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Abstract

In this paper we study widely-linear precoding techniques to mitigate in-phase/quadrature-phase

(IQ) imbalance (IQI) in the downlink of large-scale multiple-input multiple-output (MIMO) systems. We

adopt a real-valued signal model which takes into account the IQI at the transmitter and then develop

widely-linear zero-forcing (WL-ZF), widely-linear matched filter (WL-MF), widely-linear minimum

mean-squared error (WL-MMSE) and widely-linear block-diagonalization (WL-BD) type precoding

algorithms for both single- and multiple-antenna users. We also present a performance analysis of WL-

ZF and WL-BD. It is proved that without IQI, WL-ZF has exactly the same multiplexing gain and power

offset as ZF, while when IQI exists, WL-ZF achieves the same multiplexing gain as ZF with ideal IQ

branches, but with a minor power loss which is related to the system scale and the IQ parameters. We

also compare the performance of WL-BD with BD. The analysis shows that with ideal IQ branches,

WL-BD has the same data rate as BD, while when IQI exists, WL-BD achieves the same multiplexing

gain as BD without IQ imbalance. Numerical results verify the analysis and show that the proposed

widely-linear type precoding methods significantly outperform their conventional counterparts with IQI

and approach those with ideal IQ branches.
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I. INTRODUCTION

Wireless communications systems have undergone tremendous development during the past

decades. In order to meet the increasing demands for data services, many new techniques

have been proposed, among which multiple-input multiple-output (MIMO) techniques play an

important role. In the 5th generation (5G) of mobile communication systems, one of the key

techniques will be large-scale MIMO, which employs a large number of antennas at the base

station (BS) with centralized or distributed antenna systems to provide extremely high data rates

with improved quality of service (QoS) [1], [2].

One of the main performance constraints of large-scale MIMO systems comes from the

impairments resulting from hardware [3], [4]. Since large-scale MIMO systems employ a large

number of antennas, cheaper hardware is preferable in order to reduce the cost, which may cause

severe hardware imperfection, e.g., the in-phase and quadrature-phase (IQ) imbalance (IQI) [5].

Modern transceivers usually use the direct conversion structure which contains two branches to

process the real and imaginary components of the baseband signals, i.e., the in-phase (I) branch

and the quadrature-phase (Q) branch. The IQI exists when there is a gain difference between

the two branches and/or the phase difference is not exactly 90◦. The IQI can be present at both

the transmitter and the receiver, according to many studies [6]–[8].

One way of handling IQI is to estimate the IQ parameters and compensate for them (see [8]–

[10] and references therein). However, the IQ parameters are usually mingled with the channel

coefficients, and thus are difficult to obtain, especially for large-scale MIMO systems, where

the number of IQ parameters is proportional to the system size and thus the estimation and

compensation for IQI can be very computationally expensive.

Widely-linear approaches have long been used for non-circular signal processing in MIMO

systems [11]–[13] and have been recently adopted to deal with IQI [5], [14]–[22]. In the uplink,

the impact of IQI on the response pattern of large antenna arrays is studied in [15]. The work

in [16] describes an equivalent interference model to study the impact on orthogonal frequency

division multiple access (OFDMA) large-scale MIMO systems and devised a receiver based on

widely-linear signal processing, which is extended in [22] to scenarios with external interference.

In [20], the authors investigated the impact of IQI on the performance of uplink Massive MIMO

systems with maximum-ratio combining (MRC) receivers, and showed that IQI can substantially

degrade the performance of MRC receivers. The study in [20] also proposed a low-complexity
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IQI compensation scheme. In order to suppress the impact of IQI, a data-aided widely-linear

minimum mean square error (MMSE) receiver is proposed in [23], and an IQI aware receiver was

designed in [5] for the large-scale MIMO uplink based on the minimum variance distortionless

response (MVDR) criterion. In [21], a widely-linear MMSE receiver is proposed, the performance

of which is shown to be close to the linear MMSE receiver in an ideal system without IQI.

Although duality exists in the uplink and downlink [24], these results are different from that

in the downlink, because of hardware mismatch which results in different channel coefficients

in the uplink and the downlink [4], and a power constraint imposed on the downlink precoder

design which does not exist in the uplink detection.

To the best of the authors’ knowledge, there are only a few related works in the downlink

[14], [17]–[19]. The study in [14] uses an augmented representation to maximize the power

of the desired transmit signal when IQI presents. Reduced-rank widely-linear precoders were

devised in [17] for single-antenna users to alleviate the impact of IQI as well as to reduce the

computational complexity. A similar work was reported later in [18], which studied the impact of

IQI and proposed a widely-linear regularized zero-forcing (RZF) precoding scheme. In [19], we

extended our previous work in [17] to scenarios with multiple-antenna users in the large-scale

MIMO downlink and developed novel widely-linear block diagonal (BD) type precoders.

In this paper, our previous work [17], [19] is extended to give a comprehensive study on

widely-linear precoding algorithms for the large-scale MIMO downlink with IQI for users with

both single and multiple antennas. For large-scale MIMO systems with single-antenna users,

non-linear precoding schemes, e.g., vector perturbation (VP) precoding [25] and Tomlinson-

Harashima precoding [26], [27], usually have better performance than linear precoding schemes.

However, linear precoding schemes, such as matched filter (MF) (also referred to as maximum ra-

tio transmission [28]), zero-forcing (ZF) and MMSE [29], have much lower complexity compared

with the nonlinear precoding schemes and thus draw great research interest [1], [2]. Generally,

ZF and MMSE perform better than MF, but with a comparatively higher computational cost due

to the matrix inversion involved.

Most current studies on large-scale MIMO downlink have considered single-antenna users.

However, it is well known that with more receive antennas at the user equipment (UE), the quality

of service (QoS) of each user can be significantly improved. In fact, the long term evolution (LTE)

and LTE-Advanced (LTE-A) standards can support UEs with multiple antennas [30]. In terms

of downlink precoding schemes, block-diagonalization (BD) type precoding has been widely
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considered for parallel transmission of multiple data streams for users with multiple antennas

[31]–[35]. In [33], the regularized BD (RBD) precoding has been proposed which outperforms

conventional BD in [31], [32], by taking into account both the inter-user interference and noise.

To reduce the complexity, the work in [34] has devised the generalized MMSE channel inversion

(GMI) by replacing the singular value decomposition (SVD) operation in BD and RBD with a

matrix inversion and QR decomposition. This scheme has been further modified to obtain the

simplified GMI (S-GMI) technique in [35].

In contrast to [5], [15], [16], [20]–[23], in this work we study the design and performance

analysis for downlink precoding in large-scale MIMO systems with transmitter IQI, for both

single- and multiple-antenna users. We first adopt a useful mapping function reported in [36],

[37], which transforms complex-valued vectors and matrices into real-valued expressions and

helps to set up an equivalent real-valued signal model with consideration of IQI. Based on this

real-valued signal model, we develop widely-linear ZF (WL-ZF) and widely-linear MF (WL-MF)

and widely-linear MMSE (WL-MMSE) precoders, which are suited for single-antenna terminals.

Unlike [14], [17], [18] where only single-antenna users are considered, we propose widely-

linear BD (WL-BD) type precoding algorithms, i.e., WL-BD, widely-linear RBD (WL-RBD) and

widely-linear S-GMI (WL-S-GMI), for users equipped with multiple antennas. A performance

analysis is carried out for the ZF and BD versions of these proposed precoding schemes, which

captures the essential advantages of widely-linear precoding approaches. By utilizing an affine

approximation of the sum data rate developed in [38], the mathematical expression for the sum

data rate of WL-ZF is derived. Moreover, we also compare ZF and WL-ZF in terms of both

multiplexing gain and power offset, where the IQ parameters are treated as random variables

in the analysis, which is different from [18], [21], [22], where the IQ parameters are fixed. For

WL-BD, the sum data rate and multiplexing gain are derived and compared with those of BD.

We also give simulation results to show the impact of IQI in large-scale MIMO systems, as well

as the performance of the proposed widely-linear precoding schemes.

The main contributions of this paper are summarized as follows:

• We extend previous work of WL-ZF, WL-MF and WL-MMSE precoding for large-scale

MIMO systems with IQI and single-antenna users in [17] to cases with multiple-antenna

users and propose WL-BD, WL-RBD and WL-S-GMI algorithms based on an equivalent

real-valued signal model.

• For WL-ZF, we show that it has the same multiplexing gain as that of ZF with ideal IQ
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branches. The achieved multiplexing gain equals the number of users. Compared with ZF

without IQI, WL-ZF has a power offset loss around log2[1 + 4σ2
gβ], where β is the ratio

of the number of users to that of the transmit antennas and σ2
g is the variance of the gain

difference between I and Q branches.

• For WL-BD, we prove that when there is no IQI, it achieves the same sum data rate as

BD, while the WL-BD precoder in the presence of IQI has the same multiplexing gain as

that of BD with ideal IQ branches. Moreover, compared with BD the increased complexity

of WL-BD is very small.

This paper is organized as follows. The system model is described in Section II. In Section III,

the proposed widely-linear precoding algorithms are introduced. In Section IV, the performance

analysis of WL-ZF and WL-BD is carried out. The numerical results are given in Section V and

conclusions are drawn in Section VI.

Notation: CN and CN×M denote the sets of N-dimensional complex vectors and N × M

complex matrices, respectively; RN and RN×M denote the sets of N-dimensional real vectors

and N × M real matrices, respectively; (·)∗ is the complex conjugate; IN denotes an N × N

identity matrix; CN (θ,Σ) denotes circularly symmetric complex Gaussian distribution with mean

θ and covariance Σ; U(a, b) denotes the uniform distribution and N (a, b) denotes the Gaussian

distribution, where a and b are the mean and variance, respectively; diag{a1, · · · , aK} denotes

a diagonal matrix with diagonal entries given by a1, · · · , aK ; E{·} denotes the mathematical

expectation and Tr[A] denotes the trace of a matrix A.

II. SYSTEM MODEL

Consider the downlink of a large-scale MIMO system with one BS and K users. The BS is

equipped with N antennas, and there are Mk antennas at the k-th user. Define M =
∑K

k=1Mk

as the total number of antennas at all the users. Consider the IQI at all the N transmit antennas

at BS1, and for the n-th antenna, the transmit symbol xn is corrupted by IQI as an1xn + an2x
∗
n,

where an1 and an2 are the IQ parameters of the n-th antenna that are modeled as [6]:

an1 =
1

√

1 + σ2
g

[cos(θn/2) + jgn sin(θn/2)], an2 =
1

√

1 + σ2
g

[gn cos(θn/2)− j sin(θn/2)], (1)

1The IQI at the user’s receiver only degrades its own signal and can be addressed individually by IQI compensation techniques

[8]. In contrast, the IQI at the BS affects all the users and is severe in large-scale MIMO systems due to the potential use of

cheap hardware for cost issues. Therefore, we only consider the IQI at the BS in this paper.
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where θn ∼ U(0, σ2
θ) and gn ∼ N (0, σ2

g) are the relative phase and gain mismatches between the

IQ branches of the n-th transmit antenna, respectively. The IQ parameters are normalized so that

they do not change the average signal power. A proof of the selection of the normalization factor

is given in Appendix A. In (1), θn = 0◦ and gn = 0 represent the ideal case with no IQI. Note

that although the Gaussian and uniform distributions are considered for modeling IQ parameters,

the proposed algorithms and the performance analysis are valid for other distributions.

If we consider the IQI at BS, the received signal yk ∈ C
Mk at the k-th user is given by

yk = HkA1x+HkA2x
∗ + nk, (2)

where Hk ∈ CMk×N is the downlink channel matrix of the k-th user, the elements of which are

independent and identically distributed (i.i.d.) Gaussian random variables with zero-mean and

unit variance; A1 = diag{a11, · · · , aN1} and A2 = diag{a12, · · · , aN2}; nk ∼ CN (0, σ2
nIMk

) is

the noise vector at the receiver; x ∈ CN is the transmit signal vector after precoding. Here we

consider a narrow-band single-carrier system for simplicity and the extension to multi-carrier

systems remains open for future work.

Let Lk be the number of data streams of user k and Pk ∈ CN×Lk , sk ∈ CLk be the precoder

and the transmit signal vector for the k-th user, respectively. Denote P = [P1, · · · ,PK ], s =

[sT
1 , · · · , sT

K ]
T, and we have x = Ps. Note that in contrast to single-antenna users using ZF,

MMSE or MF, in the case of multiple-antenna users using BD type precoders, a receive filter

matrix is generally required to decode the multiple streams which is designed together with the

precoder, as will be detailed later in Section III.

In this paper, we assume that the transmitter has perfect channel state information and the

transmit signals for different users are i.i.d Gaussian random variables with zero-mean and unit

variance, i.e., ∀k 6= j, E{sksH
j } = 0, and E{sksH

k } = ILk
. We also assume there is a transmit

power constraint, i.e.,

E{‖Ps‖2} = PT. (3)

It can be seen from (2) that the transmit signal vector is corrupted by its complex conjugate. In

the frequency domain, a mirror frequency component is introduced due to the IQI. One possible

way of handling such IQI resorts to estimation of the corresponding IQ parameters and pre-

compensation for the IQI [6], [7]. Since the signal model of (2) gives rise to non-circular data

which can be exploited by widely-linear processing, IQI can also be tackled by widely-linear

approaches [5], [17].
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In what follows, we will devise and carry out a performance analysis of widely-linear precoding

schemes, which are able to mitigate the IQI without significantly increasing the computational

complexity.

III. PROPOSED WIDELY-LINEAR PRECODING ALGORITHMS

In this section, we employ a useful transformation, i.e., the T -transform from [36], [37],

which represents complex-valued matrices and vectors using their real-valued equivalents. Then

we employ the T -transform to develop an equivalent real-valued signal model, which helps

to design widely-linear precoding schemes. Several widely-linear precoding algorithms such as

WL-ZF, WL-MMSE, WL-BD, WL-RBD and WL-S-GMI are then developed.

A. Real-Valued Signal Model

A mapping function of Cn → R2n and Cm×p → R2m×2p, namely the T -transform, is defined

as:

T (x) =





Re(x)

Im(x)



 , T (X) =





Re(X) − Im(X)

Im(X) Re(X)



, (4)

where Re(·) and Im(·) represent the real and imaginary parts of a vector or a matrix, respectively.

The T -transform sets up a relationship between the complex-valued matrices and their real-valued

counterparts. It is very useful for design and performance analysis of widely-linear precoders.

Some properties of the T -transform are summarized in Lemma 1, Corollary 1 and 2. More

information on this transform can be found in [36], [37].

Lemma 1 (Lemma 1, [36]): The following equations hold if the corresponding matrix or vector

operation is valid:

T (AB) = T (A)T (B), T (A−1) = [T (A)]−1, T (A+B) = T (A) + T (B),

T (AH) = [T (A)]H, T (x+ y) = T (x) + T (y), T (Ax) = T (A)T (x).
(5)

Proof: Please refer to [36].

Corollary 1: Denote EN and ĪN as

EN =





IN

−IN



 , ĪN =





IN

IN



 .

Then we have

ENT (H)EN = ĪNT (H)ĪN = T (H∗), ĪNT (H)EN =





Im(H) −Re(H)

Re(H) Im(H)



 . (6)
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If H and G are 2N × 2N Hermitian matrices, then we have

Tr[T (H)] = 2Tr[H ],Tr[T (H)T (G)] = 2Tr[HG], Tr[T (H)EN ] = Tr[T (H)ĪN ] = 0. (7)

Proof: Equation (6) is proved using results in Lemma 1, while (7) follows the fact that

the diagonal elements of a Hermitian matrix are real-valued and the trace of the product of two

Hermitian matrices is also real-valued.

Corollary 2: The T -transform of a complex-valued unitary matrix is a real-valued orthogonal

matrix. Moreover, let Xr be a permutation of rows of a matrix X , and the SVD of X and Xr

are given by X = UΣV H, Xr = UrΣrV
H

r , respectively. Then we have that Ur is a permutation

of rows of U , Σr = Σ and Vr = V .

Proof: It is straightforward to achieve this corollary from Lemma 1. More detailed discussion

is provided in [37].

By applying the T -transform to (2), the following real-valued signal model is achieved for

the k-th user:

ỹk = T (yk) = T (Hk)[T (A1) + T (A2)EN ]T (x) + T (nk) , H̃kÃx̃+ ñk, (8)

where H̃k = T (Hk), Ã = T (A1) + T (A2)EN , x̃ = T (x) and ñk = T (nk). Denoting

ỹ = [ỹT
1 , · · · , ỹT

K ]
T, H̃ = [H̃T

1 , · · · , H̃T
K ]

T, ñ = [ñT
1 , · · · , ñT

K ]
T, P̃i = T (Pi) and s̃i = T (si),

we have

ỹ = H̃Ãx̃+ ñ = H̃ÃP̃ s̃+ ñ, (9)

where P̃ = [P̃1, · · · , P̃K ] and s̃ = [s̃T
1 , · · · , s̃T

K ]
T. In (9), E{s̃s̃T} = 1

2
I and E{ññT} = 1

2
σ2
nI .

The real-valued signal model in (9) has a linear representation. Compared with the complex-

valued signal model in (2), the system dimension is doubled, even though the operations with

matrices and vectors are simplified due to the use of real-valued samples. Based on (9), any

precoding scheme (e.g., MF, ZF, MMSE, BD, RBD and S-GMI, etc.) can be developed to cope

with the IQI by treating H̃Ã as the effective channel matrix. Since the real and imaginary parts

of the transmit signals are processed separately, these schemes are referred to as “widely-linear

precoding” schemes [12], [17], [18], [23].

In order to show how to design widely-linear precoding schemes, we derived several algorithms

and focus our analysis on two typical examples: WL-ZF for single-antenna users and WL-BD

for multiple-antenna users, the performance analysis of which are carried out in Section IV.



9

B. Widely-Linear Precoding for Single-Antenna Users

When each user is equipped with one antenna, we have Mk = 1 and M = K. This is the

typical case as we studied in our previous work in [17] or a similar work in [18]. In this paper,

we will focus on performance analysis in the next Section.

From (9), by treating the real and imaginary components as independent virtual users, the

precoding matrix of WL-ZF precoding is given by

P̃WL-ZF =
√

λWL-ZF(H̃Ã)T(H̃ÃÃTH̃T)−1, (10)

where λWL-ZF is the power normalization factor, which is obtained from (3) and given by

λWL-ZF =
2PT

E{Tr[(H̃ÃÃTH̃T)−1]}
,

in which the term 2PT comes from E{s̃s̃T} = 1
2
I . Note that in order to simplify the analysis

the power normalization factor is calculated based on the expectation of Tr[(H̃ÃÃTH̃T)−1] as

in [4], [39], other than the instantaneous value. However, when N and K is large the latter one

will generally converge to its expected value almost surely [40]. Therefore, the analysis in the

following sections also gives close approximation when instantaneous channel information is

considered.

Similarly, the precoding matrices of WL-MF and WL-MMSE are obtained as [17], [18]:

P̃WL-MF =
√

λWL-MF(H̃Ã)T, P̃WL-MMSE =
√

λWL-MMSE(H̃Ã)T(H̃ÃÃTH̃T + ρI2K)
−1, (11)

where ρ = Mσ2
n

PT
[41] and

λWL-MF =
2PT

E{Tr[H̃ÃÃTH̃T]}
, λWL-MMSE =

2PT

E{Tr[H̃ÃÃTH̃T(H̃ÃÃTH̃T + ρI2K)−2]}
.

Note that although 2M streams are transmitted, ρ has the same expression as for M streams,

because both the average transmit power and the noise power for each stream is halved.

C. Widely-Linear BD-Type Precoding for Multiple-Antenna Users

In this subsection, we describe how to design BD-type precoding algorithms using the proposed

real-valued signal model.
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1) WL-BD Precoding: The WL-BD precoding matrix of the k-th user is composed of four

parts:

P̃k =
√

λWL-BDP̃k1P̃k2Γ̃k,

where P̃k1 ∈ C2N×Dk , P̃k2 ∈ CDk×2Lk (the value of Dk depends on how P̃k1 and P̃k2 are

obtained) will be given in the following; Γ̃k ∈ R2Lk×2Lk is the diagonal power loading matrix;

λWL-BD is the power factor to fulfill the transmit power constraint, i.e., E{Tr[P̃ s̃s̃TP̃ T]} = PT.

Let us exclude the k-th user’s channel matrix and define H̃−k ∈ R2M−k×2N as

H̃−k = [H̃T
1 , · · · , H̃T

k−1, H̃
T
k+1, · · · , H̃T

K ]
T, (12)

where M−k = M−Mk. Consequently, we have H̃−kÃ = [(H̃1Ã)T, · · · , (H̃k−1Ã)T, (H̃k+1Ã)T,

· · · , (H̃KÃ)T]T.

The precoding matrix P̃k1 is chosen to be in the null space of H̃−kÃ, i.e., H̃−kÃP̃k1 = 0.

Therefore, P̃k1 is chosen as the right singular vectors corresponding to the zero singular values of

H̃−kÃ [31], [32]. Let H̃−kÃ = Ũ−kΣ̃−kṼ
H
−k = Ũ−kΣ̃−k[Ṽ−k1, Ṽ−k0]

H be the SVD of H̃−kÃ,

where Ṽ−k0 ∈ C2N×Dk contains the right singular vectors corresponding to the zero singular

values of H̃−kÃ. Then we have P̃k1 = Ṽ−k0.

Consequently, the effective channel matrix for the k-th user is defined as:

H̃ek = H̃kÃP̃k1. (13)

The second component of the precoder can be obtained by applying SVD to the effective channel

matrix as H̃ek = ŨkΣ̃kṼ
H
k . Then we have P̃k2 = Ṽk and the corresponding receive filter matrix

is G̃k = ŨH
k .

2) WL-RBD Precoding: Instead of totally eliminating the inter-user interference, P̃k1 can also

be calculated according to the MMSE criterion [33], which is given by

P̃k1 = Ṽ−k(Σ̃
H
−kΣ̃−k + ρI2N )

−1/2.

Once P̃k1 is obtained, the effective channel matrix can be obtained as in (13). P̃k2 and G̃k can

be then obtained through SVD of H̃ek . This precoding method is referred to as WL-RBD in

this paper.
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3) WL-S-GMI Precoding: In fact, when N and M are large it could be computationally

expensive for BD and RBD to calculate K SVDs to get all P̃k1’s, k = 1, . . . , K. Therefore, an

alternative approach based on the GMI technique was proposed in [34], [35].

By applying the MMSE matrix inversion to H̃Ã, we have

H̃† = ÃHH̃H(H̃ÃÃHH̃H + ρI2M )−1 , [H̃†
1 , · · · , H̃†

K ], (14)

where H̃
†
k ∈ R2N×2Mk . Then we perform the QR decomposition to get H̃

†
k = F̃kR̃k, where

F̃k ∈ R
2N×2Mk is an orthogonal matrix and R̃k ∈ R

2Mk×2Mk is an upper triangular matrix. The

first component of the precoder is thus chosen as P̃k1 = F̃k. Once P̃k1 is ready, the effective

channel matrix can be obtained as in (13). The matrices P̃k2 and G̃k can be then calculated

through SVD of H̃ek . This precoding method is referred to as WL-S-GMI.

A summary of the proposed widely-linear BD-type precoding algorithms is given in Table

I. The main difference among WL-BD, WL-RBD and WL-S-GMI is the way to calculate P̃k1,

which is summarized in Table II.

TABLE I

PROPOSED WIDELY-LINEAR BD-TYPE PRECODING ALGORITHMS.

Steps Operations

1 Obtain H̃Ã by channel estimation;

2 H̃
−kÃ = [(H̃1Ã)T, · · · , (H̃k−1Ã)T, (H̃k+1Ã)T, · · · , (H̃KÃ)T]T;

3 For k = 1, . . . ,K:

3.1 Calculate P̃k1 according to Table II;

3.2 H̃ek = H̃kÃP̃k1;

3.3 Perform SVD to get H̃ek = ŨkΣ̃kṼ
H
k ;

3.4 P̃k2 = Ṽk and G̃k = ŨH
k ;

3.5 Select the power loading matrix Γ̃k;

4 Pa = [P̃11P̃12Γ̃1, . . . , P̃K1P̃K2Γ̃K ];

5 λWL-BD = 2PT/E{Tr[PaP
T
a ]};

6 P̃ =
√
λWL-BDPa;

7 The receive filter matrix G̃ = diag{G̃1, . . . , G̃K};

8 The received signal is G̃ỹ = G̃(H̃ÃP̃ s̃+ ñ).

Note that the power loading schemes can be either water-filling for maximizing the sum rate, or

equal power loading, or based on the improved diversity precoding approach in [33]. A detailed

discussion is beyond the scope of this paper. We will simply assume equal power allocation in

the following analysis.



12

TABLE II

METHODS TO CALCULATE P̃k1 .

Algorithm Steps Operations

WL-BD 1 Perform SVD to get H̃−kÃ = Ũ−kΣ̃−k[Ṽ−k1, Ṽ−k0]
H

2 P̃k1 = Ṽ−k0

WL-RBD 1 Perform SVD to get H̃−kÃ = Ũ−kΣ̃−kṼ
H
−k

2 P̃k1 = Ṽ−k

(

Σ̃
H
−kΣ̃−k + ρI2N

)− 1

2

WL-S-GMI 1 CalculateH̃
†
k according to (14)

2 Apply QR decomposition to get H̃
†
k = F̃kR̃k

3 P̃k1 = F̃k

Remark: When taking IQI into account, the precoding matrices designed using the real-valued

signal model generally do not satisfy (4) and thus can not be represented in equivalent complex-

valued matrices. However, the real-valued symbol vector after precoding can be inversely trans-

formed into an equivalent complex-valued symbol vector.

IV. PERFORMANCE ANALYSIS

In order to show more insights on the proposed widely-linear precoding schemes, in this

section the performance of WL-ZF and WL-BD precoding is analyzed in terms of sum rates,

multiplexing gain, power offset and computational complexity. To facilitate the analysis, we

adopt an affine approximation of the sum data rate developed in [38].

Definition 1 ( [38]): The sum data rate is well approximated by C(PT) = S∞(log2 PT −
L∞) + o(1), where S∞ is the multiplexing gain and L∞ is the power offset which are defined,

respectively, as:

S∞ , lim
PT→∞

C(PT)

log2(PT)
, L∞ , lim

PT→∞

[

log2(PT)−
C(PT)

S∞

]

. (15)

We will use this tool to derive the multiplexing gain and power offset of WL-ZF and WL-BD

in the following subsections.

A. Comparison between WL-ZF and ZF

In order to analyze the performance of WL-ZF, we compare it with ZF in [29] and assume

perfect IQ branches for ZF unless otherwise specified. The precoding matrix of ZF is given by

PZF =
√
λZFH

H(HHH)−1, where the power normalization factor is defined as

λZF =
PT

E{Tr[PZFP
H
ZF]}

=
PT

E{Tr[(HHH)−1]} . (16)
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The sum rate of ZF is given by

CZF =
K
∑

k=1

log2(1 + SINRZF,k) = K log2

(

1 +
1

σ2
n

λZF

)

, (17)

where SINRZF,k represents the received signal-to-interference-plus-noise ratio (SINR) at user k.

According to Definition 1, the multiplexing gain and power offset of ZF are given by S∞
ZF =

K, L∞
ZF = log2 σ

2
n + log2

[

E
{

Tr[(HHT)−1]
]}

.

The difference between WL-ZF and ZF are fourfold: 1) The signal dimension is doubled from

K to 2K; 2) Since WL-ZF transmits only real-valued signals, the data rate on each parallel sub-

channel is halved; 3) The power normalization factor becomes λWL-ZF; 4) Both the transmit

power and the noise variance for each sub-channel are halved. The sum rate of WL-ZF is thus

given by

CWL-ZF =

2K
∑

k=1

1

2
log2(1 + SINRWL-ZF,k) = 2K × 1

2
log2

(

1 +
1

σ2
n

λWL-ZF

)

= K log2

(

1 +
1

σ2
n

λWL-ZF

)

,

(18)

where SINRWL-ZF,k represents the received SINR at user k for WL-ZF. The multiplexing gain

and power offset of WL-ZF are given by

S∞
WL-ZF = K, L∞

WL-ZF = log2 σ
2
n + log2

[

1

2
E

{

Tr[(H̃ÃÃTH̃T)−1]
}

]

. (19)

We summarize the comparison between ZF and WL-ZF in Theorem 1.

Theorem 1: When the transmitter does not have IQI, i.e., A1 = I and A2 = 0, WL-ZF has

the same multiplexing gain and power offset as ZF. However, when the transmitter has IQI:

1) WL-ZF has the same multiplexing gain as that of ZF with ideal IQ branches. The achieved

multiplexing gain equals the number of users, i.e., S∞
WL-ZF = S∞

ZF = K.

2) Denote ∆ , L∞
WL-ZF − L∞

ZF as the power offset loss of WL-ZF compared to ZF with ideal

IQ branches. Assuming that: 1) θ1, . . . , θN are i.i.d with zero-mean and variance σ2
θ ; 2)

g1, . . . , gN are i.i.d with zero-mean and variance σ2
g ; 3) The expectations in L∞

WL-ZF are

taken over H , θ1, . . . , θN and g1, . . . , gN , then we have

∆ ≈ log2

[

1 + (σ2
θ + 4σ2

g)
K + 1

N + 1

]

, (20)

which is simplified by denoting β , K
N

when K and N are large and σ2
θ is small, as

∆ ≈ log2
[

1 + 4σ2
gβ

]

. (21)
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Proof: See Appendix B.

Theorem 1 shows that compared with ZF with perfect IQ branches, WL-ZF in a system with

IQI has no multiplexing gain loss, while the power offset loss of WL-ZF is determined by the

IQ parameters and the system scale, i.e., the ratio of K to N . Note that in large-scale systems,

β is usually small and thus the power offset loss of WL-ZF is limited. Therefore, WL-ZF will

approach the performance of ZF without IQI.

B. Comparison between WL-BD and BD

In this subsection, we compare the performance of WL-BD in the presence of IQI with that

of BD under perfect IQ branches.

The sum rate of WL-BD in the downlink is calculated as CWL-BD =
∑K

k=1RWL-BD,k, where

RWL-BD,k is the data rate of the k-th user. Let G̃k be the receive filter of the k-th user, and then

multiplying the received signal vector by G̃k yields

d̃k = G̃kỹk = G̃kH̃kÃP̃ks̃k + G̃kH̃kÃP̃−ks̃−k + G̃kñk , Q̃ks̃k + Q̃−ks̃−k + G̃kñk,

where P̃−k = [P̃1, · · · , P̃k−1, P̃k+1, · · · P̃K ], s̃−k = [s̃T
1 , · · · , s̃T

k−1, s̃
T
k+1, · · · , s̃T

K ]
T, and Q̃k =

G̃kH̃kÃP̃k, Q̃−k = G̃kH̃kÃP̃−k. Assuming Gaussian signaling is used, the data rate of the

k-th user is thus given by

RWL-BD,k =
1

2
log2

{

det[Q̃kQ̃
T
k + Q̃−kQ̃

T
−k + σ2

nG̃kG̃
T
k ]

det[Q̃−kQ̃
T
−k + σ2

nG̃kG̃
T
k ]

}

.

For WL-BD precoding, Q̃−k = 0 and G̃k does not affect the data rates. Therefore, for WL-BD

we have
RWL-BD,k =

1

2
log2 det

[

I2Mk
+

1

σ2
n

H̃kÃP̃kP̃
T
k Ã

TH̃T
k

]

.

The following analysis is based on two assumptions:

- AS1: Dk = 2Mk = 2Lk, i.e., the data streams of each user are fully used and the number

of data streams is twice the number of receive antennas.

- AS2: Equal power allocation is used across all the data streams, i.e., Γ̃k =
√

PT

M
I2Lk

,

k = 1, · · · , K. Note that E{s̃ks̃T
k} = 1

2
I2Lk

for the real-valued signal model.

According to AS1 and AS2, the data rate of the k-th user can be expressed as:

RWL-BD,k =
1

2
log2 det

[

I2Mk
+

λWL-BDPT

Mσ2
n

H̃kÃP̃k1P̃
T
k1Ã

TH̃T
k

]

. (22)
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Proposition 1: When the transmitter does not have IQI, i.e., A1 = I and A2 = 0, WL-BD

achieves the same data rate as BD, which is given by

RBD,k = log2 det

(

IMk
+

PT

Mσ2
n

HkV−k0V
H
−k0H

H
k

)

, (23)

for k = 1, · · · , K, where V−k0 contains the right singular vectors corresponding to zero singular

values of H−k = [HT
1 , · · · ,HT

k−1,H
T
k+1, · · · ,HT

K ]
T.

Proof: See Appendix C.

There is no performance loss introduced by widely-linear precoding in terms of data rates when

there is no IQI. However, when IQI does exist, WL-BD has significantly improved performance

and approaches that of BD with ideal IQ branches, as shown in the following proposition.

Proposition 2: When the transmitter has IQI, WL-BD has the same multiplexing gain as BD

in the absence of IQI.

Proof: The k-th user’s data rate of BD is given by (23), and we have S∞
BD,k = Mk, L∞

BD,k =

log2 σ
2
n + log2M − 1

Mk
log2 det[HkPkP

T
k H

H
k ], where Pk which substitutes V−k0 is the BD

precoding matrix for the k-th user. According to Definition 1, (23) is well approximated in

the high SNR region as

RBD,k
∼= Mk log2

PT

σ2
−Mk log2M + log2 det(HkPkP

H
k H

H
k ).

Therefore, the sum data rate of BD without IQI is described as

C BD =
∑K

k=1
RBD,k

∼=
∑K

k=1
log2 det(HkPkP

H
k H

H
k ) +M log2

PT

σ2
−M log2M.

The same results can also be found in [42]. According to the definition of the multiplexing gain

in (15), the multiplexing gain of BD is M , the total number of the receive antennas.

Similarly to BD, we have

CWL-BD =
∑K

k=1
RWL-BD,k

∼=1

2

∑K

k=1

(

2Mk log2
λWL-BDPT

σ2
− 2Mk log2M

)

+ J

∼=M log2

(

PT

σ2

)

−M log2

(

M

λWL-BD

)

+ J.

where J = 1
2

∑K
k=1 log2 det(H̃kÃP̃k1P̃

T
k1Ã

TH̃T
k ). The multiplexing gain is easy to compute

according to (15) and is given by M , which is the same as BD.

Although there is no multiplexing gain loss for WL-BD, the power offset is different from

that of BD without IQI. It comes from the value of λWL-BD and the choices of the precoding

matrices, which are related to the IQ parameters. In large-scale MIMO systems, this power offset

will converge to some constant almost surely. However, its mathematical expression is difficult

to obtain and we leave it for future work.
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C. Computational Complexity

Since the inverted matrices of both ZF and WL-ZF have the same dimension (for real-valued

elements), the computational complexity of the two are of the same order. Therefore, we omit the

complexity analysis of WL-ZF. For similar reasons, WL-MF and WL-MMSE also have similar

complexity with their linear counterparts.

In terms of widely-linear BD-type precoders, we use the total number of floating-point opera-

tions (FLOPs) involved in the algorithm to study its computational complexity. Each real-valued

multiplication or addition counts for 1 FLOP, while one complex-valued multiplication and

addition counts for 6 FLOPs and 2 FLOPs, respectively. The total number of FLOPs of some

basic matrix operations are summarized as follows:

• The addition of two N×K real matrix requires NK FLOPs, while that of complex matrices

is 2NK;

• The multiplication of an N ×K and a K ×M real matrix requires NM(2K − 1) FLOPs,

while that of complex matrices is NM(8K − 2);

• The inverse of a N ×N real matrix requires 4
3
N3;

• For QR decomposition of an M ×N (M ≥ N) real matrix, the required number of FLOPs

is 4(M2N −MN2 +N3/3);

• The FLOPs required by SVD of an K ×M (K ≤ M) complex-valued matrix is the same

as that of an 2K × 2M real-valued matrix [43]. When only Σ and V are obtained, the

number of FLOPs is 32KM2 + 104K3, and when Σ, V and U are obtained, it requires

32M2K + 176K3 [44].

Note that the real and imaginary components of a complex-valued scalar are stored separately

in the hardware. The T -transform actually requires only twice the memory space, but does

not increase the computational complexity. Therefore, we will exclude it in the analysis. In the

following, we also assume for simplicity that all the users have the same number of antennas,

i.e., M1 = M2 = . . . = Mk = . . . = MK .

For WL-BD, to calculate the SVD of H̃−kÃ requires N1 = 32M−kN
2 + 104M3

−k. Similarly,

a matrix product and an SVD are involved in computing H̃ek = ŨkΣ̃kṼ
H
k , which yields N2 =

4M2
k (4N − 1) and N3 = 208M3

k FLOPs, respectively. Note that although an SVD is required

for computing both P̃k1 and P̃k2, the complexity of the latter is much lower. Compared with

WL-BD, WL-RBD demands an extra matrix product to calculate P̃k1, which accounts for 4N2.
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For WL-S-GMI, we need to compute two matrix products and a matrix inverse in (14), which

requires N4 = 4M2(4N − 1) + 4N2(4M − 1) + 32
3
N3. For each user, WL-S-GMI involves an

SVD and a QR decomposition, which accounts for N3 and N5 = 32MkN
2 − 8NM2

k + 4
3
M2

k

FLOPs. The total number of FLOPs required by the three algorithms are summarized in Table

III.

TABLE III

COMPUTATIONAL COMPLEXITY OF PROPOSED WIDELY-LINEAR BD-TYPE PRECODING SCHEMES WHERE γ , M

N
AND

ASSUMING K AND N ARE LARGE.

Algorithms Number of FLOPs

WL-BD γKN3[(104 + 208

K3 )γ
2 + 16

K2 γ + 32]

WL-RBD γKN3[(104 + 208

K3 )γ
2 + 16

K2 γ + 32] + 4N2

WL-S-GMI N3[ 208
K2 γ

3 + (16− 8

K
)γ2 + 48γ + 32

3
] + 4γ2

3K
N2

From Table III, the complexity increase of WL-BD compared with BD is rather small, i.e.,

below 1
8γKN

and could be considered negligible when the scale of the system is large.

D. Implementation Aspects

In order to implement the proposed widely-linear algorithms, an estimate of H̃Ã is required.

This could be done through channel estimation approaches based on (9). According to (9), another

solution to the IQI is constructing P̃ = Ã−1P̃0. This compensates for the IQI, which requires

the estimates of both H̃ and Ã, and thus will increase the training and estimation complexity.

Unlike the compensation based schemes, WL-BD and WL-ZF do not need respective information

of H̃ and Ã, but only their matrix product. Therefore, they are simple to implement.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed widely-linear precoding schemes

through simulations. We compare the proposed widely-linear precoding schemes with their linear

counterparts, e.g., MF [28] & MMSE [29], RBD [33] & S-GMI [35] for single-antenna and

multiple-antenna users, respectively.

Unless otherwise defined herein, in all the simulations there are K = 20 users, each equipped

with Mk = 2 antennas for multiple-antenna scenarios, while the number of transmit antennas

at BS is set to N = 100. In terms of IQ parameters, we consider “SETUP 1” where σ2
g =

0.1, σ2
θ = 0.003 as the default configuration. SETUP 1 is the case when gn and θn have standard

deviations of 0.33 and 3◦, respectively, which are in the typical range of the IQ parameters [6]. In

comparison, “SETUP 0” with σ2
g = 0.05, σ2

θ = 0.001 and “SETUP 2” where σ2
g = 0.2, σ2

θ = 0.01
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are also considered for light and severe IQI, respectively. The SNR in all the figures is defined

as PT

σ2
n

. The bit error rates (BER) are evaluated considering that quadrature phase shift keying

(QPSK) modulation are used at the transmitter. For linear precoding schemes under IQI, HA1

is used as the channel estimate to calculate the precoders. All the simulations are averaged over

10000 channel realizations.
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Fig. 1. Performance loss of ZF (the top two) and BD

(the bottom two) with IQI with respect to N in terms of

sum rates (bits/channel use) and BER. The SNR is 0, 10

dB. There are 20 single antenna users and 20 two-antenna

users for ZF and BD, respectively.
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Fig. 2. Sum rates of ZF & MMSE in [29], MF in [28]

and their widely-linear counterparts under IQI.

Fig. 1 shows the performance loss of ZF and BD when IQI is considered at the transmitter.

Unlike noise and independent inter-user interference which generally diminish with large N [1],

it can be seen that when IQI exists the performance loss of both ZF and BD in terms of sum

rates and BER does not vanish with respect to N . Moreover, this IQI-originated performance

loss becomes large for high SNR, e.g., when SNR is 10 dB, ZF and BD lose 20% of their sum

rates. Therefore, one has to take IQI into account for downlink design.

For scenarios with single-antenna users, Fig. 2 shows the sum rates of ZF & MMSE in [29],

MF in [28] and their widely-linear counterparts under IQI. The performance of both WL-ZF(WL-

MMSE, WL-MF) and ZF(MMSE, MF) degrade when IQI becomes more severe. However, WL-

ZF and WL-MMSE outperform ZF and MMSE significantly, especially in the high SNR region.

The sum rates of ZF and MMSE level out in the high SNR region as a result of the IQI. In

contrast, the proposed WL-ZF and WL-MMSE can efficiently suppress the negative impact of

IQI and approaches that of ZF without IQI. In the high SNR region, WL-ZF has the same

diversity gain as ZF (i.e., the same slope of the curves) with a minor power offset (i.e., the shift

of the curves) around 10 log10(1+4βσ2
g) = 0.3 dB for σ2

g = 0.1 and 0.6 dB for σ2
g = 0.2, which

verifies the results in Theorem 1.
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In Fig. 2, WL-MF performs worse than MF. The reason is that WL-MF deals with twice the

number of sub-channels as that for MF. Since WL-MF (MF) offers no inter-stream interference

control and aims to maximize the SNR other than the SINR at the receiver, it could increase

the interference level at the receiver and thus degrades the performance.
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Fig. 3 shows the power offset loss of WL-ZF compared with ZF with ideal IQ branches

when N = 100. The analysis results are obtained using (20) and the approximation is made

according to (21). The simulation results show that the analysis is very accurate for most cases.

The approximation results also give precise prediction of the power offset loss. As β increases,

the power offset loss of WL-ZF gets larger. For ‘SETUP 2’ which indicates very severe IQI,

the analytical results are not accurate for β > 0.7. This inaccuracy comes from the Taylor

expansion. Improved accuracy could be achieved by using higher order expansions. However,

the analysis becomes complicated. In fact, β is usually smaller than 0.5 in large-scale MIMO

systems in order to take advantage of the excess degrees of freedom. Moreover, for the typical

IQ imbalance parameters, i.e., ’SETUP 1’, Theorem 1 is accurate enough.

Fig. 4 shows the sum rates comparison of BD [31], [32], RBD [34], S-GMI [35], their widely-

linear conterparts WL-BD, WL-RBD and WL-S-GMI under IQI, where the curves for RBD

(WL-RBD) and S-GMI (WL-S-GMI) coincide with each other. The widely-linear precoding

schemes significantly outperform the original schemes in the high SNR region where IQI is the

key factor. It is interesting to see the performance of BD, RBD and S-GMI levels out when

the SNR is high. In contrast, the widely-linear approaches are able to tackle the IQI and show

much better sum rates performance. There is a slight performance gap between WL-BD and BD

without IQI. However, when there is no IQI for WL-BD, it will achieve the same sum-rates as

BD, as proved in Proposition 1.
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In order to show the performance of the proposed precoding schemes with imperfect channel

state information, we introduce the channel estimation error model in [35] for the linear pre-

coders, which is He = HA1+
√
τNe where the entries of Ne are i.i.d Gaussian with zero-mean

and unit variance. Here τ is a parameter to control the channel estimation accuracy with a larger

value indicating a more severe estimation error. Similarly, for the widely-linear precoders we

have H̃e = H̃Ã +
√
τÑe where the entries of Ñe are i.i.d Gaussian with zero-mean and the

variance is 0.5 since real-valued signals are considered.

Fig. 5 shows the performance of the proposed algorithms under different levels of channel

estimation error. With increased τ , the performance of WL-ZF, WL-MMSE, WL-BD, WL-RBD

and WL-S-GMI degrades, while WL-MF is more robust. However, according to (25) in [45], the

value of τ with N = 100, K = 20 and SNR=10 dB is usually below 0.01 when MMSE channel

estimation is used. Although the proposed schemes degrade with increased channel estimation

error, they outperform their linear counterparts significantly.

VI. CONCLUSION

In this paper, widely-linear precoding schemes have been proposed based on a real-valued

signal model to deal with IQI in the large-scale MIMO downlink. The analysis shows that WL-

ZF and WL-BD achieve the same sum data rates as ZF and BD if the transmitter does not present

IQI. Furthermore, when there exists IQI at the transmitter, WL-ZF and WL-BD have the same

multiplexing gain as ZF and BD with perfect IQ branches, which equals M , the total number

of receive antennas. Moreover, we have proved that there is a minor power offset loss for WL-

ZF, which is related to the system scale and the IQ parameters. Numerical results have verified
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the analysis and shown that the widely-linear precoders significantly outperform conventional

precoders in the presence of IQI.
APPENDIX A

SELECTION OF THE POWER NORMALIZATION FACTOR

We take N = 1 as an example to illustrate the selection of the power normalization factor.

The extension to general cases is straightforward.

The average transmit power is normalized by introducing a normalization factor µ0 such that

z = µ0(a1x + a2x
∗), where x is the transmitted signal and z is the signal degraded by IQ

imbalance, and the IQ imbalance parameters are given by a1 = cos(θ/2) + jg sin(θ/2), a2 =

g cos(θ/2)− j sin(θ/2). Applying the T -transform, we get T (z) = µ0[T (a1) + T (a2)E1]T (x).

Denote z̃ = T (z), Ã1 = T (a1), Ã2 = T (a2) and x̃ = T (x). we have z̃ = [Ã1+Ã2E1]x̃ , Ãx̃.

To normalized the transmit power such that E{‖z̃‖2F} = E{‖x̃‖2F}, we have

E{‖z̃‖2F} = E

{

Tr
[

µ2
0x̃x̃

TÃTÃ
]}

= E

{

Tr
[

µ2
0x̃x̃

T
E{ÃTÃ}

]}

, (24)

in which
ÃTÃ =





1 + g2 + 2g cos θ −g2 sin θ

−g2 sin θ 1 + g2 − 2g cos θ



 .

Since we assume that θ ∼ U(0, σ2
θ), g ∼ N (0, σ2

g) and θ, g are independent, we have E{ÃTÃ} =

(1 + σ2
g)I2. Therefore, µ0 is obtained from (24) and given by µ0 =

1√
1+σ2

g

.

APPENDIX B

PROOF OF THEOREM 1

In order to prove Theorem 1, two useful lemmas are given first, which give results on the

expectations of products formed by moments of entries of a Haar matrix.

Lemma 2 (Lemma 1.1, [46]): Denote N0, N as the set of non-negative integers and positive

integers, respectively. Let U = [uij]N×N be a Haar matrix. Let l ∈ N, and i1, . . . , il, j1, . . . , jl ∈
{1, . . . , N} be the subscript indexes. Denote k1, . . . , kl, m1, . . . , ml ∈ N0. If ∃i ∈ {1, . . . , N}
which satisfies

∑

r∈{r|ir=i}(kr −mr) 6= 0, or ∃j ∈ {1, . . . , N} which satisfies
∑

r∈{r|jr=j}(kr −
mr) 6= 0, then we have E{[uk1

i1j1
(u∗

i1j1
)m1 ]× · · · × [ukl

iljl
(u∗

iljl
)ml ]} = 0.

Lemma 2 shows that if there exists uirjr , the power of which is different from that of its

complex conjugate, the expectation above is always 0.
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Lemma 3 (Proposition 1.2, [46]): If 1 ≤ i, j, i′, j′ ≤ N , i 6= i′, j 6= j′, and U = [uij ]N×N is

a Haar matrix, we have

(1) E{|uij|2} = 1
N
, (2) E{|uij|4} = 2

N(N+1)
,

(3) E{|uij|2|ui′j |2} = E{|uij|2|uij′|2} = 1
N(N+1)

, (4) E{|uij|2|ui′j′|2} = 1
N2−1

,

(5) E{uijui′j′u
∗
ij′u

∗
i′j} = − 1

N(N2−1)
.

It is easy to prove that H̃Ã = H̃ when no IQI is present at the transmitter. Thus the

precoding matrix of WL-ZF is exactly equivalent to that of ZF. It is also straightforward to

obtain S∞
WL-ZF = S∞

ZF = K, therefore we omit the detailed proof.

To prove the result on power offset loss of WL-ZF, we need to compare 1
2
E{Tr[(H̃ÃÃTH̃T)−1]}

and E{Tr[(HHH)−1]}. According to (7) in Corollary 1, we have E{Tr[(H̃H̃T)−1]} = 2E{Tr[(HHH)−1]}.

Therefore, we only need to compare E{Tr[(H̃H̃T)−1]} and E{Tr[(H̃ÃÃTH̃T)−1]}.

Note that

ÃÃT =
1

1 + σ2
g

GΘG (25)

where G = diag{1 + g1, . . . , 1 + gN , 1− g1, . . . , 1− gN} and

Θ =





IN diag{− sin(θ1), . . . ,− sin(θN )}
diag{− sin(θ1), . . . ,− sin(θN)} IN



 (26)

Therefore, we have

E{Tr[(H̃ÃÃTH̃T)−1]} = (1 + σ2
g)E{Tr[(H̃GΘGH̃T)−1]}. (27)

To compare E{Tr[(H̃H̃T)−1]} and (1 + σ2
g)E{Tr[(H̃GΘGH̃T)−1]}, we observe that G and

Θ have a small deviation from the identity matrix. Therefore, we can analyze the derivatives of

f(σg,G,Θ) = (1 + σ2
g)E{Tr[(H̃GΘGH̃T)−1]},

with respect to G, Θ and σg.

The strategy of the following proof is first to consider when g1 = g2 = . . . = gN = g0 and

θ1 = θ2 = . . . = θN = θ0, where g0 and θ0 are zero-mean distributed with variances given by σ2
g

and σ2
θ , respectively. Then we analyze the derivatives of f(σg,G,Θ) = f(σg, g0, θ0) assuming

the expectation is taken over H only. After that, we take the expectation in f(σg,G,Θ) over g0

and θ0. Finally, the results are extended to general cases when g1, g2, . . . , gN and θ1, θ2, . . . , θN

are i.i.d, respectively.
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Let us start with the second-order Taylor expansion of f(σg, g0, θ0), which is given by [47]

f(σg, g0, θ0) = f(0, 0, 0) +

(

σg
∂

∂σg

+ g0
∂

∂g0
+ θ0

∂

∂θ0

)

f |(0,0,0)

+
1

2

(

σg
∂

∂σg
+ g0

∂

∂g0
+ θ0

∂

∂θ0

)2

f |(0,0,0) + o(σ2
g + g20 + θ20),

(28)

in which all the partial derivatives are evaluated at point (0, 0, 0). Note that f(0, 0, 0) = E{Tr[

(H̃H̃T)−1]} is related to the power offset in the case without IQI.

We need to compute the partial derivatives in (28), which are summarized in Lemma 4. Due to

the symmetry of second derivatives, i.e., ∂2f
∂g0∂θ0

= ∂2f
∂θ0∂g0

and etc, the order of partial derivatives

with respect to different variables does not matter.

Lemma 4: The partial derivatives in (28) are given by

∂f

∂σg

∣

∣

∣

∣

(0,0,0)

= 0,
∂f

∂g0

∣

∣

∣

∣

(0,0,0)

= 0,
∂f

∂θ0

∣

∣

∣

∣

(0,0,0)

= 0, (29a)

∂2f

∂σg∂g0

∣

∣

∣

∣

(0,0,0)

= 0,
∂2f

∂σg∂θ0

∣

∣

∣

∣

(0,0,0)

= 0,
∂2f

∂θ0∂g0

∣

∣

∣

∣

(0,0,0)

= 0, (29b)

∂2f

∂σ2
g

∣

∣

∣

∣

(0,0,0)

= 4E{Tr[(HHH)−1]}, (29c)

∂2f

∂g20

∣

∣

∣

∣

(0,0,0)

= 16E
{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

− 4E{Tr[(HHH)−1]},

(29d)

∂2f

∂θ20

∣

∣

∣

∣

(0,0,0)

= 4E
{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

. (29e)

in which

E{Tr[(HHH)−1]} =
K

N −K
, (30)

E
{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

=
K2 +K

(N −K)(N + 1)
. (31)

Proof: Let us first prove (29). Since ∂f
∂σg

= 2σgE{Tr[(H̃GΘGH̃T)−1]}, it is straightforward

to get

∂f

∂σg

∣

∣

∣

∣

(0,0,0)

= 0,
∂2f

∂σ2
g

∣

∣

∣

∣

(0,0,0)

= 2E{Tr[(H̃H̃T)−1]} = 4E{Tr[(HHT)−1]},

∂2f

∂σg∂g0

∣

∣

∣

∣

(0,0,0)

=
∂2f

∂σg∂θ0

∣

∣

∣

∣

(0,0,0)

= 0.

(32)

The first order partial derivative of f(σg, g0, θ0) with respect to g0 is given by

∂f

∂g0
= −(1 + σ2

g)E {Tr [D1D2D1]} . (33)



24

where D1 = (H̃GΘGH̃T)−1, and D2 =
∂(D−1

1
)

∂g0
= H̃ [ENΘG + GΘEN ]H̃

T. When g0 =

0, θ0 = 0, we have G = Θ = I2N . Using (7) gives

∂f

∂g0

∣

∣

∣

∣

(0,0,0)

= −2E
{

Tr
[

H̃T(H̃H̃T)−2H̃EN

]}

= 0. (34)

Taking the derivative of (33) with respect to g0 yields

∂2f

∂g20

∣

∣

∣

∣

(0,0,0)

= − 2E

{

Tr

[

∂D1

∂g0
D2D1

]}
∣

∣

∣

∣

(0,0,0)

− E

{

Tr

[

D1
∂D2

∂g0
D1

]}
∣

∣

∣

∣

(0,0,0)

= 8E{Tr[H̃T(H̃H̃T)−2H̃ENH̃
T(H̃H̃T)−1H̃EN ]} − 2E{Tr[(H̃H̃T)−1]}

(a)
= 16E

{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

− 4E{Tr[(HHH)−1]}.

(35)

where (a) follows Corollary 1.

The first order partial derivative of f(σg, g0, θ0) with respect to θ0 is given by

∂f

∂θ0
= −(1 + σ2

g)E{Tr[D1D3D1]}, (36)

where D3 =
∂(D−1

1
)

∂θ0
= − cos θ0H̃GĪNGH̃T. When σg = 0, g0 = 0, θ0 = 0, using (7) yields

∂f

∂θ0

∣

∣

∣

∣

(0,0,0)

= E

{

Tr
[

H̃T(H̃H̃T)−2H̃ĪN

]}

= 0 (37)

Taking the derivativeof (36) with respect to θ0 yields

∂2f

∂θ20

∣

∣

∣

∣

(0,0,0)

= −
[

2E

{

Tr

[

∂D1

∂θ0
D3D1

]}
∣

∣

∣

∣

(0,0,0)

+ E

{

Tr

[

D1
∂D3

∂θ0
D1

]}
∣

∣

∣

∣

(0,0,0)

]

(a)
= 2E{Tr[H̃T(H̃H̃T)−2H̃ĪNH̃

T(H̃H̃T)−1H̃ĪN ]}
(b)
= 4E

{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

,

(38)

where (a) follows that ∂D3

∂θ0

∣

∣

∣

(0,0,0)
= 0K×K and (b) is obtained using Corollary 1.

Now we have only ∂2f
∂g0∂θ0

∣

∣

∣

(0,0,0)
left. Taking the derivative of (33) with respect to θ0 gives

∂2f

∂g0∂θ0

∣

∣

∣

∣

(0,0,0)

=−
[

2E

{

Tr

[

∂D1

∂θ0
D2D1

]}
∣

∣

∣

∣

(0,0,0)

+ E

{

Tr

[

D1
∂D2

∂θ0
D1

]}
∣

∣

∣

∣

(0,0,0)

]

=4E{Tr[H̃T(H̃H̃T)−2H̃ĪNH̃
T(H̃H̃T)−1H̃EN ]}

− 2E{Tr[H̃T(H̃H̃T)−2H̃(EN ĪN + ĪNEN)]}
(a)
=8E

{

Tr
[

Im{HH(HHH)−2H [HH(HHH)−1H ]∗}
]} (b)

= 0,

(39)
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where (a) is obtained by using Lemma 1, (6) in Corollary 1 and EN ĪN + ĪNEN = 02N×2N ;

(b) follows that the trace of the product of two Hermitian matrices is real-valued, i.e., for two

Hermitian matrices A and B it holds that Tr∗[AB] = Tr∗[(BA)H] = Tr[(BA)T] = Tr[AB].

Combining (32), (34), (35), (37), (38) and (39) results in (29).

Now let us calculate the expectations in (29) which are taken over H . Since HHH follows

a Wishart distribution, (30) is easily obtained using the property of Wishart distribution [48]. To

prove (31), applying SVD to H gives

H = UΛ1/2V H, (40)

where U ∈ CK×K , V ∈ CN×K , Λ = diag{λ1, . . . , λK}, the diagonal entries of which are the

eigenvalues of HHH. Substituting (40) into (29) yields

E
{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

= E{Tr[V Λ−1V HV ∗V T]}. (41)

The columns of V are actually the K eigenvectors with respect to the non-zero eigenvalues of

HHH . Because a Wishart matrix is unitary invariant, the matrix formed by its eigenvectors is

a Haar matrix which is independent of the eigenvalues [48]. Therefore, V is independent of Λ.

Thus
E
{

Tr
[

HH(HHH)−2H [HH(HHH)−1H ]∗
]}

= Tr[E{V HV ∗V TV }E{Λ−1}]
(a)
=

1

N −K
E{Tr[V HV ∗V TV ]}.

(42)

where (a) follows the mean of the inverse eigenvalues of a Wishart matrix in [49]. Denote

V = [v1, . . . , vK ], where vi = [vi1, . . . , viN ]
T, and we have

E{Tr[V HV ∗V TV ]} = E

{

K
∑

i=1

K
∑

j=1

vH
i v

∗
jv

T
j vi

}

= E

{

K
∑

i=1

K
∑

j=1

N
∑

t=1

N
∑

l=1

v∗itv
∗
jtvilvjl

}

=
K
∑

i=1

K
∑

j=1

N
∑

t=1

N
∑

l=1

E{v∗itv∗jtvilvjl}
. (43)

To derive E{v∗itv∗jtvilvjl}, consider the following four cases:

a) when t 6= l, i 6= j, according to Lemma 2, E{v∗itv∗jtvilvjl} = 0

b) when t = l, i 6= j, according to Lemma 3, E{v∗itv∗jtvilvjl} = 1
N(N+1)

. This case has (K2 −
K)N terms in total;

c) when t 6= l, i = j, according to Lemma 2, E{v∗itv∗jtvilvjl} = 0

d) when t = l, i = j, according to Lemma 3, E{v∗itv∗jtvilvjl} = 2
N(N+1)

. This case has KN

terms in total.
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To this end, it is easy to achieve

E{Tr[V HV ∗V TV ]} =
K
∑

i=1

K
∑

j=1

N
∑

t=1

N
∑

l=1

E{v∗itv∗jtvilvjl}

= (K2 −K)N
1

N(N + 1)
+KN

2

N(N + 1)
=

K2 +K

N + 1
.

(44)

Substituting (44) into (42) gives (31).

The proof of Lemma 4 is completed.

Substituting results in Lemma 4 into (28) yields

f(σg, g0, θ0) ≈ f(0, 0, 0) + (2θ20 + 8g20)
K2 +K

(N −K)(N + 1)
+ 2(σ2

g − g20)
K

N −K
. (45)

Taking the expectation in f(σg, g0, θ0) over g0 and θ0 gives

f(σg, g0, θ0) ≈ f(0, 0, 0) + (2σ2
θ + 8σ2

g)
K2 +K

(N −K)(N + 1)
. (46)

Since f(0, 0, 0) = E{Tr[(H̃H̃H)−1]} = 2E{Tr[(HHH)−1]} = 2K
N−K

, from (46) we have

∆ = L∞
WL-ZF − L∞

ZF ≈ log2

[

1 + (σ2
θ + 4σ2

g)
K + 1

N + 1

]

. (47)

The above results are extended to cases when g1, . . . , gN and θ1, . . . , θN are i.i.d, respectively,

by taking derivatives of f(σg,G,Θ) with respect to each variable following a similar procedure.

Note that the expectation is taken over both H and the IQ parameters. Therefore, in the second-

order Taylor expansion of f(σg,G,Θ), only f(0, I, I) and the terms related to ∂2f
∂σ2

g
, ∂2f

∂g2i
and ∂2f

∂θ2i

(i = 1, . . . , N) remain because the IQ parameters are i.i.d and have zero mean. ∂2f
∂g2i

and ∂2f
∂θ2i

can

be simply obtained by substituting EN and Ī in the derivation of ∂2f
∂g2

0

and ∂2f
∂θ2

0

with E
(i)
N and

Ī(i), respectively, where E
(i)
N and Ī(i) are formed by forcing all elements excluding the i-th and

the (N + i)-th rows in EN and Ī to be 0. Finally, one achieves the same results as in (47).

APPENDIX C

PROOF OF PROPOSITION 1

It is easy to derive that λWL-BD = 1 and thus the k-th user’s data rates for WL-BD is calculated

as
RWL-BD,k =

1

2
log2 det

[

I2Mk
+

PT

Mσ2
n

H̃kP̃k1P̃
T
k1H̃

T
k

]

, (48)

where P̃k1 = Ṽ−k0, and H̃−k = Ũ−kΣ̃−k[Ṽ−k1, Ṽ−k0]
H.

Let us frist write the SVD of T (H−k) and H−k, respectively, as

T (H−k) = Ū−kΣ̄−k[V̄
H
−k1, V̄

H
−k0], H−k = U−kΣ−k[V−k1,V−k0]

H, (49)



27

where V̄ H
−k1 and V̄ H

−k0, V−k1 and V−k0 contain the right singular vectors with respect to non-zero

and zero singular values of T (H−k) and H−k, respectively.

The essence of this proof is to show P̃k1 = Ṽ−k0 = T (V−k0). Since from (12) we know

H̃−k is a permutation of rows of T (H−k), according to Corollary 2, we have Ṽ−k0 = V̄−k0.

Therefore, we only need to prove V̄−k0 = T (V−k0).

The T -transform of H−k is given by T (H−k) = T (U−k)T (Σ−k)T (V H
−k). According to

Corollary 2, both T (U−k) and T (V−k) are orthogonal matrices. Since T (Σ−k) is a diagonal

matrix, T (U−k)T (Σ−k)T (V H
−k) is actually the SVD of T (H−k) with singular values arranged

in a different order as that in (49).

Supposing Σ−k = diag{Σ−k1, 0}, where Σ−k1 is a diagonal matrix with diagonal entries given

by the non-zero singular values of H−k, we have T (Σ−k) = diag{Σ−k,Σ−k}, and

T (V−k) =





Re(V−k1) Re(V−k0) −Im(V−k1) −Im(V−k0)

Im(V−k1) Im(V−k0) Re(V−k1) Re(V−k0)



 .

Note that since T (H−k) = T (U−k)T (Σ−k)T (V H
−k) = Ū−kΣ̄−k[V̄−k1, V̄−k0]

H, by rearranging

the order of the singular values of T (H−k), it is easy to achieve

V̄−k0 =





Re(V−k0) −Im(V−k0)

Im(V−k0) Re(V−k0)



 = T (V−k0).

According to Lemma 1, we have

RWL-BD,k =
1

2
log2 det

[

I2Mk
+

PT

Mσ2
n

H̃kT (V−k0)T (V−k0)
TH̃T

k

]

=
1

2
log2 det T

(

IMk
+

PT

Mσ2
n

HkV−k0V
H
−k0H

H
k

)

= log2 det

(

IMk
+

PT

Mσ2
n

HkV−k0V
H
−k0H

H
k

)

= RBD,k.

(50)

Thus Proposition 1 is proved.

REFERENCES

[1] F. Rusek, D. Persson, E. G. Larsson, T. L. Marzetta, and F. Tufvesson, “Scaling Up MIMO: Opportunities and Challenges

with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, Jan. 2013.

[2] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE

Communications Magazine, vol. 52, no. 2, pp. 186–195, Feb. 2014.



28

[3] R. C. de Lamare, “Massive MIMO Systems: Signal Processing Challenges and Future Trends,” URSI Radio Science

Bulletin, 2013.

[4] W. Zhang, H. Ren, C. Pan, M. Chen, R. De Lamare, B. Du, and J. Dai, “Large-Scale Antenna Systems With UL/DL

Hardware Mismatch: Achievable Rates Analysis and Calibration,” IEEE Transactions on Communications, vol. 63, no. 4,

pp. 1216–1229, Apr. 2015.

[5] A. Hakkarainen, J. Werner, K. R. Dandekar, and M. Valkama, “Widely-Linear Beamforming and RF Impairment

Suppression in Massive Antenna Arrays,” Journal of Communications and Networks, vol. 15, no. 4, pp. 383–397, Aug.

2013.

[6] A. Tarighat and A. Sayed, “Joint Compensation of Transmitter and Receiver Impairments in OFDM Systems,” IEEE

Transactions on Wireless Communications, vol. 6, no. 1, pp. 240–247, Jan. 2007.

[7] C. Zhang, Z. Xiao, B. Gao, L. Su, and D. Jin, “Three-Stage Treatment of TX/RX IQ Imbalance and Channel with CFO

for SC-FDE Systems,” IEEE Communications Letters, vol. 18, no. 2, pp. 297–300, Feb. 2014.

[8] W. Zhang, R. de Lamare, C. Pan, and M. Chen, “Joint TX/RX IQ Imbalance Parameter Estimation Using a Generalized

System Model,” in 2015 IEEE International Conference on Communications (ICC), Jun. 2015, pp. 4704–4709.

[9] D. Darsena, G. Gelli, and F. Verde, “Joint Blind Channel Shortening and Compensation of Transmitter I/Q Imbalances

and CFOs for Uplink SC-IFDMA Systems,” Elsevier Physical Communication, Special Issue on Radio Access Beyond

OFDM(A), vol. 11, pp. 25–35, Jun. 2014.

[10] ——, “Widely-Linear Frequency-Shift Compensation of CFO and I/Q Imbalance in OFDMA/SC-FDMA Systems,” in

Proc. of IEEE International Conference on Communications (ICC), Jun. 2015, pp. 2686–2691.

[11] F. Sterle, “Widely Linear MMSE Transceivers for MIMO Channels,” IEEE Transactions on Signal Processing, vol. 55,

no. 8, pp. 4258–4270, Aug. 2007.

[12] D. Darsena, G. Gelli, L. Paura, and F. Verde, “Widely-Linear Beamforming/Combining Techniques for MIMO Wireless

Systems,” in 2012 5th International Symposium on Communications, Control and Signal Processing, May 2012, pp. 1–5.

[13] D. Darsena, G. Gelli, and F. Verde, “Widely-Linear Precoders and Decoders for MIMO Channels,” in Proc. of the Tenth

International Symposium on Wireless Communication Systems (ISWCS), Aug. 2013, pp. 587–591.

[14] A. Hakkarainen, J. Werner, K. R. Dandekar, and M. Valkama, “RF-Aware Widely-Linear Beamforming and Null-Steering

in Cognitive Radio Transmitters,” in 8th International Conference on Cognitive Radio Oriented Wireless Networks, Jul.

2013, pp. 172–177.

[15] A. Hakkarainen, J. Werner, and M. Valkama, “RF Imperfections in Antenna Arrays: Response Analysis and Widely-Linear

Digital Beamforming,” IEEE Radio and Wireless Symposium, no. 4, pp. 187–189, 2013.

[16] A. Hakkarainen, J. Werner, K. Dandekar, and M. Valkama, “Precoded Massive MU-MIMO Uplink Transmission under

Transceiver I/Q Imbalance,” in 2014 IEEE Globecom Workshops, 2014, pp. 320–326.

[17] W. Zhang, R. de Lamare, and M. Chen, “Reduced-Rank Widely Linear Precoding in Massive MIMO Systems with I/Q

Imbalance,” in Proc. of European Signal Processing Conference, 2014, pp. 331–335.

[18] S. Zarei, W. Gerstacker, and R. Schober, “I/Q Imbalance Aware Widely-Linear Precoding for Downlink Massive MIMO

Systems,” in 2014 IEEE Globecom Workshops, 2014, pp. 301–307.

[19] W. Zhang, R. C. de Lamare, C. Pan, and M. Chen, “Widely Linear Block-Diagonalization Type Precoding in Massive

MIMO Systems with IQ Imbalance,” in Proc. 2015 IEEE International Conference on Communications (ICC), 2015, pp.

1789–1794.

[20] N. Kolomvakis, M. Matthaiou, J. Li, M. Coldrey, and T. Svensson, “Massive MIMO with IQ Imbalance: Performance

Analysis and Compensation,” in Proc. 2015 IEEE International Conference on Communications (ICC), 2015, pp. 1703–

1709.



29

[21] S. Zarei, W. H. Gerstacker, J. Aulin, and R. Schober, “I/Q Imbalance Aware Widely-Linear Receiver for Uplink Multi-Cell

Massive MIMO Systems: Design and Sum Rate Analysis,” IEEE Transactions on Wireless Communications, vol. 15, no. 5,

pp. 3393–3408, May 2016.

[22] A. Hakkarainen, J. Werner, K. R. Dandekar, and M. Valkama, “Analysis and Augmented Spatial Processing for Uplink

OFDMA MU-MIMO Receiver With Transceiver I/Q Imbalance and External Interference,” IEEE Transactions on Wireless

Communications, vol. 15, no. 5, pp. 3422–3439, May 2016.

[23] A. Hakkarainen, J. Werner, M. Renfors, K. Dandekar, and M. Valkama, “RF-Aware Widely-Linear MMSE Beamforming,”

in Proceedings of the Tenth International Symposium on Wireless Communication Systems, Aug. 2013, pp. 1–5.

[24] N. Jindal, S. Vishwanath, and a. Goldsmith, “On the Duality of Gaussian Multiple-Access and Broadcast Channels,” IEEE

Transactions on Information Theory, vol. 50, no. 5, pp. 768–783, May 2004.

[25] B. Hochwald, C. Peel, and A. Swindlehurst, “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser

Communication?Part II: Perturbation,” IEEE Transactions on Communications, vol. 53, no. 3, pp. 537–544, Mar. 2005.

[26] M. Tomlinson, “New Automatic Equaliser Employing Modulo Arithmetic,” Electronics Letters, vol. 7, no. 5-6, p. 138,

1971.

[27] H. Harashima and H. Miyakawa, “Matched-Transmission Technique for Channels With Intersymbol Interference,” IEEE

Transactions on Communications, vol. 20, no. 4, pp. 774–780, Aug. 1972.

[28] T. Lo, “Maximum ratio transmission,” IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458–1461, 1999.

[29] C. Peel, B. Hochwald, and A. Swindlehurst, “A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser

CommunicationPart I: Channel Inversion and Regularization,” IEEE Transactions on Communications, vol. 53, no. 1, pp.

195–202, Jan. 2005.

[30] L. Liu, R. Chen, S. Geirhofer, K. Sayana, Z. Shi, and Y. Zhou, “Downlink MIMO in LTE-advanced: SU-MIMO vs.

MU-MIMO,” IEEE Communications Magazine, vol. 50, no. 2, pp. 140–147, Feb. 2012.

[31] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser

MIMO Channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461–471, Feb. 2004.

[32] L.-U. Choi and R. Murch, “A Transmit Preprocessing Technique for Multiuser MIMO Systems Using a Decomposition

Approach,” IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 20–24, Jan. 2004.

[33] V. Stankovic and M. Haardt, “Generalized Design of Multi-User MIMO Precoding Matrices,” IEEE Transactions on

Wireless Communications, vol. 7, no. 3, pp. 953–961, Mar. 2008.

[34] H. Sung, S.-R. Lee, and I. Lee, “Generalized Channel Inversion Methods for Multiuser MIMO Systems,” IEEE Transactions

on Communications, vol. 57, no. 11, pp. 3489–3499, Nov. 2009.

[35] K. Zu, R. C. de Lamare, and M. Haardt, “Generalized Design of Low-Complexity Block Diagonalization Type Precoding

Algorithms for Multiuser MIMO Systems,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4232–4242, Oct.

2013.

[36] E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” European transactions on telecommunications, no. 2, pp. 1–28,

Nov. 1999.

[37] C. Hellings and W. Utschick, “Block-Skew-Circulant Matrices in Complex-Valued Signal Processing,” IEEE Transactions

on Signal Processing, vol. 63, no. 8, pp. 2093–2107, Apr. 2015.

[38] S. Shamai and S. Verdu, “The Impact of Frequency-Flat Fading on the Spectral Efficiency of CDMA,” IEEE Transactions

on Information Theory, vol. 47, no. 4, pp. 1302–1327, May 2001.

[39] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do

We Need?” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 160–171, Feb. 2013.

[40] Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices. Beijing: Science Press, 2010.



30

[41] M. Joham, W. Utschick, and J. Nossek, “Linear Transmit Processing in MIMO Communications Systems,” IEEE

Transactions on Signal Processing, vol. 53, no. 8, pp. 2700–2712, Aug. 2005.

[42] J. Lee and N. Jindal, “High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding Versus Linear Precoding,”

IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4787–4792, Dec. 2007.

[43] K. Zu and R. C. de Lamare, “Low-Complexity Lattice Reduction-Aided Regularized Block Diagonalization for MU-MIMO

Systems,” IEEE Communications Letters, vol. 16, no. 6, pp. 925–928, Jun. 2012.

[44] G. H. Golub and C. F. Van Loan, Eds., Matrix Computations, 3rd ed. Baltimore: The John Hopkins University Press,

1996.

[45] M. Biguesh and A. Gershman, “MIMO Channel Estimation: Optimal Training and Tradeoffs between Estimation

Techniques,” in 2004 IEEE International Conference on Communications, 2004, pp. 2658–2662.

[46] F. Hiai and D. Petz, “Asymptotic Freeness Almost Everywhere for Random Matrices,” Acta Sci. Math. (Szeged), vol. 66,

no. 3-4, pp. 809–834, 2000.

[47] “Encyclopedia of mathematics: Taylor formula,” available online:https://www.encyclopediaofmath.org/index.php/Taylor formula.
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