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Abstract

Modern systems will increasingly rely on energy harvestednftheir environment. Such systems
utilize batteries to smoothen out the random fluctuationisarvested energy. These fluctuations induce
highly variable battery charge and discharge rates, whielttethe efficiencies of practical batteries that
typically have non-zero internal resistances. In this pape study an energy harvesting communication
system using a finite battery with non-zero internal resista We adopt a dual-path architecture, in
which harvested energy can be directly used, or stored arubked. In a frame, both time and power
can be split between energy storage and data transmissiora $ingle frame, we derive an analytical
expression for the rate optimal time and power splittingpsaibetween harvesting energy and transmitting
data. We then optimize the time and power splitting ratiasaf@roup of frames, assuming non-causal
knowledge of harvested power and fading channel gains,\agggan approximate solution. When only
the statistics of the energy arrivals and channel gainsrave/i, we derive a dynamic programming based
policy and, propose three sub-optimal policies, which &@s to perform competitively. In summary,

our study suggests that battery internal resistance signify impacts the design and performance of
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energy harvesting communication systems and must be takeraccount.

. INTRODUCTION

Natural energy harvesting (EH) promises near-perpetuatation of electronic devices due
to its renewable nature. But, it poses several challengegstem design as the power generated

from EH sources varies randomly with time, unlike convemtilosources. For example, solar
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power can vary from pW to 100 mW in a small-sized(approximate area of0 cm?) solar cell
across a day [2], [3]. The harvested energy needs to be siorstbrage elemelﬂssuch as
batteries and super-capacitors, for reliable system tipardn the process, due to source power
fluctuations, the batteries are subjected to variable amggowers (rates). In addition, it may
be required to vary the battery discharge powers (rates)nstance, to drain the battery quickly
to accommodate the incoming harvested energy and, peralapsto cater to the variable power
demand at the load (the wireless transmitter, in our case)cél in EH systems, both the charge
and discharge powers are more variable and unpredictahteithconventional systems. This
necessitates a fundamental change in the way we store arleulsarvested energy mainly given
that the battery charge/discharge efficiencies (precidefined later) depend on the charge and
discharge powers [4][ [5]. This dependency can be easilg bgeconsidering a simple battery
model - a voltage source/sink with a series resistance. iDgpw larger power from the battery
entails a larger current, and hence a larger power loss imtamal resistance. Therefore charge
and discharge efficiencies decrease with increasing cremdedischarge powers, respectively
[4]-[6].

In this work, we consider a low-power wireless transmittewpred entirely by an EH source
that is equipped with a battery having capacity constrawite a non-zero internal resistance.
The internal resistances of commercial rechargeable Abiatteries and ultra-capacitors lie in
the range of a few micro ohms to several tens of ohms|[7]-[gically, for small-sized wireless
nodes, the harvested power lies in the rang&V-100mW and the discharge power can vary
from 10uW to a few hundred milliwatts. In these ranges, by consmethe simple battery
model presented in [5], it can be easily shown that the chaffigency range can be up to 15
percentage points and the discharge efficiency range cas higla as 30 percentage points.

In this paper, we focus on applications that require the nmdeommunicateN, channel
symbols per frame over a fading channel. For instance, as@eswork deployed in an Internet
of Things (loT) application consists of sensor nodes withitiéd data processing and storage
capabilities[[10]. These may be designed to deliver a fixadbar of coded symbols per frame,
due to limited data storage capacity at the receiver. Thebeuraf bits of information that are

reliably transmitted within a frame can be varied by varyihg information rate. The harvested

We use ‘batteries’ to refer to storage elements in general.



power in such applications can be very small due to limitegion the harvester size and area. To
illustrate the power management issues involved in suctb&$¢d nodes, suppose for simplicity
that the initial energy stored in the battery is zero. In ttase, whenever the harvested power
is lower than the power required for system operation, omna@arun the system from the EH
source alone. We must first store the harvested energy intarpand then, simultaneously
draw power from the battery and the EH source, and run thesyfom the combined power.
In such a scenario, it is sensible to ask how to optimallyd#iva frame into two parts — the
first to store energy in the battery, and the next to dischargggy from the battery for data
transmission. Further, when the harvested powdrig$, directing all the power to the battery
may result in significant losses across internal resis&roesuch cases, it may be beneficial to
charge the battery with only a fraction of the harvested pomigle the transmission is carried
out with the remaining power. In the second part of the fraemergy from the EH source may
be directed to the load at the same time as energy from therpapierhaps because neither the
EH source nor the battery are able to power the load on their. ¢nvthis paper, we develop
novel policies for managing the battery charging and disggihg schedules in such an EH-based
transmitter.

The problem of EH communications has been addressed frometyaf other perspectives
as well. A comprehensive review of recent advances in enkegyesting communications is
presented in [11],[12]. The information capacity of EH gyss with infinite capacity batteries
is derived in [13], [14] and [15]-[18] present the EH comnaation with finite batteries. Other
battery limitations such as, leakagel[19],][20], non-linglaarging [3] and inefficiency [21], [22]
have also been considered. The optimal policies when thieraysperation cost is zero and
non-zero are studied in [23]-[28]. We note that the authdrthe current paper considered a
similar EH communication problem inl[1]. The current worlgmsificantly extends the model
in [1] by fully incorporating the effects of the battery int@l resistance and providing more
in-depth analysis.

The main contributions of this paper are as follows:

« We identify generic and tractable models for the batteryrghaand discharge efficiencies
which account for their dependency on charging and disamgngtes. This incorporates the
effects of battery internal resistance.

« We then formulate a single frame optimization problem andvdecompact expressions for
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optimal time and power sharing ratios.

« Further, we formulate an off-line optimization problem wiiassumes priori knowledge of
the harvested powers and channel gains to obtain optima& &ind power sharing ratios in
the multiple frame case. We show that in general, the probtemnon-convex optimization
problem, and propose an iterative algorithm to solve thélpra approximately.

« Further, assuming statistical knowledge and causal irdtion of the harvested power and
channel power gain variations, we solve for the optiraatline policy by using stochastic
dynamic programming. We then propose three sub-optimdinenalgorithms which are prac-
tically feasible. Among them, an algorithm that is inspil®dthe approximate off-line solution
achieves a significantly better performance compared tather two algorithms.

« We also show via numerical simulations that the optimalgyotiesigned for an ideal battery
performs poorly when the internal resistance is not negkgi
The remainder of the paper is organized as follows. The syst@del and assumptions are

presented in Sectidnl ll. Sectign]lll and Section IV addréss dingle and multiple frame rate

maximization problems respectively. Numerical resules presented in Sectidnl V followed by

concluding remarks in Sectidn VI.

Il. SYSTEM MODEL AND ASSUMPTIONS
A. Block Diagram and System Operation

The block diagram of the system is given in Hifj. 1. The priatimmponents of the system
are the power splitter, battery, power combiner and thestratter. The power splitter divides the
instantaneous harvested power to simultaneously chagyddtiery and power the transmitter
directly through a zero loss direct path. The power combawenbines the power drawn from
the battery and the direct path. The transmitter consum&¥ for circuit operation during
transmission but does not consume any power when not tréimggmias in [28]. The structure
of the communication frame adopted in this work is shown ig. &. The harvested power,
denoted by, and channel power gain, denoted byare assumed to remain constant over the
frame of lengthr seconds. We also assume that the channel bandwidih litz.

We assume the battery cannot be charged and dischargedasigausly. This assumption
is both practical and without loss of generality. From thagtical perspective, charging and

discharging of a battery/capacitor involves the movemémbrs/electrons in mutually opposite
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direct path with zero losses

Transmitter max(ac + d — p,0)

(circuit powerp) Transmit Power

harvested powel

Fig. 1: The dual-path EH communication system. A fraction<{ « < 1) of the harvested power) can be directed to the load through
the direct path. The remaining power is directed to the battaving capacity ofB joules and internal resistance ofohms. The battery is
discharged atl W. The transmitter consumesW for its operation during transmission but does not consamepower when not transmitting.

‘ N, symbols ‘ (1 — )N, symbols ‘
a=Qqg,0q <1 a = Qp
d=da =0 d=dy

0 pT r

Fig. 2: The communication frame structure adopted in theepaphe frame length is- seconds. During0, p7), the power splitting ratio
a = aq, i.e., the power supplied to the transmitterigc W. Over this time period, the battery must be charged, &g.< 1 and the discharge
power is zero, i.e.d = d, = 0 W. During [p, 7], information must be transmitted, i.€1 —~v)Ns, 0 < 1 —~ < 1, symbols are transmitted.
The power splitting ratiax = a3, and the battery is charged @t — a)c W and discharged at, W, with (1 — a3)dp, = 0, i.e., the battery
cannot be charged and discharged at the same time. We adsaméV,, 0 < v < 1, symbols are transmitted in the first part of the frame.

directions and the particles can move in only one net dacst a time([29]. Mathematically
one can relax the assumption and prove that charging antailgiog a battery simultaneously
is always suboptimal, similar to the argumentslin! [22].

We assume an infinite backlog of data at the transmitter.dasethe motivation provided in
the introduction, to deal with the situation when the totaliable energy (the sum of the initial
energy stored in the battery and the harvested energy) ianaefis lower than the total energy
required to operate the system over the entire frame dumratie divide a communication frame
into two phases, a charging phase in which the battery musthbeged, and a transmitting

phase, in which information must be transmitted. The framecture (See Fid.l2) is as follows:

. Over the time duratior|0, p7), p € [0, 1], the battery must be charged, i.e., the charging
rate is(1 — a,)c W with 0 < a, < 1. Since the battery cannot be charged and discharged
simultaneously, the discharge power must be zerod.e.d, = 0 W in this time duration. We
assume thatN,, 0 < v < 1, symbols are transmitted by utilizing the remaining fraction
of the harvested power from the direct path.

« Over the time duratiofpr, 7], information must be transmitted, i.¢L,—~v)N,, 0 < 1—v <1,
symbols are transmitted. The battery is chargel at o) fraction of the harvested power or
discharged atl = d, W. Whether the battery is being charged or dischargedraction of

the harvested power is directly delivered to the transmitte

The variablep, referred to asime-splitting ratio(TSR), is the ratio of the length of the charging
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(a) An equivalent circuit diagram in the charge cycle. (b) An equivalent circuit diagram in the discharge cycle.
Ne(ep) Na(dp)
r=r r=r
Neo ' Na, / '
Cp(r2) Cp(r1) charge power ¢, Dy(r2) Dp(r1) discharge powerd,,
(c) The charging efficiency model based on [5]. (d) The discharging efficiency model based bh [6].

Fig. 3: Equivalent circuit diagrams and charging/dischygefficiencies of a battery. The battery is modeled as ateahwsoltage source/sink

with nominal voltageVz V with a series internal resistance of(2.

phase to the total frame duration. The variablereferred to agpower-splitting ratio(PSR),
indicates the fraction of the harvested power directly usegower the transmitter. Note that by
definition, in the first part of the frame the battenust be charged.e.,a, < 1, but information
may or may not be transmittgd > 0). However, in the second part of the frame, information

must be transmitted.e., v < 1, but the battery may or may not be charged.

B. Battery Charge/Discharge Efficiency Model

We assume that the battery capacitydgoules and that it has a constant, non-zero internal
resistance, denoted byohms. We model a battery as an ideal voltage source/sinkanstbries
internal resistance (See Fig.] 3a and Fig. 3b). The lossessathe internal resistance lead to
battery inefficiencies.

The charging efficiency of a battery/.(c,,r) is defined as the ratio of the rate at which
energy is stored in the battery, internally, to the exterf@rge power,. Based on[[5], we
note that the charging efficiency is a convex decreasingtiomof the charge poweg;,, for
a givenr. This property is illustrated in Fig. Bc, whes€,, is the vertical intercept and',(r)
is the maximum charge power constraint. Further, the imaletharging powerN.(c,, r)c,, is a

concave function ot,,.



The discharging efficiency;(d,, r) is defined as the ratio of the power delivered to the load,
d,, to the rate at which energy is drawn from the battery, irglynlt is shown to be a concave
decreasing function of the external discharge powgy, for a givenr in [6]. This property is
illustrated in Fig[3H, wherd/,, is the vertical intercept and),, a concave decreasing function
of r, is the maximum discharge power. Further, the internalrdisging powerd,,/N,(d,, ), is
a convex function ofl,. We also note that it is physically impossible to charge aisdltrge a
battery beyond”, and D,, respectively. In the rest of the paper, we denbiéc,,r) asN.(c,)
and Ny (d,, r) asNy(d,) for brevity.

In general, the capacity of a battery varies with chargeldigge rates and this effect is referred
to as the rate-capacity effect. In many cases, the ratecitgpeffect can be easily mitigated
with additional circuitry [30] and, by avoiding battery aebarging or undercharging leading to
extreme conditions [5]. Further, [31] argues that the catpacity effect is insignificant at low

power levels. Hence, we do not account for the rate-capadiect in this work.

[1l. SINGLE-FRAME RATE OPTIMIZATION

For transmission over an additive white Gaussian noise (AWEhannel with power gain
h, transmit symbol energy? and unit received noise power spectral density, the maximum
achievable rate i%og (1 + hP) bits per channel symbol [32]. As in_[22], [23], we assume that
the channel power gain for the current frame remains cohatahits value is known at the start
of the frame. We assume that the number of coded (i.e. chasyelbols to be transmitted in
a frame is fixed atV..

For any givenp, the average rates within the two disjoint periods can bainbt as follows.

a) Fort € [0, pr): Without loss of generality, assume that we transqit,, 0 < v < 1,
symbols within the first part of the frame. Since the trantmiis supplied witho,c W (recall
thatd, = 0) for pr seconds directly from the EH source, the average symbol péwe- (a,c—
p)pt/(7Ns). If v =0, thenP, = 0. Consequently, the information ratefts = log(1+hPF,). Note
that we can transmit symbols only i, > 0 implying that («,c — p)pr must be strictly greater
than zero for the symbol transmission to take place. Heneehavey = 0 if («a,c —p)pr < 0.
Since the battery is charged @t — «,)c W, the amount of energy stored in the battery over
[0, p7) i B,y = No((1 — ag)c) (1 — ag)cpr.



b) Fort € [pr,7]: In the second part of the frame, the EH source and the battgplys
are W and d, W, respectively, to the transmitter, with — «,)d, = 0 as the battery cannot be
charged and discharged at the same time. Since the numbansefititted symbols igl —~) N,
the average symbol powef, = (ayc —p+dy) (1 — p)7/((1 —v)N,) and the information rate is
R, = log(1+hPF,). Since the battery charging power over this time period is a; )¢, internally
the harvested energy gets stored in the battery at the rafg 6f\V.((1 — ap)c)(1 — ap)c W.
Sinced, is the discharge power, internally the battery energy getsvd atd, = d;,/N;(dy) W.

Consolidating the information rates within the above twsja@nt periods, the average rate in

the frame is given by,
R(p7 Qg Oy, 7, db) = f}/Rll + (1 - fy)Rb (1)

Before formulating the optimization problem, we make an am@nt remark on the generality
of the two-phasedirame structure described in Section II-A. In the proposedng structure,
note that the charging and discharging rates can take attmostalues in a frame as per values
of a,, a3, d, and d,. To understand why it is sufficient to divide the frame intaotphases,
consider a frame that is divided into more than two phasek witssibly different charging,
discharging and transmit powers in each of the phases. Note, that the internal charging
powers, discharging powers and information rates are eapc@nvex and concave functions of
the external charging, discharging and transmit powespeatively. Hence, the loss across the
internal resistance is minimized and, simultaneouslyjrif@mation rate is maximized when the
battery is charged and discharged at uniform powers. Hemeean always replace any number
of phases with a single phase without any loss of optimalisydescribed earlier, it may not be
feasible to have a frame with only one phase as the amounteofjgmequired to run the system
over the entire frame may be more than the amount of energlabl&a Hence, we conclude
that the frame structure described in Secfionlll-A is cornghyegeneral and sufficient to extract
the maximum possible performance from the system.

To maximize the information rate per frame, we must thusesdhe following optimization



problem:

PO: maximize R(p, g, ay,,dy) (2a)
P10t Yl

subject to (dy — é)(1 — p)7 — B,y — By < 0 (2b)

By+ B, — (dy — é&)(1 — p)7 — B <0 (2¢)

0<p<1 (2d)

% S Qg Op S 1 (Ze)

0<d, <D, (2f)

(1 —ap)dy =0 (29)

wherea, =1 — C,/c and [2b) is the energy causality constraint which says thatgy drawn
from the battery oZb(l — p)7) has to be less than or equal to the energy stored in the yatter
(é(1—p)T+ B, + By). The inequality in[(2c) is the battery capacity constra(@&) accounts for
the maximum charge rate constraint, i.e., the charge(itatex)c must not exceed the maximum
charge rate”,,, (2f) is the maximum discharge rate constraint gnd (2g)waptthe fact that the
battery cannot be charged and discharged simultaneousd,yalthathb andg¢, are functions of
d, and oy, respectively.

We now make the following observation which says that it i$ aptimal to transmit any

symbols in the first part of the frame in the optimal solutionPO.

Lemma 1. In the optimal solution td?0in (2),
1) the total number of symbols transmitted and the average oaer [0, p*7| are zero, i.e.,
v*Ns =0 and R} =0 and,
2) all Ny symbols are transmitted during*r, 7| at the average poweto;c — p + dj)(1 —
p*)7/Ns.

Proof: See Appendix A. [ |
As a result of the above lemma, the objective function of PQ2hcan be rewritten as
R(p, o, o, 7y, dp) = (1 —v*) Ry = log((ape — p+ dp) (1 — p)7/N;). Note that the optimal value
of v* = 0, i.e.v is no longer an optimization variable. The result also higgtts that the number

of symbols transmitted in both the phases in the optimal isagkvays an integer, thus satisfying



requirements of practical applications. Though the objedunction now has a simpler form,
due to coupling o, a,, o, andd,, PO is still a non-convex optimization problem. However, we

exploit the structure of the problem and present the optsoéltion in the following theorem.

Theorem 2. The optimal solution t&0is v* = 0, o = argmax,,<a<1 (Ne((1 — a)e)(1 — a)c),
ap = 1, p* = min(pg, p;), Wherep, = argmax, ((agc—pjtcflb(az,p))(l — p)) and pp =
(B — By)/(Ne(cp)esr), and dy = dy(c, p*), where we defines = (1 — o), dy(of, p) =
fmin(dy, Dy) : do/Naldy) = (No(c)epp+ Bo/7)/(1 = p)}.

Proof: See Appendix B. [ |

Theorem[2 says that in the optimal solution, the battery mrgdd at the optimal rate in
the charging phase. Recall that no information is trangahiin the charging phase. In the
transmitting phase, the information is transmitted with gower drawn from the battery and the
EH source. Since the optimal external charging rate of thtetya(1l — «o)c, may be lower than
the harvested power,and because the transmission is not carried out in the citapiase, the
remainingac W gets wasted.

So far we did not impose any constraint on the channel bartbwitbw, recall that the channel
bandwidth isl¥ Hz and note that we need to transmit symbols durindpr, 7], i.e., in(1—p)7
seconds. Hence the Nyquist bandV\:Hittl Ns/(1 — p)r. Since, the signal bandwidth has to be
less than the channel bandwidth, we must havé(l — p)r < W, i.e.,

N,
Wr

Hence, the optimal TSR with the bandwidth constrainpfs, = min(p*, pw), where p* is

p<1- pw 3)

obtained from Theoreiil 2.

IV. MULTIPLE FRAME AVERAGE RATE OPTIMIZATION

In this section, we consider the problem of average rate magktion across multiple commu-
nication frames with the number of frames denotedNbyThe harvested power in any frame
is assumed to be a random variablgwith a finite support, i.e) < C; < 0, i=1,...,N. We

assume that the random variablég, Cs,..., Cy, are independent and identically distributed

2considering a raised cosine pulse shaping filter with urdtizaff factor.
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and that they do not change within a frame. Further, we asshatehe channel power gains,
denoted byH, H,,..., Hy, in framesl,2,..., N, respectively, are independent and identically

distributed. The frame duration is assumed tortfer all the frames.

A. Problem Formulation

First, we consider the off-line optimization under the asption that the harvested power
and channel gains aie priori known at the transmitter as ih [22], [23], [26]—-[28]. The opal
throughput under the off-line optimization gives an uppeurd for the optimal throughput in all

on-line algorithms. Let the realizations of harvested pawand channel power gains in frames,

1,...,N, becy,...,cy, andhq, ..., hy, respectively. The average throughput acrdsframes
is given by,
1 N
Ravg(pv O, Oy, 7Y, db) = N Z R(Pm Qg 5 Op; s Viy dbl) (4)

=1
where R(.) is given by [1) withh = h; for framei. Note that all the variables carry their usual
meanings except that they are now indexed by the frame isdexe
To maximize the average information rate acrésérames, we must thus solve the following

optimization problem:

P1l: maximize Ru,(p, aa, oy, 7y, dp) (5a)
P, %a,p,Y,dp
SUbjeCt tOZ (ka(l — pk) — 6a;cpk — 6bk(1 — pk)) T— By <0 (5b)
k=1

BO+Z(Eakpk+ébk<1_pk)_Czbk<1_pk)>7-_B§O (5C)

k=1
(1 — O‘bi)dbi =0,0< dbi < Dp (56)

fori = 1,...,N, wherea,, = 1 — C,/¢; and, é,, = (1 — ag )aN((1 — @ )ck), G =
(1 —ap, )axNe((1 — ap, )cx) are concave functions in,, anday, , respectively and, they specify
the internal charging power of the battery over the time tloma [0, p,7) and [p,7, 7] in any

frame k, respectively. The internal discharge powk;; = dp, /Na(dp,) in any framek over

3 where any bold symbak = {z1,...,zn}.
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lprT, 7] is a convex function ofd,, and B, is the initial energy stored in the battery. The
constraints in[(Bb) and_(bc) are energy causality and lyatepacity constraints, respectively.
Note that we have also included the bandwidth constrainkimmam charge and discharge rate
constraints and the constraint that the simultaneous irttaamd discharging is infeasible in_(5d)

and [5&). As in the single frame case, we note the following.
Lemma 3. In the optimal policy;yf =0 forall : =1,..., N.

Proof: See Appendix C. [ |
Hence,v;’s are no longer optimization variables. Hence, the trahgmwer P; in any frame
i is equal to(ay,c; — p+dy,)(1 — p;)7T. Clearly, P1 in[(b) is a non-convex optimization problem
due to the non-convex constraint in{5c¢) and due to the cogpif p;'s with ~;’s, dy.’s, a,,’s
and a,’s.
In the following, we first solve the problem when the circudst is zero and get some
interesting insights on the optimal solution. We then agpnately solve the problem when the

circuit cost is non-zero.

B. Zero Circuit Costf = 0) Case

Since energy is not expended for the circuit operation duttire transmission, in this case, we
can transmit the coded symbols for the entire frame durati@mce,p;'s anda,,’s are no longer

optimization variables. In this case, the optimizationigdeon P1 in[(5) can be reformulated as

N
e 1
P2: minimize - — log (1 4+ h;(aw,c; + dp, )7/ Ny 6a
inimi N; g ( (aw,ci + dp,)T/Ns) (6a)
i=1,...,.N =

subjectto  [(Bh)(BA),0 <dy, < D,,ap, <y, <1, i=1,...,N (6b)

where the constraints should be self-explanatory. In ggnB2 is non-convex due to the non-
convex constrain{(5c).
When the channel gains remain constant across the frarees;;i= h, i = 1,..., N and

when the battery capacity is infinite, we make an interestlvggrvation in the following theorem.

Theorem 4. Consider any two frameg, and k& (k > j) such that the battery has a non-zero

residual energy in and between the frameand k. Then, while the battery is being charged, i.e.,
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a,, ap, < 1, or the battery is being discharged, i.€,,, d,, > 0, the optimal transmit power is a

strictly monotonically increasing function of the hanetpower, i.e.¢c; < ¢;, implies P; < P.

Proof: See Appendix D. [ |
With the assumption that the battery efficiencies are inddest of the charge and discharge
rates, it has been shown [n [22] that the optimal power aliondas a double threshold structure:
the optimal transmit power does not vary with the harvestaggr whenever the harvested power
is above an upper threshold or below a lower threshold. hterésting to note that if the battery
efficiencies vary with the charge and discharge rates asudt k#fsnon-zero internal resistance,
the optimal transmit power strictly monotonically increaswith the harvested power and does

not exhibit the simple threshold structure observed withftked efficiency model in [22].

C. Non-Zero Circuit Costy > 0) Case

Recall that P1 in[(5) is non-convex when the circuit cost is-mero. Hence, analytically
solving P1 is challenging. In the rest of the section, we apipnately solve P1 by considering
an upper bounding function of the discharge efficiency cimvéig.[3d. We define the following
bounding function which is referred to as the step dischangdel: N;(d,) = Ny, if d, < D,;
Na(dy) = 0 otherwise, whereD,, is the maximum discharge rate.

We can now eliminate the coupling betweé's and p;'s by substitutinge,, = dy, (1 — p;) 7.

The constraint on the discharge rate in the step dischargkelntan be re-written as,
ep, = dp,(1 — pi)T1 < D,(L —pi)r, i=1,...,N (7)
To eliminate the coupling between’'s and «,,’s, we make the following observation.

Lemma 5. Leta;, = argmax,, <a<1 (Ne((1 — a)ci)(1 — a)c;). Then,Rayg(an) < Rayg () for

any given{piv Q5 61%'}1']\;1'

Proof: See Appendix E. [ |
Lemmal® implies that in the optimal solution to P1, we mustehay = o always. To
eliminate the coupling betweem,,’s and p;’s, we make the following observation which says

that it is not optimal to charge the battery in the second phathe frame whenevep; > 0.
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Lemma 6. In the optimal policy, if the optimap; > 0, then the optimak,;, = 1 and if the

optimal p; = 0, thena,, < ap, < 1 in the optimal case.

Proof: See Appendix F. [ |
The above result implies thdt — «,,)p; = 0. Hence, the rate in framécan be re-written
as R(p;, aw,;, g, €p,) = log (1 + h;((aw, — pi)eim — p(1 — pi)T + e,)/Ns), where we have sub-

stituted dy,, (1 — p;)7 by e, and ay, (1 — p;) by «,, — p;. Hence, P1 can be reformulated as,

N
o 1
P3: minimize — — > log (1+ hi((aw, — pi)eim — p(1 = pi)7 + es,) /N,) (8a)
i=1,..,N i=1
subject t0» ey, /Na, — prés, ™ — G, (1 — pi)T — By < 0 (8b)
k=1
Bo+ > (puéy, ™+ (1 — pi)7 — €3, /Nay — B <0 (8c)
k=1
0<pi <pw (8d)
0<ey, <D,(1—p)r (8e)
(1 - abi>pi =0, O, < Cp; <1 (8f)

fori=1,...,N, where¢;, = (1—a} )eaxNo((1 -0}, )er) and the constraint§l(3),1(7)._(5b) and
(Bd) are re-written ag (8d),_(Be), (8b) amndl(8c), respelstive

As a result of Lemmal6, we need to optimize only ougrif p;, = 0 and optimize only over
pi If p; > 0, because the optimal,, = 1 wheneverp;, > 0. If we know whetherp; = 0 or
p; > 0 for any frames in the optimal solutionp; and «,, get decoupled and we can obtain the
solution to P3 by solving the resulting convex optimizatpmoblem. However, the challenge is
to identify whetherp;, > 0 or p, =0 for i = 1,..., N, as the size of the search space increases
exponentially with the number of frame3]. In the sequel, we give an approximate solution to
P1 by approximately solving P3. To identify if > 0 or p; = 0 and solve P3 approximately,
we adopt the following technique.
1) In order to eliminate the coupling betwegss anda,,’s, seta;, = 1 for eachi =1,..., N,

and solve the modified P3, which now is a convex optimizatiailem, to obtain the optimal

- N
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the optimal transmit energy and rate in fraineespectively. Let the total energy loss, i.e., sum
of charging and circuit losses to achieve rétg,, .., y,=1y in framei be Ly o, (-, =1}-

2) Then, we sep; = 0 and finda,, which results in the same transmit energyEQf,aby{lngN}zl}
as in Step (1) for eachh = 1,..., N. Now, &;, may not be feasible due to the maximum
charge rate constraint. Hence, we considgf; ,,.—oy = max(a,,, ) Where the termo,,
accounts for the maximum charge rate constraint. Let tha toss incurred with PSR of
ap fipi—0} IN framei be L; ,_o. For any framei, we setp; =0 if L; ,, o < L{ivab,{lgjgN}zl};
seta; = 1 otherwise. In the previous step, due the assumption thathhaeging and the
transmission are not done simultaneously, kg.51<;<n} = 1, the charging losses will be
high in frames withhigh harvested powers. In the current step, we try to reduce gsvidile
maintaining the transmit power same as the previous staghdfuwe note that if any frame
i receives energy in Step (1) above, theh = 1 because the frame that receives energy in
Step (1) must receive energy in any other policy that perfohetter than the performance
of the policy in Step (1). If a frame receives energy, it is noptimal to charge the battery
while it is being discharged, hence, we sgt = 1, if frame i receives energy in Step (1).

3) Suppose; is the solution in the above steps, then we assign= {min(dy,, D)) : d, (1 —
p;)7/Na(dy,) = €5} for all the frames = 1,..., N.

We present the algorithm in Algorithid 1. The convergencehefalgorithm is guaranteed as
the average rate increases in each iteration. The compuahttomplexity analysis of Algorithm
is given as follows. We first note that two separate convexropation problems are solved
in Step 3 and Step 14, each with a worst-case polynomial aaxiplin N. The complexity
of the remaining steps is linear iN. Hence, we conclude that the worst case complexity of
Algorithm [1 is polynomial inN. Specifically, the computational complexity of AlgoritHmisl
O(N?) when interior-point methods are used to solve the convenigdtion problems[[33].

The rationale behind some important steps in the Algorithanelas follows. Based on Lemma
[, we note that Step 2 gives the optimal result. Based on Leffharal the preceding discussion
(in points 1 to 3), we can see that the result obtained in StepS3ep 13 is close to the optimal
result. Further, Step 14 gives the optimal result as thermopation problem being solved is
convex. Tabldll provides a summary of various optimizatioobfems considered so far with

some useful comments.
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Algorithm 1 Proposed Algorithm for Approximately Solving P1
1: procedure ENERGY-ALLOC(DBy,c, h, N)

a

2: Computeq;, = argmax,, <a<1 (Ne((1 — @)c;)(1 — a)c;) and assigny, = o).
3: Solve P3 withay, = ... = a;, = 1. Obtain transmit power&’y; ,, ., y,=1}-

4 fori:1 —= N do

5: If frame i receives energy, them; = 1; F' < i.

6: Setp; = 0 and computey,, that results in transmit energy equalﬂi?mb’{lgjg}:l}.
7: Obtain ay, ¢; p,—0y = max(ae,, t, ).

8: Compute the total Iosﬂ{mb’{lgg}:l} andL; ,—o if i ¢ F.

9: if L;p—0 < Liay 1<jeny=13 then pf=0; A«

10: gse o =1; B«

11: end if

12: Substitutea,, = 1,Vie BU F andp; =0,V ¢ € A.

13: end for

14: Solve the resultant convex optimization problem to obfaiirande;.

15: 5, = Amin(dy,, D)) : dy, (1 — )T Na(dy,) = eyt for eachi € {1,..., N}.
16: Returnp*, o, o, d;.

17: end procedure

D. On-line Policies

In practice, it would be unrealistic to have the non-causeivedge of the harvested power
and the channel state information, but, it is likely that vaé statistical information.

The optimization problem P1 if(5) does not apply to systertis anly stochastic knowledge
of the energy arrival profile. Here, we develop P1 in threedions below, leading to three
suboptimal policies to select the decision variablgsa,, oy, v, d,}. The motivation behind
these simplifications and sub-optimal policies is that they practical and simple to implement.
We also compare the proposed sub-optimal policies with phienal off-line and on-line policies.

1) Optimal Online Policy: To obtain the optimal power allocation when only the causal
knowledge and the statistical information of the harvegtedvers and channel power gains

are available, we employ the stochastic dynamic programrbased approach [34]. Letf, =
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Circuit Cost,p Single Frame Case, PO inl (2) Multiple Frame Case, P1 ifitl(5)

Ny =p" =df =0, af =1, a, does not| P1 is reformulated as P2 ifl(6). Furthef, = p; = 0,
p=0 play any role. Battery is neither charged npri = 1,..., N and a,;’s do not play any role; opti-

discharged. mization variablesay,’s anddy,’s. See Theorerl4.

v* =0, eitherp™ > 0, o < 1, a3 =1, d; > | Using an approximate discharge efficiency model, |P1
p>0 0 orp*=di =0, o =1 with arbitrarya,. | is reformulated as P3 in[J(8). Based on Lemfal 5
The harvested energy is stored at the optimand Lemmd6, P3 is solved iteratively to obtain gn
rate over[0, p*7). See Theorern] 2. approximate solution to P1. See Algoritfh 1.

TABLE [: The optimization problems considered in the worlkden various cases on the circuit cogtwith some useful comments.

(Cn, H,, B,,_1) denote the state of the system in framewhere(C,, is the harvested powef,,

is the channel power gain arig},_; is the residual energy at the start of the framé&\Ve assume
that the state information of any given frame is known at tiaet of the frame. Note that, =
(Ch, Hy, By) is the initial state of the system. Our goal is to maximizeaherage rate over a finite
horizon of N frames, by choosing a policy; = {p,.(sn), @, (1), @, (Sn), dp, (Sn), VSp,n =
1,..., N}, that selects time and power splitting ratios and dischgeers for each of the
frames. A policy is feasible if the energy causality constsy battery capacity constraints,
bandwidth constraints and maximum charge and dischargectstraints, specified ih_(5b) —
(5e€), are satisfied for possible states in all the framesIlLé¢énote the set of all feasible policies.

Given the initial states;, the maximum average rate is given by,

R, = rygﬁc Ron () (9)
where
1 N
Ron(m) = 5 ; E [R(Cy, Hy, By_1, pu, Ca,» o, d )| 51, 7] (10)

where R(.) is given by [1) and the expectation is with respect to the santharvested power
and the channel power gain. The maximum average fafg, of the system, given by the

value functionJ(s;), can be computed recursively based on Bellman’s equatstaging from
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Algorithm 2 Statistical Algorithm
1: procedure STATISTICAL(B,, ¢, h, N)

22 Computea;, = argmax,, <a<i (Ne((1—a)e)(1—a)e). b+ By

3 fori:1— N do

4: [p', d!, al] =ENERGY-ALLOCO, [c;, C], [hi, H], 2)
5: pi < p(1), dp, + dj(1) anday, + ai(1).

6: b < energy remaining in the battery in frame

7: end for

8: end procedure

JIn(sn), In—1(sn—1), and so on until/;(s;) as follows:

JN(CNaHNvBN—l) = max R(CN7HNvBN—lva7aaN7abN7de) (11a)
{pNvaaN 7abN 7de}
Jn(cnaHnaBn—l) - max R(CnaHnaBn—lapnaaanaabnadbn) + jn—l—l(cn—l—laHn-i-laBn)

{pPn:amn Qb by,

forn=1,...,N—1 (11b)

whereJ, 1 (Cpy1, Hpy1,7) = Ec, 1 Hor [Int1(Cri1, Hoy1, )] is the average throughput across
framesn + 1 to N averaged over all the realizations ©f,, and H,,,. Note that in[(11b), we
account for the fact that;'s and H;’s are independent. Note that the residual endsgyn (118)
is a function of the decision variables, a,, ., a;, andd,,. An optimal policy is denoted as" =
{0 (50), %, (50), 03, (50, 5, (50), ¥, m = 1, N}, where{ps (sn), a7, (sn), 5, (s0), d;, (0}
is the optimal solution to (11) when the state of the systenm),is

2) Greedy Algorithm:When we only have the instantaneous knowledge of the had esiwer
but not the non-causal or statistical information on the @oprofile, the entire harvested energy
in any frame is utilized in the same frame itself. In each &f ftames, the corresponding single
frame optimization problem is solved. Based on Theorém € aiftimal solution can be easily
found in each of the frames. The algorithm is simple to imm@atmand achieves the optimal
rate when all energy in the battery must be used up within &ache. But, the instantaneous
optimality comes at the cost of increased circuit energysaamption due to longer duration of

circuit operation.

18



3) Statistical Algorithm (SA)in addition to the instantaneous knowledge, when we have the
statistical information (such as the mean value) of haedepbwers and channel gains across the
frames, we propose an algorithm based on Algorithm 1. Leei#tpected values of the harvested
power and channel gains kiéand [, respectively. Let the TSRs, PSRs and the discharge powers
be represented bfp;, a,, dp,) in frames: € {1,..., N}.

At the beginning of any framé we have the instantaneous knowledge of the harvested power
and the channel gain, i.€g;, h;), residual energy in the battery and, /), but, we do not have
any information on(c;.1, ..., cn, hiv1, - -, hy). To find (p;, ay,, dp,), we consider a hypothetical
two-frame optimization problem with the first frame being thame: and the second frame
being a hypothetical frame with parametd)s, 7). Then, at the beginning of framg for
i=1,..., N, the transmitter solves the optimization problem P1in ¢()the above two-frame
hypothetical problem. The statistical algorithm is preéednin Algorithm[2.

4) Constant Time/Power Splitting Ratio (CTSR/CPSR) RdiciThough the adaptive policies

described above are simple and practical, simpler systeagswot have the capability to measure
the harvested energy and the channel states instantapdouslich systems, it is not feasible to
compute the suitable TSRs and PSRs for each frame instanislgeat the frame beginning. It
is more practical to use a single, pre-computed time/poykiting ratio across all the frames.
A sensible choice of the TSRs and PSRs is the one that maantiwe average rate in](5)
with an additional constraint that the TSRs and PSRs in eeame have to be equal i.e.,
P = Pi,0g = Qg,0p = ay,, fori = 1,..., N, with only the stochastic knowledge of energy
arrival rates.

Since, the constraintl — oy, )p; =0, i = 1,..., N, has to be satisfied, we fix eithey, =

L=y =landa, = ...,ay = a) = argmax,, ;o<1 (No((1 — @)E(C))(1 — a)E(C)),
whereE(C) is the expected value of the harvested powef.) = 1 — C,/E(C) and, find the
optimal p, leading toconstant time splitting ratio (CTSR) poligyor fix p; = ... = py = 0 and

find the optimala,, leading toconstant power splitting ratio (CPSR) policy

V. NUMERICAL RESULTS

In our simulations, we assume that information ra&te= 0.5log(1 + hP;/(N,W)) bits per
channel use, wher®, is the average transmit power,is the channel power gaidy, = 10~°
WI/Hz is the AWGN power spectral density and = 1 MHz is the channel bandwidth. We
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Fig. 4: Variation of optimal internal and external chargirages with (a) the deterministic harvested power and (b)tteery voltage.

assume thatV, = 10° symbols are transmitted per frame of duratibn= 1s. We assume
that the channel power gain is exponentially distributedhwinit mean. Based on [[5], we
assume that the charging efficiengy;(c,) = 1.5 — 0.5/1 + 4rc,/V, the discharge efficiency,
Na(d,) = 0.540.5¢/1 — 4rd,/V3, the maximum charge powef;, = 2V3/r and the maximum

discharge powerD, = V3/(4r), whereVj is the nominal voltage of the battery.

A. Variation of Optimal Charging Rates with the HarvestedvBoand Nominal Battery Voltage

In Fig.[4, we present the variation of optimal internal antkaxal charging rates with harvested
power (in Fig[4h) and the nominal battery voltage (in Eig. 4ihe external charging rate, given
by ¢; = (1 — a})c, indicates the power directed to the battery after the cgitipower splitting,
and the internal charging rate, given by\/c(c;,r), indicates the the rate at which energy gets
stored in the battery internally, after the losses in therimdl resistance.

We make two important observations from Higl 4a. First, wtieninternal resistance lsw,
the external charging rate linearly increases with the ésted power (in this case;,: = 0),
but the internal charging rate increases at a slower ratie th# harvested power due to the
resistive losses. Second, when the internal resistanuighs then both the external and internal
charging rates increase only up to a threshold, beyond whibattery is charged at the optimal
charging rate, which is independent of the harvested pdwenrilarly, from Fig.[4b, we note that
the internal resistance significantly impacts the exteamal internal charging rates for a wide

range of the nominal voltage of the battery.
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B. The Optimal Rate in the Single Frame Case

Fig. shows the variation of the optimal rate with the bgitiaternal resistance for two
values of the circuit cost and harvested powers and [Fig. Blvstihe corresponding optimal
TSRs. From Figll5, we make two important observations. Fiveen the circuit cost is in the
order of the harvested power, the optimal rate decreaséstigtincreasing internal resistance
and the optimal TSR is greater than zero. This is because wieenircuit cost is in the order
of the harvested power, one can save on the circuit lossegpérating the circuit for smaller
amount of time while the harvested energy is stored and dfeavn the battery. Second, when
the harvested power is few times more than the circuit cbst) the optimal rate decreases up
to a certain point beyond which the rate is independent ofirtkernal resistance. The reason
is that the battery charge and discharge losses increase astérnal resistance increases. But,
the system continues the transactions (charging and dggola with the battery to reduce the
circuit losses up to a certain point. This can be seen from[Bligwhere the TSR is greater
than zero up to a certain value of the internal resistanceth@sinternal resistance increases,
the battery charging and discharging losses surpass timeofpg@ined by avoiding the circuit
losses and, it turns out that avoiding any transactions thighbattery is optimal. Obviously, the

optimal rate after theut-off point is independent of battery parameters.

C. Optimal Transmit Power Levels Under Two Different ModelsBattery Losses

Due to the non-zero internal resistance, charge/discledfigeencies vary with charge/discharge
rates. Hence, it is insightful to compare optimal power @loon in this case with that when

the battery efficiency is a constant as in![22]. We show thenmggdttransmit powers in these
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Fig. 7: Variation of the average rate with the average haedepower for various cases in the off-line policy with= 1s, B = 100 mJ,
Vp =1.5V, p=10mW, N = 100 and pyy = 0.9.

two cases with the harvested power in Fig. 6. It has been sho\jZ2] that the optimal power
allocation has a double threshold structure as shown ineetref Fig.[6. Unlike in curve-1, it
is interesting to note that if the battery has a non-zerori@eresistance, the optimal transmit
power strictly monotonically increases with the harvegieder as shown in curve-2 and proved
in Theorenl 4.

D. Variation of the Average Rate in the Off-Line Policy wikle tAverage Harvested Power

In Fig.[4, we present the variation of the average rate in thiene policy with the average har-

vested power, obtained by averaging the numerical reswits 1000 independent runs of Monte
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Carlo simulations. The No-Battery Case curve assumeshibaytstem is not equipped with any
battery and the Ideal-Battery Case curve is obtained bytadpthe optimal policy in an ideal
battery (with zero internal resistance) to the non-ided#elog case. Note that the rate of increase
in the average rate with the average harvested power isdemably affected by the internal
resistance. This is because as the average harvested pwsiesses, the charging/discharging
rates increase resulting in the increased charging/digtttplosses. It is interesting to note that
as the average harvested power increases, the average thteldeal-Battery Case approaches
the average rate in the No-Battery Case implying that ther@btpolicies designed for an ideal
battery may be strictly suboptimal when the internal resisé is non-zero.

E. Comparison of the Performances of On-line and Off-linkcis

In Fig.[8, we plot the average rates in the off-line and oe-fwlicies against the internal resis-
tance values. We assume that the harvested power is unyfalisttibuted in{50 mw, 100 mW}.
In the dynamic programming based Optimal On-line poliBy,s are discretized in step sizes
of 0.0005. We obtain the average rates by averaging the numericdtsesom 10* independent
runs of Monte Carlo simulations. To reduce the computati@moanplexity, we use the step
discharge model for all the algorithms. We fix the number afrfes,V to 5 as the computational
complexity becomes prohibitive for a larger N.

There are several interesting points to note in Elg. 8. Fagerage rates in all the policies

decrease with the increasing internal resistance thenethgating that the internal resistance
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Fig. 8: Variation of the average rates with the internalsesice in the various algorithms with= 50mW, T = 1s,B = 100mJ,Vg = 1.5V,

N =5 andpy = 0.9.
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Algorithms N=25| N=50 | N=75 | N =100
Proposed Offline Algorithm  0.3s 1.27s 2.85s 7.79s

Statistical Algorithm 0.26s 0.14s 0.1s 0.08s
Greedy Algorithm 10ms Ims 5ms 4ms
CTSR Algorithm 13ms 10ms 10ms 10ms
CPSR Algorithm 10ms 10ms 15ms 15ms

TABLE II: Normalized runtime of the algorithms with Intel 43600U processor running at60 GHz using MaTLAB 2016a software package.

is an important battery parameter that affects the perfoomaf the EH-based communication
systems significantly. Further, we note that the perforraasfdahe Proposed Off-line policy and
the original Off-line policy in P1 are almost the same. As extpd, the performance of the
Optimal On-line policy is slightly worse than that of the -difie policies. Further, we note that
the performance of the Statistical algorithm which is basedhe Proposed Off-line algorithm is
close to that of the Optimal On-line and off-line policiehelTCTSR algorithm performs worse
than the Greedy algorithm as the CTSR algorithm does nottattagdecision variables to the
varying harvested power. The average rate in CPSR algorighequal to1.02 Mbps and it is
independent of the internal resistance, i«.,= 1 which implies that the harvested energy is

not stored in the battery.

F. Variation of the Normalized Runtime of the Algorithmshwitie Number of Frames

In Table[Il, we present the normalized runtime, the ratio & total time taken to run the
algorithm to the number of frames, for various algorithmsewlthe algorithms are executed in
Intel i7-5600U processor running at60 GHz using MATLAB 2016a software package. For the
Proposed Off-line algorithm, as expected from the compfexinalysis, the runtime scales with
the number of frames ad3, approximately. Further, as expected, in all other alhari, the
normalized runtime does not change significantly with In the Statistical algorithm, one may
note that the normalized runtime slowly decreased&/daacreases. This is because the overhead

of the algorithm dominates the runtime when the number ahésis small.

VI. CONCLUSIONS

In this paper, we argue that the battery internal resist&ammgamentally changes the way we
design energy management techniques in energy harvestmmunication systems. Our study

shows that the internal resistance considerably inhibigsenergy redistribution across frames.
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This causes a significant reduction in the optimal averagenzonication rate compared to that
obtained using an ideal battery (i.e., zero internal rasist). Furthermore, the optimal policy
designed for an ideal battery performs poorly when the materesistance is not negligible.

In our work, the charging/discharging efficiencies are nhedleas functions of the internal
resistance and charge/discharge powers. We assume a fapiéeity battery, non-zero circuit
power and take into account limitations on bandwidth. Irs thontext, we derive compact
expressions for optimal time and power splitting ratioshiea single frame case. We then propose
an iterative off-line algorithm to approximately solve then-convex optimization problem which
assumes priori knowledge of the harvested powers and channel gains in theptaurame
case. We also solve for the optimal on-line policy by usingckastic dynamic programming
assuming statistical knowledge and causal informatiohethtarvested power and channel power
gain variations. We then propose three heuristic on-ligerithms and show that an algorithm
that is inspired by the off-line policy performs significhnbetter than the other two heuristic

algorithms. Advanced analysis of the proposed algoritrensonsidered as a future work.

APPENDIX
A. Proof of Lemma&ll

Whenao,c < p, we cannot operate the circuit durifig p7) for any p, hencemax(a,c—p,0) =
0 and R, = 0 for any p, including p = p* and the transmission occurs only oVer, 7] with

constant powet(ayc — p + dp)(1 — p)/Ns. Whena,c > p we have,
R(p, aa, cw, 7, dp) = 7Ro + (1 — 7) Ry = ylog(1 + hP,) + (1 — ) log(1 + h1%) (12)
< log(1 + hr/N, (paac — p) + (1 — p)(awe — p+ dy))) (13)
% log(1 + h7 /Ny (c —p+ db)) = Ry, (14)

whered, = {d : dr/Ny(d) = By}, (a) follows from Jensen’s inequality, (b) holds becausthef
following. Whend, = 0, the termp(a,c—p)+ (1 —p)(apc—p) < c(pag+(1—p)ap) —p < c—p
as pa, + (1 — p)ay, < 1; for any d, > 0, we havew, = 1 and, from [2b),d,(1 — p)7 =
Na(dy)(Byr + Bo) = Na(dp)No((1 — ap)e)(1 — ag)ept + Ny(dy) By < (1 — ag)epr + Ny(dy) Bo
which implies thato(ac —p) + (1 — p) (e —p+dy) < ¢ —p+Ny(dy) By /T = ¢ — p+dy,, where
the upper bound is attained when= 0.
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Consolidating the results, for any givenand a policy that ha%, > 0, we can always find
another policy with a higher average rate such tRat= 0, while satisfying all the constraints.
Hence,y* = 0 and Ry ,-») = 0 and all N, symbols are transmitted only during’r, 7| with the
transmit powerr(ajc — p + d;)(1 — p*)/N,. Lemmall is thus proved.

B. Proof of Theorerl2

Based on Lemmall, we hav = log(l + h(awc+ dy —p) (1 — p)7/N5). Since, R is a
monotonically increasing function of the transmit powarprder to maximizek, we can simply
maximize the transmit poweFR, = («,c¢ + dy — p) (1—p)7/N,. Since,r and N, are constants, we
instead maximize(ay, ay, dp, p) = (ape+dy, —p)(1—p). We first solve the problem by relaxing
the battery capacity constraint ih_{2c). Since, draining battery completely is optimal and,
noting that(1—ay)d, = 0, in the optimal policy we must havé],/N;(dy)) = (N.((1—ag)e)(1—
aq)epT+Bo)/((1—p)7) andd, < D,, for any feasiblev, andp, from (28) and[(2f), respectively.
Define d, (v, p) = {min(dy, D,) : dy/Na(dy) = (No((1 — ag)e) (1 — awa)ept + Bo)/((1 — p)7)}.
For a concave decreasing;(d;), it can be shown that,/N;(d;) is a convex increasing function
of d,. Hence, ifo,, and p are given, we can uniquely determidg(a,, p) always. Hence, the
optimal discharge powet; = d,(«, p*). Now, E(.) can be treated as a function of only, a,
and p. Hence, E(o, ap, p) = (awe — p + dy(aw, p))(1 — p). For anyp and «,, the quantity
apc(1l — p) achieves its maximum at, = 1, hence,a; = 1. Further,db(aa,p) iS @ monotonic
increasing function ofV.((1 — a,)c)(1 — a,)c and hence, it attains the maximumat= o =
argmax,, <a<1 (N.((1—a)c)(1—a)c) for any p. Hence,E (o, o, p) = (aye—p-+dy(e, p))(1—p).
To obtain the maximum rate, we simply need to maximizey’, o}, p) over p. Now, we note
that the battery capacity constraint simply puts an uppemboon p. From [2¢), we have,
Ne(c;)cypm 4+ By < B which impliesp < (B — By)/(N.(c;)c;7). Hence the proof.

C. Proof of Lemm&l3

Recall that in Section lll we had defined = 0 if («,,c; —p)p;7 < 0. Hence, to provey =0
for any i we need to provéa; c; — p)*p;7 = 0 for the i-th frame, whergz)* = max(z,0). If
(o c; — p) <0, then, we always havey; c; —p)"p;7 = 0. But, whenevera; ¢; — p) > 0, we
need to prove thap; = 0. To accomplish this, we note that the decision variablescatgpled

across the various frames as energy may get transferreddinenframe to another in the optimal
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policy. This energy transfer can be accounted for by comsigehe residual energy available

in the battery at the start of each of the frames. Bet; be the stored energy in the battery at
the start of any framé. Then, the energy consumed by fram&om the battery isB;,_; — B;

(a negative value indicates that energy is stored in thelyatin any framei. By some means,

if we know the value ofB;_;’s, then, we can optimize each frame independent of the other
frames. Assume that for any frameca; , p; > 0, Bf | and B} are the optimal values. As in
the proof of Lemmall, we can show that for any frameith o c > p and p; > 0, for any
By | and B; values, we can achieve a higher rate in fraiméhan the rate whep; > 0, by
selectingp;* = 0 and choosing an arbitrary; . Hence, by contradiction, we must hayg= 0

in the optimal policy. This proves that: = 0 for any: in the optimal policy.

D. Proof of Theoreml4
We first note that whenever the battery capacity is infinf€) (s inactive and P2 is convex.
Hence, Karush-Kuhn-Tucker (KKT) conditions are necessary sufficient for optimality. The
Lagrangian of P2 is given by
1 N N 7 _
2= -+ ; log (1 + hi(as,c; +dy)T/N) + 3 A (Z (dbk - a,k) - BO>

1=1 k=1

N N N N
— Z widp, + Z di(dy, — D) — Z i, — o) + Z vi(ap, — 1) (15)
=1 =1 =1 =1
where \;, w;, 0;, u; and v; are non-negative Lagrange multipliers corresponding emjuralities
G&b), dy, <0, dy, < Dy, a; —ap, < 0 anday, — 1 < 0, respectively. We first consider the case

when the battery is being charged. The stationary conditioply that
P (¢ +dp,) T _ T/ 1]r\1[(2) 1 (16)
N —C/Q(abi)TNNs Zj:i ()‘j) — W+ h;

Now, consider any two frameg and k(> j) such that the battery has a non-zero amount of

residual energy less than its capacity in all the frames éetwthem.

For any frame;, since the battery is charged @t— «y,)c; W, we must havexr,., < as, < 1.
The transmit powerP, = ay,¢;7/Ns asd,, = 0. WheneverP, > 0 and when the battery is
charged at the rate strictly less thah, we must havey, > a.,. Hence, from complementary

slackness conditions, we hawe = v; = 0. From [16), after rearranging the terms, we have,
—Cy(ap, )NNs 1

e m@)y ) &)

Jalaw,, c;) = = (o, )y, TN +
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Note that in the framé between any two frames in which the battery is fully drain®d= 0
Hence, the right hand side ii_(17) and consequentlys,,,c;) remain constant. Recall that
éa(ap,) = (1 — ap,)eiN((1 — ap,)e;) which implies —&,(aw,) = No((1 — ap,)ci)e; — (1 —
ap, )N ((1 — aw,)c;). Hence, for anyy, > ¢;, from (17), we have,

(Ne((X = a,)ej) = (1= ap JNI((1 = aw;)ey)) (aw, 57N + A) =

(Ne((1 = ap)er) = (1= ap JNC((1 = )er)) (aw, cumN + A) (18)
(Ne((X = a,)ej) = (1= o JNZ((1 = w,)cy)) (an, TN + A) >

(Ne((X =, )er) = (1= ap JNI((1 = aw)ex)) (o, TN + A) (19)

whereA = NN, /h. Now, by contradiction, we can prove th&t((1 -, )c;) > No((1—ay, )ck)
(if NVo((1 = ap,))e;) < N((1 = ay, )ex), it contradicts [(IB)). Substituting this result in (16), it
can be shown that tha®, > P; for any ¢, > c;. Further, when the battery is charged at its
maximum charge rate af’,, the result follows straightforward as the excess powetinsctly
used for the transmission from the direct path.

Using the similar technique, we can derive the result whenbitery is discharged at a rate
below the maximum discharge rafg, in the optimal case. If the battery discharge rate is fixed
at D, in the optimal case, the result is straightforward as thedsed power is directly used

for the transmission from the direct path. Hence, the proof.

E. Proof of Lemmal5

For a given frame with a givenp;, from Theoreni R, it follows thai?;(a,,) < R;(c},) if
pi > 0 without impacting the rates in the other framespjf= 0, we note that the value of
a,, does not play any role in the optimization problem. The abowe statements hold true

irrespective of the optimal values in the other frames. leetice result follows.

F. Proof of Lemma&l6

For simplicity, we assume that the battery capacity comgtia (5d) is inactive. LetV =
(1 =y)Ne((1 —y)c). From Lemmab we have;, = argmax,, <a<1(Ne((1—a)c)(1—a)c). Let
p; > 0 anday, < 1 be the optimal solution for any frame Whend, > 0, based on our remarks

in the system model, we must hawg, = 1. Hence, we cannot havwe, < 1 in the optimal
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solution. Whend, = 0, let B,_; and B; be the residual energy at the start of framendi + 1,

respectively. Hence,
No((1 = ag,)e) (1 = ag,)epim + Ne((1 — ap,)e) (1 — ap, )e(1 — p))T = B; — Bi1  (20)
Now, let us considery;, = 1 with the corresponding; > p; such that
N((1 = ag,)e)(1 — %i)CP,T = B;— Bi (21)

(
From [20) and[{21), we havg = p; + (1 — p;) 2 — (aa) Let EO/ —1,, @ndE,, ,, be the transmit
energy o, and oy, respectively. Now, con5|der the dlfference of transmiérgg in the two

cases, i.e.,
Ny /
= (Bag =1, = Bau, ) = (= p)(1 = p) = (e = p)(1 = ) (22)
. /\/C(abi)
=(a—p)(l—p—(1- Pi)W) — (aw,ci = p)(1 = pi) (23)
Nc(abi) Nc(abi)
= (1 — Pi) (Ci (1 —Qp, — W) +p (W (24)
(ap,)
N N - aw))( o) P
={1=2) L) ( N((1 = oy, )ei) b Cz') (29)
b GNEH) P\ [(1=N((1 —aw,)ci) &
= =) (-2) (R ™) 20 29

where (a) is obtained by substitution gf (b) follows from Theoreml2, and (c) follows because
1 —N.((1 —aw,)e;) > 0 and because of the fact that we cannot run the circuiteyifd,, < p.
Hence, the transmit energy when, = 1 is higher than that whemy, < 1 given all other

parameters remain constant. We have thus shownathat 1 wheneverp; > 0.
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