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Abstract—In this article, we address the prospects and key
enabling technologies for highly efficient and accurate device
positioning and tracking in fifth generation (5G) radio access net-
works. Building on the premises of ultra-dense networks (UDNs)
as well as on the adoption of multicarrier waveforms and antenna
arrays in the access nodes (ANs), we first formulate extended
Kalman filter (EKF)-based solutions for computationally efficient
joint estimation and tracking of the time of arrival (ToA) an d
direction of arrival (DoA) of the user nodes (UNs) using uplink
(UL) reference signals. Then, a second EKF stage is proposed
in order to fuse the individual DoA/ToA estimates from one or
several ANs into a UN position estimate. Since all the processing
takes place at the network side, the computing complexity and
energy consumption at the UN side are kept to a minimum. The
cascaded EKFs proposed in this article also take into account the
unavoidable relative clock offsets between UNs and ANs, such that
reliable clock synchronization of the access-link is obtained as a
valuable by-product. The proposed cascaded EKF scheme is then
revised and extended to more general and challenging scenarios
where not only the UNs have clock offsets against the network
time, but also the ANs themselves are not mutually synchronized
in time. Finally, comprehensive performance evaluations of the
proposed solutions on a realistic 5G network setup, building on
the METIS project based outdoor Madrid map model together
with complete ray tracing based propagation modeling, are
provided. The obtained results clearly demonstrate that byusing
the developed methods, sub-meter scale positioning and tracking
accuracy of moving devices is indeed technically feasible in future
5G radio access networks operating at sub-6GHz frequencies,
despite the realistic assumptions related to clock offsetsand
potentially even under unsynchronized network elements.
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I. I NTRODUCTION

5G mobile communication networks are expected to provide
major enhancements in terms of, e.g., peak data rates, area ca-
pacity, Internet-of-Things (IoT) support and end-to-end latency,
compared to the existing radio systems [2]–[4]. In additionto
such improved communication features, 5G networks are also
expected to enable highly-accurate device or UN positioning,
if designed properly [3], [4]. Compared to the existing radio
positioning approaches, namely enhanced observed time dif-
ference (E-OTD) [5], [6], uplink-time difference of arrival (U-
TDoA) [5], observed time difference of arrival (OTDoA) [7],
which all yield positioning accuracy in the range of few tens
of meters, as well as to global positioning system (GPS) [8] or
WiFi fingerprinting [9] based solutions in which the accuracy
is typically in the order of 3-5 meters at best, the positioning
accuracy of 5G networks is expected to be in the order of one
meter or even below [3], [4], [10]. Furthermore, as shown in
our preliminary work in [1], the positioning algorithms canbe
carried out at the network side, thus implying a highly energy-
efficient approach from the devices perspective.

Being able to estimate and track as well as predict the
device positions in the radio network is generally highly
beneficial from various perspectives. For one, this can en-
able location-aware communications [11], [12] and thus con-
tribute to improve the actual core 5G network communica-
tions functionalities as well as the radio network operation
and management. Concrete examples where device position
information can be utilized include network-enabled device-
to-device (D2D) communications [13], positioning of a large
number of IoT sensors, content prefetching, proactive radio
resource management (RRM) and mobility management [12].
Furthermore, cm-wave based 5G radio networks could assist
and relax the device discovery problem [14] in mm-wave
radio access systems. In particular, the cm-wave based system
could provide the UN position information that is needed for
designing the transmit and receive beamformers for the mm-
wave access [15]. Continuous and highly accurate network-
based positioning, either in 2D or even 3D, is also a central
enabling technology for self-driving cars, intelligent traffic
systems (ITSs) and collision avoidance, drones as well as other
kinds of autonomous vehicles and robots which are envisioned
to be part of not only the future factories and other production
facilities but the overall future society within the next 5-10
years [16].

In this article, building on the premises of ultra-dense 5G
networks [2]–[4], [17], we develop enabling technical solutions
that facilitate obtaining and providing device location informa-
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tion in 5G systems with both high-accuracy and low power
consumption at the user devices. We focus on the connected
vehicles type of scenario, which is identified, e.g., in [4],
[10] as one key application and target for future 5G mobile
communications, with a minimum of 2000 connected vehicles
per square kilometer and at least50Mbps per-car downlink
(DL) rate [4]. In general, UDNs are particularly well suited
for network-based UN positioning as illustrated in Fig. 1. As
a result of the high density of ANs, UNs in such networks are
likely to have a line-of-sight (LoS) towards multiple ANs for
most of the time even in demanding propagation environments.
Such LoS conditions alone are already a very desirable prop-
erty in positioning systems [18]. Furthermore, the 5G radio
networks are also expected to operate with very short radio
frames, the corresponding sub-frames or transmit time intervals
(TTIs) being in the order of0.1–0.5ms, as described, e.g., in
[19], [20]. These short sub-frames generally include UL pilots
that are intended for UL channel estimation and also utilized
for DL precoder design. In addition, these UL pilots can be
then also exploited for network-centric UN positioning and
tracking. More specifically, ANs that are in LoS with a UN
can use the UL pilots to estimate the ToA efficiently. Due
to the very broad bandwidth waveforms envisioned in 5G, in
the order of100MHz and beyond [19], [21], the ToAs can
generally be estimated with a very high accuracy. Since it is
moreover expected that ANs are equipped with antenna arrays,
LoS-ANs can also estimate the DoA of the incoming UL pilots.
Then, through the fusion of DoA and ToA estimates across one
or more ANs, highly accurate UN position estimates can be
obtained, and tracked over time, as it will be demonstrated in
this article.

More specifically, the novelty and technical contributions
of this article are the following. Building on [22] and our
preliminary work in [1], we first formulate a computationally
efficient EKF for joint estimation and tracking of DoA and
ToA. Such an EKF is the core processing engine at individual
ANs. Then, for efficient fusion of the DoA/ToA estimates of
multiple ANs into a device position estimate, a second EKF
stage is proposed as depicted in Fig. 2. Compared to existing
literature, such as [23]–[26], the cascaded EKFs proposed
in this paper also take into account the unavoidable relative
clock offsets among UNs and receiving ANs. Hence, accurate
clock offset estimates are obtained as a by-product. This
makes the proposed approach much more realistic, compared
to earlier reported work, while being able to estimate the
UN clock offsets has also a high value of its own. Then,
as another important contribution, we also develop a highly
accurate cascaded EKF solution for scenarios where not only
the UNs have clock offsets against the network time, but
also the ANs themselves are not mutually synchronized in
time. Such an EKF-based fusion solution provides an advanced
processing engine inside the network where the UN positions
and clock offsets as well as valuable AN clock offsets are
all estimated and tracked. As a concrete example, in OTDoA-
based positioning in LTE, the typical value for the clock offsets
among the ANs is assumed to be less than0.1µs [27, Table 8-
1]. Furthermore, the expected timing misalignment requirement
for future 5G small-cell networks is less than0.5µs [28], thus

Fig. 1. Positioning in5G UDNs. Multiantenna ANs and multicarrier wave-
forms make it possible to estimate and track the position of the UN with high-
accuracy by relying on UL reference signals, used primarilyfor DL precoder
calculation.

giving us a concrete quantitative reference regarding network
synchronization.

To the best of authors knowledge, such solutions have not
been reported earlier in the existing literature. For generality,
we note that a maximum likelihood estimator (MLE) for joint
UN localization and network synchronization has been pro-
posed in [29]. However, such an algorithm is a batch solution
and does not provide sequential estimation of the UN position
and synchronization parameters needed in mobile scenarios
and dynamic propagation environments. In practice, both the
UN position and synchronization parameters are time-varying.
Moreover, the work in [29], [30] focus on ToA measurements
only, thus requiring fusing the measurements from a larger
amount of ANs than that needed in our approach. Hence, this
article may be understood as a considerable extension of the
work in [29] where both ToA and DoA measurements are
taken into account for sequential estimation and tracking of
UN position and network synchronization. A final contribution
of this article consists of providing a vast and comprehensive
performance evaluation of the proposed solutions in a realistic
5G network setup, building on the METIS project Madrid
map model [31]. The network is assumed to be operating at
3.5GHz band, and the multiple-input multiple-output (MIMO)
channel propagation for the UL pilot transmissions is modeled
by means of a ray tracing tool where all essential propagation
paths are emulated. In the performance evaluations, various
parameters such as the AN inter-site distance (ISD) and
UL pilot spacing in frequency are varied. In addition, the
positioning and synchronization performance is evaluatedby
fusing the estimated DoA and ToA measurements from a
varying and realistic number of LoS-ANs. It should be noted
that numerical results considering imperfect LoS-detection are
also provided in this paper. The obtained results demonstrate
that sub-meter scale positioning accuracy is indeed technically
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Fig. 2. Cascaded extended Kalman filters (EKFs) for joint user node (UN)
positioning and network clock synchronization. The DoA/ToA EKFs operate
in a distributed manner at each AN while the Pos&Clock/Sync EKFs operate
in a central-unit fusing the azimuth DoA and ToA measurements of K[n]
ANs.

feasible in future 5G radio access networks, even under the
realistic assumptions related to time-varying clock offsets. The
results also indicate that the proposed EKF-based solutions
provide highly-accurate clock offset estimates not only for the
UNs but also across network elements, which contains high
value on its own, namely for synchronization of 5G UDNs.

The rest of the article is organized as follows. In Section II,
we describe the basic system model, including the assumptions
related to the ultra-dense 5G network, antenna array models
in the ANs and the clock offset models adopted for the UN
devices and network elements. The proposed solutions for
joint DoA/ToA estimation and tracking at individual ANs as
well as for joint UN position and clock offset estimation
and tracking in the network across ANs are all described
in Section III. In Section IV, we provide the extension to
the case of unsynchronized network elements, and describe
the associated EKF solutions for estimation and tracking of
all essential parameters including the mutual clock offsets
of ANs. Furthermore, the propagation of universal network
time is shortly addressed. In Section V, we report the results
of extensive numerical evaluations in realistic 5G network
context, while also comparing the results to those obtained
using earlier prior art. Finally, conclusions are drawn in Section
VI.

II. SYSTEM MODEL

A. 5G Ultra-Dense Networks and Positioning Engine

We consider an UDN where the ANs are equipped with mul-
tiantenna transceivers. The ANs are deployed below rooftops
and have a maximum ISD of around50m; see Fig. 1. The UN
transmits periodically UL reference signals in order to allow
for multiuser MIMO (MU-MIMO) schemes based on channel
state information at transmitter (CSIT). The UL reference
signals are assumed to employ a multicarrier waveform such
as orthogonal frequency-division multiplexing (OFDM), in
the form of orthogonal frequency-division multiple access
(OFDMA) in a multiuser network. These features are widely
accepted to be part of5G UDN developments, as discussed,
e.g., in [2]–[4], [10], [31], and in this paper we take advantage

of such a system in order to provide and enable high-efficiency
UN positioning and network synchronization.

In particular, the multiantenna capabilities of the ANs make
it possible to estimate the DoA of the UL reference signals
while employing multicarrier waveforms allows one to esti-
mate the ToA of such UL pilots. The position of the UN is
then obtained with the proposed EKF by fusing the DoA and
ToA estimates from multiple ANs, given that such ANs are
in LoS condition with the UN. In fact, the LoS probability in
UDNs comprised of ANs with a maximum ISD of50m is very
high, e.g.,0.8 in the stochastic channel model descibed in [32],
[33] and already around0.95 for an ISD of40m. Note that the
LoS/non-line-of-sight (NLoS) condition of a UN-AN link may
be determined based on the Rice factor of the received signal
strength, as described, e.g., in [34]. For the sake of generality,
we analyse the performance of the proposed methods under
both perfect and imperfect LoS-detection scenarios.

In this paper, we focus on 2D positioning (xy-plane only)
and assume that the locations of the ANs are fully known.
However, the extension of the EKFs proposed here to 3D
positioning is straightforward. We also note that the EKF-based
methods proposed in this paper can be used for estimating the
positions of the ANs as well, given that only a few ANs are
surveyed. In practice, such an approach could decrease the
deployment cost and time of a UDN. We further assume two
different scenarios for synchronization within a network.First,
UNs are assumed to have unsynchronized1 clocks whereas the
clocks within ANs are assumed to be synchronized among each
other. Second, not only the clock of a UN but also the clocks
within ANs are assumed to be unsynchronized. For the sake of
simplicity, we make an assumption that the clocks within ANs
are phase-locked in the second scenario, i.e., the clock offsets
of the ANs are essentially not varying with respect to the actual
time. Completely synchronized as well as phase-locked clocks
can be adjusted using a reference time from, e.g., GPS, or
by communicating a reference signal from a central-entity of
the network to the ANs, but these methods surely increase the
signaling overhead.

B. Channel Model for DoA/ToA Estimation and Tracking

The channel model employed by the proposed EKF for
estimating and tracking the DoA/ToA parameters comprises
a single dominant path. It is important to note that a detailed
ray tracing based channel model is then used in all the nu-
merical results for emulating the estimated channel frequency
responses at the ANs. However, the EKF proposed in this paper
fits a single-path model to the estimated multipath channel.
The motivation for such an approach is twofold. Firstly, the
typical Rice factor in UDNs is10–20dB [32], [33]. Secondly,

1We assume that the timing and frequency synchronization needed for
avoiding inter-carrier-interference (ICI) and inter-symbol-interference (ISI) has
been achieved. Such an assumption is similar to that needed in OFDM based
wireless systems in order to decode the received data symbols. In principle,
ICI can be understood as a systematic error in the measurement model, and
may thus be taken into account in the proposed EKFs simply by increasing
the measurement noise covariance [35, Ch.3]. However, throughout this paper,
ICI is assumed to be negligible while more rigorous methods to account for
ICI are left for future work.
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the resulting EKF is computationally more efficient than the
approach of estimating and tracking multiple propagation
paths [22]. This method thus allows for reduced computing
complexity, while still enabling high-accuracy positioning and
tracking, as will be shown in the evaluations.

In particular, the EKFs proposed in Section III-A exploit
the following model for the UL single-input-multiple-output
(SIMO) multicarrier-multiantenna channel response estimate
at an AN, obtained using UL reference signals, of the form
[36]

g ≈ B(ϑ, ϕ, τ)γ + n, (1)

where B(ϑ, ϕ, τ) ∈ CM×2 and γ ∈ C2×1 denote the
polarimetric response of the multicarrier-multiantenna AN and
the path weights, respectively. Moreover,n ∈ C

M×1 denotes
complex-circular zero-mean white-Gaussian distributed noise
with varianceσ2

n. The dimension of the multichannel vector
g is given byM = MfMAN, whereMf andMAN denote
the number of subcarriers and antenna elements, respectively.

In this paper, either planar or conformal antenna arrays can
be employed, and their elements may also be placed non-
uniformly. In particular, the polarimetric array responseis
given in terms of the effective aperture distribution function
(EADF) [22], [36], [37] as

B(ϑ, ϕ, τ) = [GHd(ϕ, ϑ)⊗Gfd(τ),

GV d(ϕ, ϑ) ⊗Gfd(τ)], (2)

where ⊗ denotes the Kronecker product. Here,Gf ∈
CMf×Mf denotes the frequency response of the receivers, and
GH ∈ CMAN×MaMe andGV ∈ CMAN×MaMe denote the
EADF of the multiantenna AN for a horizontal and vertical
excitation, respectively. Also,Ma andMe denote the number
of modes, i.e., spatial harmonics, of the array response; see [36,
Ch.2], [37] for details. Moreover,d(τ) ∈ CMf×1 denotes a
Vandermonde structured vector given by

d(τ) =
[

e−jπ(Mf−1)f0τ , . . . , ejπ(Mf−1)f0τ
]T

, (3)

wheref0 denotes the subcarrier spacing of the adopted mul-
ticarrier waveform. Finally, vectord(ϕ, ϑ) ∈ C

MaMe×1 is
given by

d(ϕ, ϑ) = d(ϑ)⊗ d(ϕ), (4)

whered(ϕ) ∈ CMa×1 andd(ϑ) ∈ CMe×1 have a structure
identical to that in (3) by usingπf0τ → ϑ/2, and similarly for
ϕ. Note that we have assumed identical radio frequency (RF)-
chains at the multiantenna AN and a frequency-flat angular
response. Such assumptions are taken for the sake of clarity,
and an extension of the EKF proposed in Section III-A to non-
identical RF-chains as well as frequency-dependent angular
responses is straightforward but computationally more demand-
ing. Note also that the model in (2) accommodates wideband
signals and it is identical to that typically used in space-time
array processing [38], [39]. Moreover, the array calibration
data, represented by the EADF, is assumed to be known or
previously acquired by means of dedicated measurements in
an anechoic chamber [36], [37].

In the DoA/ToA EKFs, we consider both co-elevation
ϑ ∈ [0, π] and azimuthϕ ∈ [0, 2π) DoA angles even
though we eventually fuse only the azimuth DoAsϕ in the
2D positioning and clock offset estimation phase. This is due
to the challenge of decoupling the azimuth angle from the
elevation angle in the EKF proposed in Section III-A without
making further assumptions on the employed array geometry
or on the height of the UN. It should be also noted that in
an OFDM-based system, the parameterτ as given in (1) (i.e.,
after the fast Fourier transform (FFT) operation) denotes the
difference between the actual ToA (wrt. the clock of the AN)
of the LoS path and the start of the FFT window [40, Ch.3],
[41]. The ToA wrt. the clock of the AN is then found simply
by adding the start-time of the FFT window toτ . However,
throughout this paper and for the sake of clarify, we will call
τ simply the ToA.

C. Clock Models

In the literature, it is generally agreed that the clock offset
ρ is a time-varying quantity due to imperfections of the clock
oscillator in the device, see e.g., [41]–[43]. For a measurement
period∆t, the clock offset is typically expressed in a recursive
form as [43]

ρ[n] = ρ[n− 1] + α[n]∆t (5)

whereα[n] is known as the clock skew. Some authors, e.g., the
authors in [42] assume the clock skew to be constant, while
some recent research based on measurements suggests that
the clock skew can also, in fact, be time-dependent, at least
over the large observation period (1.5months) considered in
[43]. However, taking the research and measurement resultsin
[44], [45] into account, where devices are identified remotely
based on an estimate of the average clock skew, one could
assume that theaverage clock skewis indeed constant. This
also matches with the measurement results in [43], where
the clock skew seems to be fluctuating around a mean value.
Nevertheless, the measurements in [43]–[45] were obtained
indoors, i.e., in a temperature controlled environment. How-
ever, in practice, environmental effects such as large changes
in the ambient temperature affect the clock parameters in the
long term [42]. Therefore, we adopt the more general model
[43] of a time-varying clock skew, which also encompasses
the constant clock skew model as a special case.

The clock skew in [43] is modeled as an auto-regressive
(AR) process of orderP . While the measurement results in
[43] reveal that modeling the clock offset as an AR process
results in large performance gains compared to a constant clock
skew model, an increase of the order beyondP = 1 does
not seem to increase the accuracy of clock offset tracking
significantly. In this paper, the clock skews of the assumed
clock oscillators are modeled as an AR model of first order
according to

α[n] = βα[n− 1] + η[n] (6)

where|β| ≤ 1 is a constant parameter andη[n] ∼ N (0, σ2
η) is

additive white Gaussian noise (AWGN). Note that the joint
DoA/ToA Pos&Clock EKF as well as the joint DoA/ToA
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Pos&Sync EKF proposed in Sections III-B1 and IV, respec-
tively, may be extended to AR processes of higher orders
using, e.g., the state augmentation approach [46, Ch. 7.2].In
particular, such an approach would be useful for low-grade
clock oscillators since their frequency stability is typically
poorer than that of medium/high-grade oscillators.

III. C ASCADED EKFS FORJOINT UN POSITIONING AND
UN CLOCK OFFSETESTIMATION

The EKF is a widely used estimation method for the UN
positioning when measurements such as the DoAs and ToAs
are related to the state through a non-linear model, e.g., [25].
However, the UN positioning is quite often done within the
UN device which leads to increased energy consumption of the
device compared to a network-centric positioning approach[1].
In this paper, the UN positioning together with the UN clock
offset estimation are done in a network-centric manner using a
cascaded EKF. The first part of the cascaded EKF consists of
tracking the DoAs and ToAs of a given UN within each LoS-
ANs in a computationally efficient manner, whereas the second
part consists of the joint UN positioning and UN clock offset
estimation, where the DoA and ToA measurements obtained
from the first part of the cascaded EKF are used. Since our
focus is on 2D positioning, we fuse only the estimated azimuth
DoAs and ToAs in the second phase of the cascaded solution.
The structure of the proposed cascaded EKF is illustrated in
Fig. 2. Throughout this paper, we use the same notation as
in [46]. Thus, thea priori mean and covariance estimates at
time instantn are denoted aŝs−[n] and P̂−[n], respectively.
Similarly, the a posteriori mean and covariance estimates,
which are obtained after the measurement update phase of the
EKF, are denoted aŝs+[n] and P̂+[n], respectively.

A. DoA/ToA Tracking EKF at AN

In this section, an EKF for tracking the DoA and ToA
of the LoS-path at an AN is formulated, stemming from the
work in [22]. However, the formulation of the EKF proposed
in this paper is computationally more attractive than that in
[22] for two reasons. First, the goal in [22] is to have an
accurate characterization of the radio channel, and thus all
of the significant specular paths need to be estimated and
tracked. However, in our work only a single propagation path
corresponding to the largest power is tracked. In addition to
computational advantages, the main motivation for using such
a model in the EKF follows from the fact that the propagation
path with largest power typically corresponds to the LoS path.
This is even more noticeable in UDNs where the AN-UN
distance is typically less than50m, and the Rice-K factor
is around10–20dB [32]. Second, the EKF in [22] tracks a
logarithmic parameterization of the path weights (magnitude
and phase components) thereby increasing the dimension of
the state vector, and consequently the complexity of each
iteration of the EKF. For UN positioning, the path weights
can be considered nuisance parameters since the DoA and ToA
suffice in finding the position of the UN. It is thus desirable to
formulate the EKF such that the path weights are not part of the
state vector. Hence, the EKF proposed in this paper tracks the

DoA and ToA only, thus further decreasing the computational
complexity compared to [22]. This is achieved by noting that
the path weights are linear parameters of the model for the UL
multicarrier multiantenna channel [36], and by employing the
concentrated log-likelihood function in the derivation ofthe
information-form of the EKF [46, Ch.6].

1) DoA/ToA EKF: Within the DoA and ToA tracking EKF,
a continuous white noise acceleration (CWNA) model is
employed for the state-evolution [47, Ch. 6.2] in order to track
the DoA and ToA estimates. Hence, the state-vector for the
ℓkth AN can be written as

sℓk [n] = [τℓk [n], ϑℓk [n], ϕℓk [n],

∆τℓk [n], ∆ϑℓk [n], ∆ϕℓk [n]]
T ∈ R

6,
(7)

whereϕℓk [n] ∈ [0, 2π) andϑℓk [n] ∈ [0, π] denote the azimuth
and co-elevation DoA angles at the time-instantn, respectively.
Similarly, τℓk [n] denotes the ToA at theℓkth AN. Finally, the
parameters∆τℓk [n], ∆ϑℓk [n], and∆ϕℓk [n] denote the rate-of-
change of the ToA as well as of the arrival-angles, respectively.
In addition, let us consider the measurement model presented
in (1) and the following linear state evolution model that stems
from the assumed CWNA model

sℓk [n] = Fsℓk [n− 1] + u[n], u[n] ∼ N (0,Q[n]), (8)

where the state transition matrixF ∈ R6×6 as well as the
covariance matrix of the state-noiseQ[n] ∈ R6×6 are given
by

F =

[

I3×3 ∆t · I3×3

03×3 I3×3

]

, (9)

Q[n] =

[

σ2
w∆t3

3 · I3×3
σ2
w∆t2

2 · I3×3
σ2
w∆t2

2 · I3×3 σ2
w∆t · I3×3

]

. (10)

Here,∆t denotes the time-interval between two consecutive
estimates. We note thatF and Q[n] may be found by em-
ploying the so-called numerical discretization of the following
continuous-time state model [48, Ch.2]

dsℓk(t)

dt
=

[

03×3 I3×3

03×3 03×3

]

sℓk(t) +

[

03×3

I3×3

]

w(t), (11)

wherew(t) ∈ R3×1 denotes a white-noise process with the
diagonal power spectral densityQc = σ2

wI3×3.
The prediction and update equations of the information-form

of the EKF for theℓkth AN can now be expressed as

ŝ−ℓk [n] = Fŝ+ℓk [n− 1] (12)

P−
ℓk
[n] = FP+

ℓk
[n− 1]FT +Q[n] (13)

P+
ℓk
[n] =

(

(

P−
ℓk
[n]
)−1

+ Jℓk [n]
)−1

(14)

ŝ+ℓk [n] = ŝ−ℓk [n] +P+
ℓk
[n]vℓk [n], (15)

whereJℓk [n] ∈ R6×6 andvℓk [n] ∈ R6×1 denote the observed
Fisher information matrix (FIM) and score-function of the state
evaluated at̂s−ℓk [n], respectively. They are found by employing
the measurement model for the estimated UL channel in (1),
and concentrating the corresponding log-likelihood function
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wrt. the path weights. In particular, the observed FIM and
score-function are given by [36], [37], [49]

Jℓk [n] =
2

σ2
n

ℜ







(

∂r

∂ŝ−
T

ℓk
[n]

)*
∂r

∂ŝ−
T

ℓk
[n]







, (16)

vℓk [n] = −
2

σ2
n

ℜ







(

∂r

∂ŝ−
T

ℓk
[n]

)*

r







. (17)

Here,r = Π⊥(ŝ−ℓk [n])gℓk [n] andΠ⊥(ŝ−ℓk [n]) = I−Π(ŝ−ℓk [n])
denotes an orthogonal projection matrix onto the nullspace
of B(ϑ, ϕ, τ); see Section II-B. In particular,Π(ŝ−ℓk [n]) =

B(ϑ, ϕ, τ)B†(ϑ, ϕ, τ), where the superscript{·}† denotes the
Moore-Penrose pseudo-inverse.

2) EKF Initialization: Initial estimates of the DoA, ToA, and
respective rate-of-change parameters are needed for initializing
the EKF proposed in the previous section. Here, we describe a
simple yet reliable approach for finding such initial estimates.
In particular, the initial estimateŝϑℓk [0], ϕ̂ℓk [0], andτ̂ℓk [0] are
found as follows:
• Reshape the UL channel vector into a matrix2:

Hℓk = mat{gℓk ,Mf ,MAN} (18)

• Multiply Hℓk with the EADF for horizontal and vertical
components, and reshape into a 3D matrix:

AH = mat{HℓkG
*
ℓkH

,Mf ,Ma,Me}, (19)

AV = mat{HℓkG
*
ℓkV

,Mf ,Ma,Me} (20)

• Employ the 3D FFT and determine

BH = |FFT3D{AH}|2, (21)

BV = |FFT3D{AV }|
2 (22)

• Find the indices of the largest element of the 3D matrix
BH + BV . These indices correspond to the estimates
ϑ̂ℓk [0], ϕ̂ℓk [0], and τ̂ℓk [0].

We note that the initialization method described above is a
computationally efficient implementation of the space-time
conventional beamformer (deterministic MLE for a single
path), and it stems from the work in [36], [37]. The initializa-
tion of the covariance matrix may be achieved by evaluating
the observed FIM at̂s+ℓk [0], and usingP+

ℓk
[0] = (Jℓk [0])

−1.
The rate-of-change parameters may be initialized once two

consecutive estimates of[ϑ̂ℓk , ϕ̂ℓk , τ̂ℓk ] are obtained. For ex-
ample, in order to initialize∆τℓk at n = 2 the following can
be used

∆τℓk [2] =
τℓk [2]− τℓk [1]

∆t
, (23)

(P+
ℓk
[2])4,4 =

1

(∆t)2
(

(P+
ℓk
[1])1,1 + (P+

ℓk
[2])1,1

)

, (24)

where the notation(A)i,j denotes the entry of matrixA
located at theith row andjth column.

2Reshape operator denoted as mat{X, d1, d2, . . . , dq} reshapes a given
matrix or vectorX into a d1 × d2 × · · · × dq matrix.

B. Positioning and Synchronization EKF at Central Process-
ing Unit

Next, an algorithm for the simultaneous UN positioning and
clock synchronization is presented, following the preliminary
work by the authors in [1]. Since in practice every UN has
an offset in its internal clock wrt. the ANs’ clocks, it is
crucial to track the clock offset of the UN in order to achieve
reliable ToA estimates for positioning. Furthermore, different
clock offsets among the ANs should be taken into account
as well, but that topic is covered in more detail in Section
IV. In this section, we first present the novel EKF solution,
called joint DoA/ToA Pos&Clock EKF, for simultaneous UN
positioning and clock synchronization for the case when ANs
are synchronized. Then, a practical and improved initialization
method for the presented Pos&Clock EKF is also proposed.
For notational simplicity, we assume below that only a single
UN is tracked. However, assuming orthogonal UL pilots, the
ToAs and DoAs of multiple UNs can, in general, be estimated
and tracked, thus facilitating also simultaneous positioning and
clock offset estimation and tracking of multiple devices.

1) Joint DoA/ToA Pos&Clock EKF: Within the joint
DoA/ToA Pos&Clock EKF, the obtained ToA and DoA es-
timates from different LoS ANs are used to estimate the UN
position and velocity as well as the clock offset and clock skew
of the UN. Thus, the state of the process is defined as

s[n] = [x[n], y[n], vx[n], vy[n], ρ[n], α[n]]
T ∈ R

6, (25)

where p[n] = [x[n], y[n]]T and v[n] = [vx[n], vy[n]]
T are

two-dimensional position and velocity vectors of the UN,
respectively. Furthermore, the clock offsetρ[n] and the clock
skewα[n] of the UN are assumed to evolve according to the
clock models in (5) and (6).

Let us next assume that the velocity of the UN is almost
constant between two consecutive time-steps, being only per-
turbed by small random changes, i.e., the state evolution model
is a CWNA model [47, Ch. 6.2]. Then, stemming from this
assumption and since the clock models for the evolution of the
clock offset and skew are linear, a joint linear model for the
state transition can be expressed as

s[n] = FUNs[n− 1] +w[n], (26)

where the state transition matrixFUN ∈ R6×6 is

FUN =

[

I2×2 ∆t · I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fc

]

, Fc =

[

1 ∆t
0 β

]

. (27)

Here, the process noise is assumed to be zero-mean Gaussian
such thatw[n] ∼ N (0,Q′) where the discretized block
diagonal covarianceQ′ ∈ R6×6 is given by

Q′ =













σ2
v∆t3

3 · I2×2
σ2
v∆t2

2 · I2×2 02×1 02×1
σ2
v∆t2

2 · I2×2 σ2
v∆t · I2×2 02×1 02×1

01×2 01×2
σ2
η∆t3

3

σ2
η∆t2

2

01×2 01×2
σ2
η∆t2

2 σ2
η∆t













. (28)

Here,σv andση denote the standard deviation (STD) of the
velocity and clock skew noises, respectively.



7

The upper left corner of the state transition matrixFUN
represents the constant movement model of the UN, whereas
the matrixFc describes the clock evolution according to the
clock models (5) and (6). Both presented clock models have
been shown to be suitable for clock tracking in [43] using
practical measurements. Unfortunately, the authors in [43]
do not provide details on the values for the parameterβ as
determined in their experiments. Although the clock skew is
not necessarily completely stationary, the change in the clock
skew is relatively slow compared to the clock offset. Therefore,
the authors in [43] argue that the clock skew can be assumed
to be quasi-stationary for long time periods. According to the
calculations and observations in [1], we employ the value
β = 1 throughout the paper. Thus, the clock skew can
eventually be considered as a random-walk process as well.

In contrast to the linear state transition model, the mea-
surement model for the joint DoA/ToA Pos&ClockEKF is
non-linear. For each time stepn, let us denote the number
of ANs with a LoS condition to the UN asK[n] and the
indices of those ANs asℓ1, ℓ2, . . . , ℓK[n]. For each LoS-AN
ℓk, the measurement equation consists of the azimuth DoA
estimateϕ̂ℓk [n] = ϕℓk [n] + δϕℓk [n] and the ToA estimate
τ̂ℓk [n] = τℓk [n] + δτℓk [n], whereδϕℓk [n] and δτℓk [n] denote
estimation errors for the obtained azimuth DoA and ToA
measurements, respectively. Note that the focus is on 2D
position estimation, and thus the estimated elevation angles
are not employed by this EKF. The measurements for each
AN can thus be combined into a joint measurement equation
expressed as

yℓk [n] = [ϕ̂ℓk [n], τ̂ℓk [n]]
T = hℓk(s[n]) + uℓk [n], (29)

where uℓk [n] = [δϕℓk [n], δτℓk [n]]
T is the zero-mean obser-

vation noise with a covarianceRℓk [n] = E[uℓk [n]u
T
ℓk
[n]].

Furthermore,hℓk(s[n]) = [hℓk,1(s[n]), hℓk,2(s[n])]
T is the real-

valued and non-linear measurement function that relates the
measurement vectoryℓk [n] to the UN state through

hℓk,1(s[n]) = arctan

(

∆yℓk [n]

∆xℓk [n]

)

(30)

hℓk,2(s[n]) =
dℓk [n]

c
+ ρ[n], (31)

where∆xℓk [n] = x[n] − xℓk and∆yℓk [n] = y[n] − yℓk are
distances between the ANℓk and the UN inx- andy-direction,
respectively. In (31), the two-dimensional distance between the

UN and the AN is denoted asdℓk =
√

∆x2
ℓk
[n] + ∆y2ℓk [n]

and the speed of light is denoted asc. Finally, the complete
measurement equation containing measurementsyℓk from all
LoS-ANs at time stepn can be written as

y[n] = h(s[n]) + u[n], (32)

where y = [yT
ℓ1
,yT

ℓ2
, . . . ,yT

ℓK[n]
]T is the collection of mea-

surements andh = [hT
ℓ1
,hT

ℓ2
, . . . ,hT

ℓK[n]
]T is the respective

combination of the model functions. Furthermore, the noise
u[n] ∼ N (0,R) with a block diagonal covariance matrix
R = blkdiag

([

Rℓ1 ,Rℓ2 , . . . ,RℓK[n]

])

describes the zero-
mean measurement errors for allK[n] LoS-ANs.

Let us next assume that the initial stateŝ+[0] as well as
the initial covariance matrix̂P+[0] are known. Furthermore,
assuming the linear state transition model and the non-linear
measurement model as derived in (26) and (32), respectively,
the well-known Kalman-gain form of the EKF can be applied
for estimating the state of the system [46]. Because of the
linear state transition model, the prediction phase of the EKF
can be applied in a straightforward manner within the joint
Pos&Clock EKF. However, the Jacobian matrixH used in the
update phase needs to be evaluated atŝ−[n] before applying
the subsequent equations of the EKF. It is straightforward
to show that after simple differentiation the elements of the
Jacobian matrixH become

H2k−1,1[n] = [hℓk,1]x (ŝ
−[n]) = −

∆ŷℓk [n]

d̂2ℓk [n]
(33)

H2k−1,2[n] = [hℓk,1]y (ŝ
−[n]) =

∆x̂ℓk [n]

d̂2ℓk [n]
(34)

H2k,1[n] = [hℓk,2]x (ŝ
−[n]) =

∆x̂ℓk [n]

c d̂ℓk [n]
(35)

H2k,2[n] = [hℓk,2]y (ŝ
−[n]) =

∆ŷℓk [n]

c d̂ℓk [n]
(36)

H2k,5[n] = [hℓk,2]ρ (ŝ
−[n]) = 1, (37)

for k = 1, 2, . . . ,K[n] and zero otherwise [1]. In (33)-
(36), we denote distances between the AN and the predicted
UN position in x- and y-directions as∆x̂ℓk [n] and∆ŷℓk [n],
respectively. Similarly, the notation̂dℓk [n] denotes the two-
dimensional distance between theℓkth AN and the predicted
UN position.

At every time stepn, the two-dimensional UN position
estimate is hence obtained asp̂[n] = [(ŝ+[n])1, (ŝ

+[n])2]
T

with an estimated covariance found as the upper-left-most2×2
submatrix ofP̂+[n]. In addition to the UN position estimate,
an estimate of the UN clock offset is given through the state
variable(ŝ+[n])5 as a valuable by-product.

2) EKF Initialization: Initialization of the EKF, i.e., the
choice of the mean̂s+[0] and the covariancêP+[0] of the
initial Gaussian distribution plays an important role in the
performance of the EKF. In the worst case scenario, poorly
chosen initial values for the state and covariance might lead to
undesired divergence in the EKF whereas good initial estimates
ensure fast convergence. Here, we propose a practical two-
phase initialization method for the Pos&Clock EKF in which
no external information is used besides that obtained through
the normal communication process between the UN and ANs.
The proposed initialization method is illustrated in Fig. 3.

In the first phase of initialisation, we determine coarse
initial position and velocity estimates of the UN together
with their respective covariances which are used, thereafter,
as an input to the next phase of the proposed initialization
method. In the literature, there are many different methods
that can be used to determine such initial position estimates.
For example, the authors in [50] used received signal strength
(RSS) measurements to obtain the position estimates whereas
in [25] the authors used DoA and ToA based methods for the
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Fig. 3. Initialization of position estimatêp+[n] where also a velocity estimate
v̂+[n] is improved as a by-product in the second phase of the initialization

UN positioning. The UN could even communicate position
estimates that are obtained by the UN itself using, e.g., global
navigation satellite system (GNSS), but has the disadvantage
of increasing the amount of additional communication between
the UN and ANs, and such an external positioning service is
not necessarily always available. In our initialization method,
we apply the centroid localization (CL) method [51] building
on the known positions of the LoS-ANs in order to obtain a
rough position estimate for the UN. Thus, the initial position
estimate, denoted aŝp+[0] = [x̂+[0], ŷ+[0]]T, can be expressed
as

p̂
+[0] =

1

K[0]

K[0]
∑

k=1

pℓk
, (38)

whereK[0] is the total number of LoS-ANs andpℓk
denotes

the known position of the LoS-AN with an indexℓk. Intuitively,
(38) can be understood as the mean of the LoS-ANs’ positions,
and depending on the location of the UN relative to the LoS-
ANs the initial position estimate may be poor. Such coarse
initial position estimate can be improved by using a weighted
centroid localization (WCL) method where the weights can be
obtained from, e.g., RSS measurements [52].

Unless the positioning method provides an initial estimate
also for the velocity, the EKF can be initialized even with
a very coarse estimate. If external information about the
environment or device itself is available, a reliable estimate
for the velocity can be easily obtained considering, e.g., speed
limits of the area where the obtained initial position estimate
is acquired. However, since external information is not used
in our initialization method, the initial velocity estimate of the
UN is set to zero without loss of generality. By combining
the initial position and velocity estimates we can determine a
reduced initial state estimatês+[0] that can be used as an input
for the next phase of the proposed initialization method.

It is also important that the employed initialization method
provides not only the state estimate but also an estimate of
the covariance. In our method, the uncertainty of the initial
position is set to a large value, since the initial position estimate
obtained using the CL method might easily be coarse and,
therefore, cause divergence in the EKF if a small uncertainty
is used. Since the initial velocity is defined without any fur-
ther assumptions, it is consequential to set the corresponding
covariance also to a large value. Hence, by setting the initial
covariance to be reasonably large we do not rely excessively
on the uncertain initial state.

However, the initial position estimate obtained using the
above initialization procedure may not be accurate enough
to ensure reliable convergence in the presented DoA/ToA
positioning and synchronization EKF, especially in the sense

of using susceptible ToA measurements in the update phase
of the filtering. Therefore, we chose to execute DoA-only
EKF, i.e., an EKF where only the azimuth DoA measurements
are momentarily used to update the state estimate of the
UN [53], in the second phase of the overall initialization
procedure. The DoA-only EKF, in which the obtained initial
state and covariance estimate are used as prior information, is
carried out only for pre-definedNI iterations. In addition to
more accurate position estimate, we can also estimate the UN
velocity v̂[n] = [v̂x[n], v̂y[n]]

T as a by-product in the DoA-
only EKF.

The state estimate obtained from the DoA-only EKF after
the NI iterations can then be used to initialize the joint
DoA/ToA Pos&Clock EKF after the state has been extended
with the initial UN clock parameters. In the beginning, the
clock offset can be limited to a fairly low value by simply
communicating the time from one of the LoS-ANs. Thereafter,
the communicated time can be used to set up the clock within
the UN. Typically, manufacturers report the clock skew of their
oscillators in parts per million (ppm). Based on the results
achieved in the literature, e.g., in [43]–[45] the clock skew
of the UN can be initialized tôα+[0] = 25 ppm with a
STD of a few tens of ppm [1]. Finally, the extended state
and covariance that contain also the necessary parts for the
clock parameters can be used as prior information for the
actual DoA/ToA Pos&Clock EKF as well as for the yet
more elaborate DoA/ToA Pos&Sync EKF proposed next in
Section IV for the case of unsynchronized network elements.

IV. CASCADED EKFS FORJOINT UN POSITIONING AND
NETWORK CLOCK SYNCHRONIZATION

In the previous section, we assumed that the clock of a
UN is unsynchronized with respect to ANs whereas the ANs
within a network are mutually synchronized. In this section,
we relax such an assumption, by considering unsynchronized
rather than synchronized ANs. For mathematical tractability
and presentation simplicity, we assume that the ANs’ clocks
within a network are, however, phase-locked, i.e., the clock
offsets of the ANs are static. It is important to note that this
assumption does not imply the same clock offsets between the
ANs, leaving thus a clear need for network synchronization.
In the following, an EKF for both joint UN positioning and
network synchronization is proposed. The issue of propagating
a universal time within a network is also discussed.

A. Positioning and Network Synchronization EKF at Central
Unit

In general, the proposed EKF for simultaneous UN position-
ing and network synchronization, denoted as a joint DoA/ToA
Pos&Sync EKF, is an extension to the previous joint DoA/ToA
Pos&Clock EKF where also the mutual clock offsets of the
LoS-ANs are tracked using the available ToA measurements.
An augmented state where also the clock offsets of all LoS-
ANs at time stepn are considered can now be expressed as

s[n] = [sT
UN[n], ρℓ1 [n], · · · , ρℓK[n]

[n]]T ∈ R
6+K[n], (39)
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wheresT
UN[n] = [x[n], y[n], vx[n], vy[n], ρ[n], α[n]] is the same

state vector containing the position and velocity of the UN as
well as the clock parameters of the UN clock as presented
in Section III-B1. Furthermore, the clock offset of the LoS-
AN with an indexℓk wherek ∈ 1, 2, . . . ,K[n] is denoted in
the augmented state asρℓk [n]. Here, all the clock offsets are
interpreted relative to a chosen reference AN clock.

Since the clocks within ANs are assumed to be phase-locked,
we can now write the clock offset evolution model for the AN
with an indexℓk as

ρℓk [n] = ρℓk [n− 1] + δρ[n], (40)

whereδρ ∼ N (0, σ2
ρ) denotes the zero-mean Gaussian noise

for the clock offset evolution. Using the model (40) for the
clock offsets and assuming the same motion model (26), we
can write then a linear transition model for the state (39) within
DoA/ToA Pos&Sync EKF such that

s[n] = F[n]s[n− 1] +w[n], (41)

wherew[n] ∼ N (0,Q[n]) denotes the zero-mean distributed
noise with the following covariance

Q[n] =

[

Q′ 0K[n]×K[n]

0K[n]×K[n] σ2
ρ∆t · IK[n]×K[n]

]

, (42)

whereQ′ is the same covariance as in (28). Furthermore, the
augmented state transition matrixF[n] ∈ R(6+K[n])×(6+K[n])

can be written as

F[n] =

[

FUN 06×K[n]

0K[n]×6 IK[n]×K[n]

]

, (43)

where the matrixFUN ∈ R6×6 represents the same state
transition matrix for the UN state as in (27). The identity
matrix in the lower-right corner of the state transition matrix
F[n] represents the assumed clock offset evolution for the ANs
as presented in (40).

Next, due to the mutually unsynchronized ANs, the mea-
surement equation related to ToA in (31) needs to be revised
accordingly. Thus, by adding the clock offset of the considered
LoS-AN to the earlier ToA measurement equation in (31), we
can write new measurement equations as

hℓk,1(s[n]) = arctan

(

∆yℓk [n]

∆xk[n]

)

(44)

hℓk,2(s[n]) =
dℓk [n]

c
+ ρ[n] + ρℓk [n], (45)

whereρℓk [n] denotes the clock offset of the LoS-AN with an
index ℓk. Furthermore, the measurement equations in (45) for
each LoS-AN can be combined into the similar measurement
model as in (32) such that

y[n] = h(s[n]) + u[n], (46)

whereu[n] ∼ N (0,R) is the measurement noise with covari-
anceR = blkdiag

([

Rℓ1 ,Rℓ2 , . . . ,RℓK[n]

])

obtained from the
DoA/ToA tracking phase.

In the following, we apply the Kalman-gain form of the
EKF to the presented models (41) and (46) in order to obtain

the joint DoA/ToA Pos&Sync EKF. Since our measurement
model contains now also the clock offset parameters for the
LoS-ANs, we need to modify the Jacobian matrixH in (33)-
(37) by adding the corresponding elements for each LoS-ANs,
namely

H2k,6+k[n] = [hℓk,2]ρℓk
(ŝ−[n]) = 1, (47)

wherek ∈ 1, 2, . . . ,K[n], and zeros elsewhere to complete the
matrix.

In the beginning of the filtering, e.g., when a UN establishes
a connection to the network, we use the same initialization
method as proposed earlier in Section III-B2. Thereafter, the
UN position and clock offset estimates at time stepn are
obtained as[(ŝ+[n])1, (ŝ+[n])2]T and (ŝ+[n])5, respectively,
with estimated covariances found as respective elements of
the matrix P̂+. Since the proposed DoA/ToA Pos&Sync
EKF also tracks now the clock offsets of the LoS-ANs, the
estimated clock offsets for each LoS-AN are given through the
state estimates(ŝ+[n])6+k wherek ∈ 1, 2, . . . ,K[n]. These
obtained UN and LoS-ANs clock offset estimates can be used
thereafter in network synchronization.

In order to be able to track the offsets of LoS-ANs properly
and define synchronization within an unsynchronized network,
we need to choose one of the LoS-ANs as a reference AN.
Since the ToA measurements are not used in the earlier
proposed initialization phase, the reference AN can be chosen
to be, e.g., the closest AN to the UN when the initialization
phase is completed and the ToA measurements are started to be
used in positioning and clock offset tracking. This impliesthat
in the initial phase,ρℓ1 [n] = 0, assuming that the ANℓ1 refers
to the reference AN. Thus, synchronization can be achieved
within the network wrt. the reference AN by communicating
the clock offset estimates for the LoS-ANs and the UN.

B. Propagation of Universal Network Time

In the case of tracking only one UN at the time, synchro-
nization of the network is done with respect to the reference
time obtained from a chosen reference AN. However, when we
apply the proposed method for multiple UNs simultaneously
we have to consider how to treat clock offset estimates that
have different time references [54], [55]. In general, it is
realistic to assume that there are a large number of UNs
connected to a network, and thus tracked, simultaneously.
Therefore, we can obtain clock offset estimates for numerous
ANs within a network using the proposed method such that the
clock offsets for each AN have been estimated using different
reference times. If this information is stored and available in a
central unit, the relative offsets of these ANs can be estimated
easily and the network can be thereafter synchronized wrt. any
of these ANs.

However, storing the clock offset information increases the
computational load and the use of memory capacity in the
central node of a network and, therefore, alternative approaches
how to utilize the estimated clock offsets can be considered.
As an alternative approach, the same relative offset information
could be used also as a prior information for the clock offset
estimation in the case of new UNs. If this information is
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available in the beginning of tracking a new UN, it would
most probably speed up convergence in the proposed EKF and
even improve the clock offset estimate of the UN. Further
aspects related to establishing and propagating a universal
network time is an interesting and important topic for our
future research.

V. NUMERICAL EVALUATIONS AND ANALYSIS

In this section, comprehensive numerical evaluations are
carried out to illustrate and quantify the achievable device
positioning performance using the proposed methods. The
evaluations are carried out in an urban outdoor environment,
adopting the METIS Madrid grid model [31], while the
deployed UDN is assumed to be operating at the 3.5 GHz
band. We specifically focus on the connected car use case
[2], [4], [10] where cars are driving through a city with
velocities in the order of50 km h−1. In all our evaluations, we
deploy comprehensive map and ray tracing based propagation
modeling [32] such that the modeling of the incoming UL
reference signals in different ANs is as realistic as possible
and explicitly connected to the environment and map. Further
details of the environment and evaluation methodologies are
given below. In general, the performances of the proposed joint
DoA/ToA Pos&Clock and Pos&Sync EKFs, as well as the
DoA-only based EKF implemented for reference, are evaluated
and reported.

A. Simulation and Evaluation Environment

In the following, a detailed description of the employed
simulation environment is presented. First, the structureand
properties of the Madrid grid environmental model [31] that
stems from the METIS guidelines are described with an
essential accuracy. After that, details of the used ray tracing
channel model are discussed and finally a realistic motion
model for the UN is presented.

1) Madrid map:Outdoor environment has a huge impact not
only on constraining the UN movement but also on wireless
communications, especially, when modelling the radio signal
propagation within a network. The Madrid map, which refers
to the METIS Madrid grid environmental model, is considered
as a compromise between the existing models like Manhattan
grid and the need of characterising dense urban environments
in a more realistic manner [31]. For evaluating and visualizing
the positioning performance, we used a two-dimensional layout
of the Madrid map as illustrated in Fig. 4.

In the connected car application, we model only the nec-
essary parts of the Madrid map based on the METIS guide-
lines [31], i.e., the indoor model as well as minor details like
bus stops and metro entrances are ignored during the process.
The majority of the Madrid map is covered with square and
rectangle shaped building blocks as represented in Fig. 4 with
dark gray color. Square blocks have both dimensions equal to
120m whereas length and width of the other building blocks
are120m and30m, respectively. The height of the buildings
range from28m to 52.5m. In addition to the buildings, the
map contains also a park with the same dimensions as square
shaped buildings, and it is located almost in the middle of

50 m

Fig. 4. Madrid map with example access node (AN) deployment (blue
triangles) and user node (UN) trajectory (red path).

the map. The rest of the map is determined to be roads and
sidewalks, but for the sake of simplicity, sidewalks are not
illustrated in Fig. 4. In general, these3m wide sidewalks are
surrounding every building in the map, but in our visualizations
they are represented as a part of the roads. Road lanes are
3m wide and they are accompanied by3m wide parking
lanes, except the vertical lanes in the widest Gran Via road
on the right side of the park. Thus, the normal roads are
18m wide in our evaluations and visualization containing also
the sidewalks. Special Grand Via road consists of three lanes
in both directions, where the lanes in different directionsare
separated by6m wide sidewalk. The parallel road on the right
side of Gran Via road is called Calle Preciados and it is defined
as a21m sidewalk in the METIS guidelines [31]. Despite the
fact that the sidewalks are illustrated as a part of the roadsin
Fig. 4, we do not allow vehicles to move on these sidewalks.

2) Channel and antenna models:We employ the ray tracing
as well as the geometry-based stochastic channel models
described in [32], [33]. In particular, the ray tracing channel
model is employed in order to model the propagation of
the UL reference signals that are exploited by the proposed
EKFs for UN positioning as realistically as possible. The
employed ray tracing implementation takes into account the
3D model of the Madrid grid when calculating the reflected
and diffracted paths between the UN and ANs. The diffracted
paths are given according to the Berg’s model [32]. Moreover,
the antennas composing the arrays at the ANs are assumed
to observe the same directional channel, and thus a single-
reference point at the AN’s location is used in calculating
the ray tracing channels. The effect of random scatterers is
also modeled according to the METIS guidelines [32] with a
density of0.01 scatterers/m2.

The geometry-based stochastic channel model (GSCM) [32],
[33] is used in this paper in order to model uncoordinated
interference. In particular, the interferers are randomlyplaced
on a disk-shaped area ranging between200m and500m away



11

Fig. 5. Illustration of the 3D array geometry employed at theANs. Cylindrical
arrays comprising10 dual-polarized 3GPP patch-elements are used. The array
elements are placed along two circles each of which comprising 5 patch-
elements.

from the ANs receiving the UL reference signals. A density
of 1000 interferers/km2 is used and their placement follows a
Poisson point process. The channels among the interferers’and
multiantenna ANs are calculated according to the GSCM, and
used to calculate a spatially correlated covariance matrixat
the receiving ANs. This is done for all subcarriers modulated
by the UL reference signals. Such a covariance matrix is then
used to correlate a zero-mean complex-circular white-Gaussian
distributed vector for each UL transmission. This approachof
modeling uncoordinated interference is similar to that in [56].

The multiantenna transceivers at the ANs are assumed to
have a cylindrical geometry; see Fig. 5. In particular, the
cylindrical arrays are comprised of10 dual-polarized patch-
elements, and thus20 output ports, while the height of the AN
antenna system is assumed to be7m. The beampatterns of the
patch-elements are taken from [33]. The patch-elements are
placed along two circles, each with an inter-element distance
of λ/2. The vertical separation between the two circles is
alsoλ/2. Moreover, the circles have a relative rotation/shift of
2π/10. Note that the EADF given in Section II is found and
calculated for this antenna array. Finally, the UN employs a
vertically-oriented dipole, at height1.5m, while the interferers
are equipped with randomly-oriented dipoles.

3) UN motion model: In order to demonstrate that the
proposed system is capable of positioning UNs with realistic
time-varying velocities as well as time-varying accelerations,
we assume that the UNs are moving in vehicles on trajectories
such as the one depicted in Fig. 4. On the straight parts of
the trajectory, the vehicle is assumed to accelerate up to a
maximum velocity ofvm = 50 km/h, whereas all turns are
performed with a constant velocity ofvt = 20 km/h. The
time-varying acceleration fromvt to vm and the time-varying
deceleration fromvm to vt are modelled according to poly-
nomial models stemming from real-life traffic data described
in [57]. The polynomial model in [57] makes it possible to
create acceleration profiles with varying characteristics. In this
work, we generate profiles that follow from the estimation
of acceleration time and distance as described in [57]. The
resulting acceleration profile for one UN route depicted in
Fig. 4 and velocitiesvm = 50 km/h andvt = 20 km/h is shown
in Fig. 6.

4) 5G Radio Interface Numerology and System Aspects:
The 5G UDN is assumed to adopt OFDMA based radio
access with75 kHz subcarrier spacing,100MHz carrier band-
width and 1280 active subcarriers. This is practically 5 times
up-clocked radio interface numerology, compared to 3GPP
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Fig. 6. Acceleration profile for the example UN trajectory shown in Fig. 4.

LTE/LTE-Advanced radio network, and is very similar to
those described, e.g., [20], [28]. The corresponding radio
frame structure incorporates subframes of length0.2ms, which
include 14 OFDM symbols. This is also the basic time resolu-
tion for UL reference signals. In the upcoming evaluations,
both continuous and sparse UL reference signal subcarrier
allocations are deployed, for comparison purposes, while the
UN transmit power is always0 dBm. In both reference signal
cases, 256 pilot subcarriers are allocated to a given UN
which are either continuous (19.2MHz) or sparse over the
whole carrier passband width of96MHz. Building on the
UL reference signals, least squares (LS)-based multicarrier-
multiantenna channel estimator is adopted in all ANs. Also,
two different ISDs of50m and25m in the UDN design are
experimented.

In the evaluations, we assume that the UL reference signals
of all the UNs within a given AN coordination area are
orthogonal, through proper time and frequency multiplexing.
However, also co-channel interference from uncoordinated
UNs is modeled as explained in Section V-A2. Assuming
a typical noise figure of5 dB, the signal-to-interference-and-
noise ratio (SINR) at the AN receiver ranges between5dB
and 40dB, depending on the locations of the target UN and
interfering UNs on the map.

In general, all the EKFs are updated only once per100ms,
to facilitate realistic communication of the azimuth DoA
and ToA measurements from involved ANs to the central
processing unit. In order to first analyze the effects of the
different UL pilot allocations and AN ISDs on DoA and
ToA estimation EKF as well as on positioning EKFs, only
K[n] = 2 closest LoS-ANs are fused. After that, we also
evaluate the performance of the proposed positioning methods
with other realistic numbers of available LoS-ANs while taking
into account possible imperfect LoS-detection. This is done for
the scenario of sparse pilot allocation and the ISD of50m.

B. DoA and ToA Estimation

In order to evaluate first the accuracy of the DoA and ToA
tracking in the individual ANs using the proposed DoA/ToA
EKF, the RMSEs for both estimates are illustrated in Fig. 7,
averaged across 15 random routes taken through the Madrid
map. Each colored bar represents a different network config-
uration used in the evaluations for the LoS-ANs that are the
closest to the UN whereas bars with a gray colour represent
the respective results for the second closest LoS-ANs.
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Fig. 7. The average RMSEs for the estimated azimuth DoA and ToA at the
closest LoS-ANs (colored bars) and the second LoS-ANs (graybars) along
15 different random routes through the Madrid map.

As expected, the ToA estimation and tracking is more
accurate when the UL beacons are transmitted using the wider
96MHz bandwidth and a sparse subset of subcarriers than
using the narrower19.2MHz bandwidth due to enhanced time-
domain resolution. Decreasing the ISD leads to better ToA
estimates due to higher average SINRs at the ANs, especially
when using the narrow bandwidth while the difference is not
so significant in the case of the96MHz bandwidth.

The accuracy of the azimuth DoA estimates, in turn, is
generally very high. In general, since the variance of the
azimuth angle estimation is always smaller, the more coplanar
geometry between the TX and RX we have, the average
accuracy of the DoA estimates does not substantially vary
between the different ISDs, or between the closest and second
closest ANs. This is indeed because the geometry of more
far away UNs is more favorable for azimuth angle estimation.
In general, one can conclude that excellent ToA and DoA
estimation and tracking accuracy can be obtained using the
proposed EKF.

C. Positioning, Clock and Network Synchronization

Next, the performance of the proposed DoA/ToA
Pos&Clock and Pos&Sync EKFs is evaluated by tracking
UNs moving through the earlier described Madrid map, again
with 15 randomly drawn trajectories. Each generated route
starts from an endpoint of a road on the map with some
pre-determined initial velocity. Thereafter, the motion of the
UN is defined according to the presented motion model. The
routes are defined to end when the UN crosses 6 intersections
on the map. For the sake of simplicity, the UN is moving in
the middle of the lane. In all the evaluations, the update period
of the positioning and synchronization related EKFs at the
central processing unit is only every500th radio sub-frame,
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Fig. 8. Positioning RMSEs for all tracking methods and with different
simulation numerologies, along 15 different random routestaken through the
Madrid map.

i.e., only every100ms. This reflects a realistic situation such
that the DoA and ToA measurements of individual ANs can
be realistically communicated to and fused at the central unit.

Before the actual evaluations, in case of unsynchronized
ANs, we initialize the clock offsets of all unsynchronized
ANs within a network according toρℓk [0] ∼ N (0, σ2

ρ,0) with
σρ,0 = 100µs as motivated in Section III-B2. Whenever a
new UN is placed on the map, we initialize the UN posi-
tion estimatep̂[0] using the CL method within the proposed
initialization process. In our evaluations, covariance ofthe
initialized position estimate is defined as a diagonal matrix
σ2
p,0 · I2×2 where σp,0 is set to a large value using the

distance between the initial position estimate and currentLoS-
ANs. Furthermore, we set the initial velocity according to
[v̂x[0], v̂y[0]]

T ∼ N (0, σ2
v,0 · I2×2) with quite large STD of

σv,0 = 5m/s based on the earlier discussion in Section III-B2.
The initial estimates that we have determined for the UN so
far are then used as a prior for the DoA-only EKF within
the proposed initialization method. The DoA-only EKF is
executed forNI = 20 iterations to initialize the more elaborate
EKFs, in terms of position and velocity. Thereafter, we need
to initialize also the necessary clock parameters in order to
use the actual DoA/ToA Pos&Clock and Pos&Sync EKFs. As
motivated in Section III-B2, we set the clock offset and skew
for the UNs according toρ[0] ∼ N (0, σ2

ρ,0) where σρ,0 =
100µs, andα[0] ∼ N (µα,0, σ

2
α,0) whereµα,0 = 25ppm and

σα,0 = 30ppm, respectively. In addition to setting the initial
clock parameters, we also choose the reference AN to be the
closest LoS-AN to the UN before we start to use the final
DoA/ToA Pos&Clock and Pos&Sync EKFs for the positioning
and network synchronization purposes. The same values are
also used for the initialization of the DoA-only EKF that is
used as a comparison method for the proposed more elaborate
EKFs. Furthermore, we set the STD of the clock skew driving
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Fig. 9. The average RMSEs for the UN clock offset estimates along 15
different random routes through the Madrid map, with synchronous (left) and
unsynchronous (middle) ANs. Also shown are the respective RMSEs for the
LoS-ANs mutual clock offset estimates (right).

noise in the clock model (6) toση = 6.3 · 10−8 based on the
measurement results in [43]. However, the STD of the clock
skew within the EKF is increased toση = 10−4 since it leads
to a much better overall performance especially when the clock
offset and clock skew estimates are very inaccurate, e.g., in the
initial offset tracking phase. Since we assume that the UN is
moving in a vehicle in an urban environment, we set the STD
of UN velocity to σv = 3.5m/s.

Position and clock offset tracking performance of the pro-
posed cascaded DoA/ToA Pos&Clock and Pos&Sync EKFs in
comparison to the DoA-only EKF is illustrated in Figures 8-
9, where each color represents a different simulation setup
used in the evaluations. In contrast to the classical DoA-only
EKF, the root-mean-squared errors (RMSEs) obtained using
the DoA/ToA Pos&Clock and Pos&Sync EKFs are partitioned
according to network synchronization assumptions. Further-
more, we also analyse the accuracy of the UN clock offset
estimates in both synchronized and phase-locked networks.For
the sake of simplicity, we fuse the azimuth DoA and ToA
estimates at each EKF update period of100ms only from two
closest LoS-ANs. The first10 EKF iterations (one second in
real time) after the initialization procedure are excludedin the
RMSE calculations, to avoid any dominating impact of the
initial estimates on the tracking results.

Based on the obtained positioning results that are illustrated
in Fig. 8 the proposed Pos&Clock and Pos&Sync EKFs
significantly outperform the earlier proposed DoA-only EKFin
all considered evaluation scenarios. In particular, an impressive
sub-meter positioning accuracy, set as one core requirement for
future 5G networks in [10], is achieved by the both proposed
methods in all test scenarios, and they even attain positioning
accuracy below0.5m in RMSE sense with the96MHz band-
width and ISD of around25m. An unfavourable and known

feature of the DoA-only EKF is that its performance degrades
when the geometry of the two LoS-ANs and the UN resembles
a line. Since the proposed Pos&Clock and Pos&Sync EKFs
use also the ToA estimates for ranging, they do not suffer
from such disadvantageous geometries.

In the case of a synchronized network, the Pos&Clock EKF
achieves highly accurate synchronization between the unsyn-
chronized UN and network with an RMSE below2ns in every
test scenario as illustrated in Fig. 9. Since the presented ToA
estimation errors in Fig. 7 are between0.1ns and1.5ns, these
propagate very well to the achievable clock offset trackingin
the fusion EKF. Interestingly the high initial clock offsetSTD
of 100µs is, in general, improved by 5 orders of magnitude.

Investigating next the achievable clock-offset estimation
accuracy with unsynchronized ANs in Fig. 9 (Pos&Sync
EKF), we can clearly observe that overall the performance is
somewhat worse than in the corresponding synchronous case.
Furthermore, network densification from ISD of50m down to
25m actually degrades the UN clock offset estimation accuracy
to some extent. These observations can be explained with the
assumed motion model and how the clock offsets of the LoS-
ANs are initialized within the EKF. When the UN is moving
at the velocity of50 km/h, each LoS-AN along the route, with
ISD of 25m, is in LoS condition with the UN only1.8 s and,
therefore, we can obtain only 18 DoA/ToA measurements in
total from each LoS-AN due to assumed update period of
100ms. Therefore, the Pos&Sync EKF can be executed a lower
number of iterations for a given LoS-AN pair, compared to the
network with 50m ISD. This, in turn, means that the initial
more coarse clock offset estimates of the individual LoS-ANs
have relatively higher weight, through the measurement equa-
tion (45), to the UN clock offset estimate in the network with
ISD of 25m. However, even in the presence of unsynchronized
network elements, UN clock offset can be estimated with an
accuracy of around5–10ns, as depicted in Fig. 9. Furthermore,
the results in Fig. 9 (LoS-ANs) also demonstrate that highly
accurate estimates of the mutual clock offsets of the ANs can
be obtained using the proposed cascaded Pos&Sync EKF. In
particular, the proposed method provides clock offset estimates
of the network elements which are significantly more accurate
than the expected0.5µs timing misalignment requirement for
future 5G small-cell networks [28].

In addition, the performance of the proposed positioning
and synchronization methods was further evaluated with other
realistic values of available LoS-ANs as well as under im-
perfect LoS-detection using the96MHz bandwidth scenario
with the ISD of around50m. First, the positioning and
synchronization accuracy is evaluated using the azimuth DoA
and ToA measurements either from the closest LoS-AN only or
from the three closest LoS-ANs, i.e.,K[n] = 1 andK[n] = 3,
respectively. Second, the imperfect LoS-detection schemeis
considered where azimuth DoA and ToA measurements from
three closest ANs are fused such that one of the three ANs
is NLoS-AN with a probability of 10%, thus increasing the
level of realism in the performance evaluations. The obtained
positioning and UN clock offset estimation results from the
comprehensive numerical evaluations are depicted in Fig. 10
and Fig. 11, respectively.
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Fig. 10. Positioning RMSEs for all tracking methods with different number
of LoS-ANs and under imperfect LoS-detection (denoted as 3 ANs), along 15
different random routes taken through the Madrid map.

Based on the obtained positioning results in Fig. 10, the
positioning performance improves when the azimuth DoA and
ToA measurements are fused from three closest LoS-ANs
compared to the earlier scenario, where the measurement from
two closest LoS-ANs were fused. In particular, positioning
accuracy of less than30 cm can be achieved with the proposed
methods even under unsynchronized network elements when
K[n] = 3. Such a positioning accuracy is considered as a
minimum requirement for, e.g., future autonomous vehicles
and ITS [58]. Interestingly, in the case ofK[n] = 1, the
performance of the proposed methods is still relatively good
although naturally somewhat lower compared toK[n] = 2 and
K[n] = 3 cases, while more classical DoA-only EKF needs the
azimuth DoAs at least from two ANs. Moreover, despite the
small and expected degradation of performance due to fusing
incorrect azimuth DoA and ToA estimates from NLoS-ANs,
in the case of incorrect LoS-detection, the proposed methods
are still able to provide sub-meter positioning accuracy also in
a such realistic scenario as illustrated in the rightmost bar set
of Fig. 10.

In addition, the obtained UN clock offset estimation results
in Fig. 10 demonstrate that the clock offset estimation per-
formance also improves when the three closest LoS-ANs are
available compared to the scenario, where the measurement
from the two closest LoS-ANs were fused. In the case of
K[n] = 1, the Pos&Clock EKF outperforms the Pos&Sync
EKF as expected, since imperfect convergence of the UN clock
offset estimate in the beginning of a trajectory accumulates
throughout the trajectory in the unsynchronized network. In
general, rapid and unfavourable handovers which may occur,
e.g., in intersections, degrade the performance of clock offset
estimation of both UN and ANs within the Pos&Sync EKF, es-
pecially whenK[n] = 1. Despite the imperfect LoS-detection,
the proposed methods are able to provide highly accurate UN
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Fig. 11. The average RMSEs for the UN clock offset estimates along 15
different random routes through the Madrid map, with different number of
LoS-ANs and under imperfect LoS-detection (denoted as 3 ANs).

clock offset estimates as depicted in the rightmost bar set of
Fig. 10.

The behaviour and performance of both the joint DoA/ToA
Pos&Sync EKF and the DoA-only EKF in tracking
with different simulation configurations are further visu-
alized through the videos that can be found on-line at
http://www.tut.fi/5G/TWC16/.

VI. CONCLUSION

In this article, we addressed high-efficiency device position-
ing and clock synchronization in 5G radio access networks
where all the essential processing is carried out on the net-
work side such that the power consumption and computing
requirements at the user devices are kept to a minimum. First,
a novel EKF solution was proposed to estimate and track
the DoAs and ToAs of different devices in individual ANs,
using UL reference signals, and building on the assumption of
multicarrier waveforms and antenna arrays. Then, a second
novel EKF solution was proposed, to fuse the DoA and
ToA estimates from one or more LoS-ANs into a device
position estimate, such that also the unavoidable clock offsets
between the devices and the network, as well as the mutual
clock offsets between the network elements, are all taken
into account. Hence, the overall solution is a cascaded EKF
structure, which can provide not only highly efficient device
positioning but also valuable clock synchronization as a by-
product. Then, comprehensive performance evaluations were
carried out and reported in 5G UDN context, with realistic
movement models on the so-called Madrid grid incorporating
also full ray tracing based propagation modeling. The obtained
results clearly indicate and demonstrate that sub-meter scale
positioning and tracking accuracy of moving devices can be
achieved using the proposed cascaded EKF solutions even un-
der realistic assumptions. Moreover, network synchronization

http://www.tut.fi/5G/TWC16/
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in the nano-second level can also be achieved by employing the
proposed EKF-based scheme. Our future work will focus on
extending the proposed solutions to 3D positioning, as well
as exploiting the highly accurate positioning informationin
mobility management and location-based beamforming in 5G
networks.
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