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Energy Efficient Resource Allocation

for Multiuser Relay Networks
Keshav Singh, Member, IEEE, Ankit Gupta, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper, a novel resource allocation algorithm
is investigated to maximize the energy efficiency (EE) in multiuser
decode-and-forward (DF) relay interference networks. The EE
optimization problem is formulated as the ratio of the spectrum
efficiency (SE) over the entire power consumption of the network
subject to total transmit power, subcarrier pairing and allocation
constraints. The formulated problem is a nonconvex fractional
mixed binary integer programming problem, i.e., NP-hard to
solve. Further, we resolve the convexity of the problem by a
series of convex transformations and propose an iterative EE
maximization (EEM) algorithm to jointly determine the optimal
subcarrier pairing at the relay, subcarrier allocation to each user
pair and power allocation to all source and the relay nodes.
Additionally, we derive an asymptotically optimal solution by
using the dual decomposition method. To gain more insights into
the obtained solutions, we further analyze the resource allocation
algorithm in a two-user case with interference-dominated and
noise-dominated regimes. In addition, a suboptimal algorithm
is investigated with reduced complexity at the cost of acceptable
performance degradation. Simulation results are used to evaluate
the performance of the proposed algorithms and demonstrate the
impacts of various network parameters on the attainable EE and
SE.

Index Terms—Energy efficiency, resource allocation, multiuser,
decode-and-forward, relay networks.

I. INTRODUCTION

The cooperative communication and small cell have

emerged as promising future technologies for improving the

network throughput, enlarging the transmission range of wire-

less networks and enhancing the link reliability [1]. The relay

networks can swiftly increase the spectral efficiency (SE) of

the network. However, the power dissipation, which is not

only due to transceiver but also due to complete radio access

network, increases significantly and are predicted to surge

rapidly and reach to the current level of the total electricity

consumption in the next 20-25 years [2]. To enhance the

energy efficiency (EE) of wireless networks is of paramount

importance in realizing 5G radio access solutions. Conse-

quently, it is urgent to investigate energy-aware architecture

and resource allocation techniques that prolong the network
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lifespan or provide significant energy savings under the um-

brella of the green communications [3].

Various relaying protocols have been proposed for coop-

erative networks, among which amplify-and-forward (AF),

decode-and-forward (DF) [1] and compress-and-forward (CF)

[4] are three common ones. In AF protocol, the relay re-

transmits the amplified signal to the destination, whereas

in the DF protocol, the relay first attempts to decode the

received signal and then forwards the re-encoded information

bits to the destination. In CF protocol, the relay compresses

the received signal and sends the compressed signal to the

destination. The AF protocol has an advantage over others

in terms of low implementation complexity. However, the DF

protocol performs better than other two protocols when the

channel quality of forward links, i.e., source-to-relay (SR)

links is good enough. Another advantage of the DF protocol

is that it is possible to use different channel coding schemes

at the source and the relay nodes and the transmission can

be optimized for both links. i.e., SR and relay-to-destination

(RD), separately. Moreover, multiuser interference channel

in a relay-assisted network becomes a major bottleneck for

improving the networks performance due to the increase in

the number of interfering sources. Exploiting multicarrier,

resource management, and beamforming techniques, users

in the network can share the resources and alleviate severe

interference generated from other users. Thus, in this paper,

we investigate resource allocation in multiuser DF relay inter-

ference network for enhancing the energy utilization among

users, and illustrate the impact of various network parameters

on the performance tradeoff between the EE and SE.

In recent years, the energy dissipation at battery-powered

mobile devices has increased rapidly due to the diverse

and ubiquitous wireless services. Unfortunately, we cannot

increase the battery capacity of devices because of the slow

advance of battery technology and size limit. Thus, the opti-

mization of power usage in multiuser relay networks becomes

a critical issue. However, the interference, energy consumption

and throughput can be controlled through optimization of

resource usage. The power dissipation in wireless networks are

generally classified into two main categories: dynamic power

dissipation and static power dissipation. The dynamic power

dissipation denotes the transmit power which is allocated in

response to the instantaneous channel conditions, whereas the

static power dissipation covers site cooling, signal processing

at each node and battery backup [5]. The EE performance

of multiuser multicarrier DF relay networks highly depends

on these two sources [6]. In this paper, we will focus on

maximizing the EE of the DF relay interference network by
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joint optimization of resource allocation with consideration of

the dynamic and the total static power consumption.

Recently, resource allocation schemes have been studied for

improving the performance of the DF relay networks [7]–[14].

In [7] and [8], the optimal power allocation policies were

investigated for rate maximization of the DF networks under

a sum power constraint, or individual power constraints at

the source and the relay nodes. However, the joint subcarrier

and power allocation was not addressed in [7] and [8]. To

further improve the network performance, the optimization

problem for joint subcarrier and power allocation with a total

network power constraint or with individual power constraints

for the source and the relay nodes were formulated in [9]–

[14]. The works in [9] studied the subcarrier pairing and power

allocation problem for AF and DF schemes under a total power

constraint and provided the optimality of ordered subcarrier

pairing (OSP) without diversity. To overcome the interference,

the authors in [10] jointly optimized power allocation, relay se-

lection and subcarrier assignment. The optimal subcarrier and

power allocation schemes were investigated in [11] for a two-

hop DF orthogonal frequency and code division multiplexing

(OFCDM) based relay network and analyzed the effects of

the channel state information (CSI) under the relay and

direct-link mode, whereas the subcarrier-pairing and power

allocation were optimized to maximize the weighted sum rate

for a point-to-point orthogonal frequency division multiplexing

(OFDM) with DF relay network in [12]. Under a perfect self-

interference cancellation, a joint resource allocation scheme

for orthogonal frequency division multiple access (OFDMA)

assisted multiuser two-way AF relay network was proposed

in [14] for maximizing the total sum rate. In [9]–[14], the

optimization of sum rate, power and subcarrier allocation in

high signal-to-noise ratio (SNR) region was the focal point

for achieving higher system throughput without concerning

the energy dissipation in the networks and balancing the sum

rate of different links. Many recent research works on energy

efficient resource allocation have been reported in [6], [15]–

[19]. The utility-based dynamic resource allocation algorithm

in relay-aided OFDMA system was investigated in [15] for

maximizing the average utility of all users with multiservice,

whereas the issue has not been studied from the viewpoint

of the EE. In [16], an energy efficient resource scheduling

solution for downlink transmission in multiuser OFDMA

networks was proposed under imperfect CSI, while the authors

in [17] extended the work of [16] for multicarrier under perfect

CSI knowledge and studied the joint subcarrier and power

allocation problem under a total power constraint for downlink

multiuser OFDMA system. The resource allocation problem

in [16] and [17] was optimized only in downlink scenario for

maximizing EE without considering the multiuser interference

in the network which could be a restraining factor in the

performance enhancement when the number of mobile users

increases. The only power allocation policies for enhancing

EE of AF networks were considered in [19]. However, the

optimal joint subcarrier and power allocation schemes for DF

relay networks will not be same when we consider the network

EE as objective function. Therefore, there is a need to revisit

the design of existing DF relay interference networks and

investigate the associated resource allocation policies in order

to improve the network EE. To the best of authors knowledge,

no work has been reported yet on EE maximization problem by

jointly considering subcarrier pairing permutation, subcarrier

allocation, and power optimization in multiuser DF relay

interference network, in which the multiuser interference could

be a restraining factor in the performance enhancement when

the number of users increases.

In this paper, we consider a joint resource allocation prob-

lem in multiuser multicarrier DF relay networks, where all

the nodes in the network are equipped with a single antenna

and users communicate with each other through a single half-

duplex DF relay node. The major contributions and ingenious

novelty of our work are summarized as follows. We formulate

EE maximization (EEM) problem in the context of a multiuser

DF relay interference network as a ratio of the total achievable

sum rate over the entire power consumption in the network

subject to a total transmit power constraint, which jointly

addresses both the subcarrier and power allocation. Unlike [9]–

[14], in this paper, the primary goal is to maximize EE. Since,

the original optimization problem is nonconvex fractional

mixed binary integer programming problem, i.e. NP-hard to

solve, we use successive convex approximation (SCA) [20]

and continuous convex relaxations to transform the problem

into tractable convex one. Next, the joint quasi-concavity of

EE problem on joint subcarrier and power allocation matrices

is derived and based on the optimization results, we obtain an

asymptotically optimal solution by using dual decomposition

method. Furthermore, to gain more insights into the optimal

solutions, we consider energy efficient joint resource alloca-

tion for two-user scenario and analyze the optimal resource

allocation algorithms in interference-dominated and noise-

dominated regimes. Besides, we also propose a suboptimal al-

gorithm with abridged complexity but acceptable performance

degradation. The complexity of the proposed algorithms is

further analyzed. The performance of the proposed algorithms

and the impact of various network parameters on the attainable

EE and SE are demonstrated through computer simulations.

The remainder of this paper is organized as follows. In

Section II, we describe the network model of multiuser re-

lay transmission, introduce the power dissipation model, and

formulate the joint resource allocation optimization problem.

Transformation of EE nonconvex optimization problem into

convex is illustrated in Section III. An energy efficient iterative

resource allocation algorithm for achieving the maximum EE

is presented in Section IV. We then analyze the resource

allocation policies for two-user cases under two different

operating regimes in Section V. The suboptimal resource allo-

cation algorithm is investigated in Section VI. The complexity

analysis of the proposed algorithms is presented in Section

VII, followed by the simulation results in Section VIII. Finally,

the conclusions are given in Section IX.

Notations: The following notation conventions are consid-

ered in this paper. Boldface lowercase and uppercase letters

(e.g., a and A) are used to represent a vector and a matrix,

respectively. The notations (·)† and E (·) denote the conjugate

transpose and expectation, respectively.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiuser DF relay network with Nsc sub-

carriers as illustrated in Fig.1, where N source nodes (Si,

for i = 1, ..., N ) concurrently transmit the signals to their

designated destination nodes (Di, for i = 1, ..., N ) by the

assistance of an intermediate relay node (R). It is assumed

that each node operates with only one antenna that does

not transmit and receive signals simultaneously. The SR and

RD channels on any subcarrier are assumed to be Rayleigh

frequency flat fading. Also assume that there is no direct

link between the source and the destination nodes due to the

path loss and large-scale fading. For simplicity, we assume

that the relay node has a perfect knowledge of CSI of each

link. Further, the relay node operates in a half-duplex mode

using DF scheme with two transmission phases. In the mul-

tiple access (MA) phase, all the source nodes(transmit users)

transmit their signals simultaneously to the relay node, while

the relay retransmits the re-encoded signals to the destination

nodes(receive users) in the broadcast (BC) phase; meanwhile

the source nodes remain inactive.
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Fig. 1. A dual-hop mulituser DF relay network.

In the MA phase, the received signal at the relay node on

the m-th subcarrier is given by

y
(m)
R =

N∑

i=1

√

P
(m)
S,i h

(m)
SiR

x
(m)
i + n

(m)
R , (1)

where h
(m)
SiR

is the channel coefficient from the i-th source

node to the relay node on the m-th subcarrier, x
(m)
i denotes

the transmitted signal from the i-th source node on the m-th

subcarrier with unit power, i.e., E

[∣
∣
∣x

(m)
i

∣
∣
∣

2
]

= 1, P
(m)
S,i repre-

sents the transmit power of the i-th source node on the m-th

subcarrier, and n
(m)
R denotes the zero-mean complex additive

white Gaussian noise (AWGN) with variance
(

σ
(m)
R

)2

. From

(1), the signal-to-interference plus noise ratio (SINR) at the

relay node for the i-th source node on the m-th subcarrier can

be given as

γ
(m)
SiR

=
P

(m)
S,i

∣
∣
∣h

(m)
SiR

∣
∣
∣

2

N∑

j=1,j 6=i

P
(m)
S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

+
(

σ
(m)
R

)2
, (2)

By assuming that the SR links are sufficiently good enough

to allow the sophisticated DF relay node for successfully

decoding the received signal, i.e., x̂
(n)
i = x

(n)
i . Thus, in the

BC phase, the received signal at the i-th destination node on

the n-th subcarrier can be represented as

y
(n)
D,i = h

(n)
RDi

N∑

i=1

√

P
(n)
R,i x̂

(n)
i + n

(n)
Di

;

= h
(n)
RDi

√

P
(n)
R,i x̂

(n)
i

︸ ︷︷ ︸

Desired signal

+ h
(n)
RDi

N∑

j=1,j 6=i

√

P
(n)
R,j x̂

(n)
j

︸ ︷︷ ︸

Interference

+n
(n)
Di
︸︷︷︸

Noise

, (3)

where x̂
(n)
i is the decoded signal, h

(n)
RDi

can be defined similar

to h
(m)
SiR

for RD links, P
(n)
R,i indicates the transmit power of

the relay node for the i-th source node on the n-th subcarrier,

and n
(n)
Di

can be describe similar to n
(m)
R but with variance

(

σ
(n)
Di

)2

. Using (3), the SINR at the i-th destination node on

the n-th subcarrier can be written as

γ
(n)
RDi

=
P

(n)
R,i

∣
∣
∣h

(n)
RDi

∣
∣
∣

2

N∑

j=1,j 6=i

P
(n)
R,j

∣
∣
∣h

(n)
RDi

∣
∣
∣

2

+
(

σ
(n)
Di

)2
, (4)

Define ρm,n ∈ {0, 1}, ∀m,n, as the subcarrier pairing

indicator variable, where ρm,n = 1 if the m-th subcarrier in the

MA phase is paired with the n-th subcarrier in the BC phase,

and ρm,n = 0 otherwise. Further, Φi,(m,n) ∈ {0, 1}, ∀i,m, n,

denotes the subcarrier allocation variable, where Φi,(m,n) = 1
if the (m,n)-th subcarrier pair is assigned to the the i-th user

pair while Φi,(m,n) = 0 for the rest of the user pairs.

From (2) and (4), the achievable sum rate for the i-th user

pair can be evaluated as

Ri =

Nsc∑

m=1

Nsc∑

n=1

1

2
ρm,nΦi,(m,n) log2

(

1 + min
{

γ
(m)
SiR

, γ
(n)
RDi

})

,

[bits/s/Hz] , (5)

where
1

2
comes from the fact that transmission consists of two

phases. Furthermore, the total sum rate of the network can be

given as

RTotal =
N∑

i=1

Ri

=

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

1

2
ρm,nΦi,(m,n) log2

(

1 + min
{

γ
(m)
SiR

, γ
(n)
RDi

})

,

[bits/s/Hz] , (6)
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B. Power dissipation model

The power dissipation plays a paramount role in design-

ing of an energy efficient devices. In general, the required

quality-of-service (QoS) can even be obtained by utilizing

significantly less amount of power. In the network, the power

is dissipated in two ways namely: 1) transmit power; and 2)
static power. The transmit power depends on the instantaneous

channel gains, whereas the static power includes the circuit and

processing powers utilized for signal detection and processing

performed by various circuitry components presented at the

relay and the destination nodes, and thus it directly depends on

the number of antennas [21] and remains constant for a node,

irrespective of its channel conditions. Therefore, the actual

power dissipation in the network after subcarrier pairing and

allocation can be written as

PTotal =
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)

(

P
(m)
S,i + P

(n)
R,i

)

︸ ︷︷ ︸

Dynamic Power

+ PSc + PRc
︸ ︷︷ ︸

Static Power,Pc>0

[Watts] , (7)

where
(

P
(m)
S,i + P

(n)
R,i

)

denotes the total dynamic power con-

sumed by the source and relay nodes for transmission between

i-th user pair on the m-th and n-th subcarriers, respectively,

whereas PSc and PRc are the circuit and processing powers

together denoting the static power (Pc > 0) of the network. It

is observed that static power in (7) remains constant, whereas

the transmit power differs.

C. Primal Problem Formulation

The main objective of this work is to maximize the EE

of the relay network by jointly optimizing the subcarrier and

power allocation. Using (6) and (7), the EE of the network is

stated as follows.

Definition 1: The EE of the network can be defined as a

ratio of the minimum achievable sum rate to the total power

consumption1:

ηEE

(

P
(m)
S ,P

(n)
R ,ρ,Φ

)

=
RTotal

(

P
(m)
S ,P

(n)
R ,ρ,Φ

)

PTotal

(

P
(m)
S ,P

(n)
R ,ρ,Φ

) , (8)

where P
(m)
S =

[

P
(m)
S,1 , P

(m)
S,2 , ..., P

(m)
S,N

]T

and P
(n)
R =

[

P
(n)
R,1, P

(n)
R,2, ..., P

(n)
R,N

]T

denote the source and relay power

vectors for the m-th and n-th subcarriers, respectively, whereas

ρ = {ρm,n} and Φ = {Φi,(m,n)} express matrices for the

subcarrier pairing and allocation, respectively. Thus, the primal

1Since the function ηEE

(

P
(m)
S

, P
(n)
R

,ρ,Φ
)

is nonconcave, the optimality
here is defined in a locally optimal sense.

optimization problem can be formulated as follows:

(P1) max
P
(m)
S

,P
(n)
R

,ρ,Φ

ηEE

(

P
(m)
S ,P

(n)
R ,ρ,Φ

)

s.t. (C.1)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)

(

P
(m)
S,i + P

(n)
R,i

)

≤Pmax;

(C.2)

Nsc∑

m=1

ρm,n = 1 , ∀ n ;

(C.3)

Nsc∑

n=1

ρm,n = 1 , ∀ m ; (9)

(C.4)

N∑

i=1

Φi,(m,n) = 1 , ∀ (m,n) ;

(C.5) ρm,n ∈ {0, 1}, Φi,(m,n) ∈ {0, 1} , ∀ i,m, n ;

(C.6) P
(m)
S,i ≥ 0, P

(n)
R,i ≥ 0 , ∀ i,m, n ,

where Pmax is the total transmit power budget of the network.

The constraint (C.1) limits the total transmit power utilized by

the source and the relay nodes and the constraints (C.2) and

(C.3) ensure that each subcarrier in the MA phase is paired

with one and only one subcarrier in the BC phase; and the

last constraint (C.4) guarantees that (m,n)-th subcarrier pair

is allocated to at least one user pair. According to [22], the

maximum sum rate in multiuser scenario can be achieved for

the case when each subcarrier is occupied by only one user

in each transmission. Therefore, each subcarrier is assigned

to only one user in the designed framework. The proposed

design framework can be easily extended to accommodate the

scenario where each subcarrier in the first hop can be paired

with one or more subcarriers in second hop and vice versa by

modifying the constraints (C.2) and (C.3) in (9) as follows:

(C.2) 1 ≤
Nsc∑

m=1

ρm,n ≤ Nsc , ∀ n ;

(C.3) 1 ≤
Nsc∑

n=1

ρm,n ≤ Nsc , ∀ m,

The new optimization problem can be solved in a similar way

as the problem (P1). However, the new optimization problem

requires the update of 2Nsc Lagrangian multipliers in the the

master problem, and thus exhibits high computational com-

plexity. Additionally, the Hungarian method cannot be directly

applied for solving the subcarrier pairing matrix ρ. Notice that

there is a tradeoff between performance and computational

complexity. Therefore, we consider the problem (P1) instead

of new optimization problem and investigate the EEM algo-

rithm to find the optimal resource allocation policy. In this

work, the relay node is equipped with only a single antenna,

however, the design framework can also be easily generalized

to the scenario with multiple antennas. In this case, the SR

and RD links become single input multiple output (SIMO) and

multiple input single output (MISO) channels, respectively. By

expertly designing receive and transmit beamforming weights

for the relay node, we can derive the SINR similar to (2) and

(4). In general, an increased number of antennas can offer
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better interference suppression capability, but it also requires

more static power consumption and skillful subcarrier pairing

and allocation, thus leading to EE performance tradeoff.

III. TRANSFORMATION OF NONCONVEX OPTIMIZATION

PROBLEM

The optimization problem (P1) is nonconvex in nature due

to the fractional form of the objective function in (9) and a

mixed binary integer nonlinear programming problem [23].

There is no standard technique to solve such optimization

problem. Therefore, in order to determine the optimal re-

source allocation policies we need to transform the original

optimization problem (9) into an analytically tractable form

which will be convex in nature. By introducing the parameter

Γ
(k)
i ≥ 0, k = 1, . . . , Nsc, the optimization problem (P1) can

be rewritten as

(P2)

max
P
(m)
S

,P
(n)
R

ρ,Φ,Γ(k)

N∑

i=1

Nsc∑

m=1
k=m

Nsc∑

n=1

1

2
ρm,nΦi,(m,n) log2

(

1 + Γ
(k)
i

)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1
ρm,nΦi,(m,n)

(

P
(m)
S,i + P

(n)
R,i

)

+ Pc

s.t. (C.1)− (C.6) ;

(C.7) γ
(k)
SiR
≥ Γ

(k)
i , ∀ k ; (10)

(C.8) γ
(k)
RDi
≥ Γ

(k)
i , ∀ k ,

where Γ
(k) = {Γ

(k)
i } is a auxiliary variable vector. The SINR

in MA and BC phases must be greater than or equal to this

auxiliary variable. Furthermore, by applying the change of

variables P̂
(m)
S,i = lnP

(m)
S,i , P̂

(n)
R,i = lnP

(n)
R,i and Γ̂

(k)
i = lnΓ

(k)
i ,

the problem (P2) can be equivalently written as

(P3)

max
P̂
(m)
S ,P̂

(n)
R

ρ,Φ,Γ̂
(k)

F
(

ρ,Φ,Γ̂
(m)

)

︷ ︸︸ ︷

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

1

2
ρm,nΦi,(m,n) log2

(

1 + eΓ̂
(m)
i

)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1
ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

+ Pc

s.t. (C.1)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

≤Pmax;

(C.2)− (C.5) ; (11)

(C.7)

N∑

j=1,j 6=i

eΓ̂
(k)
i

−P̂
(k)
S,i

+P̂
(k)
S,j

∣
∣
∣h

(k)
SjR

∣
∣
∣

2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2

+ eΓ̂
(k)
i

−P̂
(k)
S,i

(

σ
(k)
R

)2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2 ≤ 1 , ∀ i, k ;

(C.8)

N∑

j=1,j 6=i

eΓ̂
(k)
i

−P̂
(k)
R,i

+P̂
(k)
R,j

∣
∣
∣h

(k)
RDj

∣
∣
∣

2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2

+ eΓ̂
(k)
i

−P̂
(k)
R,i

(

σ
(k)
Di

)2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2 ≤ 1, ∀ i, k ,

Because of the fractional form, the objective function in (11) is

nonconvex. By utilizing the properties of nonlinear fractional

programming [24] which is useful to deal with concave-over-

convex fractional function in an iterative manner, we can

transform the objective function in a subtractive form. To

make the objective function concave-over-convex, we use SCA

method to impose a lower bound on F (ρ,Φ, Γ̂
(m)

) [6], [20];

it yields

F (ρ,Φ, Γ̂
(m)

)

≥
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

1

2
ρm,nΦi,(m,n)

(

α
(m)
i

ln(2)
Γ̂
(m)
i + β

(m)
i

)

;

, FLB

(

ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

, (12)

where α(m) =
[

α
(m)
1 , α

(m)
2 , ..., α

(m)
N

]

and β(m) =
[

β
(m)
1 , β

(m)
2 , ..., β

(m)
N

]

are the coefficients determined in the

following manner [6]

α
(m)
i =

ς
(m)
i

1 + ς
(m)
i

; (13)

β
(m)
i = log2

(

1 + ς
(m)
i

)

− α
(m)
i log2

(

ς
(m)
i

)

, (14)

for any ς
(m)
i > 0. Note that the equality in (12)

satisfied when α
(m)
i = Γ̂

(m)
i

/
1 + Γ̂

(m)
i and β

(m)
i =

log2

(

1 + Γ̂
(m)
i

)

− α
(m)
i log2

(

Γ̂
(m)
i

)

, and the equality holds

only if
(

α
(m)
i , β

(m)
i

)

= (1, 0) and Γ̂
(m)
i → ∞. After substi-

tuting (12) in (P3), the problem in (11) can be reformulated

as

(P4)

max
P̂
(m)
S ,P̂

(n)
R

ρ,Φ,Γ̂
(m)

FLB

(

ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1
ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

+ Pc

s.t. (C.1)− (C.5) , (C.7)& (C.8) , (15)

Since the objective function in (15) is in a form of concave-

over-convex for fixed subcarrier pairing and allocation, we can

apply nonlinear programming method [24] to transform the

problem into a convex optimization problem as

(P5)
max

P̂
(m)
S ,P̂

(n)
R ,ρ,Φ,Γ̂

(m)
FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

s.t. (C.1)− (C.5) , (C.7)& (C.8) , (16)

where FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

= FLB −

Ψ

(
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1
ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

+ Pc

)

and Ψ

is a non-negative parameter and works as a penalty factor for

the resource utilization. Note that when Ψ → 0, it implies

that the penalty to use the resources is almost zero, and the

resource allocation problem (16) is degenerated to a sum-

rate maximization problem. However, for another extreme case

where Ψ→∞, no resource allocation policy is good enough

to maximize the objective function in (16).

Lemma 1: For fixed subcarrier pairing and allocation

(ρ,Φ), the lower bound in the problem (P5)
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FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

is concavified

by the change of variables P̂
(m)
S,i = lnP

(m)
S,i , P̂

(n)
R,i = lnP

(n)
R,i

and Γ̂
(m)
i = lnΓ

(m)
i , for any given α

(m)
i , β

(m)
i and Ψ.

Proof: After substituting P
(m)
S,i = eP̂

(m)
S,i , P

(n)
R,i =

eP̂
(n)
R,i and Γ(m) = eΓ̂

(m)

in (P2), the objective function

FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

in (P5) can be

written as

FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

=

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

1

2
ρm,nΦi,(m,n)

(

α
(m)
i

2
Γ̂
(m)
i + β

(m)
i

)

(17)

−Ψ

(
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

+ Pc

)

,

Since, α
(m)
i ≥ 0, β

(m)
i ≥ 0 and Ψ ≥ 0, the objective function

(17) forms the summation of the concave terms and linear

terms (i.e. minus-exp functions) for given subcarrier pairing

and allocation (ρ,Φ), hence the objective function FLB is

concavified by nature.

We can solve the problem (P5) in two steps, firstly the

power allocation to each source and relay nodes is decoupled

with the problem of subcarrier pairing and allocation. Next,

the subcarrier allocation to each user pair is decoupled with

the problem of subcarrier pairing. In case of equal subcarrier

allocation and direct pairing, the total number of subcarriers

are equally divided between users and first subcarrier in SR
phase is paired to first one in RD phase, respectively. Further,

the subcarrier pairing and allocation matrices are defined as

ρ = INsc and Φ = blkdiag (σ1, ...,σN ), respectively, where

σi = I⌊Nsc/N⌋, ∀ i = 1, ..., N . For the case of N = 2 and

Nsc = 2, we can find γ
(m)
SiR

, and γ
(n)
RDi

, m,n = 1, 2, using

(2) and (4), and the maximum achievable sum rate RA can

be computed using (6) for one-to-one mapping and user wise

allocation. While in case of the optimal subcarrier pairing and

allocation, the subcarriers are optimally allocated and paired

using (29) − (31), respectively, and the achievable sum rate

RB is computed.

Now, we have two cases for optimally allocated powers

limited by Pmax, the sum rate RA is calculated for fixed type

of subcarrier pairing, this leads to undesired interference and

noise, thereby leading to degradation of the sum rate RA, while

with the optimal power allocation, the subcarrier allocation

and pairing is also done optimally and thus we can notice that

RB > RA. According to [25], if RB exceeds RA, it is proven

that we can easily treat power allocation, and subcarrier pairing

and allocation as two separate problems, even for large number

of subcarriers. In a similar manner, we can also prove the

decoupling of subcarrier allocation and pairing for optimally

calculated power, wherein the sum rate with improper mapping

of subcarriers in two-hops significantly degrades as compare

to that of the sum rate with optimally allocated subcarrier

pairing and allocation, thereby, using [25], we can prove the

decoupling of subcarrier pairing and allocation.

IV. EE RESOURCE ALLOCATION ALGORITHM

The maximization problem (P1) is transformed into a mixed

binary integer nonlinear programming problem (P5), and thus

an exhaustive search over all variables is required to find the

global optimal solution. Consequently, the computational com-

plexity becomes very high. However, the duality gaps between

the primal problem and the dual problem in a multicarrier

system approaches to zero when the number of subcarriers

goes to infinity [26], [27]. The definition of duality gap and

related theorem are given as follows:

Definition 2 (Duality Gap): The difference in the optimal

solution of the optimization problem (P5), given by OP ⋆,

and its dual optimization problem in (20), given by DP ⋆,

is defined as duality gap, expressed as DG = OP ⋆ −DP ⋆.

Theorem 1: For sufficiently large number of subcarriers

Nsc, the duality gap DG tends to zero, i.e., DG = OP ⋆ −
DP ⋆ ≈ 0.

Proof: Please see Appendix A.

Thus, we focus on solving the dual problem [23] instead of

the original problem and propose an iterative EEM algorithm

to find the optimal resource allocation policies that can maxi-

mize its lower bound under fixed coefficients α
(m)
i and β

(m)
i ,

followed by an update of these two coefficients that guarantees

a monotonic increase in the lower bound performance.

A. Dual Problem Formulation

For fixed subcarrier pairing and allocation variables {ρm,n}
and {Φi,(m,n)}, the optimization problem (P5) is a convex

problem with given lower bound coefficients {α
(m)
i } and

{β
(m)
i }. Thus the Lagrangian function for the relaxed opti-

mization problem (P5) is expressed in (18), as shown on the

top of the next page, where λ, µ(k) =
[

µ
(k)
1 , µ

(k)
2 , ..., µ

(k)
N

]T

and ν(k) =
[

ν
(k)
1 , ν

(k)
2 , ..., ν

(k)
N

]T

are Lagrangian multipli-

ers associated with the constraints (C.1), (C.7) and (C.8),
respectively. The Lagrangian dual function can therefore be

expressed as

g
(

λ,µ(k),ν(k)
)

, max
P̂
(m)
S ,P̂

(n)
R

ρ,Φ,Γ̂
(m)

L
(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

, λ,µ(k),ν(k)
)

s.t. (C.2)− (C.5) , (19)

Then the dual optimization problem can be written as

min
λ,µ(k),ν(k)≥0

g
(

λ,µ(k),ν(k)
)

=

min
λ,µ(k)≥0

ν
(k)≥0

max
P̂
(m)
S ,P̂

(n)
R

ρ,Φ,Γ̂
(m)

L
(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

, λ,µ(k),ν(k)
)

,

s.t. (C.2)− (C.5) , (20)

The dual problem in (20) can be decomposed into a master

problem and a subproblem, and it can be solved in an iterative

manner until the convergence is reached.
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L
(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

, λ,µ(k),ν(k)
)

= FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

− λ

(
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

− Pmax

)

−
N∑

i=1

Nsc∑

k=1

µ
(k)
i






N∑

j=1,j 6=i

eΓ̂
(k)
i

−P̂
(k)
S,i

+P̂
(k)
S,j

∣
∣
∣h

(k)
SjR

∣
∣
∣

2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2 + eΓ̂
(k)
i

−P̂
(k)
S,i

(

σ
(k)
R

)2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2 − 1




 (18)

−
N∑

i=1

Nsc∑

k=1

ν
(k)
i






N∑

j=1,j 6=i

eΓ̂
(k)
i

−P̂
(k)
R,i

+P̂
(k)
R,j

∣
∣
∣h

(k)
RDj

∣
∣
∣

2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2 + eΓ̂
(k)
i

−P̂
(k)
R,i

(

σ
(k)
Di

)2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2 − 1






∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Nsc∑

m=1
ρm,n = 1 , ∀n;

Nsc∑

n=1
ρm,n = 1 , ∀m;

N∑

i=1

Φi,(m,n) = 1 , ∀(m,n),

B. Solution of the Subproblem

From Lemma 1, the objective function in (9) is concave in
(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)
)

, and thus the optimal solution can

be found by solving the Lagrange dual domain because the

duality gap between (16) and the dual problem is nearly zero

for large number of Nsc, in two steps for fixed Lagrangian

multipliers: 1) by using KKT [23] conditions which are first-

order imperative and sufficient conditions for optimality for

convex optimization problem, we can find the optimal power

allocation for each source and the relay nodes for given

subcarrier pairing ρ and subcarrier allocation Φ; and 2) find

the optimal ρ and Φ for the obtained power allocation in the

first step.

By taking the partial derivative of (18) with respect to

P
(m)
S,i , P

(n)
R,i , Γ

(m)
i and equating the results to zero, we get

the update equation for the power allocation and Γ
(m)
i at

the (t + 1)-th iteration as in (21)-(23), where ϕ =
1

2
,

̟ =
1

2 ln 2
and [·]+ = max {0, ·}. Since the m-th sub-

carrier is allocated to the i-th source node, the transmit

power allocated on the m-th subcarrier by other transmit

nodes is almost close to zero, and thus under assumption

of eΓ̂
(m)
i

(
∑N

j=1,j 6=i e
P̂

(m)
S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

+
(

σ
(m)
R

)2
)

≈ ∆S and

eΓ̂
(n)
i

(
∑N

j=1,j 6=i e
P̂

(n)
R,j

∣
∣
∣h

(n)
RDj

∣
∣
∣

2

+
(

σ
(n)
Di

)2
)

≈∆R, the opti-

mal power of the i−th source and the relay nodes at the

(t+1)-th iteration can be updated for given subcarrier paring

{ρm,n = 1} and allocation {Φi,(m,n) = 1} as follows:

P̂
(m)
S,i (t+ 1) =




ϕ




ln

µ
(m)
i ∆S

(Ψ + λ)
∣
∣
∣h

(m)
SiR

∣
∣
∣

2











+

; (24)

P̂
(n)
R,i (t+ 1) =




ϕ




ln

ν
(n)
i ∆R

(Ψ + λ)
∣
∣
∣h

(n)
RDi

∣
∣
∣

2











+

, (25)

The optimal power allocations in (24) and (25) are indeed

customized water-filling solutions and it can be observed that

the water levels are not only determined by the penalty of

allocating power λ, but also on the current penalty of the

power utilization to the EE given by Ψ. As can be seen from

(25), the relay node also follows similar power allocation

policy for the i-th source node’s signal in the second hop.

However, for without subcarrier pairing and allocation, the

power allocation policy needs to consider the interference

channel power generated from other source nodes towards the

i-th source node.

To derive the optimal subcarrier pairing and allocation, we

substitute P
(m)⋆

S,i , P
(n)⋆

R,i , and Γ
(m)⋆

i into the (18), the dual

problem g
(
λ,µ(k),ν(k)

)
becomes

g
(

λ,µ(k),ν(k)
)

= max
ρ,Φ

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)Bi,(m,n)

+ C
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

, λ,µ(k),ν(k)
)

s.t. (C.1)− (C.5) , (26)

where Bi,(m,n) and C are defined as

Bi,(m,n) =
(

̟α
(m)
i Γ̂

(m)⋆

i + ϕβ
(m)
i

)

−(Ψ + λ)
(

eP̂
(m)⋆

S,i + eP̂
(n)⋆

R,i

)

; (27)

C
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

, λ,µ(k),ν(k)
)

= −ΨPc + λPmax

−
N∑

i=1

Nsc∑

k=1

µ
(k)
i






N∑

j=1,j 6=i

eΓ̂
(k)⋆

i
−P̂

(k)⋆

S,i
+P̂

(k)⋆

S,j

∣
∣
∣h

(k)
SjR

∣
∣
∣

2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2

+eΓ̂
(k)⋆

i
−P̂

(k)⋆

S,i

(

σ
(k)
R

)2

∣
∣
∣h

(k)
SiR

∣
∣
∣

2 − 1






−
N∑

i=1

Nsc∑

k=1

ν
(k)
i






N∑

j=1,j 6=i

eΓ̂
(k)⋆

i
−P̂

(k)⋆

R,i
+P̂

(k)⋆

R,j

∣
∣
∣h

(k)
RDj

∣
∣
∣

2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2

+eΓ̂
(k)⋆

i
−P̂

(k)⋆

R,i

(

σ
(k)
Di

)2

∣
∣
∣h

(k)
RDi

∣
∣
∣

2 − 1




 , (28)
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P̂
(m)
S,i (t+ 1) =



ϕ



ln



µ
(m)
i eΓ̂

(m)
i





N∑

j=1,j 6=i

eP̂
(m)
S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

+
(

σ
(m)
R

)2







− ln

(
Nsc∑

n=1

ρm,nΦi,(m,n) (Ψ + λ)
∣
∣
∣h

(m)
SiR

∣
∣
∣

2
)







+

;

(21)

P̂
(n)
R,i (t+ 1) =



ϕ



ln



ν
(n)
i eΓ̂

(n)
i





N∑

j=1,j 6=i

eP̂
(n)
R,j

∣
∣
∣h

(n)
RDj

∣
∣
∣

2

+
(

σ
(n)
Di

)2







− ln

(
Nsc∑

m=1

ρm,nΦi,(m,n) (Ψ + λ)
∣
∣
∣h

(n)
RDi

∣
∣
∣

2
)







+

;

(22)

Γ̂
(m)
i (t+ 1) =

[

ln

(
Nsc∑

n=1

ρm,nΦi,(m,n)̟α
(m)
i

)

− ln

(

µ
(m)
i e−P̂

(m)
S,i

∣
∣
∣h

(m)
SiR

∣
∣
∣

2





N∑

j 6=i

eP̂
(m)
S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

+ σ
(m)
R

2





+
ν
(m)
i e−P̂

(m)
R,i

∣
∣
∣h

(m)
RDi

∣
∣
∣

2





N∑

j 6=i

eP̃
(m)
R,j

∣
∣
∣h

(m)
RDj

∣
∣
∣

2

+ σ
(m)
Di

2





)]+

, (23)

It can be observed that only Bi,(m,n) depends

on the subcarrier pairing and allocation, whereas

C
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

, λ,µ(k),ν(k)
)

does not depend

on any subcarrier pairing and allocation. Furthermore, the

first term of Bi,(m,n) indicates the sum rate achieved by the

i-th user pair on the (m,n)-th subcarrier pairing, while the

second term works as penalty for power utilization.

For given subcarrier pairing matrix ρ and the optimal power

allocation
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

)

for fixed coefficients α
(m)
i

and β
(m)
i , the optimal subcarrier allocation can be obtained

by solving the following problem:

g
(

λ,µ(k),ν(k)
)

= max
Φ

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρ⋆m,nΦi,(m,n)Bi,(m,n)

+ C
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

, λ,µ(k),ν(k)
)

s.t. (C.1) & (C.4) , (29)

In order to determine the optimal solution of (29), the i-th
user pair can be selected that maximizes Bi,(m,n) for a given

subcarrier pairing (m,n), i.e.,

Φ⋆
i,(m,n) =

{

1, for i = argmaxi Bi,(m,n) ,

0, otherwise
(30)

Lastly, to find the optimal subcarrier pairing ρ⋆, we substi-

tute (30) into (26), which yields

g
(

λ,µ(k),ν(k)
)

= max
ρ

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦ
⋆
i,(m,n)Bi⋆,(m,n)

+ C
(

P̂
(m)⋆

S , P̂
(n)⋆

R , Γ̂
(m)⋆

, λ,µ(k),ν(k)
)

s.t. (C.1)− (C.3) , (31)

where Bi⋆,(m,n) = maxi Bi,(m,n) ∀ (m,n). The optimization

problem (31) can be efficiently solved by using the standard

Hungarian method [28] to find the optimal ρ⋆.

C. Master problem Solution: Update of Lagrangian Multipli-

ers

By utilizing the subgradient method, the dual variables λ,

µ(k) and ν(k) can be iteratively updated as in (32)-(34),

where ε1, ε2 and ε3 are positive step sizes. The optimal

resource allocation
(

P̂
(m)⋆

S , P̂
(n)⋆

R ,ρ⋆,Φ⋆
)

of the problem

(P5) can be found through the iterative procedure of (21)-

(23), (30), (31), and (32)-(34) for given coefficients α
(m)
i and

β
(m)
i and the penalty factor Ψ. The lower bound performance

FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ,α(m),β(m)
)

depends on the two co-

efficients α(m) and β(m), and thus by carefully choosing the

values of these two coefficients, the lower bound performance

of FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ,α(m),β(m)
)

depends on the two

coefficients α(m) and β(m) can be enhanced. Next, we will

provide the theorem regarding the update of α(m) and β(m).

Theorem 2: If the coefficients α
(m)
i (t) and β

(m)
i (t) are

updated as

α
(m)
i (t+ 1) =

Γ
(m)
i (t)

1 + Γ
(m)
i (t)

; (35)

β
(m)
i (t+ 1) = log2

(

1 + Γ
(m)
i (t)

)

− α
(m)
i (t+ 1) log2

(

Γ
(m)
i (t+ 1)

)

, (36)

for the optimal solution
(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t),

Γ̂
(m)⋆

(t)
)

of the problem (P5) at the t-th inner iteration, then

the optimal value of FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ,α(m),β(m)
)

in

(16) is monotonically increased. Also, after the convergence

of the coefficients α
(m)
i (t) and β

(m)
i (t), the optimal solution

for (P5) behaves as the local maximizer for the problem (P1).

Proof: The proof is relegated in Appendix B.

The penalty factor Ψ which is defined as the ratio of

the achievable sum rate to the total power consumption in

the network works as network EE. For a given Ψ, we first

introduce an iterative EEM algorithm which is summarized
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λ(t+ 1)=

[

λ(t) + ε1(t)

(
N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρ⋆m,nΦ
⋆
i,(m,n)

(

eP̂
(m)⋆

S,i + eP̂
(n)⋆

R,i

)

− Pmax

)]+

; (32)

µ
(m)
i (t+ 1)=




µ

(m)
i (t) + ε2(t)






N∑

j=1,j 6=i

eΓ̂
(m)⋆

i
−P̂

(m)⋆

S,i
+P̂

(m)⋆

S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

∣
∣
∣h

(m)
SiR

∣
∣
∣

2 + eΓ̂
(m)⋆

i
−P̂

(m)⋆

S,i

(

σ
(m)
R

)2

∣
∣
∣h

(m)
SiR

∣
∣
∣

2 − 1











+

; (33)

ν
(n)
i (t+ 1)=




ν

(n)
i (t) + ε3(t)






N∑

j=1,j 6=i

eΓ̂
(n)⋆

i
−P̂

(n)⋆

R,i
+P̂

(n)⋆

R,j

∣
∣
∣h

(n)
RDj

∣
∣
∣

2

∣
∣
∣h

(n)
RDi

∣
∣
∣

2 + eΓ̂
(n)⋆

i
−P̂

(n)⋆

R,i

(

σ
(n)
Di

)2

∣
∣
∣h

(n)
RDi

∣
∣
∣

2 − 1











+

, (34)

in Algorithm 1. We initialize the maximum number of outer

iteration Imax1 with the iteration counter l = 0 and the

penalty factor Ψ(l) = 0.001. Then, the maximum number of

inner iteration Imax2 is initialized with the iteration counter

t = 0 and the step sizes ǫk = 0.001, for k ∈ {1, 2, 3}.
Next, the subcarrier pairing ρ and allocation Φ are initialized

randomly with the entity 0 or 1 such that
Nsc∑

m=1
ρm,n =

1 , ∀ n ,
Nsc∑

n=1
ρm,n = 1 , ∀ m,

N∑

i=1

Φi,(m,n) = 1, ∀ (m,n).

The lower bound coefficients are initialized as α
(m)
i (t) = 1

and β
(m)
i (t) = 0, respectively. For given coefficients, sub-

carrier pairing ρ and subcarrier allocation Φ, the optimal

power allocation policy
(

P̂
(m)

S,i (t), P̂
(n)

R,i(t), Γ̂
(m)

i (t)
)

can be

updated using (21), (22) and (23), respectively. The sub-

carrier allocation Φ(t) is updated using (30) for obtained
(

P̂
(m)

S,i (t), P̂
(n)

R,i(t), Γ̂
(m)

i (t)
)

and given subcarrier paring ρ,

while we apply (31) to update the subcarrier pairing ρ(t) after

obtaining
(

P̂
(m)

S,i (t), P̂
(n)

R,i(t), Γ̂
(m)

i (t)
)

and Φ(t). We update

the dual variables λ,µ(k) and ν(k) using (32)–(34), respec-

tively. The inner procedure is repeated until convergence or

t ≤ Imax2 . Moreover, in the next step, the network penalty

factor Ψ(l + 1) is updated using (39) for updated optimal

resource allocation and this outer procedure is repeated until

convergence or the iteration counter l ≤ Imax1 . As a result

of the local optimality of the proposed penalty-based Ψ
resource allocation algorithm, the optimal penalty Ψ⋆ obtained

in this algorithm can only guarantee that the locally optimum

resource allocation in (P1) with respect to Ψ⋆ is a local

maximizer of the EE formula in (8). In fact, the EE formula is

a nonconcave function in terms of P
(m)
S , P

(n)
R , ρ and Φ, and

it is in general very difficult to find the optimal penalty that

can achieve the globally maximum EE.

Sometimes, it is desirable to consider individual node power

(INP) constraints in wireless networks, especially when each

node in the network is operated on a different power budget.

Our proposed design framework can be easily extended to

accommodate this scenario by replacing the constraint (C.1)
in (9) with the following transmit power constraints:

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)P
(n)
S,i ≤ Pi,max, i = 1, . . . , N ;

Algorithm 1 Iterative EEM Algorithm

1: Set the maximum number of outer iterations Imax1 ;

2: Initialize the iteration counter l = 0 and network penalty

Ψ(l) = 0.001.

3: Initialize ρ and Φ.

4: repeat (Outer Loop)

5: Set the maximum number of inner iterations Imax2

and the step sizes ǫ1, ǫ2 and ǫ3;

6: Initialize iteration counter t = 0, α
(m)
i (t) = 1 and

β
(m)
i (t) = 0;

7: Initialize λ(t),µ(t) and ν(t).
8: repeat (Inner Loop)

9: repeat (Solving problem (P5))

10: Update P̂
(m)

S,i , P̂
(n)

R,i and Γ̂
(m)

i using (21)-(23).

11: Update Φ using (30).

12: Update ρ using (31).

13: Update λ,µ(k) and ν(k) using (32)-(34).

14: until convergence to get the optimal solutions

P̂
(m)⋆

S,i , P̂
(n)⋆

R,i , Γ̂
(m)⋆

i ,Φ⋆ and ρ⋆.

15: Set P̂
(m)

S,i (t+ 1)← P̂
(m)⋆

S , P̂
(n)

R,i(t+ 1)← P̂
(n)⋆

R ,

Γ̂
(m)

i (t+ 1)← Γ̂
(m)⋆

, Φ(t+ 1)← Φ
⋆,

ρ(t+ 1)← ρ⋆ and t← t+ 1.

16: until convergence or t > Imax2 .

17: Update Ψ(l+ 1) using (39), and l ← l + 1.

18: until convergence or l > Imax1 .

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)P
(n)
R,i ≤ PR,max ,

where Pi,max and PR,max are the maximum allowable trans-

mit power for the i-th source node and the relay node,

respectively. This new optimization problem can be solved in

a similar way as in the total power constraint case, although

it now requires the update of N +1 Lagrangian multipliers in

the master problem due to the N+1 imposed INP constraints.

Theorem 3: If the optimal resource allocation
(

P̂
(m)⋆

S , P̂
(n)⋆

R ,ρ⋆,Φ⋆, Γ̂
(m)⋆

)

of the problem (P5) with

respect to Ψ⋆ satisfies the following balance equation

R
(

P̂
(m)⋆

S , P̂
(n)⋆

R ,ρ⋆,Φ⋆, Γ̂
(m)⋆

)

−Ψ⋆PT

(

P̂
(m)⋆

S , P̂
(n)⋆

R ,ρ⋆,Φ⋆
)

= 0 , (37)
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then Ψ⋆ will be the optimal penalty for the resources allo-

cated2.

Proof: The proof of Theorem 3 is similar to the proof in

[6, Appendix D].

D. Update procedure for penalty factor Ψ

The penalty factor Ψ is defined as

Ψ =
FLB

(

ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1
ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

+ Pc

, (38)

It is now important to find out what will be the optimal

penalty for resource allocation and also how can we update

it. To tackle these two problems, we furthermore propose the

following two theorems, respectively.

Theorem 4: If the penalty factor is updated for the (l+1)-
th iteration for the local maximizer of the problem (P3) i.e.,
(

P̂
(m)⋆

S (l), P̂
(n)⋆

R (l),ρ⋆(l),Φ⋆(l), Γ̂
(m)⋆

(l)
)

, for the penalty

Ψ(l) in the l-th iteration as

Ψ(l + 1) =
R
(

P̂
(m)⋆

S (l), P̂
(n)⋆

R (l),ρ⋆(l),Φ⋆(l), Γ̂
(m)⋆

(l)
)

PT

(

P̂
(m)⋆

S (l), P̂
(n)⋆

R (l),ρ⋆(l),Φ⋆(l)
) ,

(39)

then the penalty Ψ(l) is monotonically increased with l.

Proof: The proof of Theorem 4 is similar to the proof in

[6, Appendix E].

Theorem 5: The optimal penalty factor can be obtained at

the convergence point i.e. Ψ⋆ = lim
l→∞

Ψ(l) satisfies the balance

equation.

Proof: The proof of Theorem 5 is similar to the proof in

[6, Appendix F].

V. ANALYSIS OF OPTIMAL RESOURCE ALLOCATION

POLICIES FOR TWO-USER CASES

To get more insight into the obtained optimal solutions in

the previous section, we consider the two-user cases in the

following two regimes:

1) Interference-Dominated (ID) Regime: We assume that

the network operates at very high SNR, consequently equiv-

alent noise power at the relay and the destination nodes

is diminutive as compared to the interference powers i.e.,

P
(m)
S,1

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

≫
(

σ
(m)
R

)2

, P
(m)
S,2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

≫
(

σ
(m)
R

)2

and

P
(n)
R,1

∣
∣
∣h

(n)
RD1

∣
∣
∣

2

≫
(

σ
(n)
D2

)2

, P
(n)
R,2

∣
∣
∣h

(n)
RD2

∣
∣
∣

2

≫
(

σ
(n)
D1

)2

, respec-

tively.

Case 1: When P
(m)
S,1

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

≫
(

σ
(m)
R

)2

, P
(m)
S,2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

≫

2Since the original optimization problem is nonconvex, thus the optimal
solution obtained for (P5) works as a local maximizer here.

(

σ
(m)
R

)2

, the optimal power for both users are given as

eP̂
(m)2

S,1 = µ
(m)
1 eΓ̂

(m)
1 +P̂

(m)
S,2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

×




(Ψ + λ) ρ⋆m,nΦ

⋆
2,(m,n) + µ

(m)
2 eΓ̂

(m)
2 −P̂

(m)
S,2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2






−1

;

(40)

eP̂
(m)2

S,2 = µ
(m)
2 eΓ̂

(m)
2 +P̂

(m)
S,1

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

×




(Ψ + λ) ρ⋆m,nΦ

⋆
2,(m,n) + µ

(m)
1 eΓ̂

(m)
1 −P̂

(m)
S,1

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2






−1

,

(41)

In practice, the transmit power should be different from zero

for all nodes. Since the m-th subcarrier is allocated to the first

source node, the power allocated on the m-th subcarrier by

the second source node is almost close to zero. Thus, it can

be observed in (40) and (41) that the source node allocates

less transmit power on the m-th subcarrier if it has better

subcarrier gain among all allocated subcarriers to it in order

to improve the EE, whereas in case of without subcarrier

pairing and power allocation, the power allocation policy for

the first(second) source node is affected by the second(first)

source channel gain.

Case 2: For P
(n)
R,1

∣
∣
∣h

(n)
RD1

∣
∣
∣

2

≫
(

σ
(n)
D2

)2

, P
(n)
R,2

∣
∣
∣h

(n)
RD2

∣
∣
∣

2

≫
(

σ
(n)
D1

)2

, we can get the optimal power for both users similar

to (40) and (41) as follows:

eP̂
(m)2

S,1 =

µ
(m)
1




eΓ̂

(m)
1 +P̂

(m)
S,2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2 + eΓ̂
(m)
1

(

σ
(m)
R

)2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2






(Ψ + λ) ρ⋆m,nΦ
⋆
1,(m,n) + µ

(m)
2




e

Γ̂
(m)
2 −P̂

(m)
S,2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2






; (42)

eP̂
(n)2

S,2 =

µ
(n)
2




eΓ̂

(m)
2 +P̂

(m)
S,1

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2 + eΓ̂
(m)
2

(

σ
(m)
R

)2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2






(Ψ + λ) ρ⋆m,nΦ
⋆
2,(m,n) + µ

(m)
1




e

Γ̂
(m)
1 −P̂

(m)
S,1

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2






, (43)

2) Noise-Dominated (ND) Regime: When the network op-

erates under a very low SNR, then the disturbances produced

by the noise at the relay and the destination nodes become
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significantly high as compared to the interference generated

at the respective nodes.

• Relay-Noise Dominated (RND) Regime: In this regime,

the relay noise is very high as compared to the interference

produced at the relay node i.e., P
(m)
S,1

∣
∣
∣h

(m)
S1R

∣
∣
∣

2

≪
(

σ
(m)
R

)2

and P
(m)
S,2

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

≪
(

σ
(m)
R

)2

, respectively. The ratio of the

optimal power of first user to the second user is given as

eP̂
(m)⋆

2

S,1

eP̂
(m)⋆

2

S,2

=
µ
(m)
1 eΓ̂

(m)
1 Φ⋆

2,(m,n)

µ
(m)
2 eΓ̂

(m)
2 Φ∗

1,(m,n)

∣
∣
∣h

(m)
S2R

∣
∣
∣

2

∣
∣
∣h

(m)
S1R

∣
∣
∣

2 , (44)

This result reveals a channel-reversal power allocation policy,

in which a user with a lower SR channel gain is allocated

higher transmit power.

• Destination-Noise Dominated (DND) Regime: The desti-

nation noise is very high in this regime as compared to the

interference i.e., P
(n)
R,2

∣
∣
∣h

(n)
RD2

∣
∣
∣

2

≪
(

σ
(n)
D1

)2

and P
(n)
R,1

∣
∣
∣h

(n)
RD1

∣
∣
∣

2

≪
(

σ
(n)
D2

)2

, respectively. The optimal power for both users can

be obtained similar to (42) and (43).

VI. SUBOPTIMAL EE RESOURCE ALLOCATION

ALGORITHM

For a large number of Nsc or N , the computational com-

plexity of the proposed EEM algorithm in Section IV becomes

very high. Thus, we propose a low-complexity suboptimal

EE algorithm whose performance is close to that of the

EEM algorithm. The suboptimal EE algorithm is sketched as

follows:

A. Step 1: Optimal Subcarrier Allocation for Fixed Power

Allocation

First, we equally distribute the available transmit powers

over all the subcarriers among the source and the relay nodes:

P
(m)
S,1 = P

(m)
S,2 = . . . = P

(m)
S,N =

Pmax

2NNsc
, ∀m ; (45)

P
(n)
R,1 = P

(n)
R,2 = . . . = P

(n)
R,N =

Pmax

2NNsc
, ∀n , (46)

Using (2) and (4), we find SINR for each user pair and then

take minimum SINR in order to balance the EE of the SR and

RD links as

Ξi,(m,n) = min{γ
(m)
SRi

, γ
(n)
RDi
} ; (47)

Next we update the subcarrier allocation matrix as follows:

Φi,(m,n) =

{

1, for i = argmaxi Ξi,(m,n) ;

0, otherwise
(48)

B. Step 2: Optimal Subcarrier Pairing for Given Subcarrier

Allocation

In the second step, we arrange the SR subcarriers in a

descending order according to their channel gains, and the RD
subcarriers are also ordered in the same way. Then, we match

the corresponding subcarriers with each other in sequence.

If the m-th subcarrier of the SR link is paired with the n-

th subcarrier of the RD link, we set ρm,n = 1; otherwise

ρm,n = 0.

C. Step 3: Optimal Power Allocation for Given Subcarrier

Pairing and Allocation

In the last step, for given subcarrier allocation and pairing

matrices Φ and ρ, we allocate the power to each source and

the relay nodes using (24) and (25).

VII. COMPLEXITY ANALYSIS

In this section, we perform an exhaustive complexity anal-

ysis to get a better insight into the complexity reduced by the

EEM and suboptimal EEM algorithms.

• EEM Algorithm: First the complexity of the EEM

algorithm is analyzed as follows. To find the optimal power

allocation of (P5) for N user pairs with Nsc subcarriers in

each hop, we need to solve NN2
sc subproblems. The optimal

power allocation solution
(

P̂
(m)⋆

S,i , P̂
(n)⋆
R,i

)

can be found using

the exhaustive search (ES) approach which searches over

P̂
(m)
S,i and P̂

(n)
R,i under assumption that each takes discrete

values [29]. Therefore, K denotes the number of power

levels that can be taken by each of P̂
(m)
S,i and P̂

(n)
R,i. Each

subcarrier pairing ρm,n is allocated to a particular user pair

and each maximization in (30) has a complexity of O (N),
hence the total complexity for subcarrier allocation becomes

O
(
NN2

sc

)
. Furthermore, the Hungarian method is used to

determine optimal subcarrier pairing in (31) with a complexity

of O
(
N3

sc

)
. The complexity of updating a dual variable is

O ((2N)̺) (for example, ̺ = 2 if the ellipsoid method is

used [26]). Therefore, the total complexity for updating dual

variables is O (3(2N)̺). Let us suppose if the dual objective

function g (λ,µ,ν) and the penalty factor Ψ converge in

Z and L iterations, respectively, the total complexity for

EEM algorithm is O
(
3(2N)̺N2

scZL
(
N
(
K3 + 2

)
+Nsc

))
,

whereas with equal subcarrier power allocation (ESPA),

the total complexity of EEM algorithm becomes

O
(
5(2N)̺N2

scZL
(
N
(
K3 + 4

)
+Nsc

))
.

• Without subcarrier allocation and pairing (WSAP): In

this algorithm only power is allocated optimally without

considering the subcarrier allocation and pairing, respectively.

Thus we update the power and the dual variables with com-

plexity of O
(
NN2

scZ
(
K3 + 1

))
and O (3(2N)̺), respec-

tively. Thus the total complexity for this algorithm becomes

O
(
3(2N)̺NLN2

sc

(
K3 + 1

))
.

• Suboptimal Algorithm: The implementation of the subcar-

rier allocation in step 1 as stated in (48) requires a complexity

of O (2NNsc), whereas the subcarrier pairing in step 2

has a complexity of O (2Nsc). Further, the power allocation

in the last step adds a complexity of O
(
Nsc

(
K3 + 1

))

and the total complexity for updating dual variables is

O (3(2N)̺). If the dual objective function g (λ,µ,ν) and

the penalty factor Ψ converge in Z and L iterations, respec-

tively, then the the suboptimal algorithm has a complexity of

O
(
3(2N)̺NscZL

(
2N +K3 + 3

))
.

• Exhaustive search (ES): As a benchmark, we compare

the complexity of the proposed algorithms with the exhaus-

tive search (ES) algorithm, which gives the optimal solution

after searching over all variables. However, the complexity

of ES increases very quickly as the size of the problem

increases. Therefore, ES search is typically used when the
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TABLE I
COMPLEXITY ANALYSIS FOR DIFFERENT ALGORITHMS

Complexity Comparison

Algorithm Complexity

EEM O
(

3(2N)̺N2
scZL

(

N
(

K3 + 2
)

+Nsc

))

Suboptimal EEM O
(

3(2N)̺NscZL
(

2N +K3 + 3
))

ESPA O
(

5(2N)̺N2
scZL

(

N
(

K3 + 4
)

+Nsc

))

WSAP O
(

3(2N)̺NLN2
sc

(

K3 + 1
))

ES O
(

3(2N)̺ZLNNsc!
(

K3 + 1
))

problem size is limited. The complexity of ES can be given

by O
(
3(2N)̺ZLNNsc!

(
K3 + 1

))
. The complexity of the

proposed algorithms and ES is summarized in Table I.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

energy efficient resource allocation algorithms through com-

puter simulations. The path loss model stated by 131.1+42.8×
log10(d) dB (d: distance in km) is adopted in our simulations

[30]. Moreover, the log-normal shadowing ∼ lnN (0, 8dB)
and independently and identically distributed (i.i.d.) Rayleigh

fading effects ∼ CN (0, 1) for all links in the considered

framework are taken into consideration, respectively. It is

assumed that the circuit and processing power dissipation

per antenna at each node is 14 dBm, respectively [6]. The

subcarrier spacing and thermal noise density are given by 12
kHz and −174 dBm/Hz, respectively. The maximum number

of inner and outer iterations Imax1 and Imax2 for proposed

algorithms are set as 10, and the convergence tolerance value

is 10−5. The constant step sizes ǫ1, ǫ2, and ǫ3 are used in

Algorithm with value 0.01. The penalty factor Ψ that shows a

tradeoff between the EE and the SE is Ψ = 0.001. We define

a distance ratio as rd = dSR/(dSR + dRD), where dSR and

dRD are used to present the distance from all source nodes

to the relay node and from the relay node to all destination

nodes, respectively. The ES algorithm which gives the optimal

solution of the considered problem, the proposed EEM algo-

rithm without (w/o) subcarrier pairing and allocation (SPA)

and the spectral efficiency maximization (SEM) algorithm are

also implemented for performance comparison.

Fig. 2 shows the convergence behavior of the ES and the

proposed algorithms for a single channel realization, where

N = 2, Nsc = {5, 10}, and dSR = dRD = 200 m. The

maximum allowable transmit power is Pmax = 10 dBm. It

can be observed that the EE and the SE performance of the

ES and the proposed algorithms are monotonically increased

with the number of iterations, and the proposed algorithms are

converged in less than five iterations. The attaining EE and SE

performance of the EEM algorithm is very close to that of the

ES algorithm.

In Fig. 3, we compare the performance of various algorithms

for Nsc = 32. For EEM-INP, we set Pi,max = PR,max =
Pmax

N+1 for a fair comparison with the total power constraint

case. It is shown in Fig. 3 that both the average EE and SE

performances of the EEM-INP algorithm are slightly worse

than those using the total power constraint when Pmax is

small, while the performance gap gradually reduces to zero

as Pmax increases and the EEM algorithm performs much
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Fig. 2. Convergence behavior of the proposed algorithms (N = 2 and
dSR = dRD = 200 m).

better than the other algorithms in terms of both the average

SE and EE.

The effect of the number of subcarriers Nsc on the av-

erage EE and SE of the proposed algorithms is shown in

Fig. 4, where N = 5 and dSR = dRD = 200 m. The

ESPA algorithm which equally allocates the available power

among users and relay node over all the subcarriers is also

simulated for comparison. We can observed that the average

EE and SE can be significantly improved as Pmax increases.

When Pmax ≤ 10 dBm, the EEM, suboptimal and SEM

algorithms exhibit almost identical EE or SE performance due

to limited power budget. However, in a rich power budget i.e.,

Pmax > 10 dBm, the average EE performance of the EEM

and suboptimal algorithms become constant, whereas that of
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Fig. 3. Performance comparison of different algorithms (N = 2, Nsc = 32
and dSR = dRD = 200 m).

the SEM algorithm quickly declines as Pmax increases. On

the other hand, the average SE of the proposed algorithms is

slowly saturated for Pmax > 10 dBm, while the performance

of the SEM algorithm is continuously improved as Pmax

increases. As expected, as Nsc increases, the average EE

improves due to the frequency diversity. The EEM w/o SPA

performs worst than the EEM and SEM in terms of both the

average EE and SE. We can also observed that the average EE

and SE performance of the EEM and SEM algorithms with

total power constraint is much better than the ESPA.

Fig. 5 shows the average EE and SE performance for differ-

ent numbers of users, where Nsc = 15 and dSR = dRD = 200
m. As can be seen, as N increases the average EE performance

of all the algorithms deteriorates due to the increases in the
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Fig. 4. Effect of number of subcarriers on the average EE and SE (N = 5
and dSR = dRD = 200 m).

static power, whereas the average SE can be enhanced via

multiuser diversity (see Fig. 5(a) and Fig. 5(b)). In higher

power budget, the average SE of the SEM algorithm improves

at the cost of a degradation in the average EE, while the

average EE and SE are remained steady for the EEM and

suboptimal algorithms.

Fig. 6 and Fig. 7 show the impact of the relay position on the

average EE and SE for different Nsc and N , respectively. The

total transmit power, Pmax, and the distance from the source

to the destination, dSR+dRD, are set as 15 dBm and 1000 m,

respectively. As can be seen from Fig. 6, the average EE of the

EEM algorithm is improved as Nsc increases and the algorithm

achieves largest average EE when the relay nodes is placed in

the middle of the source and the destination. Fig. 7 shows
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Fig. 5. Effect of number of users on the average EE and SE (Nsc = 15
and dSR = dRD = 200 m).

a reverse trend. The EEM algorithm gives highest average

EE(SE) when relay node is in middle and it’s performance

decreases(increases) with increasing N .

IX. CONCLUSIONS

In this paper, we investigated the problem of joint power

and subcarrier allocation in relay-assisted multiuser networks

from a green energy perspective. To improve the EE of the

network a penalty based approach has been adopted and a

balance is created between the maximum achievable network

EE and SE. The primal problem was nonconvex due to a form

of fractional and mixed binary integer nonlinear programming.

We transformed this problem into a convex problem by a series

of transformations. Further, the dual decomposition method is
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Fig. 6. Effect of the relay position with different Nsc on the average EE
and SE (N = 5 and Pmax = 15 dBm).

adopted to find the optimal power and subcarrier pairing and

allocation matrices, respectively. Moreover, the convergence

behaviour of the EEM algorithm is proved theoretically. To

reduce the complexity of the proposed iterative EEM algo-

rithm, we further demonstrated a suboptimal algorithm by

exchanging minimal network performance. We compared the

performance of the proposed algorithms with that of the ES

and SEM algorithms and demonstrated the effects of various

network parameters such as number of subcarriers, users, and

the relay’s position, on the average EE and SE performance.

Simulation results confirmed that a higher number of subcar-

riers, although marginally decreases the SE, can improves the

EE. Improvements in a SE come by increasing the number of

users at a certain expense of the EE of the network. This



15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

r
d

A
ve

ra
ge

 E
E

 [b
its

/m
Jo

ul
e/

H
er

tz
]

 

 
EEM, N=3
EEM, N=5
EEM, N=8

(a) Average EE versus Pmax

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

r
d

A
ve

ra
ge

 S
E

 [b
its

/s
ec

/H
er

tz
]

 

 
EEM, N=3
EEM, N=5
EEM, N=8

(b) Average SE versus Pmax

Fig. 7. Effect of the relay position with different N on the average EE and
SE (Nsc = 10 and Pmax = 15 dBm).

design framework provides a useful model for developing

future energy efficient multiuser relay netwroks.

APPENDIX A

PROOF OF THEOREM 1

The objective function in (P5) can be rewrite as:

FLB

(

P̂
(m)

S , P̂
(n)

R ,ρ,Φ, Γ̂
(m)

,α(m),β(m)
)

=

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

, (A.1)

where the term Λm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

is ex-

plicitly defined as

Λm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

=

N∑

i=1

1

2
ρm,nΦi,(m,n)

(

α
(m)
i

ln(2)
Γ̂
(m)
i + β

(m)
i

)

−Ψ

N∑

i=1

ρm,nΦi,(m,n)

(

eP̂
(m)
S,i + eP̂

(n)
R,i

)

−
Ψ

N2
sc

Pc , (A.2)

wherein {P̂
(m)

S , P̂
(n)

R , Γ̂
(m)
} ∈ W

N and Λm,n (·) : WN → R,

are not necessarily convex in nature.

In a similar manner, the constraints (C.1) − (C.5), (C.7)
and (C.8) can be expressed as

Nsc∑

m=1

Nsc∑

n=1

Ωm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

6 0 , (A.3)

where Ωm,n (·) : WN → R
T and T = 7 is the total number

of constraints limiting the optimization problem (P5). Hence,

the optimiztion problem (P5) can be written as

OP ⋆ ,

max
P̂
(m)
S ,P̂

(n)
R ,Γ̂

(m)

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

s.t.

Nsc∑

m=1

Nsc∑

n=1

Ωm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

60, (A.4)

where 0 ∈ R
L. Next, we define a perturbation function ω(U)

to prove DG ≈ 0, as follows:

ω(U) ,

max
P̂
(m)
S ,P̂

(n)
R ,Γ̂

(m)

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

s.t.

Nsc∑

m=1

Nsc∑

n=1

Ωm,n

(

P̂
(m)

S , P̂
(n)

R , Γ̂
(m)

,α(m),β(m)
)

6U, (A.5)

where U ∈ R
L is a perturbation vector. From [26] and [27],

it is evident that duality gap tends to zero DG ≈ 0, when the

time-sharing condition is satisfied. Moreover, it is also shown

that the time-sharing condition will be satisfied if the optimal

value of the optimization problem (P5) is a concave function

of the constraints. Therefore, if ω(U) is a concave function of

U, then DG ≈ 0. Next, we define time sharing property as

follows:

Definition 3: If
(

P̂
(m)⋆

Si
, P̂

(n)⋆

Ri
, Γ̂

(m)⋆

i

)

, i = 1, 2, denotes

the optimal solution of (A.5) and represented by ω(U1)
and ω(U2), respectively, then there always exists a solution
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(

P̂
(m)⋆

S3
, P̂

(n)⋆

R3
, Γ̂

(m)⋆

3

)

that satisfies the following condition:

Nsc∑

m=1

Nsc∑

n=1

Ωm,n

(

P̂
(m)

S3
, P̂

(n)

R3
, Γ̂

(m)

3 ,α(m),β(m)
)

6 ∆U1 + (1−∆)U1 ; (A.6)

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)

S3
, P̂

(n)

R3
, Γ̂

(m)

3 ,α(m),β(m)
)

> ∆Λm,n

(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂

(m)⋆

1

)

+ (1−∆)Λm,n

(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂

(m)⋆

2

)

, (A.7)

where 0 ≤ ∆ ≤ 1.

Next, we need to prove that ω(U) is a concave function

of U. For some ∆, it is easy to find out U3 that satisfies

U3 = ∆U1+(1−∆)U2. We assume
(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂1

(m)⋆
)

,
(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂2

(m)⋆
)

and
(

P̂
(m)⋆

S3
, P̂

(n)⋆

R3
, Γ̂3

(m)⋆
)

are the

optimal solutions subject to the constraints of ω(U1), ω(U2)
and ω(U3), respectively. Time-sharing condition points out

that there exists a value
(

P̂
(m)

S3
, P̂

(n)

R3
, Γ̂3

(m)
,α(m),β(m)

)

that

satisfying (A.6) and (A.8).
(

P̂
(m)⋆

S3
, P̂

(n)⋆

R3
, Γ̂3

(m)⋆
)

is the

optimal solution to ω(U3), thus

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)⋆

S3
, P̂

(n)⋆

R3
, Γ̂3

(m)⋆
)

>

Nsc∑

m=1

Nsc∑

n=1

Λm,n

(

P̂
(m)

S3
, P̂

(n)

R3
, Γ̂3

(m)
,α(m),β(m)

)

> ∆Λm,n

(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂1

(m)⋆
)

+ (1−∆)Λm,n

(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂2

(m)⋆
)

, (A.8)

Then, the concavity of ω(U) is proved.

Since, ω(U) is concave, it is possible to show that (A.4)

satisfies the time-sharing property. When the number of

subcarriers goes to infinity, the time-sharing condition al-

ways holds for multicarrier systems [29]. Let us assume
(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂1

(m)⋆
)

and
(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂2

(m)⋆
)

be two

feasible solutions. Then, ∆ percentage of total subcarriers

Nsc are allocated with the solution
(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂1

(m)⋆
)

,

whereas the rest of (1−∆) percentage of the total subcarriers

Nsc are allocated with the solution
(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂2

(m)⋆
)

.

Further,
Nsc∑

m=1

Nsc∑

n=1
Λm,n

(

P̂
(m)

S3
, P̂

(n)

R3
, Γ̂3

(m)
)

is a linear com-

bination, expressed as ∆Λm,n

(

P̂
(m)⋆

S1
, P̂

(n)⋆

R1
, Γ̂1

(m)⋆
)

+

(1−∆)Λm,n

(

P̂
(m)⋆

S2
, P̂

(n)⋆

R2
, Γ̂2

(m)⋆
)

. Hence the constraints

are linear combinations, therefore, it is proved that (A.4)

satisfies the time-sharing property. Henceforth, ω(U) is a

concave function of U, and the duality gap DG ≈ 0. This

proof of theorem in completed.

APPENDIX B

PROOF OF THEOREM 2

This theorem is proved in two steps: 1) we need to prove

that the network EE performance is increased monotonically

along with the update of two coefficients α
(m)
i (t) and β

(m)
i (t);

and 2) the optimal solution for (P5) is also a local maximizer

for (P1) when the update has converged. To prove first part,

let
(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t), Γ̂
(m)⋆

(t)
)

is the optimal

solution in the t-th iteration for the coefficients α
(m)
i (t) and

β
(m)
i (t). If we update the coefficients in accordance with (35)

and (36), then from (12)-(14), we have (B.1) and also from the

problem (P5) it directly implies the condition defined in (B.2).

From (B.1) and (B.2), we can conclude that the lower bound

performance improves with the update of coefficients α
(m)
i (t)

and β
(m)
i (t). Next, we need to prove that the optimal solution

of (P5) is a local maximizer for (P1) when the update has con-

verged. This can be done by proving that the optimal solutions

which satisfies the KKT conditions of (P5) also satisfies the

KKT conditions of (P1). Therefore, we take the partial deriva-

tive of the Lagrangian function in (18) with respect to P̂
(m)
S,i ,

P̂
(n)
R,i and Γ

(m)
i at

(

P̂
(m)⋆

S , P̂
(n)⋆

R ,ρ⋆,Φ⋆,Γ(m)⋆ , λ⋆,µ⋆,ν⋆
)

and equate the results to zero. Furthermore, by using Lemma

1, we get

P
(m)⋆

S,i =

µ
(m)⋆

i






N∑

j=1,j 6=i

Γ
(m)⋆

i P
(m)⋆

S,j

∣
∣
∣h

(m)
SjR

∣
∣
∣

2

P
(m)⋆

S,i

∣
∣
∣h

(m)
SiR

∣
∣
∣

2 +
Γ
(m)⋆

i

(

σ
(m)
R

)2

P
(m)⋆

S,i

∣
∣
∣h

(m)
SiR

∣
∣
∣

2






Nsc∑

n=1
ρ⋆m,nΦ

⋆
i,(m,n) (λ

⋆ +Ψ)

;

(B.3)

P
(n)⋆

R,i =

ν
(n)⋆

i






N∑

j=1,j 6=i

Γ
(n)⋆

i P
(n)⋆

R,j

∣
∣
∣h

(n)
RDj

∣
∣
∣

2

P
(n)⋆

R,i

∣
∣
∣h

(n)
RDi

∣
∣
∣

2 +
Γ
(n)⋆

i

(

σ
(n)
Di

)2

P
(n)⋆

R,i

∣
∣
∣h

(n)
RDi

∣
∣
∣

2






Nsc∑

m=1
ρ⋆m,nΦ

⋆
i,(m,n) (λ

⋆ +Ψ)

;

(B.4)

Γ
(m)⋆

i can also be computed in a similar manner. For the

optimal solutions obtained in (B.3) and (B.4), the dual function

is given as

g
(

λ⋆,µ(m)⋆ ,ν(m,n)⋆
)

= max
ρ,Φ

N∑

i=1

Nsc∑

m=1

Nsc∑

n=1

ρm,nΦi,(m,n)B
′
i,(m,n) + C

′

s.t. (C.1) − (C.5) , (B.5)

where B′
i,(m,n) and C′ are defined as

B′
i,(m,n) =

(

̟α
(m)⋆

i Γ
(m)⋆

i + ϕβ
(m)⋆

i

)

− (Ψ + λ⋆)
(

P
(m)⋆

S,i + P
(n)⋆

R,i

)

, (B.6)
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FLB

(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t),Γ(m)⋆(t),α(m)(t),β(m)(t)
)

≤ F
(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t),Γ(m)⋆(t)
)

= FLB

(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t),Γ(m)⋆(t), α
(m)
i (t+ 1), β

(m)
i (t+ 1)

)

; (B.1)

FLB

(

P̂
(m)⋆

S (t), P̂
(n)⋆

R (t),ρ⋆(t),Φ⋆(t),Γ(m)⋆(t), α
(m)
i (t+ 1), β

(m)
i (t+ 1)

)

(B.2)

≤ FLB

(

P̂
(m)⋆

S (t+ 1), P̂
(n)⋆

R (t+ 1),ρ⋆(t+ 1),Φ⋆(t+ 1),Γ(m)⋆(t+ 1), α
(m)
i (t+ 1), β

(m)
i (t+ 1)

)

,

C′ = −ΨPc + λ⋆Pmax

−
N∑

i=1

Nsc∑

k=1

µ
(k)⋆

i






N∑

j=1,j 6=i

(

Γ
(k)⋆

i + P
(k)⋆

S,j

) ∣
∣
∣h

(k)
SjR

∣
∣
∣

2

P
(k)⋆

S,i

∣
∣
∣h

(k)
SiR

∣
∣
∣

2

+
Γ
(k)⋆

i

(

σ
(k)
R

)2

P
(k)⋆

S,i

∣
∣
∣h

(k)
SiR

∣
∣
∣

2 + 1






−
N∑

i=1

Nsc∑

k=1

ν
(k)⋆

i






N∑

j=1,j 6=i

(

Γ
(k)⋆

i + P
(k)⋆

R,j

) ∣
∣
∣h

(k)
RDj

∣
∣
∣

2

P
(k)⋆

R,i

∣
∣
∣h

(k)
RDi

∣
∣
∣

2

+
Γ
(k)⋆

i

(

σ
(k)
Di

)2

P
(k)⋆

R,i

∣
∣
∣h

(k)
RDi

∣
∣
∣

2 + 1




 , (B.7)

Similar to (29) the optimal subcarrier allocation is determined

for a given subcarrier pairing as

Φ⋆
i,(m,n) =

{

1, for i = argmaxi B′
i,(m,n) ,

0, otherwise
(B.8)

and the optimal subcarrier pairing matrix for obtained power

and subcarrier allocation can be found similar to (31) where

B
′ is defined as

B
′ =






B′
i⋆,(1,1) · · · B′

i⋆,(1,K)

...
. . .

...

B′
i⋆,(K,1) · · · B′

i⋆,(K,K)




 (B.9)

Moreover, the optimal solution of (P1) can be derived from the

KKT conditions that the partial derivatives of the Lagrangian

function of the problem (P1) with respect to P
(m)
S,i and P

(n)
R,i

are identical to (B.3) and (B.4), respectively. This is also true

for the subcarrier pairing and allocation matrix. Hence, the

theorem is proved.
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