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Abstract—Decentralized coded content caching for next gen-
eration cellular networks is studied. The contents are linearly
combined and cached in under-utilized caches of User Terminals
(UTs) and its throughput capacity is compared with decentral-
ized uncoded content caching. In both scenarios, we consider
multihop Device-to-Device (D2D) communications and the use of
femtocaches in the network. It is shown that decentralized coded
content caching can increase the network throughput capacity
compared to decentralized uncoded caching by reducing the
number of hops needed to deliver the desired content. Further,
the throughput capacity for Zipfian content request distribution
is computed and it is shown that the decentralized coded content
cache placement can increase the throughput capacity of cellular
networks by a factor of (log(n))2 where n is the number of nodes
served by a femtocache.

Index Terms—Cellular Networks, Caching, 5G Networks, D2D
communication, Decentralized Coded Caching

I. INTRODUCTION

RECENT advances in storage technology have made it
possible for many consumer and user electronic products

with Terabyte of storage capability. Many researchers are in-
vestigating the possibility of reusing this under-utilized storage
capability to cache popular contents in order to improve the
content delivery in cellular networks.

In recent years, the problem of caching has been exten-
sively studied. The fundamental limits of caching in broadcast
channels is studied in [23]. Other researchers [8], [14], [22],
[25] extended the results in [23] for different scenarios in
broadcast channels. The common features of all these studies
are the assumptions that contents are cached without any
coding and it is one hop communications. The authors in [10],
[11] analyzed the capacity of multihop networks but they still
assumed contents are cached without any coding, i.e., uncoded
caching. Further, these studies [10], [11] focus on wireless ad
hoc networks and there is no extension of the work to cellular
networks.

In this paper, we propose a radically different cache place-
ment approach. While in our proposed algorithm each UT
caches independently of all other UTs in a decentralized man-
ner, redundant caching is avoided by storing a random bitwise
XOR combination of popular contents. We call this method
decentralized coded content cache placement algorithm. This
approach increases the network throughput capacity and does
not suffer from over-caching problem of uncoded caching.

The proposed coded caching is fundamentally different from
the notion of coded caching in references like [8], [14], [22],
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[25]. In such papers, during the cache placement phase, only
uncoded contents or uncoded parts of contents are stored
in the caches. Later during the content delivery phase, the
base station broadcasts coded contents (linear combination of
multiple contents) to UTs such that they can decode their
files simultaneously. We instead propose that during the cache
placement phase, the contents are randomly combined and
cached in UTs. It is shown that this coded caching approach
performs near optimal in terms of the average number of hops
to retrieve a content and hence, it can significantly increase the
network throughput capacity. This makes the proposed coded
cache placement very suitable in practical systems where UTs
have small storage capability compared to the total number of
contents in the network.

Many studies propose to utilize high bandwidth D2D com-
munications for UTs. Current IEEE 802.11ad standard [1] and
the millimeter-wave proposal for future 5G networks [2], [27]
are examples of such high bandwidth D2D communications.
Authors in [17] extended the solution in [7] to deliver the
contents from the helpers to the UTs using multihop D2D com-
munications. However, [17] only considers uncoded caching.

We study our approach within the framework of future
cellular networks that use femtocaches (or helpers) [7]. In
such networks, several helpers with high storage capabilities
are deployed in each cell to create a distributed wireless
caching infrastructure. Each helper is serving a wireless ad hoc
network of UTs through multihop D2D communications. We
assume that helpers are connected to the base station through
a high bandwidth backhaul infrastructure. For simplicity of
our analysis, we assume that the contents have equal sizes.
Our results are valid for contents with different sizes since in
practice each content can be divided into equal chunks. We
prove that the proposed decentralized coded content caching
increases the capacity of cellular networks by a factor of
(log(n))2 compared to decentralized uncoded caching. As far
as we know, this is the first paper to propose the idea of
decentralized coded content caching and to prove that coded
cache placement can increase the network capacity.

The rest of the paper is organized as follows. In section
II, the related work is discussed and section III describes the
network model considered in this paper. Section IV focuses
on the computation of the throughput capacity of wireless
cellular networks operating under a decentralized uncoded
cache placement algorithm and section V reports the capac-
ity of coded cache placement algorithm. In section VI, we
compute the capacity of networks operating under a Zipfian
content request distribution. Simulation results are shown in
section VII. Section VIII compares this work with other coding
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schemes and the paper is concluded in section IX.

II. RELATED WORK

The original femtocache network model [7], [28] was fo-
cused on delivery of contents from femtocaches to UTs using
single hop communications. The authors in [17] considered
a femtocaching network with multihop D2D relaying of in-
formation from the helper to the UTs. A solution based on
index coding was proposed in which the helper utilizes the
side information in the UTs to create index codes which are
then multicasted to the UTs. The approach reduces bandwidth
utilization by grouping multiple unicast transmissions into
multicast transmission. While [17] proposed a solution for the
helpers to efficiently multicast the contents to the UTs, this
paper assumes that the helper only unicasts the contents to
the UTs. The UTs cache uncoded contents in [17] while in
this paper a decentralized coded content caching solution for
UTs is proposed.

Caching has been a subject of interest to many researchers.
The fundamental information theoretical limits of caching is
studied in [23] where the authors studied the problem of
caching in broadcast channels with a central uncoded cache
placement algorithm. The authors in [22] extended the work of
[23] to distributed uncoded cache placement approach and then
broadcasting coded contents during the delivery phase over the
shared link. They [22] proposed to break the contents into parts
and then the UTs randomly cache the content parts during
placement phase. In the delivery phase, coded contents are
broadcasted from the server such that the UTs can decode their
desired contents optimally. This paper proposes to randomly
and independently combine contents and store them during
cache placement phase. During the delivery phase, a linear
combination of encoded files is used to retrieve the requested
content. The notion of coded caching in [23] and all the
papers that followed [8], [14], [24], [25] refers to broadcasting
coded contents during the delivery phase and it is not a cache
placement technique. All prior works [8], [14], [22]–[25] are
fundamentally different from this paper as they are studying
the information theoretic bounds of caching of a single server
connected to users through a shared link while this paper
studies the scaling behavior of networks in which the UTs
retrieve requested contents through multiple hops.

Other papers [10]–[13] studied the problem of caching in
wireless and D2D networks. Authors in [12] discussed the
fundamental capacity of D2D communication. In [13], a single
hop D2D caching system is studied from an information
theoretic point of view. The authors in [10], [11] have studied
the capacity of multihop wireless D2D ad hoc networks with
uncoded caching in certain regimes. However, our work is
essentially different from [10], [11] in the sense that the UTs in
our current paper always request the contents from the helper
while in [10], [11], a wireless ad hoc network is considered.
Clearly, such network model requires higher overhead to locate
the route to the requested content while in our approach, the
request always is sent toward the helper. They find the capacity
for specific regimes where the cache size is relatively very
large compared to the number of UTs. In this paper, we prove

that even constant cache size provides considerable capacity
gain. Another major difference between our work and the
references [10]–[13] is the introduction of decentralized coded
content caching which has not been studied in these works.

Caching coded contents has been previously suggested [5],
[20] as an efficient caching technique for devices with small
storage capacity. In [20], the problem of index coding with
coded side information is studied and [5] proposed a coded
caching strategy for systems with small storage capacity. Our
results demonstrate that apart from the practical importance of
coded caching benefits for small storage devices, it can also
increase the throughput capacity of cellular networks.

An earlier version of this paper was presented at [16] which
did not discuss the congestion problem and Zipfian content
request distribution and details of some proofs are missing.

III. NETWORK MODEL

In this paper, we study the capacity of cellular networks
utilizing a distributed femtocaching infrastructure as proposed
in [7]. We assume several helpers with high storage capabilities
are deployed throughout the network to assist in delivering the
contents through multiple hops to UTs.

For capacity analysis, we use the deterministic routing
approach proposed in [19]. Without loss of generality, it is
assumed that the UTs are distributed on a square of area one
and the helper is located at the center serving n UTs which are
randomly distributed on a square. The square is divided into

many square-lets of side length c1s(n) where s(n) ,
√

log(n)
n .

It is proved [26] that this network is connected if nodes have a
transmission range of Θ (s(n)). When a UT requests a content
from the helper, the content is routed [19] from the helper to
the UT in a sequence of horizontal and vertical straight lines
through square-lets which connect the helper to the UT.

A Protocol Model is considered [30] for successful commu-
nication between UTs. According to this model, if the UT i is
located at Yi, then a transmission from i to UT j is successful
if |Yi − Yj | < s(n) and for any other UT k transmitting on
the same frequency band, |Yk − Yj | > (1 + ∆)s(n) for a
fixed guard zone factor ∆. A Time Division Multiple Access
(TDMA) scheme is assumed for the transmission between the
square-lets. With the assumption of Protocol Model, then the
square-lets with a distance of c2 = 2+∆

c1
square-lets apart can

transmit simultaneously without significant interference [19].
The results are computed in terms of scaling laws. We use

[18] the following order notations. Denote f(n) = O(g(n))
if there exist c > 0 and n0 > 0 such that f(n) ≤ cg(n)
for all n ≥ n0, f(n) = Ω(g(n)) if g(n) = O(f(n)), and
f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

The contents in the network are represented by a set
X = {x1, x2, . . . , xm} and the set of their indices by ξ =
{1, 2, . . . ,m}. Without loss of generality, we assume that the
contents with lower indices are more popular than the ones
with higher indices. The contents are categorized into two
groups of popular and less popular contents.

Definition 1. Define the set of h most popular contents as
Xh = {x1, x2, . . . , xh} ⊆ X where ξh = {1, 2, . . . , h} ⊆ ξ
denotes the set of indices of the most popular contents.
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The number of cached popular contents during the cache
placement phase, h, is decided by the cellular network de-
signer based on different parameters and specifications of the
network. The selection of h is critical in the frequency of
broadcast of unpopular contents by the base station. Typically
h is chosen large enough such that with a very low probability
contents are broadcasted from the base station. We assume
that m and h grow polynomially with n similar to [10], [11].
Since h is a small fraction of m, we assume that h is growing
with n in a much slower rate compared to m. Section VI
describes the necessary growth rate of h to guarantee that the
probability of requesting a content with index larger than h
decays polynomially with n with a decay rate of ρ. The results
are general in nature because by allowing h and m scale with
n with different values of exponents, all possible values of h
and m are considered.

The UTs have the same cache size of M and M < h1. There
is no restriction on the cache size M and M is a constant or
a function of n as in [10], [11]. During the cache placement
phase, UT caches are filled independently of other UTs.

Helpers are assumed to store all the popular contents in Xh.
The popular content requests are served by D2D multihop
communications and the less popular content requests are
served by the base station through the low bandwidth shared
link. The achievable throughput and network capacity are
defined as follows.

Definition 2. A network throughput of λ(n) contents per
second for each UT is achievable if there is a scheme for
scheduling transmissions in the D2D multihop network, such
that every popular content request from Xh by every UT at a
rate of λ(n) can be served by the D2D multihop network.

Definition 3. The throughput capacity of the network is lower
bounded by Ω(g(n)) contents per second if a deterministic
constant c3 > 0 exists such that

lim
n→∞

P[λ(n) = c3g(n) is achievable ] = 1. (1)

The network throughput capacity is upper bounded by
O(g(n)) contents per second if a deterministic constant c4 <
+∞ exists such that

lim inf
n→∞

P[λ(n) = c4g(n) is achievable ] < 1. (2)

The network throughput capacity is of order Θ(g(n)) contents
per second if it is lower bounded by Ω(g(n)) and upper
bounded by O(g(n)).

This paper assumes that the cache placement is already
done and we want to study the throughput capacity during
the content delivery phase. If the content can be decoded
using the cached information in the intermediate relaying UT
caches, then the UT does not need to receive the content from
the helper. However, if the content cannot be decoded using
the intermediate relays, then the content is received from the
helper.

To simplify the analysis, all contents are assumed of equal
size with each having Q bits. This is a reasonable assumption

1Otherwise, the maximum throughput capacity is trivially achievable by
caching all the popular contents in each UT.

since in practice the contents are divided into equal-sized
chunks. The minimum number of hops required to successfully
decode any content is denoted by Y with the average value of
Y taken over all possible content requests denoted by E[Y ]. If
the maximum achievable network throughput is λ(n), then the
network can deliver nλ(n) contents per second or equivalently,
UTs can transmit nλ(n)E[Y ]Q bits per second. There are
exactly 1

(c2c1s(n))2 square-lets at any time slot available for
transmission. The maximum number of bits that the network
can deliver is equal to W

(c2c1s(n))2 where W is the total
available bandwidth. Therefore,

λ(n) =
W

nE[Y ]Q(c2c1s(n))2
= Θ

(
1

E[Y ] log n

)
. (3)

Hence, to compute the maximum achievable network through-
put, it is enough [15] to find the average number of transmis-
sion hops needed to deliver the popular contents. Let’s denote
the requested content index by r, the probability of requesting
ithcontent by f(i) = P[r = i] and the cumulative probability
function by F (i) = P[r ≤ i]. This implies that

P[r ∈ ξh] = P[r ≤ h] = F (h). (4)

With uncoded caching, if a UT U requests a content, the
content is delivered to U either by the helper or by a relay that
caches the content and is located on the routing path between
U and the helper. With coded caching, if a group of coded
contents can be used to decode the content are available along
the routing path between U and the helper, then the helper
informs the UTs the decoding instructions. If sufficient coded
files do not exist in the caches of the UTs between U and
helper to decode the desired content, then the content is routed
to U from the helper. Since the helper only stores the popular
contents in ξh and the less popular contents are downloaded
from the base station, then the average number of traveled
D2D hops in the network can be written as

E[Y ] = E[Y |r ∈ ξh]P[r ∈ ξh] = E[Y |r ∈ ξh]F (h). (5)

For many web applications [3], [4], the content request
popularity follows Zipfian-like distributions. Although we
express our results in general form, we will later compute
explicit capacity results assuming a Zipfian content popularity
distribution. Our main result in proving the gain of coded
caching over uncoded caching is independent of the content
popularity distribution.

For Zipfian popularity distribution with parameter s, the
probability of requesting a content with popularity index i is

f(i) = P[r = i] =
i−s∑m
j=1 j

−s =
i−s

Hm,s
, (6)

where Hm,s represents the generalized harmonic number with
parameter s. The rest of the paper is dedicated to computing
the throughput capacity of both decentralized uncoded and
coded content caching including for special case of Zipfian
content popularity distribution.
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IV. DECENTRALIZED UNCODED CONTENT CACHING

This section focuses on throughput analysis in cellular
networks when each UT cache M popular contents drawn
uniformly at random independently of all other UTs. The
uniform distribution of cache placement is different from the
content request distribution by UTs. We will study the network
throughput assuming a fixed cache placement.

Lemma 1. If a content is requested independently and uni-
formly at random from h most popular contents in Xh, then
the average required number of requests to have at least one
copy of each content is equal to

Ecoupon collector = h

h∑
i=1

1

i
= hHh = Θ(h log(h)), (7)

where Hh = Θ(log(h)) is the hth harmonic number.

Proof: This is known as the coupon collector problem
[6].

Lemma 2. If each UT caches M different contents uniformly
at random during cache placement phase, then the average
number of UTs required to have at least one copy of each
content in the network is

hHh

d(h,M)
≤ Euncoded ≤ 1 +

hHh

d(h,M)
, (8)

where

d(h,M) ,
M−1∑
j=0

h

h− j
. (9)

Proof: This is the extension of the coupon collector
problem because the cached contents in each UT are different.
To compute the average number of UTs in this case, we start
from a classic coupon collector problem. Assume that contents
are chosen uniformly at random and as soon as M different
contents are found, they are cached in the first UT. Then the
same process starts over for the next UT and after finding M
different contents, the contents are placed in the UT’s cache.
Assume that this process is repeated until one copy of each
content is cached in at least one UT’s cache. Since this is a
geometric distribution, on average we need d(h,M) content
requests to fill up one UTs cache with M different contents.
Based on Lemma 1, after an average of hHh content requests,
we have requested one copy of all contents. Hence, the average
number of UTs required to have one copy of each content in

at least one UT cache is between
hHh

d(h,M)
and 1 +

hHh

d(h,M)
.

Theorem 1. If h log(h) = O(Ms(n)−1)2, then the average
number of transmission hops to receive the contents in un-
coded caching is equal to

E[Y |r ∈ ξh] = Θ

(
h log(h)

M

)
. (10)

2This condition means that the average number of hops needed to find the
content is less than the number of hops to the helper. If this condition does
not hold, then the content is sent by the helper to the requesting UT.

Proof: Lemma 2 shows that the average number of UTs
needed so that all of the requests can be satisfied is

hHh

d(h,M)
≤ E[Y |r ∈ ξh] ≤ 1 +

hHh

d(h,M)
. (11)

Therefore, for large values of h, the average number of UTs
required for finding any content scales as

E[Y |r ∈ ξh] = Θ

(
hHh

d(h,M)

)
. (12)

To find a bound for d(h,M), notice that the series in the right
hand side of equation (9) has M terms and the maximum and
minimum values are h

h−M+1 and 1 respectively. Therefore,
d(h,M) lower and upper bounds are

M ≤ d(h,M) ≤ Mh

h−M + 1
. (13)

Using equations (12) and (13) we can find upper and lower
bounds on E[Y |r ∈ ξh] as

E[Y |r ∈ ξh] = O

(
h log(h)

M

)
, (14)

E[Y |r ∈ ξh] = Ω

(
h log(h)(h−M + 1)

Mh

)
. (15)

Assuming h >> M , we have h−M + 1 ≈ h and the lower
bound in (15) becomes equal to the upper bound (14) which
proves the theorem.

Figure 1 shows that, each request can be satisfied by
another UT on average Θ(h log(h)/M) hops away provided
that h log(h) = O(Ms(n)−1). Theorem 1 and Equations (3)
and (5) can be used to prove the following corollary.

H UTl UTl−1 UT0UT2 UT1

Fig. 1. UT0 is requesting a content which is available in another UT l hops
away along the path toward helper H.

Corollary 1. The throughput capacity of the decentralized un-
coded content caching network with h log(h) = O(Ms(n)−1)
is upper bounded by

λuncoded(n) = O

(
M

h log(h)F (h) log n

)
. (16)

The throughput capacity in equation (16) is an upper bound
and cannot be achieved because of congestion. The achievable
throughput capacity will be computed in the following section.

V. DECENTRALIZED CODED CONTENT CACHING

The throughput capacity of decentralized coded content
caching is computed in this section. We propose a random
coding strategy and prove that the throughput capacity of the
network is increased compared to uncoded caching strategy.

Coded cache placement: In this paper, we assume the files
are binary and all operations are in GF(2). For each encoded
file, the helper randomly selects each one of the contents
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from the set Xh with probability 1
2 and then combines all

the selected contents (XOR) to create one encoded file. The
encoded cached content at the jth cache location of UT i can
be represented as

f ij =

h∑
k=1

aijk xk = vijX, (17)

where X = [x1 x2 . . . xh]T is a column vector containing all
popular contents of set Xh and vij is a uniformly distributed
encoding vector with binary elements and the summation is
carried over GF(2). For a UT with cache size M , the helper
creates M such encoded files. Therefore, each one of the
contents in Xh has been used on average M

2 times to create
the M coded files. We will represent the coded contents in
caches as vectors belonging to Fh2 .

Coded file reconstruction: The UT sends the request for a
content to the helper. The helper then decides to send the
file through a routing path as proposed in [19]. However,
it is highly possible that the content can be reconstructed
using a linear combination of some coded files in the caches
of UTs between the requesting UT and the helper along
the routing path. If these encoded files contain h linearly
independent encoded vectors, they can span the entire mes-
sage space. As depicted in Figure 2, UTi in the routing
path can contribute up to M linearly independent vectors
vi1,v

i
2, . . . ,v

i
M for decoding of a content. Therefore, UTi

which is at most q hops away from UT0 on the routing
path applies gain bij ∈ GF(2) to its j-th cache content and
then passes it down to the next hop closer to UT0. This
process of relaying and clever use of the caching contents
continues hop by hop until the file reaches the requesting UT.
After the requesting UT receives (

∑q
i=1

∑M
j=1 b

i
jv
i
j)X, it can

reconstruct its desired content by applying its own coding
gains to construct (

∑q
i=0

∑M
j=1 b

i
jv
i
j) = ek where ek is a

vector with all elements equal to zero except the kth element,
i.e., xk is reconstructed.

In this distributed decoding scheme, each relay UT adds
some encoded files to the received file and relay it to the
next hop. The coefficients bij ∈ {0, 1} are selected such that
the linear combinations of encoded files produce the desired
requested content. Each relay UT that participates in this
distributed decoding operation, receives M bits from helper in
order to combine its cached encoded files. The computational
complexity for each UT is modest since it only involves XOR
operation. The following lemma computes the average number
of vectors vij to create h linearly independent vectors.

H UTq UTq−1 UT0UT2 UT1

Fig. 2. Each requested content by UT0 is constructed by a linear combina-
tions of the contents in q+1 UTs caches on the path between the helper and
UT0.

Lemma 3. Let vij be a random vector belonging to Fh2
with binary elements with uniform distribution. The average

kl = 0 kl = 1 kl = 2 kl = 3 kl = h

1
2h

1− 1
2h

2
2h

1− 2
2h

22

2h

1− 22

2h

23

2h 1

Fig. 3. The state space of the Markov chain used in proof of Lemma 3.

number of vectors vij to span the whole space of Fh2 equals

Ev = h+

h∑
i=1

1

2i − 1
= h+ γ, (18)

where γ asymptotically approaches the Erdős–Borwein con-
stant (≈ 1.6067)3.

Proof: We use a Markov chain to model the problem.
The states of this Markov chain are equal to the dimension of
the space spanned by vectors4 v1, v2, . . . , vl. Let kl (kl ≤ h)
denote the dimension of the space spanned by these vectors.
Therefore, the Markov chain will have kl + 1 distinct states.
Assuming that we are in state kl, we want to find the
probability that adding a new vector will change the state to
kl+1. When we are in state kl, 2kl vectors out of 2h possible
vectors will not change the dimension while adding any one
of 2h − 2kl new vectors will change the dimension to kl + 1.
Therefore, the Markov chain can be represented by the one in
Figure 3. The state transition matrix for this Markov chain is

P =



1
2h

1− 1
2h

0 · · · 0 0
0 2

2h
1− 2

2h
· · · 0 0

0 0 22

2h
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1− 2h−2

2h
0

0 0 0 · · · 2h−1

2h
1− 2h−1

2h

0 0 0 · · · 0 1


,

which can be written in the form of a discrete phase-type
distribution as

P =

[
T T0

0 1

]
, (19)

where

T =



1
2h

1− 1
2h

0 · · · 0 0
0 2

2h
1− 2

2h
· · · 0 0

0 0 4
2h

· · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2h−2

2h
1− 2h−2

2h

0 0 0 · · · 0 2h−1

2h


,

(20)

3In our problem, h is large enough that we can approximate the summation
in (18) with asymptotic value.

4For the rest of lemma, we drop superscript from notations where it is
obvious.
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and

T0 =


0
...
0

1− 2h−1

2h

 . (21)

If e denotes all one vector of size h, since P is a probability
distribution we have

P

[
e
1

]
=

[
e
1

]
. (22)

This implies that Te+T0 = e, hence T0 = (I−T )e. Therefore,
it is easy to show by induction that the state transition matrix
in l steps can be written as

P l =

[
T l (I − T l)e
0 1

]
. (23)

This equation implies that if we define the absorption time5

as
ta = inf{l ≥ 1 | kl = h}, (24)

and if l is strictly less than the absorption time, the probability
of transitioning from state i to state j by having l new vectors
can be computed from T l. In other words,

Pli[kl = j, l < ta] = (T l)ij . (25)

Therefore, starting from state i, if tij denotes the number of
vectors (i.e., encoded files for our problem) to transition from
state j before absorption, tij can be written as

tij =

ta−1∑
l=0

1{kl = j}. (26)

The average value of tij is

E[tij ] = E

[
ta−1∑
l=0

1{kl = j}

]
=

ta−1∑
l=0

E [1{kl = j}] . (27)

Since E [1{kl = j}] = Pli(kl = j, l ≤ ta − 1), we have

E[tij ] =

ta−1∑
l=0

Pli(kl = j, l ≤ ta − 1)

a
=

∞∑
l=0

Pli(kl = j, l < ta)

b
=

∞∑
l=0

(T l)ij . (28)

Equality (a) is correct because the probability is nonzero up
to l = ta − 1 terms and (b) is derived from equation (25). If
we denote matrix U = (E[tij ])ij , by using equation (27) and
matrix algebra, we have

U =

∞∑
i=0

T i = (I − T )−1. (29)

5In our problem, absorption time is actually the total number of required
vectors in relays to span the h-dimensional space.

It is not difficult to verify that

U = (I − T )−1 =



2h

2h−1
2h−1

2h−1−1
2h−2

2h−2−1
· · · 2

0 2h−1

2h−1−1
2h−2

2h−2−1
· · · 2

0 0 2h−2

2h−2−1
· · · 2

...
...

...
. . .

...
0 0 0 · · · 2

 .

We are interested in computing the average number of vectors
(ta) to get to absorption starting from kl = 0. Hence,

Ev = E[ta] =
[
1 0 · · · 0

]
Ue

=
[
1 0 · · · 0

]
(I − T )−1e

=

h∑
i=1

2i

2i − 1
= h+

h∑
i=1

1

2i − 1
(30)

This proves the lemma.

Remark 1. The optimal number of linearly independent
vectors to span the vector space is h. Our decentralized coded
content caching strategy only requires h + γ coded contents
to span the vector space. Since γ is considerably smaller than
h, then our approach provides close to optimal performance
in terms of the minimum required number of caches.

Lemma 3 suggests that each UT’s request can be satisfied
in a smaller number of hops compared to an uncoded caching
strategy. This shows that our proposed decentralized coded
content caching scheme is capable of removing the inher-
ent over-caching problem in decentralized uncoded content
caching. The following theorem formalizes the result.

Theorem 2. If the number of popular contents is upper
bounded by Ms(n)−1 i.e. if h = O(Ms(n)−1), then our pro-
posed decentralized coded content caching technique reduces
the average number of hops for decoding a content to

E[Y |r ∈ ξh] = Θ

(
h

M

)
. (31)

Proof: Lemma 3 shows that in order to decode a requested
content, on average Θ(h) coded contents are required. Since
each UT has a cache of size M , Lemma 3 shows that on
average we need Θ( hM ) UTs (hops) to be able to decode the
desired content. Notice that each individual UT does not need
to separately send their coded content to the requesting UT.
Each UT combines its encoded files with a file that it receives
from previous hop and forwards it to the next hop.

Using the results of theorem 2 and equations (3) and (5), the
throughput capacity of coded caching can be upper bounded
as follows.

Corollary 2. If h = O(Ms(n)−1), the throughput capacity
of a decentralized coded content caching network is upper
bounded by

λcoded(n) = O

(
M

hF (h) log n

)
. (32)

The throughput in the right hand side of equation (32) may
not be achievable due to network congestion. In the following
we will find achievable network throughputs.
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Theorem 3. The decentralized uncoded and coded content
caching strategies have the order throughput capacity of

λuncoded(n) = Θ

(
1

F (h) log n

(
M

h log(h)

)2
)
, (33)

λcoded(n) = Θ

(
1

F (h) log n

(
M

h

)2
)
, (34)

respectively when h log(h) = O(Ms(n)−1).

Proof: Clearly, the square-lets that are closer to the helper
are more prone to traffic congestion. Hence, if the achievable
throughput capacity of the square-let that contains the helper is
computed, this capacity is also achievable in other square-lets.
This square-let must respond to all requests which are located
on average within a radius of Θ(h/M) hops away from it
(or Θ(h log(h)/M) hops in uncoded caching case). Therefore,
it should be able to serve on average Θ(log n(h/M)2) (or
Θ(log n(h log(h)/M)2) ) requests. The probability that the
popular contents are requested by UTs is F (h). Thus, the av-
erage number of popular content requests from this square-let
is Θ(log n(h/M)2F (h)) (or Θ(log n(h log(h)/M)2F (h))).

Therefore, for the case of coded caching, this square-let
should be able to deliver Θ(λcoded(n) (h/M)2F (h) log n) con-
tents per second and Θ(λuncoded(n)(h log(h)/M)2F (h) log n)
contents per second for uncoded caching. Since the net-
work has a bandwidth of W and we use TDMA
scheme, each square-let can only deliver Θ(1) contents
per second. Therefore, both λcoded(n)(h/M)2F (h) log n and
λuncoded(n) (h log(h)/M)2F (h) log n should scale as Θ(1).
This proves the theorem.

Since the throughput capacity in (33) (or (34)) is achievable
throughput and less than equation (16) (or (32)), then equation
(16) (or (32)) cannot be achieved and is only an upper bound.

Remark 2. Theorem 3 shows that coded caching increases
the throughput capacity of the multihop femtocaching D2D
network by a factor of Θ((log(h))2). Since h can be a function
of n (as will be shown in the next section), it can be concluded
that coded caching can increase the throughput capacity of the
network up to a factor of Θ((log n)2).

Remark 3. In general, majority of the contents can be
retrieved from other UTs. However, if a content cannot be
retrieved from UTs on the path between the helper and the
requesting UT, then the helper directly sends this content
through multihop communication to the requesting UT. This
can happen both in coded and uncoded caching schemes and
it happens when the requesting UT is very close to the helper
node.

VI. CAPACITY OF NETWORKS WITH ZIPFIAN CONTENT
REQUEST DISTRIBUTION

In this section, we compute the throughput capacity of
Zipfian distribution by utilizing the results in sections IV and
V. To proceed, we first prove the following lemma.

Lemma 4. Let µ and η be constants such that µ > η > 0 and
let a(n) and b(n) be two functions that scale as Θ(nη) and

Θ(nµ) respectively. Then, for s > 1 we have

b(n)∑
i=a(n)+1

i−s = Θ(n−η(s−1)). (35)

Proof: Let d(n) , b b(n)
a(n)c. We have,

b(n)∑
i=a(n)+1

i−s =

d(n)−1∑
j=1

(j+1)a(n)∑
i=ja(n)+1

i−s +

b(n)∑
i=d(n)a(n)+1

i−s

≤
d(n)−1∑
j=1

(j+1)a(n)∑
i=ja(n)+1

i−s. (36)

Since for ja(n) + 1 ≤ i ≤ (j + 1)a(n) we have ja(n) < i,
then

(j+1)a(n)∑
i=ja(n)+1

i−s <

(j+1)a(n)∑
i=ja(n)+1

(ja(n))−s = a(n)(ja(n))−s. (37)

Combining (36) and (37), we arrive at

b(n)∑
i=a(n)+1

i−s < a(n)
−s+1

d(n)−1∑
j=1

j−s < a(n)
−s+1

ζ(s), (38)

where ζ(s) =
∑∞
i=1 i

−s denotes the Reimann zeta function
and it is a constant value for s > 1. Therefore, the upper
bound is given by

b(n)∑
i=a(n)+1

i−s = O(a(n)
−s+1

) = O(n−η(s−1)). (39)

For the lower bound of this summation, we will use an integral
approximation to derive the results.

b(n)∑
i=a(n)+1

i−s ≥
∫ b(n)

a(n)+1

x−sdx

=
(a(n) + 1)−s+1 − b(n)

−s+1

s− 1
(40)

Since, a(n) scales as Θ(nη) and b(n) scales as Θ(nµ) and
µ > η, then the first term in the right hand side of equation
(40) is dominant and we have

b(n)∑
i=a(n)+1

i−s = Ω(n−η(s−1)). (41)

This proves the lemma.
As mentioned in section III, we assume that m is growing

polynomially with n. Lets assume that h which is a tiny
fraction of m also grows polynomially with n. We will now
find the necessary growth rate of h with n to guarantee
that the request probability for non-popular contents decays
polynomially with n with a decay rate of ρ > 0. In other
words, we want to find the necessary growth rate for hρ such
that for constants c6 and n1 and for any n > n1 we have

P[r > hρ] ≤ c6n−ρ. (42)
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Assuming that the necessary growth rate for hρ is τ , i.e.hρ=
Θ(nτ ), using Lemma 4, we have

m∑
i=hρ+1

i−s = Θ(n−τ(s−1)). (43)

This means that there exist constant c7 and n2 such that for
any n > n2 we have

m∑
i=hρ+1

i−s ≤ c7n−τ(s−1). (44)

Since Hm,s ≥ 1, we arrive at

P[r > hρ] = 1− F (hρ) =

m∑
i=hρ+1

i−s

Hm,s
≤ c7n−τ(s−1).

(45)

Therefore, to ensure that equation (42) remains valid, it is
enough to choose c7 equal to c6 and τ = ρ

s−1 . Hence, to
guarantee that (42) holds, hρ should scale as

hρ = Θ(n
ρ
s−1 ). (46)

Therefore, in a network where m grows polynomially with
n with a rate of α > ρ

s−1 , if hρ grows as (46), the
request probability for non-popular contents decays faster than
Θ(n−ρ). For the rest of this section, we assume that ρ is a
design parameter and the helper caches contents from among
the hρ = Θ(n

ρ
s−1 ) most popular contents.

Remark 4. If we choose hρ based on equation (46) such that it
satisfies hρ log(hρ) = O(Ms(n)−1), equations (33) and (34)
can be rewritten as

λρuncoded(n) = Θ

(
1

log n

(
M

hρ log(hρ)

)2
)
, (47)

λρcoded(n) = Θ

(
1

log n

(
M

hρ

)2
)
. (48)

Equations (47) and (48) show that coded caching can increase
the throughput capacity of Zipfian networks by a factor of
(log(hρ))

2 which from equation (46), it implies a factor of
(log n)2 increase in throughput capacity.

Theorem 4. For a network with non-heavy tailed Zipfian
content request distribution (s > 1) such that the probability
of content request from the base station decays polynomially
with n with a rate of ρ and hρ log(hρ) = O(Ms(n)−1), then
the following throughputs are achievable for the D2D network.

λZipf,ρ
uncoded(n) = Θ

(
n−

2ρ
s−1

(log n)3
M2

)
(49)

λZipf,ρ
coded (n) = Θ

(
n−

2ρ
s−1

log n
M2

)
(50)

Proof: As mentioned earlier, in a Zipfian content request
distribution with s > 1 to ensure that the probability of
requesting non-popular contents decays polynomially with n
with a rate of ρ, it is enough to choose hρ as in equation (46).
If we use this value for hρ and plug it in equations (47) and
(48), we will arrive at equations (49) and (50).

VII. SIMULATIONS

The simulation results compare the performance of pro-
posed decentralized coded content caching with decentralized
uncoded content caching. The helper serves n = 1000 UTs
in the network with Zipfian content request probability with
parameter s = 2. In this network, h = 100 highly popular
contents account for more than 99% of the total content
requests. Our simulations are carried over a cell with radius
2000 meters and for a D2D transmission range of 10 meters.
Figure 4 shows the simulation results comparing the average
number of hops required to decode the contents in both de-
centralized coded and uncoded content caching schemes. The
simulation results clearly demonstrate that decentralized coded
cache placement outperforms uncoded case particularly when
the cache size is small which is the usual operating regime. For
instance, with decentralized coded content caching, a cache
of size 20 only requires less than 5 hops while decentralized
uncoded content caching needs around 22 hops for successful
content retreival. This makes coded content caching much
more practical compared to uncoded content caching. Note that
capacity is inversely proportional to the average hop counts.
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Fig. 4. Simulation results for a helper serving 1000 UTs in a cell of radius
2000 meters with a D2D transmission range of 10 meters and a total of 100
popular contents.

As can be seen from Figure 4, for small cache sizes, coded
cache placement significantly reduces the number of hops
required to decode the contents. This property is important
for systems with small storage capability for UTs since large
number of hops can impose excessive delay and low quality
of service.

Figure 5 compares throughput capacity of coded content
caching with uncoded content caching. The content popularity
request distribution is Zipfian with parameter s = 2.5. The
results demonstrate significant capacity gain for decentralized
coded content cache placement. The parameter ρ = 0.75
suggests that h scales as Θ(

√
n) in this plot (equation (46)).

Notice that in this plot, m can scale as Θ(nα) where α > 0.5
can potentially be a large number. As can be seen from Figure
5, for only 100 UTs and a constant cache size, throughput ca-
pacity of coded caching is 20 times higher than the throughput
capacity of uncoded caching.

VIII. DISCUSSION

Decentralized coded caching uses uniform random vectors
in Fh2 . This approach can be considered as special case of
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Fig. 5. Network throughput capacity comparison of the decentralized coded
content caching and decentralized uncoded content caching schemes.

LT-codes [29]. In fact, coded caching is a random LT-code
with parameters (h,Ω(x)) where Ω(x) = 1

2h
(1 + x)h is the

generator polynomial [21]. LT-codes are a practical realization
of fountain codes which are proven to be very useful in erasure
channels and storage systems. The uniform random LT-code
in our paper is using all the possible random vectors in Fh2
for encoding. This allows the receiver UT to decode any
content by accessing h+ 1.6067 cache locations (on average)
which is very close to the optimal value of h. Using other
types of LT-codes, the decoding cost can be reduced but they
increase the number of required cache locations to decode
the contents and therefore decrease the capacity compared to
uniform random LT-codes. On the other hand, Raptor codes
[29] which are another class of fountain codes can be used
to perform the decoding in constant time with slightly fewer
number of required cache locations (greater than or equal to h).
However, if h is large, then the achieved throughput capacity
with raptor codes is very close to our proposed technique.

The proposed approach is similar to Random Linear Net-
work Coding (RLNC) [9]. In RLNC, each content is divided
into chunks and those chunks are randomly coded and dis-
tributed in the network. In order for the user to decode the
content, it must receive enough innovative packets such that
it can decode those chunks. In our approach, we linearly
combine different contents and only are interested in one of
the contents. Therefore, in our decoding approach, we don’t
transmit all encoded files to the receiver. Instead, the encoding
information is sent hop by hop from the helper to the UTs.
Each UT needs to use that encoding information to uniquely
combine its cached files with the received file from previous
hop and transmit it to the next hop for more processing. One
can use coded content caching to store files and then use
network coding to transfer these coded contents in the network
instead of simply transmitting the entire encoded files.

IX. CONCLUSIONS

In this paper, we studied the throughput capacity of cellular
networks with femtocaches using decentralized uncoded and
coded content cache placement for UTs. We proposed multi-
hop communications to take away some of the communication
burden from the helpers and base station and transfer it to UTs

with storage capability. We proved that multihop communica-
tion together with clever use of UT cache placement strategy
can increase the throughput capacity of these networks.

We studied the case of coded caching and proposed a near
optimal decentralized coded content cache placement scheme
which can increase the throughput capacity by a factor of
(log n)2 over decentralized uncoded content caching. Using
our proposed decentralized coded content cache placement
scheme, we computed the throughput capacity of cellular net-
works operating under a Zipfian content request distribution.

The results are achieved with minimal overhead in contrast
to works like [10], [11] where higher overhead is required
to find the content and route. In our proposed solution, all
of the requests are sent toward the helper which significantly
simplifies the routing problem. However, our solution requires
more computational complexity for the helpers as they should
compute the appropriate coding gains and send them to the
UTs along the routing path. Therefore, in our proposed solu-
tion, helpers not only require to have abundant storage capacity
but also considerable computational capability. In fact, we are
trading bandwidth with added computational complexity and
storage in our decentralized coded content caching scheme.
In our future work, we intend to minimize this computational
complexity for the helpers. Other important issues are related
to delay and security that this paper did not address and will
be part of future work.
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