Loading [a11y]/accessibility-menu.js
Design and Analysis of Transmit Beamforming for Millimeter Wave Base Station Discovery | IEEE Journals & Magazine | IEEE Xplore

Design and Analysis of Transmit Beamforming for Millimeter Wave Base Station Discovery


Abstract:

In this paper, we develop an analytical framework for the initial access (also known as base station (BS) discovery) in a millimeter-wave communication system and propose...Show More

Abstract:

In this paper, we develop an analytical framework for the initial access (also known as base station (BS) discovery) in a millimeter-wave communication system and propose an effective strategy for transmitting the reference signals (RSs) used for BS discovery. Specifically, by formulating the problem of BS discovery at user equipments (UEs) as hypothesis tests, we derive a detector based on the generalized likelihood ratio test and characterize the statistical behavior of the detector. The theoretical results obtained allow analysis of the impact of key system parameters on the performance of BS discovery, and show that RS transmission with narrow beams may not be helpful in improving the overall BS discovery performance due to the cost of spatial scanning. Using the method of large deviations, we identify the desirable beam pattern that minimizes the average miss-discovery probability of UEs within a targeted detectable region. We then propose to transmit the RS with sequential scanning, using a pre-designed codebook with narrow and/or wide beams to approximate the desirable patterns. The proposed design allows flexible choices of the codebook sizes and the associated beam widths to better approximate the desirable patterns. Numerical results demonstrate the effectiveness of the proposed method.
Published in: IEEE Transactions on Wireless Communications ( Volume: 16, Issue: 2, February 2017)
Page(s): 797 - 811
Date of Publication: 18 November 2016

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.