, no. 4,
pp. 1316–1329, Aug. 2012.

[15] D. Xue and E. Ekici, “Power optimal control in multihop wireless
networks with finite buffers,” IEEE Trans. Veh. Technol., vol. 62, no. 3,
pp. 1329–1339, Mar. 2013.

[16] D. Xue, R. Murawski, and E. Ekici, “Capacity achieving distributed
scheduling with finite buffers,” IEEE/ACM Trans. Netw., vol. 23, no. 2,
pp. 519–532, Apr. 2015.

[17] M. J. Neely, “Opportunistic scheduling with worst case delay guarantees
in single and multi-hop networks,” in Proc. IEEE INFOCOM, San
Diego, CA, USA, Apr. 2011, pp. 1728–1736.

[18] Y. Xing and R. Chandramouli, “Stochastic learning solution for dis-
tributed discrete power control game in wireless data networks,”
IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 932–944, Aug. 2008.

[19] H. Zhang, L. Venturino, N. Prasad, P. Li, S. Rangarajan, and X. Wang,
“Weighted sum-rate maximization in multi-cell networks via coordinated
scheduling and discrete power control,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 6, pp. 1214–1224, June 2011.

[20] Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite
blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–
2359, May 2010.

[21] V. Y. Tan, “Asymptotic estimates in information theory with non-
vanishing error probabilities,” Found. Trends Commun. Inf. Theory,
vol. 11, no. 1-2, pp. 1–184, Sept. 2014.

[22] S. Russell, Artificial intelligence: A modern approach, 3rd ed. Prentice
Hall, 2009.

[23] H. Sato, “The capacity of the gaussian interference channel under strong
interference,” IEEE Trans. Inf. Theory, vol. 27, no. 6, pp. 786–788, Nov.
1981.

[24] S. Rini, E. Kurniawan, L. Ghaghanidze, and A. Goldsmith, “Energy
efficient cooperative strategies for relay-assisted downlink cellular sys-
tems,” IEEE J. Sel. Areas Commun., vol. 32, no. 11, pp. 2075–2089,
Nov. 2014.

[25] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[26] G. Bresler and D. Tse, “The two-user gaussian interference channel: a
deterministic view,” Eur. Trans. Telecommun., vol. 19, no. 4, pp. 333–
354, June 2008.

	I Introduction
	I-A Motivation
	I-B Related Work
	I-C Our Contributions
	I-D Paper Organization
	I-E Notation

	II System Model and Throughput Region
	III Problem Description: Rate Margin and Rate-Achieving Policy
	IV Derivation of Rate Margin and Rate-Achieving Policy
	IV-A Deriving Rate Margin
	IV-B Deriving Rate-Achieving Policy
	IV-C Solution for Problem 1

	V Numerical Results
	VI Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Proposition 5
	References

