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Abstract—In this paper, we investigate the problem of the joint
transceiver and offset design (JTOD) for point-to-point multiple-
input-multiple-output (MIMO) and multiple user multiple- input-
single-output (MU-MISO) visible light communication (VLC )
systems. Both uplink and downlink multi-user scenarios are
considered. The shot noise induced by the incoming signals is
considered, leading to a more realistic MIMO VLC channel
model. Under key lighting constraints, we formulate non-convex
optimization problems aiming at minimizing the sum mean
squared error. To optimize the transceiver and the offset jointly,
a gradient projection based procedure is resorted to. When only
imperfect channel state information is available, a semidefinite
programming (SDP) based scheme is proposed to obtain robust
transceiver and offset. The proposed method is shown to non-
trivially outperform the conventional scaled zero forcing(ZF) and
singular value decomposition (SVD) based equalization methods.
The robust scheme works particularly well when the signal is
much stronger than the noise.

Index Terms—Visible light communication, input-dependent
shot noise, transceiver design, offset design, dimming control.

I. I NTRODUCTION

The recent decade has witnessed the visible light commu-
nication (VLC) adopting light-emitting diodes (LEDs) as a
competent complement for radio frequency communications
(RFC) in both indoor and outdoor environments [1]. At the
same time, advances in LED manufacturing have prepared the
landing of various of VLC products on market [2]. At the
earlier stage, the use of blue LEDs with a yellow phosphor
coating dominated due to low cost and complexity concerns.
Later, red/green/blue (RGB) LEDs received more attention,
especially when a higher rate is required or where designated
color other than white illumination is necessary and achieved
through adjusting the relative average intensities of the colored
LEDs [3]–[5].

Besides wider spectrum, LED-based VLC has another in-
herent advantage over the RFC when utilized inside small
cells; that is the limited illumination coverage that prevents
excessive inter-cell interference. Thus it is a viable option to
provide the “last few meters” access for the next generation
wireless communication network frequently characterizedby
very high throughput per unit area. To achieve a very high rate,
multiplexing gain offered by optical multiple-input-multiple-
output (MIMO) has been explored [6]–[8].

This work was submitted to the Transaction on Wireless Communications
on Feb. 16, 2016 and is currently under review. An abridged version of this
manuscript was accepted by the IEEE Globecom 2016.

Inside a small-cell with MIMO multi-color VLC, it is
typical that the channel correlations (ChC) are high, unless
reduced intentionally, for example by resorting to angle di-
versity receivers or imaging receivers [8]. With RGB LEDs,
color cross-talks (CoC) may exist given imperfect color filters,
allowing spectrum leakage from a neighboring band(s), thus
further deteriorates system detection performance. We take
into account both ChC and CoC in this paper, characterized
by two non-diagonal matrices, the Kronecker product of which
gives the overall channel.

Transceiver design for a MIMO VLC channel is an emerg-
ing topic, where literature has schemes for point-to-point
scenarios [9]–[12] and for multi-user scenarios [13]–[16].
Capacity analysis and signal processing schemes for VLC
with signal-dependent noise have attracted increasing inter-
est recently [17]–[21]. A cost-dependent model is given in
[20], which models the input-dependent noise as an average
intensity-dependent noise. As a step upon previous works,
we consider a joint transceiver and offset design for both
point-to-point and multi-user MIMO VLC, with ChC and CoC
considered. Further, input-dependent shot noise is also taken
into account with the joint design. An important observation
from our study is that the part of mean squared error (MSE)
caused by the shot noise is dependent on the DC offset but
not signals when an M-ary pulse-amplitude modulation (PAM)
with a zero mean is adopted. In fact, the additional term in
MSE caused by the shot noise depends only on the offset value
but not the signal, as the latter is averaged out. Different from
the existing methods, where the offset is arbitrarily chosen, it
is optimized jointly with the transceiver in this paper.

Specifically, we formulate the joint transceiver and offset
design (JTOD) problem under key lighting constraints, in-
cluding non-negative intensity, arbitrary illumination color,
dimming level and total optical power. The resulting opti-
mization problem is highly non-convex. We show that the
optimal post-equalizerG is of the Wiener filter form, and
the precoderP and the offsetb can be solved by alternating
convex optimizations.

Throughout the paper, we will use the following conven-
tions. Boldface upper-case letters denote matrices, boldface
lower-case letters denote column vectors, and standard lower-
case letters denote scalars. By(·)T and (·)−1 we denote the
transpose and inverse operators,E(·) the expectation operator.
By || · ||, || · ||F and || · ||1 we denote the Euclidean norm,
the F-norm and the 1-norm. By⊗ we denote the Kronecker
product,abs(·) the element-wise absolute value operator,D(·)
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the Jacobian operator,∂ the partial derivative andtr(·) the
trace operator. ByI, we denote the identity matrix andei the
vector with all zeros but one at thei-th element.

II. MIMO M ULTI -COLOR VLC CHANNEL

A MIMO multi-color VLC system can be very different
from an RFC counterpart, especially when the lower-cost
intensity modulation direct detection (IM/DD) transceivers are
employed. Besides the positive and real intensity requirement,
several other significant differences deserve attention from
system designers.

A. Signal-dependent Shot Noise

Conventionally, it is assumed that the VLC systems suffer
only from thermal noise, i.e.nth ∼ N (0, σ2). However,
the practical VLC systems offer very high signal-to-noise
ratio, under which scenario the noise depends on the signal
itself due to the random nature of photon emission in the
LED [19]. The distribution of input-dependent shot noise is
nsh ∼ N (0, xς2σ2), wherex is the transmitted signal andς2

is the scaling factor of shot noise variance, the range of which
can be chosen according to [19]. With the additional shot
noise term, there is no proof that the optimality of existing
transceiver structure in literature still holds. Therefore, it is
important to investigate the impact of the shot noise on system
design optimality.

B. Channel Correlation

Compared with communication networks employing RF
transceivers, VLC networks in many scenarios face a more
severe interference problem among adjacent cells/LEDs, al-
though if taken good care of this can be a benefit when
local coverage is required. The channel correlations can be
too high to yield intended multiplexing gain, especially when
transmitters or receivers are placed close to each other. ChC-
reduction techniques are needed, e.g. by adopting angle diver-
sity receivers or imaging detectors. With four interferingwhite
LED and four detectors, sample VLC channelH̄ can be found
in [10].

C. Color Cross-talks

The color diversity is unique with VLC, but imperfect color
filtering may result in CoC, which can be described by the
following matrix

H̃ =




1− ξ ξ 0
ξ 1− 2ξ ξ
0 ξ 1− ξ



 , (1)

The overall channel is the Kronecker product of the two
channels, i.e.

H = H̃⊗ H̄ (2)

This channel model incorporates both ChC and CoC and will
be adopted in our transceiver design. Advanced modulation
schemes are available taking advantage of the color diversity,
and we refer the readers to [18], [22].

D. Further Assumptions

In this paper, we assume a full channel status information
(CSI) knowledge at both the transmitter and the receiver ends.
Compare to the RFC, the channel status of VLC is much
more stable, mostly with no fading associated [26]. Thus,
less frequent CSI update is required, leading to non-trivially
reduced complexities for the CSI-dependent signal processing
algorithms, including the transceiver design problem consid-
ered in this paper. Our design is firstly carried out assumingno
channel error for the CSI, and then we provide an SDP-based
algorithm to deal with an imperfect CSI case.

For the systems considered in this paper, the optimizations
of P, G andb can be done either locally at both the transmitter
and receiver, or only at the transmitter, who then feedforward
G andb to the receiver. If the receiver has high computation
ability, local optimization is preferred since error that may be
caused by the feedforward process is avoided. On the network
level, we have left some practical issues to further studies,
such as data synchronization, a handover procedure, etc.

III. MIMO P OINT-TO-POINT VLC

A. System Model

+
DC

Removal+

Fig. 1. MIMO point-to-point VLC system block diagram.

We first consider an indoor MIMO point-to-point VLC
system. The transmitter is equipped withNt RGB LEDs and
the receiver withNr photo-diode (PD) detectors, each with
three color filters. The system diagram is shown in Fig. 1. A
total of K ≤ min{3Nt, 3Nr} streams of datas(t) are input
to a precoderP. Each component ofs(t) takes a value from
independent M-PAM constellations, which is symmetric on
zero. Since only non-negative intensity values are allowedby
the LEDs, a DC offsetb is added after the precoder. The time
index is dropped in the following context as we are interested
in a single time slot, and the intensity vector modulating the
LEDs is written as

x = γ(Ps+ b), (3)

where γ denotes the electro-to-opto conversion factor. The
amplitudes of elements ins are in the rangesi ∈ [−d, d], i ∈
{1, . . . ,K} and each take a value from the same M-PAM
constellation. Assuming independency of each data stream,
the covariance matrixs is diagonal with identical elements,
i.e.

Rs = rI, (4)

r =
d2

3

(
M + 1

M − 1

)
. (5)

The received signal after the color filters is

y = ηγHx+W(P,b)nsh + nth

= ηγHPs+ ηγHb+W(P,b)nsh + nth, (6)
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whereη is the opto-to-electro conversion factor,W(P,b)nsh

are the input-dependent shot noise terms. The variabless, nsh

andnth are independent. Each component of the shot noises
nsh,i ∼ N (0, ς2σ2) and theWi,i(P,b) is the i-th component
of the diagonal matrixW

Wi,i(P,b) =
√
ηγeTi (HPs +Hb). (7)

We writeW instead ofW(P,b) for notational simplicity in
the following context. Also, to facilitate analysis we assume
η = γ = 1, and the channel model is simplified as

y = HPs+Hb+Wnsh + nth. (8)

Therefore, with receiver side CSI knowledge the determin-
istic termsHb can be cancelled fromy to obtain

ȳ = HPs+Wnsh + nth. (9)

A minimum mean square error based post-equalizerG is
applied [27], such that the recovered symbol

ŝ = argmin
s∈S

E

(
‖ r− s ‖2

)

= argmin
s∈S

E

(
‖ (GHP− I)s +GWnsh +Gnth ‖2

)
.

(10)

The MSE is calculated by plugging (12) into (11) at the
bottom of this page, i.e.

MSE= 3Ntr + rtr(HPPTHTGTG)− rtr (GHP)

− rtr (PTHTGT ) + σ2tr(GTG) + ς2σ2
tr{diag(Hb)GTG}.

(13)

It is seen that the last termς2σ2
tr{diag(Hb)GTG} caused

by the shot noise is offset dependent only, while the signal
dependent part is averaged out.

B. Key Lighting Constraints

1) Non-negative Intensity:The intensity vectorx modulat-
ing the LEDs has to take non-negative values, i.e.1

x = Ps + b ≥ 0. (14)

1A vector x ≤ (≥)0 means that it is element-wise non-positive (non-
negative).

However, this constraint is signal-dependent, thus we resort to
the following sufficient condition

abs(P)δ − b ≤ 0, (15)

whereabs(P) means element-wise absolute value andδ = δ1.
2) Dimming Control and Total Optical Power Constraint:

The dimming control and total optical power constraint can
be written as a single equation

1Tb = βPT , (16)

whereβ ∈ (0, 1] is the dimming level,PT is the maximally
allowed total optical power. They both rely on the offset
only. The (16) has assumed unitary electro-to-opto conversion
factor, and it is also the average power constraint since the
oscillating part is averaged out, i.e.

E(Ps + b) = PE(s) + b = b. (17)

3) Illumination Color Constraint: System designers can
determine the illumination color by adjusting the so termed
color ratio vectorb̄ on the CIE color space

b̄ = [br bg bb]
T ≥ 0, (18)

br + bg + bb = 1, (19)

where the subscriptsbr, bg, and bb stand for the relative
intensity of the red, green and blue LEDs respectively, i.e.
b̄ is tristimulus. The illumination color constraint can thusbe
written as

Πb = βPT b̄, (20)

where matrixΠ is of size 3 × 3Nt and contains zeros and
ones only, which serve to sum up individual color intensities.
For a two RGB LEDs case, the matrix

Π =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



 . (21)

It is straightforward to show that (16) is absorbed into (20).
Thus, one equality includes both the optical power and illu-
mination color requirements.

MSE= Es,nsh,nth

{
‖ (GHP− I)s +GWnsh +Gnth ‖2

}

= E
{
tr[(GHP− I)s +GWnsh +Gnth)

T (GHP− I)s +GWnsh +Gnth)]
}

= tr[(GHP − I)Rs(GHP− I)T ] + σ2tr(GGT ) + ς2σ2tr[(GTGEs(WWT ))]

(11)

Es(WWT ) = Es(diag(HPs+Hb))

=




Es(e
T
1 HPs+ eT1 Hb) 0 . . . 0

0 Es(e
T
2 HPs+ eT2 Hb) . . . 0

...
...

. . .
...

0 0 . . . Es(e
T
3Nt

HPs+ eT3Nt
Hb)


 =




eT1 Hb 0 . . . 0
0 eT2 Hb . . . 0
...

...
. . .

...
0 0 . . . eT3Nt

Hb




(12)
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min
P,b

tr

(
HPPTHTG(0),TG(0) − 2G(0),THP+

σ2

r
G(0),TG(0) +

ς2σ2

r
diag(Hb)G(0),TG(0)

)

s.t. abs(P)δ − b ≤ 0

Πb = βPT b̄

(24)

C. The MSE Minimization Problem

The objective of this design is to minimize the MSE in (13)
by optimizing the post-equalizer, the precoder and the offset,
subject to the lighting constraints. The optimization problem
is formulated as

min
G,P,b

MSE

s.t. abs(P)δ − b ≤ 0

Πb = βPT b̄.

(22)

This problem is jointly non-convex in(G,P,b).
Other reasonable objectives besides the sum MSE include

minimization of the arithmetic mean of the MSEs, the geo-
metric mean of the MSEs, the determinant of the MSEs and
the maximum of the MSEs. We refer the readers interested to
a further reading of the paper [28]. The joint design problem
may be studied with other objectives such as maximizing the
available system achievable rates in literature [19]–[21].

D. The Proposed Optimization Method

As the post-equalizerG only appears in the objective
function of (22), the optimum is obtainable by setting the
associated gradient of MSE to zero, i.e.

DGMSE= 0. (23)

The solution is

G = rPTHT
(
rHPPTHT + σ2ς2diag(Hb) + σ2I

)−1
,
(24)

which is of the Wiener filter form. Plug (24) into (13) the
following expression of MSE is obtained

MSE= tr

(
r−1I+PTHT

(
ς2σ2diag(Hb) + σ2I

)−1
HP

)−1

(25)
The resulting optimization problem is

min
P,b

MSE

s.t. abs(P)δ − b ≤ 0

Πb = βPT b̄.

(26)

Proposition1. The objective function in(26) is not convex in
P or b.

Proof: See Appendix A.
Therefore, we propose to solveP andb one after another.

The following relationship between the differential and the
Jacobian onP is useful

dMSE= Dvec(P)MSE · dvec(P). (27)

The Jacobian of the objective MSE w.r.t vec(P) is derived
as in (29) at the bottom of this page, where vec(·) is the
vectorization operator. The Jacobian of the objective MSE w.r.t
b is derived as in (31).

The 3Nt × (3Nt)
2 matrix Φb is of the following form

Φb =




eT1 H 0T . . . 0T

0T eT2 H . . . 0T

...
...

. . .
...

0T 0T . . . eT3Nt
H


 , (28)

where we define bvec(·) as a non-standard block vectorization
operator to rearrange the wide matrixΦb into a tall one
with dimension(3Nt)

2 × 3Nt. To obtain an optimized pair
of precoder and offset, a gradient projection procedure as in
Algorithm 1 is applied [25]. The feasible regionΩP of variable
P determined by the first constraint of problem (22) is convex
and the feasible regionΩb of variableb determined by both
constraints is also convex. Therefore, to project a vector to a
convex set is to find the vector in the set that has the minimum
distance to it.

The stopping criterion parametersǫP = ǫb = 10−4 are
chosen,ΩP andΩb are the convex feasible regions, and the
step sizesα(k) and γ(k) are calculated based on the Armijo
rule. The time complexity of gradient operation isO(K4),
observed from (36)-(38), and the time complexity of projection
operation isO

(
(K2)3.5

)
.

E. The Minimal Dimming Level Problem

There are certain cases that lower dimming level is pre-
ferred, provided that the communication performance is guar-
anteed. In these cases, the dimming factorβ is also an

Dvec(P)MSE= vecT
(
HT

(
ς2σ2diag(Hb) + σ2I

)−1
HPY−2

)
+ vecT

(
Y−2PTHT

(
ς2σ2diag(Hb) + σ2I

)−1
H

)
Π, (29)

whereΠ is a permutation matrix such that dvec(PT ) = Πdvec(P). And

Y = r−1I+PTHT
(
ς2σ2diag(Hb) + σ2I

)−1
HP. (30)

DbMSE= vecT
[
(ς2σ2diag(Hb) + σ2I)−1HPY−2PTHT (ς2σ2diag(Hb) + σ2I)−1

]
bvec(Φb), (31)
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Algorithm 1 Iterative Gradient Projection Algorithm

Input: Initialize vec(P(0)) andb(0), k = 0;
Output: Converged vec

(
P∗

)
= vec(P(k)) andb∗ = b(k);

1: repeat
2: Compute the Jacobian matrixDvec(P)MSE by (29);
3: vecT (P̃(k)) = vecT (P(k)) + α(k)Dvec(P)f(P

(k));
4: vecT (P̄(k)) = projection of vecT (P̃(k)) onto the fea-

sible regionΩP;
5: vecT (P(k+1)) = vecT (P̄(k)) + γ(k)(vecT (P̄(k)) −

vecT (P(k)));
6: Set Pk = Pk+1 and compute the Jacobian matrix

DbMSE by (31);
7: Update the vectorb by a similar procedure with STEP

3−5;
8: k = k + 1;
9: until ||vecT (P(k)) − vecT (P(k−1))|| < ǫP and ||b(k) −

b(k−1)|| < ǫb;

optimization variable besides the transceiver and offset.The
associated optimization problem is formulated as follows

min
G,P,b,β

β

s.t. MSE≤ ε

abs(P)δ − b ≤ 0

Πb = βPT b̄,

(32)

where the worst MSE performance is constrained with a small
numberε. Problem (32) is not jointly convex in(G,P,b, β),
but the problem is convex in(P,b, β) if G is assumed to be
a Wiener filter.

IV. M ULTI -USERMISO VLC

A. Downlink Transceiver Design with Perfect CSI

A closely related problem to the point-to-point MIMO
system is the multi-user multiple input single output (MU-
MISO) broadcast system as shown in Figure 2. The receiver-
side single antenna deployment is particularly suitable for
VLC, considering the limited size of user handsets, e.g. mobile
phones. Moreover, it is also reasonable to adopt the multiple
(even massive number of) transmitters configurations on the
other end, since LED arrays are often naturally used for
illumination uniformity. Assume thatK users are in presence

+

+

+

DC

Removal

DC

Removal

.

.

.

W1,1nsh,1+nth,1

WK,Knsh,K+nth,K

Fig. 2. MU-MISO Downlink VLC system block diagram.

in a room environment. The data fork-th usersk multiplies
its beamforming vectorpk of sizeNt × 1, and the summed

signal for all users is then added with an offset vectorb, thus
the resultant signal is

x =

K∑

k=1

pksk + b, (33)

The received intensity at userk is

yk = hT
k x+ (hT

k x)
1/2nsh,k + nth,k

= hT
k

K∑

j=1

pjsj + hT
k b+

(
hT
k

K∑

j=1

pjsj + hT
k b

) 1

2nsh,k + nth,k,

(34)

wherehk is thek-th column ofH. Then the second term in
(34) is cancelled, resulting in

ȳk =

hT
k pksk + hT

k

∑

j 6=k

pjsj +
(
hT
k

K∑

j=1

pjsj + hT
k b

) 1

2nsh,k + nth,k

︸ ︷︷ ︸
interference plus noise

(35)

Then a scalar post-equalizergk multiplies eachȳk to recover
the k-th symbol

ŝk = gkȳk. (36)

The MSE of thek-th user is

MSEDL
k = Es,nsh,k,nth,k

||ŝk − sk||
2
2

= r

K∑

j=1

g2kh
T
k pjp

T
j hk − 2rgkh

T
k pk + σ2g2k + r + ς2σ2g2kh

T
k b︸ ︷︷ ︸

shot noise induced

(37)

By taking the gradient of (37), the optimumgk is obtained
as

gk = rhT
k pk(r

K∑

j=1

hT
k pjp

T
j hk + ς2σ2hT

k b+ σ2)−1. (38)

By plugging (38) into (37) the following expression is ob-
tained,

MSEDL
k = r−rhT

k pk(h
T
k PPThk+

ς2σ2hT
k b

r
+
σ2

r
)−1pT

k hk

(39)
The optimization problem minimizing the sum MSE is

formulated as follows

max
P,b

K∑

k=1

rhT
k Pek(h

T
kPPThk +

ς2σ2hT
k b

r
+

σ2

r
)−1eTkP

Thk

s.t. abs(P)δ − b ≤ 0

1Tb = βPT ,
(40)

wherepk = Pek. The problem can be solved by applying a
similar gradient projection procedure as given in Algorithm 1.
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B. Downlink Transceiver Design with Imperfect CSI

It is more practical to assume imperfect CSI at the base
station. We model the imperfect CSI with a deterministic
norm-bounded error model [31], i.e.

hk ∈ {ĥk + δk : ||δk|| ≤ ρk} , Uk(δk), ∀k (41)

whereĥk andδk are thek-th column of the estimated channel
matrix and the corresponding estimation error vector,ρk =
s||hk|| is the uncertain size of thek-th column of channel and
scalars ∈ [0, 1) is termed the uncertain scalar. The optimal
post-equalizer is a Wiener filter as in (38) withhk replaced
with ĥk. The joint design of transceiver and offset considering
imperfect CSI for both the transmitter and receiver is included
in Proposition 2, which is termed robust JTOD.

Proposition2. The optimized precoderP∗ and offsetb∗ can
be found jointly through solving the following semidefinite
programming (SDP), where channel uncertainty is assumed,
and the maximum possible sum MSE is minimized:

min
P,b,λ,λ̃
ν,ν̃,̟

̟

s.t.
K∑

k=1

(λk + λ̃k) + λ0 ≤ ̟,

||σg||2 ≤ λ0


λk − νk gkĥ

T
k P− eTk 0T

(gkĥ
T
k P− eTk )

T r−1I −ρkgkP
T

0 −ρkgkP νkI





� 0, ∀k
[
λ̃k − ς2σ2g2kĥ

T
k b− ν̃k(

1
2 ς

2σ2g2k)
2 −ρkb

T

−ρkb ν̃kI

]

� 0, ∀k

νk ≥ 0, ν̃k ≥ 0, ∀k

abs(P)δ − b ≤ 0

1Tb = βPT ,
(42)

where the square matrixA � 0 meansA is positive semi-
definite.

Proof: See Appendix B.

C. Uplink Transceiver Design and Comments on Duality

+
.

.

. +
DC

Removal

+
Wnsh+nth

Fig. 3. MU-MISO Uplink VLC system block diagram.

Consider the uplink multiple access channel in Figure
3, whose equivalence to the downlink counterpart is not
(dis)proved for the visible light channel, although the duality

relationship is well-known for radio frequency channel. The
received intensity at the access point is

y =

K∑

k=1

hk(p̃ksk+b̃k)+diag1/2
( K∑

k=1

hk(p̃ksk+b̃k)
)
nsh+nth.

(43)
Removal of the constant term leads to

ȳ =

K∑

k=1

hkp̃ksk + diag1/2
( K∑

k=1

hk(p̃ksk + b̃k)
)
nsh + nth.

(44)
The matrixG̃T , in this case, serves as the multiuser receiver,

and thek-th recovered symbol is found in (45) and the MSE
of the k-th link is found in (46), both at the top of the next
page.

The downlink uplink MSE duality is achieved if

MSEUL
k = MSEDL

k ∀k. (47)

For the RF counterpart, the duality is studied on condition
that electrical transmission power being the same. For VLC,
duality requires the optical power consumption to equal for
uplink and downlink channels, i.e.

1Tb = 1T b̃, (48)

where b̃ = [b̃1 b̃2 . . . b̃K ]T . Besides, the non-negative con-
straints are unique to VLC and need to be guaranteed.

It is known that without the shot noise induced term, the
equation (47) is satisfied when

pk = αkg̃k andgk = α−1
k p̃k, (49)

whereαk is the solution to the following equation [32]

C



α2
1
...

α2
K


 = σ2



p̃21
...

p̃2K


 , (50)

where

Ck,j =

{∑
i6=k p̃

2
i g̃

T
k hih

T
i g̃k + σ2g̃T

k g̃k k = j

−p̃2kg̃
T
j hkh

T
k g̃j k 6= j.

(51)

To verify whether duality holds, it is required that the
shot noise induced downlink and uplink terms be compared
with the condition in (54). The shot noise induced term for
downlink is given by

MSEDL
k,sh = ς2σ2α−2

k p̃2kh
T
k b, (52)

while the shot noise induced term for uplink is given by

MSEUL
k,sh = ς2σ2α−2

k pT
k diag(

K∑

j=1

hj b̃j)pk. (53)

There is no guarantee of the equality of these two terms. Thus,
duality does not hold for VLC downlink and uplink with an
existence of signal-dependent shot noise. Therefore, the two
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ŝk = g̃T
k hkp̃ksk + g̃T

k

∑

j 6=k

hj p̃jsj + g̃T
k diag1/2

( K∑

j=1

hj(p̃jsj + b̃j)
)
nsh + g̃T

k nth. (45)

MSEUL
k = Es,nsh,nth

||ŝk − sk||
2
2 =

K∑

j=1

rp̃2kg̃
T
k hjh

T
j g̃k − 2rp̃kg̃

T
k hk + σ2g̃T

k g̃k + r + ς2σ2g̃T
k diag(

K∑

j=1

hj b̃j)g̃k

︸ ︷︷ ︸
shot noise induced term

. (46)

problems should be studied independently. The uplink problem
minimizing the sum MSE is formulated as

min
G̃,p̃,b̃

K∑

k=1

MSEUL
k

s.t. abs(p̃k)δ − b̃k ≤ 0, ∀k

1T b̃ = βPT ,

(54)

whereG̃ = [g̃1, g̃2, . . . , g̃K ]. The optimal̃gk is also a Wiener
filter

g̃k = rp̃k

(
p̃2kHHT + ς2σ2diag

( K∑

j=1

hj b̃j

)
+ σ2I

)−1

hk

(55)
By plugging (55) into (54),P and b can be obtained by
solving the resulting problem with a similar gradient projection
procedure as given in Algorithm 1.

V. SIMULATION RESULTS

In this section, we compare the performance of the pro-
posed methods with the conventional scaled zero-forcing (ZF)
based and singular value decomposition (SVD) based pre-
equalization methods. For the ZF-based method, we have

P = µ1H
−1, G =

1

µ1
I, b =

βPT

3Nt
1, (56)

where
µ1 = min

k

bk
[abs(H−1)](k,:) · 1d

, (57)

where[A](k,:) denotes thek-th row ofA. Thus,µ1 is a positive
number to guarantee the positivity of intensity on all LEDs.
The offsetb is a fixed, and all the LEDs share the DC power.
The recovered symbols are

ŝ = s+
1

µ1
WZFnsh +

1

µ1
nth, (58)

where
WZF

i,i =
√
eTi (µ1s+Hb), ∀i. (59)

For the SVD-based method, we decompose the channelH =
UΣVT and set

P = µ2VΣ−1, G =
1

µ2
UT , b =

βPT

3Nt
1, (60)

whereµ2 is calculated in a similar way toµ1. The recovered
symbols are

ŝ = s+
1

µ2
UTWSV Dnsh +

1

µ2
UTnth, (61)

where

WSVD
i,i =

√
eTi (µ2HVΣ−1s+Hb), ∀i. (62)

A. MIMO Point-to-Point VLC

For illustrative purpose, we study the cases with two RGB
LED and detectors, i.e.Nt = Nr = 2 and for simplicity we
assumeK = 3Nt = 3Nr. If only one RGB LED is used,
the joint transceiver design and offset optimization problem
degrades to a transceiver design problem with a fixed bias,
thus assuming two RGB LEDs offers the simplest case for
our study.

For JTOD Case 1−Case 5 in the followings, system pa-
rameters are chosen as: the constellation size of each color
channelM = 4; signal takes value from a 4-PAM constellation
{−3,−1, 1, 3} such that the variancer = 5; the transmit opti-
cal powerPT = 30; the color ratio vector̄b = [1/3 1/3 1/3]T ;
the number of local runs isNI = 20; the stopping threshold
values isǫP = 10−3. The shot noise scaling factor and the
thermal noise variance areς2 = 1 and σ2 = 0.01 when
the results in the cases are generated, but we point out later
that these values can vary without effect on the optimized
structures of the transceiver and offset.
• Case 1 (Perfect):We first give some intuition on the
design with an identity channel matrix

H = I6,

i.e. no channel correlation or color cross-talks is consid-
ered. The following optimized precoder is obtained (results
are rounded up to 2 decimal places)

P∗ = diag([1.67 1.67 1.67 1.67 1.67 1.67]),

the optimized offset is

b∗ = [5.00 5.00 5.00 5.00 5.00 5.00]T ,

and the optimized post-equalizer is

G∗ = diag([0.59 0.59 0.59 0.59 0.59 0.59]).

It is expected that equal offset allocation is the optimal.
• Case 2 (Blockage):Assume that the second RGB LED is
blocked with neither correlation nor color cross-talk, i.e.

H̄ =

[
1 0
0 0

]
, H̃ = I3.
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The optimized precoder is

P∗ =




0 0 0 0 0 10/3
0 0 0 0 0 0
0 10/3 0 0 0 0
0 0 0 0 0 0
0 0 0 10/3 0 0
0 0 0 0 0 0



.

The optimized offset is

b∗ = [10.00 0 10.00 0 10.00 0]T ,

and the optimized post-equalizer is

G∗ =




0 0 0 0 0 0
0 0 0.29 0 0 0
0 0 0 0 0 0
0 0 0 0 0.29 0
0 0 0 0 0 0

0.29 0 0 0 0 0



.

It is expected that no offset power is allocated to the
blocked RGB LED, and its signal is nulled by the precoder.

• Case 3 (Correlation):The ChC and CoC parts of channel
are chosen as

H̄ =

[
1 0.5

0.25 1

]
, H̃ = I3,

where asymmetric channel correlation is considered and
no color cross-talk is assumed. More interference is caused
from the second LED to the first detector than from the
first LED to the second detector. The optimized precoder
is

P∗ = diag([1.77 1.56 1.77 1.56 1.77 1.56]),

The optimized offset is

b∗ = [5.33 4.67 5.33 4.67 5.33 4.67]T ,

and the optimized post-equalizer is

G∗ =


0.64 −0.32 0 0 0 0
−0.18 0.73 0 0 0 0

0 0 0.64 −0.32 0 0
0 0 −0.18 0.73 0 0
0 0 0 0 0.64 −0.32
0 0 0 0 −0.18 0.73



.

It is observed that more power is allocated to the first RGB
LED, which is expected since it cause less interference to
the second RGB LED.

• Case 4 (Color Cross-talks):The ChC and CoC parts of
channel are chosen as

H̄ = I2, H̃ =




0.95 0.05 0
0.05 0.90 0.05
0 0.05 0.95



 ,

where medium CoC is considered and no channel correla-
tion is assumed. The optimized precoder is

P∗ = diag([1.67 1.67 1.67 1.67 1.67 1.67 ]).

The optimized offset is

b∗ = [5.00 5.00 5.00 5.00 5.00 5.00]T ,

and the optimized post-equalizer is

G∗ =


0.63 0 −0.03 0 0 0
0 0.63 0 −0.03 0 0

−0.03 0 0.67 0 −0.03 0
0 −0.03 0 0.67 0 −0.03
0 0 −0.03 0 0.63 0
0 0 0 −0.03 0 0.63



.

An interesting observation is that the optimalP∗ andb∗

are the same with the no cross-talks case.
• Case 5 (Correlation+Color Crosstalks):The ChC and
CoC parts of channel are chosen as

H̄ =

[
1 0.50

0.25 1

]
H̃ =




0.95 0.05 0
0.05 0.90 0.05
0 0.05 0.95



 ,

where both medium color cross-talk and asymmetric chan-
nel correlation are assumed. The optimized precoder is

P∗ =




1.80 0 0 0 0 0
0 1.54 0 0 0 0
0 0 0 1.80 0 0
0 0 1.54 0 0 0
0 0 0 0 1.80 0
0 0 0 0 0 1.54



.

The optimized offset is

b∗ = [5.41 4.59 5.41 4.59 5.41 4.59]T ,

and the optimized post-equalizer is

G∗ =


0.66 −0.33 −0.04 0.02 0 0
−0.19 0.77 −0.01 −0.04 0 0
0.01 −0.04 −0.20 0.82 0.01 −0, 04
−0.04 0.02 0.70 −0.35 −0.04 0.02

0 0 −0.04 0.02 0.66 −0.33
0 0 0.01 −0.04 −0.19 0.77



.

Note that it is more practical to assume medium-to-low CoC
in practice as long as the quality of color filters at the Rx is
acceptable. By simulations it is seen that the optimalP∗ and
b∗ remain the same if high CoC is considered (ξ = 0.20).
This observation, along with the one in case 4, implied that the
optimal structure of the transmitter and offset do not change
with CoC.

Then we test the symbol error rate (SER) performance of
the case 1 and case 5 across a particular range of noise and
power parameters in Fig. 5−Fig. 7, on an Intel Core TM
i5-3337U (1.80GHz) processor. Withς2 = 1 and PT = 30
fixed, the SER performance comparison among the three
schemes for varying thermal noise variance is shown in Fig.
5. With σ2 = 0.01 andPT = 30 fixed, the SER performance
comparison for varying shot noise scaling factor is shown in
Fig. 6. Withσ2 = 0.01 andς2 = 1 fixed, the SER performance
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comparison for varying optical power is shown in Fig. 7. It
is seen from these figures that for Case 5 the JTOD has large
performance gain, but with the perfect channel assumed in
Case 1 simpler schemes work out about equally well. The
JTOD also outperforms the rest of schemes for Case 3 and
Case 4, although results are not shown here. For Case 2, all
schemes are not giving a satisfactory result for the range of
parameters tested. In Fig. 8, the convergence behavior of our
algorithm is plotted, whenσ2 = 0.01, ς2 = 1 andPT = 30 are
associated. The gradient projection based procedure converges
fast, although it may fail on condition that extreme values of
parameters are set, e.g. when the channel matrix is very badly
conditioned. The averaged processing time over100 iterations
is summarized in Table 1, which shows good scalability of our
method.
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Fig. 4. SER performance comparison between schemes for
case 1 and case 5 channels with varyingσ2 = 1.
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Fig. 5. SER performance comparison between schemes with
Case 1 and Case 5 channels varyingς2; MIMO P2P.

B. MU-MISO Downlink VLC

We compare our scheme with the scaled ZF scheme for the
downlink problem under the sum MSE constraint as shown
by (39). A small size example is studied withNt = 4 white
LEDs servingK = 4 users respectively. Symbols of each link
take values from the same 4-PAM constellation{−3,−1, 1, 3}
assumed in previous sections. We only consider the scenario
where LEDs are separated enough such that only adjacent
ones interfere with each other, and the following normalized

15 20 25 30 35 40
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−3
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−2

 

 

JTOD (Case 1)

scaled ZF/SVD (Case 1)

JTOD (Case 5)

scaled ZF (Case 5)

scaled SVD (Case 5)

Fig. 6. SER performance comparison between schemes with
Case 1 and Case 5 channels varyingPT ; MIMO P2P.

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
um

 M
S

E

Iteration Index

Fig. 7. Convergence behavior of the JTOD algorithm,σ2 =
0.01, ς2 = 1.

channel matrix is used in the simulations

H =




1 0.25 0 0
0.25 1 0.25 0
0 0.25 1 0.25
0 0 0.25 1


 .

In Fig. 8 - Fig. 10, the performance comparison between the
JTOD and the scaled ZF across particular noise and power
parameter ranges are shown. Withς2 = 0.5 and PT = 30,
the SER performance comparison for varying thermal noise
variance is shown in Fig. 8. Withς2 = 0.01 andPT = 20, the
SER performance comparison for varying shot noise scaling
factor is shown in Fig. 9. Withς2 = 0.01 and ς2 = 0.5,
the SER performance comparison for varying optical power
is shown in Fig. 10. It is observed that the JTOD scheme
outperforms the scaled ZF scheme non-trivially for most cases,
but the performance gain can shrink when the signal is much
stronger than noise, e.g. the end of the bottom two lines of
Fig. 9 and Fig. 10. In Figure 11, we compare the worst-
case SER performance of the robust and the regular JTOD
under downlink MU-MISO channel when the noise variance
σ2 = 0.001 andσ2 = 0 respectively (when there is no noise,
CSI error is still possible because of, e.g. quantization error).
The robust scheme is shown to offer better worst-case SER
performance over the regular scheme over a range of channel
uncertainty values.
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Fig. 11. SER performance comparison between the robust and
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VI. CONCLUSIONS

We have proposed a joint transceiver and offset design
method, termed JTOD, for visible light communications in
this paper. Both the single user point-to-point and the multi-
user uplink and downlink systems are considered, with lighting
constraints and input-dependent noise taken into account.Case
by case studies are provided for different scenarios, e.g. per-
fect channel, blockage channel, color-crosstalk channel,and
correlated channel and the best structures of the transceivers
and offsets obtained correspondingly are presented. These
structures when the channel is fixed are observed to be unique
for different noise variances and only scale with the optical
power. For the point-to-point systems, the JTOD outperforms
conventional transceiver design methods with fixed offset,such
as ZF and SVD based ones. For the multi-user downlink
systems, the performance of ZF approaches the JTOD when
the signal is much stronger than noise. We also prove in this
paper that different from the RFC counterpart, the downlink-
uplink duality does not hold for such type of design. Further,
the design of robust JTOD is included, when perfect CSI is
not available.

APPENDIX A
PROOF OFPROPOSITION1

Define

g(P) = tr

(
1

r
I+PTHT

(
ς2σ2diag(Hb) + σ2I

)−1
HP

)−1

,

(63)
f(α) = g

(
αP1 + (1− α)P2

)
, (64)

whereP1 andP2 are3Nt × 3Nt real valued matrices and

Σ = (ς2σ2diag(Hb) + σ2I)−1. (65)

To simplify notations, define

A =
1

r
I+ (αPT

1 + (1− α)PT
2 )H

TΣH(αP1 + (1 − α)P2),

(66)

Nt = 2 Nt = 3 Nt = 4 Nt = 6 Nt = 8 Nt = 10 Nt = 15 Nt = 20 Nt = 25

Processing Time (sec) 1.728 1.744 1.906 2.345 2.808 3.310 3.348 5.529 10.450

TABLE I. MATLAB running time for each iteration.
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thusf(α) = tr(A). The second order derivative off(α) with
respect toα is calculated by

∂2f(α)

∂2α
= 2Tr(A−1 ∂A

∂α
A−1 ∂A

∂α
A−1)−Tr(A−1 ∂

2A

∂2α
A−1),

(67)
where we find

∂A

∂α
= 2αPT

3 H
TΣHP3 +PT

3 H
TΣHP2 +PT

2 H
TΣHP3,

∂2A

∂2α
= 2PT

3 H
TΣHP3,

(68)

whereP3 = P1−P2. Substituting (68) into (67), we see that
∂2f(α)
∂2α cannot be always positive. The sign of∂2f(α)

∂2α actually
depends on the value ofα, H, P1, andP2. We thus conclude
that f(α) is not convex inP. We provide one example to
verify that the second derivative can be negative: chooseα =
r = ς2 = σ2 = 1, P1 = 0, P2 = I3Nt

, H = I3Nt
and

b = 13Nt
. A similar procedure shows the non-convexity of

the objective function w.r.t.b.

APPENDIX B
PROOF OFPROPOSITION2

From (37), the maximum possible sum MSE over the chan-
nel uncertainty region of downlink VLC can be transformed
into

MSEDL
max = max

hk∈Uk(δk)
r

K∑

k=1

||gkh
T
kP− eT ||2 + ||σg||2

+
K∑

k=1

ς2σ2g2kh
T
k b. (69)

Introducing slack variablesλ0, λk, λ̃k, and transform the
optimization problem (42) into

min
P,b,λ,λ̃,λ′

λ0 +
K∑

k=1

(λk + λ̃k)

s.t. ||σg||2 ≤ λ0,

r||gkh
T
k P− eTk ||

2 ≤ λk, hk ∈ Uk(δk),

ς2σ2g2kh
T
k b ≤ λ̃k, hk ∈ Uk(δk),

abs(P)δ − b ≤ 0,

1Tb = βPT .

(70)

For the second constraint, we apply the Schur complement
lemma to transform into the following form

[
λk gkĥ

T
k P− ek

(gkĥ
T
k P− ek)

T r−1I

]

�

[
0 δTk gkP

gkP
T δk O

]
, ||δk|| ≤ ρk (71)

whereO is aK ×K all-zero matrix. As there are an infinite
number of vectorδk ’s that satisfy ||δk|| ≤ ρk, (71) still
contains an infinite number of equations. To transform it into
a single constraint, we apply the following lemma

Lemma 3. Given matricesB, C, A with A = AH , the semi-
infinite linear matrix equation of the form of

A ≥ BHXC+CHXHB, ∀X : ||X||F ≤ ρ, (72)

holds if and only if there existsν ≥ 0 such that
[
A− νCHC −ρBH

−ρB νI

]
� 0 (73)

By choosing

A =

[
λk gkĥ

T
k P− eTk

(gkĥ
T
kP− eTk )

T r−1I

]
, (74)

B = [0 gkP], C = [−1 0], X = δk, (75)

thus, equation (71) is transformed into



λk − νk gkĥ
T
k P− eTk 0T

(gkĥ
T
k P− eTk )

T r−1I −ρkgkP
T

0 −ρkgkP νkI


 � 0, ∀k

(76)
νk ≥ 0, ∀k, (77)

where νk ’s are auxiliary scalar variables. Similarly, we can
prove that the third constraint of (70)

ς2σ2g2kh
T
k b ≤ λ̃k, hk ∈ Uk(δk) (78)

is equivalent to
[
λ̃k − ς2σ2g2kĥ

Tb− ν̃k(
1
2 ς

2σ2g2k)
2 −ρkb

T

−ρkb ν̃kI

]
� 0, ∀k

(79)
ν̃k ≥ 0, ∀k, (80)

whereν̃k ’s are auxiliary scalar variables.
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