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Reconstruction of Correlated Sources with Energy
Harvesting Constraints in Delay-constrained and

Delay-tolerant Communication Scenarios
Miguel Calvo-Fullana, Javier Matamoros, and Carles Antón-Haro

Abstract—In this paper, we investigate the reconstruction
of time-correlated sources in a point-to-point communications
scenario comprising an energy-harvesting sensor and a Fusion
Center (FC). Our goal is to minimize the average distortion in
the reconstructed observations by using data from previously
encoded sources as side information. First, we analyze a delay-
constrained scenario, where the sources must be reconstructed
before the next time slot. We formulate the problem in a convex
optimization framework and derive the optimal transmission (i.e.,
power and rate allocation) policy. To solve this problem, we
propose an iterative algorithm based on the subgradient method.
Interestingly, the solution to the problem consists of a coupling
between a two-dimensional directional water-filling algorithm
(for power allocation) and a reverse water-filling algorithm (for
rate allocation). Then we find a more general solution to this
problem in a delay-tolerant scenario where the time horizonfor
source reconstruction is extended to multiple time slots. Finally,
we provide some numerical results that illustrate the impact of
delay and correlation in the power and rate allocation policies,
and in the resulting reconstruction distortion. We also discuss the
performance gap exhibited by a heuristiconline policy derived
from the optimal (offline) one.

I. I NTRODUCTION

Sensor nodes are usually powered by batteries which can
be costly, difficult or even impossible to replace (e.g., when
nodes are deployed in remote locations). In recent years,
energy harvesting has emerged as a technology capable of
overcoming (or, at least, alleviating) the limitations imposed by
non-rechargeable batteries. Specifically, nodes equippedwith
an energy harvesting device are capable of scavenging e.g.,
solar, wind, thermal, kinetic energy from the environment [1]
and, by doing so, extend their operational lifetime.

Energy harvesting has received considerable attention by
the wireless communications and information theory com-
munities (see [2] and references therein for an overview of
current advances). For point-to-point scenarios, and under
the assumption of known energy and data arrivals (offline
optimization), the main focus has been on the derivation of
optimal transmission strategies at the sensor node. In [3],
the authors study the problem of minimizing the time by
which all data packets are transmitted to the destination.
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A number of authors go one step beyond and investigate
the impact offinite energy storage capacity [4] or battery
leakage [5]; generalize the analysis to fading channels [6]; or
explicitly take into consideration the energy needed for data
processing (in addition to data transmission) [7]. Further, other
communication scenarios have been investigated such as the
broadcast [8] or the multiple access [9] channels.

For uncoded transmissions, [10] investigates a number of
energy-related aspects in a context of wireless sensor networks
for parameter estimation. As for the coded case, in [11] the
authors generalize Wyner-Ziv’s source coding strategies with
side information [12] to tree-structured sensor networks.

Several aspects of source and channel coding have been
analyzed in energy harvestingscenarios. A point-to-point
case was studied in [13], where rate-distortion allocationis
optimized for stationary energy arrivals under data queue
stability. These results were extended in [14] to the case of
finite energy and data buffers. Besides, the multi-hop scenario
was studied in [15] withcorrelated sources anddistributed
source coding. From a finite-horizon point of view, in [16]
the problem of minimizing the reconstruction distortion ofa
Gaussian source is considered.

A. Contribution

In this paper, we investigate the reconstruction of time-
correlated sources in a point-to-point communications sce-
nario1. As in [3], [5], [8], [16] we assume that energy arrivals
are non-causally known, thus taking anoffline optimization
approach to the problem. Hence, the solution turns out to be a
benchmark against whichany online policy can be compared
(we also propose one heuristic online policy here). Overall,
the main contributions of this work are as follows

• We considertime-correlatedsources. The introduction
of temporal correlation in the sources is particularly
relevant for video coding applications [17] since, in this
case, images (i.e., sources) in consecutive frames are
clearly correlated. Video source coding has been widely
investigated in the literature [18]–[20]. In [18] the authors
model video signals as a sequence of time-correlated
(correlation given by a first-order auto-regressive process)
spatially independent and identically distributed Gaus-
sian processes (namely, frames). Such correlation model,

1Other communication scenarios such as multiple-access (MAC) channels,
which are indeed relevant for wireless sensor networks, areleft for future
work in this area.
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Fig. 1. Temporal and spatial correlation models in video coding.

which we adopt in this work, is illustrated in Fig. 1. Still,
more general correlation models are also available [20].

• We considerdelay-tolerantreconstruction scenarios. In
other works [19], the authors analyze the impact of a
delay-tolerant reconstruction of the correlated source.
Those studies, however, were conducted in scenarios
without energy harvesting. Our work goes one step
beyond and incorporates energy harvesting constraints
(in the sensor node) in the source coding process itself.
Consequently, the closed-form expressions that we derive
for the power and rate allocation policies explicitly take
correlation into account. In this respect, we generalize the
results of [16] to the correlated case.

• In contrast to previous works, we further leverage onside
information-aware coding strategies for WSNs [11] to
exploit correlation. First, we study thedelay-constrained
case [21] in which the source must be reconstructed at
the FC before the next time slot. Then we generalize our
study to the delay-tolerant case—where the time horizon
for source reconstruction is extended to multiple time
slots. For both cases, we derive the optimal transmis-
sion policy which minimizes the average reconstruction
distortion at the destination. Our policy reverts to that
of [16] for uncorrelated sources, and to that of [3] for
the uncorrelated and delay-constrained case. In order
to compute this rate and power allocation policy, we
propose an iterative algorithm based on the subgradient
method [22]. Interestingly, we show that the procedure
encompasses the interaction between a two-directional
directional water-filing and a reverse water-filling [23,
Chapter 10] schemes.

Besides, we provide extensive numerical results which illus-
trate the impact of correlation and delay in the transmit policy
and the resulting reconstruction distortion.

The remainder of this paper is organized as follows. In
Section II we introduce the system model and provide de-
tails on the encoding process. In Section III, we address
the distortion minimization problem for the delay-constrained
case. We formulate the problem as a convex program and

Fig. 2. System Model.

derive the optimal power and rate allocation policy. In order
to compute this resulting transmission policy, we propose in
Section III-C an iterative algorithm based on the subgradient
method. Next, in Section IV we generalize the problem (and
the solution) to the delay-tolerant case. We provide numerical
results in Section V, where the effect of correlation as well
as delay on the transmit policy and the resulting distortionare
assessed. Finally, Section VI closes the paper by providing
some concluding remarks.

II. SYSTEM MODEL

Consider the point-to-point communications scenario de-
picted in Fig. 2 which comprises one energy-harvesting (EH)
sensor and one Fusion Center (FC). We adopt a slotted
transmission model, withK denoting the total number of
time slots. The sensor measures a time-varying phenomenon of
interest which, in the sequel, we model by multiple correlated
and memoryless Gaussian wide-sense stationary sources (see
rationale in the preceding section). Specifically, each source
models the phenomenon in a given time slot. In thek-th time
slot, the sensor node (i) collects alargenumber of independent
and identically distributed (i.i.d.) samples from thek-th source;
and (ii) encodes those measurements. The encoded data is then
transmitted to the FC ind consecutive time slots.

In this work, we consider both delay-constrained (d = 1)
and delay-tolerant (d > 1) communication scenarios. Clearly,
in delay-tolerant scenarios the encoded data transmitted in a
given time slot corresponds to multiple sources, as Figure
3 illustrates. LetRi,j denote the average transmission rate
assigned to the encoded samples of thej-th source in the
i-th time slot. Necessarily, the sum-rate in thei-th time slot
is upper bounded by the channel capacity2, namely,

i
∑

j=i−d+1

Ri,j ≤ log
(

1 + |hi|2pi
)

, i = 1, . . . ,K, (1)

with |hi|2 and pi standing for the channel gain and average
transmit power in time sloti, respectively (channel noise
is assumed to be Gaussian-distributed, with zero-mean and
unit variance). Then i.i.d. samples collected by the sensor
node from thei-th source will be denoted in the sequel by

2For the ease of notation, we let the number of channel uses to be equal to
the number of samples collected in a given time slot. This number, in turn,
is assumed to be large enough to satisfy Shannon’s source coding theorem.
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Fig. 3. Simultaneous transmission of source measurements.

{xk
i }nk=1. Such samples, we assume, are correlated over time

slots through a first-order autoregressive process. Hence,for
the k-th sample from thei-th source we have that

xk
i =

√
ρxk

i−1 + wk
i ,

k = 1, . . . , n,

i = 1, . . . ,K,
(2)

with ρ = E
[

xk
i x

k
i−1

]

denoting the correlation coefficient, and
wk

i standing for an i.i.d. zero-mean Gaussian random variable
with varianceσ2

w = (1− ρ)σ2
x.

As for the underlying energy harvesting process, we model
it as a counting process [3], [4] with packet energy arrivalsof
Ei Joules at the beginning of time sloti. For simplicity, we
assume that energy can be stored in a rechargeable battery of
infinite capacity. By considering transmit power as the only
energy cost, any transmission (power allocation) policy{pi}
at the sensor node must satisfy the following energy causality
constraint:

Ts

i
∑

j=1

pj ≤
i
∑

j=1

Ej , i = 1, . . . ,K, (3)

whereTs denotes the duration of the time slot which, in the
sequel, we normalize (i.e.,Ts = 1).

Remark1. There exist more sophisticated power consumption
models encompassing non-ideal circuit power consumption
effects [24] or the impact of processing power [7] (See also
references [25] and [26] for more insight into these matters).
In this work, for simplicity, we restrict ourselves totransmit
power consumption. Nonetheless, the proposed model easily
adapts to a constant circuit power consumption. Any model of
the formTs

∑i
j=1 pj+ Ts

∑i
j=1 P

c
i ≤∑i

j=1 Ej , with P c
i be-

ing the circuit power consumption at thei-th time slot, can be
rewritten asTs

∑i
j=1 pj ≤∑i

j=1 Ēj , where we have defined
a new energy harvesting process asĒi = Ei − TsP

c
i . Using

this new energy harvesting process, the proposed framework
can be used to obtain policies adapted to a constant circuit
power consumption.

Our goal is to reconstruct at the FC the sequence of
measurements{xk

i }nk=1 of each source in up tod time slots
since they were collected. Due to the continuous-valued nature
of the sources and the rate constraint (1), the reconstructed
measurements{x̂k

i }nk=1 will be unavoidably subject to some
distortion. Such distortion will be characterized by a Mean
Squared Error (MSE) metric:

Di =
1

n

n
∑

k=1

(

xk
i − x̂k

i

)2
, i = 1, . . . ,K. (4)

A. Source Coding and Distortion

Hereinafter, we assume separability of source and channel
coding at the sensor node. Hence,{xk

i }nk=1 can be first
encoded into a length-n codeword (with a sufficiently largen)
given by {uk

i }nk=1. This process, as in [27], can be modeled
as

ui = xi + zi, i = 1, . . . ,K, (5)

wherezi denotes i.i.d. zero-mean Gaussian random noise of
varianceσ2

zi , which plays the role of encoding noise (the
sample index has been omitted here for brevity). We know that,
in order to decode the received data, the FC will exploit the
available side information (i.e., all the precedingui). Hence,
the sum of the (average) encoding rates per sample for thei-th
source over thed consecutive time slots must satisfy [23]

i+d−1
∑

j=i

Rj,i ≥ I(xi;ui|u1, . . . , ui−1), i = 1, . . . ,K, (6)

whereI(·; ·|·) stands for the conditional mutual information.
From (5), this last expression can be rewritten as

I(xi;ui|u1, . . . , ui−1) =H (ui|u1, . . . , ui−1)−
H (ui|u1, . . . , ui−1, xi)

= log

(

1 +
σ2
xi|u1,...,ui−1

σ2
zi

)

, (7)

with H(·|·) standing for the conditional entropy and
σ2
xi|u1,...,ui−1

for the conditional variance of thei-th obser-
vation given all the previous data available at the FC. Hence,
by taking equality in (6), the variance of the encoding noise
reads

σ2
zi =

σ2
xi|u1,...,ui−1

e

i+d−1
∑

j=i

Rj,i

− 1

. (8)

In each time slot, the FC produces an optimal Minimum Mean
Squared Error (MMSE) estimate of the observations which, as
discussed earlier, exploits all the precedingui, namely

x̂i = E [xi|u1, . . . , ui] , i = 1, . . . ,K. (9)

The distortion in the reconstruction ofxi thus reads:

Di = σ2
xi|u1,...,ui

, (10)

which, in turn, can be expressed as3 (see Appendix A, for a
detailed derivation)

Di = σ2
x

(

(1− ρ)

i
∑

j=2

ρi−je
−
∑i

k=j

∑k+d−1
l=k Rl,k

+ρi−1e−
∑i

k=1

∑k+d−1
l=k Rl,k

)

. (11)

3With some abuse of notation, in the summation interval we write k+d−1.
Still, we restrict such summations to the valid range of timeslot values, namely,
max{k + d− 1,K}.
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III. M INIMIZATION OF THE AVERAGE DISTORTION:
DELAY-CONSTRAINED SCENARIO

Here, samples must be encoded, transmitted and recon-
structed before the next time slot starts (i.e.,d = 1). The
particularization of the channel capacity constraint (1) thus
reads

Ri ≤ log
(

1 + |hi|2pi
)

, (12)

whereRi stands for the transmission rate which is assigned to
the i-th source in thei-th time slotonly (i.e., no summation of
rates over subsequent time slots). Likewise, the rate-distortion
constraint (6) can be particularized to

Ri ≥ I(xi;ui|u1, . . . , ui−1), (13)

From all the above, the reconstruction distortion in (11)
simplifies to

Di = σ2
x

(

(1− ρ)

i
∑

j=2

ρi−je

−
i
∑

k=j

Rk

+ ρi−1e
−

i
∑

k=1

Rk
)

.

(14)

Our goal is to find the optimal power{pi} and rate{Ri}
allocation that minimize the average distortion given by (14)
subject to the energy causality constraint of (3) and the
capacity constraint of (1). Unfortunately, due to the coupling
(over time slots) of the rates in the exponential terms of
(14), this optimization problem cannot be solved analytically.
To circumvent this, we define thecumulative ratesrij as
rij ,

∑i
k=j Rk, for i = 1, . . . ,K, j = 1, . . . , i. By doing

so, the optimization problem can be posed as:

min
{pi},
{Ri},
{rij}

σ2
x

K

K
∑

i=1

(

(1− ρ)

i
∑

j=2

ρi−je−rij + ρi−1e−ri1

)

(15a)

s.t. rij =

i
∑

k=j

Rk, i = 1, . . . ,K, j = 1, . . . , i (15b)

Ri ≤ log
(

1 + |hi|2pi
)

, i = 1, . . . ,K, (15c)
i
∑

j=1

pj ≤
i
∑

j=1

Ej , i = 1, . . . ,K, (15d)

− pi ≤ 0, i = 1, . . . ,K, (15e)

−Ri ≤ 0, i = 1, . . . ,K, (15f)

− rij ≤ 0, i = 1, . . . ,K, j = 1, . . . , i (15g)

where the optimization is with respect to variables{pi},
{Ri} and, also,{rij} (this follows from the introduction of
the additional constraint (15b) associated to the definition of
cumulative rates). Since the objective function (15a) is convex
and the constraints (15b)-(15g) define a convex feasible set,
the optimization problem (15) is convex and, thus, has a global
solution [28]. By satisfying the Karush-Kuhn-Tucker (KKT)
conditions, we identify the necessary and sufficient conditions

for optimality. The Lagrangian of (15) reads

L =
σ2
x

K

K
∑

i=1



(1− ρ)

i
∑

j=2

ρi−je−rij + ρi−1e−ri1





+

K
∑

i=1

i
∑

j=1

λij



rij −
i
∑

k=j

Rk





+

K
∑

i=1

µi

(

Ri − log
(

1 + |hi|2pi
))

+
K
∑

i=1

βi





i
∑

j=1

pj −
i
∑

j=1

Ej





−
K
∑

i=1

ηipi −
K
∑

i=1

φiRi −
K
∑

i=1

i
∑

j=1

δirij , (16)

where{µi} ≥ 0, {βi} ≥ 0, {ηi} ≥ 0, {φi} ≥ 0, {δij} ≥ 0
and {λij} stand for the corresponding Lagrange multipliers.
The additional complementary slackness conditions are given
by

µi

(

Ri − log
(

1 + |hi|2pi
))

= 0, ∀i, (17)

βi





i
∑

j=1

pj −
i
∑

j=1

Ej



 = 0, ∀i, (18)

ηipi = 0, ∀i, (19)

φiRi = 0, ∀i, (20)

δirij = 0, ∀i, j. (21)

Finally, by taking the derivative of the Lagrangian with respect
to pi, Ri, rij and letting them be equal to zero we the set of
stationarity conditions follow, namely,

∂L
∂pi

= − µi|hi|2
1 + |hi|2pi

+

K
∑

j=i

βj − ηi = 0, (22)

∂L
∂Ri

= −
K
∑

k=i

i
∑

j=1

λkj + µi − φi = 0, (23)

∂L
∂rij

=

{

−σ2
x

K ρi−je−rij + λij − δij = 0, if j = 1,

−σ2
x

K (1− ρ) ρi−je−rij + λij − δij = 0, if j 6= 1.
(24)

A. Optimal Power Allocation

From the stationarity conditions onpi (22) andRi (23), and
the slackness conditions of (21), the optimal power allocation
follows:

p⋆i =











K
∑

k=i

i
∑

j=1

λkj

K
∑

j=i

βj

− 1

|hi|2











+

, i = 1, . . . ,K, (25)

where [·]+ = max{·, 0}. This solution can be interpreted
as a two-dimensional directional waterfilling, as shown in
Fig. 4(a). For each time sloti, we have a rectangle of
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(a) Two-dimensional directional waterfilling.

(b) Reverse waterfilling with multiple waterlevels.

Fig. 4. Optimal power and cumulative rate allocation.

solid material of widthWi ,
∑K

k=i

∑i
j=1 λkj and height

Hi , 1
/

(

|hi|2
∑K

k=i

∑i
j=1 λkj

)

. Right-permeable taps are
placed in time slots with energy arrivals. Water is consequently
poured up to a waterlevelνi , 1/

∑K
j=i βj . The resulting

power allocation corresponds to the area of water above the
solid rectangle.

B. Optimal Rate Allocation

Next, by solving (24) forrij , and taking into account the
corresponding slackness conditions, the optimal cumulative
rate allocation can be written as

r⋆ij =



















[

log

( 1
K σ2

xρ
i−j

λij

)]+

, if j = 1,

[

log

( 1
K σ2

x (1− ρ) ρi−j

λij

)]+

, if j 6= 1.

(26)

From this last expression, it becomes apparent that, necessar-
ily, {λij} > 0. Hence, from (23), we have that{µi} > 0 too.
This implies that constraint (15c) is satisfied with equality.
Moreover, expression (26) can be readily interpreted in terms
of a reversewater-filling solution for the reconstruction of
parallel Gaussian sources [23, Chapter 10]. To see that, we
define

γij =

{

1
K σ2

xρ
i−j , if j = 1,

1
K σ2

x (1− ρ) ρi−j , if j 6= 1,
(27)

and

Dij =

{

λij , if λij < γij ,

γij , if λij ≥ γij .
(28)

Algorithm 1 Optimal power and rate allocation for the delay-
constrained case.

1: Initialize: {λ(t)
ij } := 0.

2: Step 1: For all i, allocate power.

3: p
(t+1)
i :=











K
∑

k=i

i
∑

j=1

λ
(t)
kj

K
∑

j=i

βj

− 1

|hi|2











+

4: Step 2: For all i, j, cumulative rate allocation.

5: r
(t+1)
ij :=

[

log

(

γij

λ
(t)
ij

)]+

6: Step 3: For all i, j, update multiplier.

7: λ
(t+1)
ij :=

[

λ
(t)
ij +α

(

r
(t+1)
ij −

i
∑

k=j

log
(

1 + |hk|2p(t+1)
k

)

)]

8: Step 4: Go to Step 1 until stopping criteria is met.

Bearing the above in mind, equation (26) can be rewritten as

r⋆ij =

[

log

(

γij
Dij

)]+

. (29)

As Figure 4(b) illustrates, this solution mimics that of a rate-
distortion allocation problem for parallel Gaussian sources.
However, here the allocated ratesr⋆ij (and sources) arecu-
mulative rather thanindividual; and the reverse water level
given by λij is not constant. Besides, the numerator in the
argument of (29) does not only depend on the variance of the
sourcesσ2

x but also on the correlation coefficientρ, as (27)
evidences.

Finally, by replacing (29) in (14), the optimal distortion for
the reconstruction of thei-th source reads

D⋆
i =

i
∑

j=1

Dij . (30)

that is, it can be computed as the sum of the distortions
associated to the corresponding cumulative rates.

C. Optimization Algorithm

As discussed in the previous section, the optimal power
(25) and cumulative rate (26) allocation are coupled4 by the
Lagrange multipliersλij . Further, one can easily prove that
problem (15) satisfies Slater’s condition, and therefore, strong
duality holds [28]. Since in these conditions the duality gap
is zero, we propose to solve the correspondingdual problem
in order to determine theprimal solution (power and rates)
in which we are interested. To that aim, we resort to the
subgradient method [22] on which basis the solution to the
dual problem,{λij}, can be iteratively found (convergence
can be guaranteed under some mild conditions). Specifically,
in the t-th iteration, the Lagrange multipliers are updated as

4When dealing with hybrid power supplies (power grid and energy har-
vesting), two-stage waterfilling structures have also beenidentified in [29],
[30].
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rii =

i+d−1
∑

j=i

Rj,i, i = 1, . . . ,K

i
∑

j=i−d+1

Ri,j ≤ log
(

1 + |hi|2pi
)

, i = 1, . . . ,K

Ri,j ≥ 0, i = 1, . . . ,K, j = i− d+ 1, . . . , i







































≡







































rij =
i
∑

k=j

rkk, i = 1, . . . ,K, j = 1, . . . , i− 1

rij ≤
d+i−1
∑

k=j

log
(

1 + |hk|2pk
)

, i = 1, . . . ,K, j = 1, . . . , i

rij ≥ 0, i = 1, . . . ,K, j = 1, . . . , i







































(30)

follows5:

λ
(t+1)
ij :=

[

λ
(t)
ij + α

(

r
(t+1)
ij −

i
∑

k=j

log
(

1 + |hk|2p(t+1)
k

)

)]

,

(31)
with α standing for the corresponding step size. In Algorithm
1, we summarize the proposed procedure to solve the power
and cumulative rate allocation problem.

The algorithm corresponds to a a subgradient ascent on
the dual function. Hence, it has a convergence rate of the
order of O(1/

√
t) [31, Chapter 8.2]. Moreover, for a node,

a single iteration of the algorithm will be of the order of
O(K logK), as it is a form of waterfilling. Namely, sorting
takesO(K logK) operations, while each waterfilling opera-
tion takesO(K) operations and there are at mostO(logK)
waterfillings to be done, since we can compute a binary search
between the water bins.

IV. M INIMIZATION OF THE AVERAGE DISTORTION:
DELAY-TOLERANT SCENARIO

Here, we address the more general case in which data is
allowed to be transmitted and reconstructed withind > 1 time
slots after samples are collect and encoded. Again, to render
the problem solvable, we define thecumulative ratesas

rij ,
i
∑

k=j

k+d−1
∑

l=k

Rl,k for i = 1, . . . ,K, j = 1, . . . , i. (32)

In delay-tolerant scenarios, each time slot conveys data from
up to d different sources (see Fig. 3). Hence, the number of
unknowns ({Ri,j}), Kd − d(d − 1)/2 in total, exceeds the
number of equations given by the capacity constraints (1),
K in total. Consequently, the system of equations becomes
underdetermined. This means that, even if a unique solution
exists when optimizing on thecumulativerates rij (as we
discuss next), there existmultiple solutions for theindividual
rates. Thus, we propose to solve the optimization problem in
terms of cumulative rates (only), and then define some criteria
to select one solution in terms of individual rates (this will be
further elaborated in Section V ahead).

To start with, we need to rewrite not only (i) the objective
function given by (11); but, also, (ii) the set of constraints,
in terms of cumulative rates. The latter can be accomplished
by expressing the cumulative rates in the following recursive

5Here, we use extended-value definitions for all functions [28], thus taking
+∞ values outside their respective domain.

form:

rij ,

{

∑i
k=j rkk, if j 6= i

∑j+d−1
k=j Rk,j , if j = i

(33)

for i = 1, . . . ,K, j = 1, . . . , i, and then resorting to Fourier-
Motzkin elimination [32]. Further, we prove that the system
obtained by Fourier-Motzkin elimination is equivalent.

Proposition 2. The systems of inequalities in(30) are equiva-
lent when solving optimization problem(34). That is, the set of
variables{pi},{Ri,j} and {rij} satisfy the constraints on the
left hand side of(30) if and only if they satisfy the constraints
on the right hand side of(30).

Proof: See Appendix B.

Finally, in order to pose the optimization problem, it suffices
to include the correspondingenergy harvestingconstraints of
(3) too, namely

min
{pi},
{rij}

σ2
x

K

K
∑

i=1

(

(1− ρ)

i
∑

j=2

ρi−je−rij + ρi−1e−ri1

)

(34a)

s.t. rij =

i
∑

k=j

rkk, i = 1, . . . ,K, j = 1, . . . , i− 1 (34b)

rij ≤
d+i−1
∑

k=j

log
(

1 + |hk|2pk
)

,

i = 1, . . . ,K, j = 1, . . . , i (34c)
i
∑

j=1

pj ≤
i
∑

j=1

Ej , i = 1, . . . ,K, (34d)

− pi ≤ 0, i = 1, . . . ,K, (34e)

− rij ≤ 0, i = 1, . . . ,K, j = 1, . . . , i (34f)

where, clearly, the optimization is now with respect to vari-
ables{pi} and{rij}. Differently from Section III, constraint
(34b) guarantees, on the one hand, that the cumulative rates
satisfy definition (33). On the other, constraint (34c) enforces
the cumulative rates to satisfy the per time slot channel
capacity constraint.

The optimization problem (34) is convex and can be solved
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in closed-form by (i) computing the Lagrangian function:

L =
σ2
x

K

K
∑

i=1



(1− ρ)

i
∑

j=2

ρi−je−rij + ρi−1e−ri1





+

K
∑

i=1

i
∑

j=1

µij



rij −
i
∑

k=j

rkk





+

K
∑

i=1

i
∑

j=1

λij



rij −
d+i−1
∑

k=j

log
(

1 + |hi|2pi
)





+
K
∑

i=1

βi





i
∑

j=1

pj −
i
∑

j=1

Ej





−
K
∑

i=1

ηipi −
K
∑

i=1

i
∑

j=1

δijrij . (35)

with {λij} ≥ 0, {βi} ≥ 0, {ηi} ≥ 0, {δi} ≥ 0; and {µij}
standing for the corresponding Lagrangian multipliers; and
(ii) satisfying the Karush-Kuhn-Tucker (KKT) conditions that
follow from the Lagrangian. Along the lines of Section III,
the optimal power allocation reads,

p⋆i =











K
∑

k=i−d+1

k
∑

l=1

λkl

K
∑

j=i

βj

− 1

|hi|2











+

, i = 1, . . . ,K. (36)

The optimal power allocation for the (more general) delay-
tolerant scenario admits again a two-dimensional direc-
tional waterfilling interpretation. Differently from the delay-
constrained scenario, the width and height of the solid
rectangle, namelyWi ,

∑K
k=i−d+1

∑k
l=1 λkl and Hi ,

1
/

(

|hi|2
∑K

k=i−d+1

∑k
l=1 λkl

)

, have an explicit dependence

on d, the maximum latency6.
Along the lines of the preceding section, the optimal cumu-

lative rates for the delay-constrained scenario follow:

r⋆ij =

[

log

(

γij
λij + µ̄ij

)]+

. (37)

where we have defined

µ̄ij =















−
K
∑

k=i

i
∑

l=1
l 6=k

µkl, if i = j,

µij , if i 6= j.

(38)

andγij is given by (27). Again, this solution can be interpreted
in terms of a classical reverse waterfilling scheme.

As in Section III-C, we solve the corresponding dual prob-
lem by resorting to the subgradient method. However, now
both dual variablesλij andµij must be updated as follows

λ
(t+1)
ij :=

[

λ
(t)
ij +αλ

(

r
(t+1)
ij −

d+i−1
∑

k=j

log
(

1 + |hk|2p(t+1)
k

)

)]+

,

(39)

6As expected, these expressions simplify to the ones for the delay-
constrained scenario ford = 1.

Algorithm 2 Optimal power and rate allocation for the delay-
tolerant case.

1: Initialize: {λ(t)
ij } := 0, {µ(t)

ij } := 0.
2: Step 1: For all i, allocate power.

3: p
(t+1)
i :=











K
∑

k=i−d+1

k
∑

l=1

λ
(t)
kl

K
∑

j=i

βj

− 1

|hi|2











+

4: Step 2: For all i, j, cumulative rate allocation.

5: r
(t+1)
ij :=

[

log

(

γij

λ
(t)
ij + µ̄

(t)
ij

)]+

6: Step 3: For all i, j, update multipliers.

7: λ
(t+1)
ij :=

[

λ
(t)
ij + αλ

(

r
(t+1)
ij −

8:
d+i−1
∑

k=j

log
(

1 + |hk|2p(t+1)
k

)

)]+

9: µ
(t+1)
ij :=

[

µ
(t)
ij + αµ

(

r
(t+1)
ij −

i
∑

k=j

r
(t+1)
kk

)]

10: Step 4: Go to Step 1 until stopping criteria is met.

µ
(t+1)
ij :=

[

µ
(t)
ij + αµ

(

r
(t+1)
ij −

i
∑

k=j

r
(t+1)
kk

)]

, (40)

whereαλ andαµ denote the corresponding step sizes. Algo-
rithm 2 details the proposed procedure to obtain the optimal
power and cumulative rate allocation.

V. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
optimal power and rate allocation schemes. We are particularly
interested in analyzing the impact of the correlation coefficient
ρ and the delayd in the resulting transmission policies. For this
reason, in all numerical results we have set the channel gains to
a (constant) unit value. Unless otherwise stated, the simulation
setup considers a system withK = 10 time slots and an
(arbitrary) energy harvesting profile with energy arrivalsgiven
by E1 = 0.2, E3 = 0.6, E6 = 0.8 andE7 = 1.4.

A. Delay-Constrained Scenario (d = 1)

The resulting optimal power allocation policy is shown in
Figure 5. For uncorrelated sources (ρ = 0), the optimal policy
turns out to be the well-known geometric solution of [3]
and [33]. This corresponds to the tightest string below the
cumulative energy harvesting curve connecting the original
and the total harvested energy by the end of time slotK.
However, as the correlation increases, the harvested energy
tends to be spent (i.e., allocated as transmit power) sooner.
As a result, in Fig. 5 the slope of the energy consumption
curves right after new energy arrivals (e.g., in the beginning
of time slot 3) increases withρ. This indicates that, in
order to minimize the average distortion, one should encode
the observations as accurately as possible when some new
energy is made available. This stems from the fact that past
observations are used here as side information at the receiver.
Intuitively, the earlier an observation is accurately encoded,
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Fig. 5. Optimal power allocation ford = 1 and varying correlation coefficient
ρ.
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Fig. 6. Individual distortion ford = 1 and varyingρ.

the more estimates (in subsequent time slots) can benefit from
such an increased accuracy. This holds true even at the expense
of a reduced (or zero, as in time slot 10, forρ = 1) transmit
power being allocated to some subsequent time slots. That is,
at the expense of suspending data transmission. All the above
is in stark contrast with the uncorrelated case studied in [3]
where transmit power is (i) strictly positive for all time slots
and (ii) a monotonically increasing function.

Figure 6 depicts the reconstruction distortion foreach
source (and time slot sinced = 1) associated to the optimal
policy. Unsurprisingly, the higher the correlation, the more
predictable the sources become and, hence, the lower the dis-
tortion (curves are shifted downwards). For correlated sources,
however, distortion does not monotonically decrease with time
slot index. As discussed in the previous paragraph, this stems
from theanticipatedconsumption of the harvested energy for
the encoding of previous observations. Consequently, one can
observe (i) a substantial decrease of the individual distortion
for sources in time slots with energy arrivals (time slots 3,
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Fig. 7. Optimal power allocation forρ = 0.8 and varying delayd.

6, and 7); and (ii) distortion upturns in time slots where the
energy harvested so far has been spent or is close to (time
slots 2, 5, and 10). Still, the average distortion is lower.

B. Delay-Tolerant Scenario (d > 1)

Figure 7 illustrates the impact of delay on the optimal power
allocation. Interestingly, asd increases the solution converges
to the tightest string below the cumulative energy harvesting
curve of [3]. The intuition behind is as follows. To recall,
the tightest string solution attempts to maximize the total
throughput (rate) for the whole transmission period. To that
aim, the sequence of transmit powers (and rates) must be
monotonically increasing, that is, transmit power is higher by
the end of the transmission period (i.e, last time slot(s)).For
d = 1, on the contrary, the allocated transmit power (and,
thus, rate) is higher in time slots with energy arrivals, and
not necessarily in the last one(s). Moreover, the source must
be reconstructedimmediately, that is, afterd = 1 time slots
(assuming the processing time at the FC to be negligible). In
other words, there is someurgencyto allocate power (namely,
spend energy). This is in stark contrast with the tightest string
solution where higher power and rates can be found at theend.
Things, however, are radically different whend increases. On
the one hand, the deadline by which individual sources must
be reconstructed is shiftedd time slots towards theend. On
the other, the rates (and power) needed to encode a specific
source can be allocated overmultiple time slots, rather than
just one. Hence, for increasingd the urgency to allocate power
decreases and, thus, the way in which power is allocated is
more aligned with that of the tightest string solution.

Figure 8 depicts the average distortion as a function of delay.
Clearly, the average distortion decreases with delay sincethe
higher the delay, the higher the degrees of freedom to allocate
transmit power (and, thus, spend energy in a more sensible
manner). Unsurprisingly, distortion is lower for higher values
of ρ, since the preceding (correlated) sources used as side
information at the FC are more informative.

Next, we investigate to what extent our system leverages on
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Fig. 8. Average distortion vs. delayd for varying correlationρ.
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Fig. 9. Reduction in average distortion.

the knowledge on source correlation. To that aim, the rate and
power allocation policy from [16], which was derived for a
scenario withuncorrelatedsources, is used as a benchmark.
Specifically, whereas the source encoding rate depends on
I(xi;ui) (namely, the mutual information with thecurrent
source only) the sources at the FC are reconstructed according
to (9). Our approach, on the contrary, exploits correlationboth
in the encoding and decoding/reconstruction processes. Figure
9 shows the normalized reduction (difference) in the average
distortion attained by such benchmark and our scheme. For
delay-constrained scenarios, the reduction in distortioncan be
as high25% for our scheme. For delay-tolerant ones (d = 10),
reduction can go up to80%, which is very remarkable.

C. Comparison with an Online Policy

As discussed earlier, the proposed (offline) transmit power
and rate allocation scheme requiresnon-causalknowledge on
energy arrivals. Here, instead, we introduce a more realistic
online version just requiringcausal knowledge. The offline
scheme will be used as a benchmark.

Similar to [6], a myopic7 online policy can be computed
as follows. Assume for a moment that, after harvesting some
energy in the initial timeslot (i.e.,E1 > 0), no additional
energy is harvested in subsequent timeslots. Hence, we let
E2 = · · · = EK = 0 and solve problem (34) fork =
1, . . . ,K. In the absence of knowledge on future energy
arrivals, this is a sensible approach too. After all, distortion
would be minimized should no additional energy be actually
harvested. And, otherwise, we can react accordingly. Let
k0 < K denote the next timeslot in which some energy
is harvested (i.e.,Ek0

> 0). For the preceding timeslots
(i.e., k = 1, . . . , k0 − 1), we force the power and rate
allocations computed after the last energy arrival to remain
unchanged. Hence, the unspent energy in the beginning of
timeslotk0 readsEu

k0
=
∑k0−1

j=1 Ej −
∑k0−1

j=1 pj . Next, we let
Ek0

:= Eu
k0

+ Ek0
andEk0+1 = · · · = EK = 0 and, again,

solve problem (34) fork = k0, . . . ,K. That is, we compute the
optimal power and rate allocations for all subsequent timeslots.
This procedure is iterated until all energy arrivals have been
accounted for.

Of course, no optimality can be claimed for the resulting
policy. Still, the interesting property of such scheme is its
ability to adjust (re-compute) the remaining power and rate
allocations every time that some energy is harvested. By doing
so, the additional (and causal) knowledge on energy arrivals
is effectively exploited.

Figure 10 illustrates the performance of the offline and
online policies vs. the intensity rate of energy arrivals (which
are modeled as a Poisson process). Unsurprisingly, the dis-
tortion of the offline versions turns out to be a lower bound
of that attained by online ones. For a given intensity rate,
the additional distortion associated to the online versioncan
be regarded as moderate (some20% at an energy arrival rate
equal to 1,ρ = 0.2, and d = 1). Interestingly, the online
version requires a40% increase of the intensity rate to achieve
the same distortion as its offline counterpart (for the same
operating point). The distortion gap becomes narrower for
delay-tolerant scenarios (d = 10) and wider in percentage for
scenarios with high correlation (seeρ = 0.8 curves) or when
the intensity rate increases.

D. Convergence

Next, we investigate the convergence properties of the
proposed scheme. Specifically, in Figure 11 we depict the
relative errorε between the average distortion at iterationt

and its optimal value, namely,ε =
∣

∣

∣D⋆
avg −D

(t)
avg

∣

∣

∣ /D⋆
avg. For

the update of the dual variables in (31), we have used a time-
varying step size8. Clearly, convergence is slower for larger
d values. This stems from the fact that, for delay-tolerant
scenarios, the search space for the solution is larger, as the
summation in equation (34c) evidences.

7More general online policies accounting for different degrees of availabil-
ity of channel and energy state information can be also be considered (see
e.g., [34]).

8The step size used isα(t) = ᾱ(t)/‖g(t)‖2, where g(t) is the corre-
sponding subgradient and̄α = 1/

√
t. This diminishing step size satisfies

the convergence conditions given bȳα(t) ≥ 0, limt→∞ ᾱ(t) = 0 and∑
∞

t=1 ᾱ
(t) = ∞ [22].
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E. Allocation of Individual Rates

As discussed in Section IV, ford > 1 there exists an
infinite number of solutions for the allocation of theindividual
rates (the system of equations is underdetermined). In order
to get some insight on how individual rates are allocated, we
will select the solution with the lowest 2-norm. This, clearly,
penalizes solutions with very large (dissimilar) rates.

After solving the optimization problem (34) and determin-
ing the optimal cumulative ratesri,j , we find the individual

8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5
Rate Allocation d=4 ρ=0.2

Time Slot

R
at

e

8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5
Rate Allocation d=4 ρ=0.8

Time Slot

R
at

e

 

 

S5
S6
S7
S8
S9
S10
S11
S12
S13
S14

Fig. 12. Allocation of individual rates for sources with low(top) and high
(bottom) correlation (K = 20; d = 4; energy profile:E1 = 0.2, E2 = 1,
E4 = 0.6, E6 = 1, E7 = 0.8, E8 = 0.2, E9 = 0.4, E11 = 1.4,
E13 = 0.6, E14 = 0.6, E16 = 0.8, E17 = 0.2, E18 = 1, E19 = 0.2, and
E20 = 0.4).

ratesRi,j by solving:

min
{Ri,j}





K
∑

i=1

i
∑

j=i−d+1

R2
i,j





1/2

(41a)

s.t. rii =

i+d−1
∑

j=i

Rj,i, i = 1, . . . ,K (41b)

i
∑

j=i−d+1

Ri,j ≤ log
(

1 + |hi|2pi
)

, i = 1, . . . ,K

(41c)

Ri,j ≥ 0, i = 1, . . . ,K, j = i− d+ 1, . . . , i (41d)

To that aim, we need to userii and pi from the solution
of the (cumulative) rate and power allocation problem as an
input (see first and second inequality constraints in the problem
above).

Figure 12 shows the allocation ofindividual rates over the
d time slots for each source (a different color is used for each
source). We consider scenarios with sources exhibiting low
(ρ = 0.2) and high (ρ = 0.8) correlation. Interestingly enough,
the higher the correlation, the lower the spread of individual
rates over time slots (fewer sources in each time slot). This
is consistent with the fact that, as discussed earlier, for low ρ
(andd = 1) energy tends to be spent sooner. Accordingly, in
delay-tolerant scenarios where the encoded data is transmitted
in a number of time slots, when correlation is high the first
time slots are favored.

VI. CONCLUSIONS

In this paper, we have investigated the impact of source
correlation in the design of point-to-point optimal transmission
policies with energy-harvesting sensors. We have considered
both delay-constrained delay-tolerant scenarios. In bothcases,
our goal was to minimize the average distortion in the decoded
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(reconstructed) observations by using data from previously
encoded sources as side information. We have formulated the
problems in a convex optimization framework. Besides, we
have proposed an iterative procedure, based on the subgradient
method, to solve both problems. Interestingly, the procedure
entails the interaction of a directional and reverse water-
filling schemes in each iteration. For the delay-constrained
scenario, numerical results revealed that, differently from the
uncorrelated case, minimizing the average distortion implies
encoding observations as accurately as possible upon energy
arrivals. This holds true even if the transmit power allocated to
subsequent time slots is lower or, eventually, zero (and, thus,
an increase in distortion in such time slots). For the delay-
tolerant scenario, we have observed that as delay increases,
the power allocation policy converges to the tightest string
below the cumulative energy harvesting curve. And, also, that
the average distortion decreases. In comparison with other
schemes not exploiting correlated sources as side information,
ours attains an average distortion which is substantially lower
(with reductions of up to25% or 80% for d = 1 andd = 10,
respectively. We have also proposed a myopic online policy
exhibiting a moderate performance gap (some20% for low
correlation and delay-constrained scenarios) with respect to
the offline (optimal) policy. Besides, we have found that the
time needed for the algorithm to convergence is higher for
delay-tolerant scenarios since the search space is substantially
larger there. Finally, we have observed that for delay-tolerant
scenarios, the higher the correlation, the lower the spreadof
individual rates over time slots.

APPENDIX A
DERIVATION OF THE AVERAGE DISTORTION IN (11)

For compactness, hereinafter we letRi ,
∑i+d−1

j=i Rj,i

denote the rate assigned to thei-th source over itsd time
slots; andDi = σ2

xi|u1,...,ui
the distortion for thei-th source

which can be recursively expressed as [35]:

σ2
xk|u1,...,uk

= σ2
xk|u1,...,uk−1

− cov2(uk, xk|u1, . . . , uk−1)

σ2
uk|u1,...,uk−1

.

We prove by induction that

Di = σ2
x

(

(1− ρ)
i
∑

j=2

ρi−je
−
∑i

k=j

∑k+d−1
l=k Rl,k

+ρi−1e−
∑i

k=1

∑k+d−1
l=k Rl,k

)

= σ2
x

(

(1− ρ)
i
∑

j=2

ρi−je
−
∑i

k=j Rk

+ρi−1e−
∑i

k=1 Rk

)

. (42)

We start by showing this expression holds for the base case
(i = 1). That is

D1 = σ2
x1|u1

= σ2
x −

(

σ2
x

)2

σ2
x + σ2

z1

= σ2
x −

(

σ2
x

)2

σ2
x +

σ2
x

eR1 − 1

= σ2
xe

−R1 ,

which satisfies expression (42). For the inductive step, assume
expression (42) is true fori = n. Then consider

Dn+1 = σ2
xn+1|u1,...,un+1

= σ2
xn+1|u1,...,un

− σ2
xn+1|u1,...,un

(

1− e−Rn+1
)

= σ2
xn+1|u1,...,un

e−Rn+1

= σ2√
ρxn+wn|u1,...,un

e−Rn+1

=
(

ρσ2
xn|u1,...,un

+ σ2
wn|u1,...,un

)

e−Rn+1

=
(

ρDn + σ2
x (1− ρ)

)

e−Rn+1

= Dnρe
−Rn+1 + σ2

x (1− ρ) e−Rn+1

Then by the induction hypothesis we have

Dn+1 =σ2
x

(

(1− ρ)
n
∑

j=2

ρn−je
−
∑n

k=j Rk

+ρn−1e−
∑n

k=1 Rk

)

ρe−Rn+1 + σ2
x (1− ρ) e−Rn+1

and by rearranging terms we have

Dn+1 = σ2
x

(

(1− ρ)

n+1
∑

j=2

ρn+1−je
−
∑n+1

k=j Rk

+ρn+1−1e−
∑i+1

k=1 Rk

)

.

Thus, expression (42) holds fori = n + 1. Therefore, by the
principle of induction, expression (42) holds for alli.

APPENDIX B
PROOF OFPROPOSITION2.

Proof: For notational convenience, letci , log(1 +
|hi|2pi) denote the channel capacity in thei-th timeslot. First,
we focus on the direct proof. Assuming that the LHS of (30),
which is given by the system of inequalities
∑i+d−1

j=i Rj,i = rii, i = 1, . . . ,K, (43a)
∑i

j=i−d+1 Ri,j ≤ ci, i = 1, . . . ,K, (43b)

Ri,j ≥ 0, i = 1, . . . ,K,j = 1, . . . , i− d+ 1,
(43c)

has a solution in terms of individual ratesRi,j , our goal is
to find the system of inequalities in the RHS of (30), namely

rij =
∑i

k=j rkk, i = 1, . . . ,K, j = 1, . . . , i− 1, (44a)

rij ≤
∑i+d−1

k=j ck, i = 1, . . . ,K, j = 1, . . . , i, (44b)

rij ≥ 0, i = 1, . . . ,K, j = 1, . . . , i. (44c)

The constraints (44a) follow directly from the definition ofthe
cumulative rates (33). Constraint (44c) is also straightforward
since, from its definition in (32), the cumulative ratesri,j
can be expressed as a summation ofnon-negative(see (43c))
individual ratesRi,j . As for (44b), note that from (43b) each
non-negativeindividual rate can be upper-bounded as follows

Ri,j ≤ ci, i = 1, . . . ,K, j = 1, . . . , i− d+ 1. (45)



12

Next, by direct substitution of the bounds (45) into the
equalities (43a), we have that

rii ≤
∑i+d−1

j=i cj , i = 1, . . . ,K (46)

Finally, by substitution of (46) into the definition of cumulative
rates (33), inequality (44b) follows.

Consider now the converse. Assume that the RHS of (30),
which is also given by the system of inequalities (44), has
a solution in terms of cumulative ratesrij . Then, we want
to prove that there exists a non-empty set of individual rates
Ri,j satisfying the inequalities (43) (i.e., the RHS of (30) has
a solution even if it might not be unique, as discussed earlier).
To prove that, we focus on the more restrictive case where we
force the capacity constraint (43b) to be satisfied with equality.
Hence, the first two constraints in (44) become:

∑i+d−1
j=i Rj,i = rii, i = 1, . . . ,K (47a)

∑i
j=i−d+1 Ri,j = ci, i = 1, . . . ,K. (47b)

The system of equations above can be rewritten in matrix
form:

Ax = b (48)

where we have defined the column vectors
x , [R1,1, R2,1, . . . , RK,K ]T and b ,

[r1,1, . . . , rK,K , c1, . . . , cK ]T , and where matrix A is
given by the{0, 1} entries yielding the summations in (47).
Next, we resort to Farkas’ lemma:

Lemma 3 (Farkas’ Lemma [21]). If A ∈ R
m×n andb ∈ R

m,
then exactly one of the following holds:

(i) There existsx ∈ R
n such thatAx = b andx ≥ 0.

(ii) There existsy ∈ R
m such thatyTA ≥ 0 andyTb < 0.

where the inequalityx ≥ 0 is defined element-wise. Clearly,
alternative (i) in the Farkas lemma states that, if it holds,a
solution to the LHS in terms of individual rates exists. In the
next paragraphs, we prove (by contradiction) that alternative
(ii) does not hold for our problem. To that aim, we start by
defining y , [kr11 , . . . , krKK

, kc1 , . . . , kcK ]T . Assume that
alternative (ii) holds. To satisfy the conditionyTA ≥ 0, there
must exist a nonnegative set of coefficientskrii andkci such
that

krii + kcj ≥ 0, i = 1, . . . ,K, j = i, . . . , i+ d− 1. (49)

And, conditionyTb < 0 can be rewritten as
∑K

i=1 kriirii +
∑K

i=1 kcici < 0. (50)

Next, we will check that for any set of validkrii and kcj
equation (50) does not hold. To that aim, we will determine
the lowest possible value of the LHS of (50) subject to
the inequalities given by (49). In other words, we need to
solve an optimization (minimization) problem with the LHS
of (50) playing the role of the objective function and (49)
as constraints. Sincerii and ci are nonnegative, this is a
linear program. Hence, the solution will lie at the vertex of
the feasible region defined by (49) [32, Chapter 7]. Since the

expressions (49) define a convex cone, its only vertex is given
by

krii + kcj = 0, i = 1, . . . ,K, j = i, . . . , i+ d− 1. (51)

By recursively analyzing the various equations in (51), we
conclude that necessarily

k , krii = −kci , i = 1, . . . ,K. (52)

That is, except for the sign, all the coefficients are identical.
By replacing (52) into the LHS of (50), the objective function
in the optimization problem becomes

k
∑K

i=1 rii − k
∑K

i=1 ci. (53)

From (44a) and (44b), we have that
∑K

i=1 rii ≤ ∑K
i=1 ci.

That is, the sum of cumulative rates of all sources isbelow
or equal tothe channel capacity over all time slots. However,
since the objective function in (34) is nonincreasing in allrij ,
the optimal solution of (34) must satisfy

∑K
i=1 rii =

∑K
i=1 ci

(i.e., with equality). This means that, necessarily, (53) is
lower bounded by 0, hence, (50) does not hold and, in turn,
alternative (ii) in the Farkas theorem does not hold either.This
concludes the proof.
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