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Abstract

A multi-user cognitive (secondary) radio system is congdewhere the spatial multiplexing mode
of operation is implemented amongst the nodes, under treepce of multiple primary transmissions.
The secondary receiver carries out minimum mean-squared(®MSE) detection to effectively decode
the secondary data streams, while it performs spectruningeas the remaining signal to capture the
presence of primary activity or not. New analytical clogedm expressions regarding some important
system measures are obtained, namely, the outage andiaefecbabilities; the transmission power of
the secondary nodes; the probability of unexpected intnfe at the primary nodeand the detection
efficiency with the aid of the area under the receive opegativaracteristics curvé& he realistic scenarios
of channel fading time variation and channel estimatiowrsrare encountered for the derived results.
Finally, the enclosed numerical results verify the accyrat the proposed framework, while some

useful engineering insights are also revealed, such as dherdde of the detection accuracy to the
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overall performance and the impact of transmission powemfthe secondary nodes to the primary

system.

Index Terms

Cognitive radio, detection probability, imperfect chahestimation, minimum mean-squared error

(MMSE), outage probability, spatial multiplexing, spegtr sensing.

I. INTRODUCTION

Cognitive radio (CR) has emerged as one of the most promignnologies to resolve
the issue of spectrum scarcity, caused by the escalatingtiyio wireless data traffic of next-
generation networks [1]. One of the principal requiremeftSR is the effectiveness of spectrum
sharing performed by secondary (unlicensed) nodes, whki@xpected to intelligently mitigate
any harmful interference caused to the primary (licensedyvork nodes. This requirement is
directly related to the accuracy of spectrum sensing teglas, reflecting the reliable detection
of primary transmission(s).

On the other hand, placing multiple antennas on each cegmtide represents a fruitful option
since the system capacity in terms of data rate can be grealignced. Spatial multiplexing
represents one of the most prominent techniques used fdipheuhput-multiple output (MIMO)
transmission systemsl[2]. For computational savings atebeiver side, there has been a prime
interest in the class of linear detectors, such as zeroAgprZF) and minimum mean-squared
error (MMSE). It is widely known that MMSE outperforms ZF,pegially in low-to-medium
signal-to-noise (SNR) regions, at the cost of a slightlynleigcomputational burden, since the
noise variance is required in this case. In addition, wheM®Itechnology is combined with
distributed antenna systems (DAS), the so-called digetdIMO (D-MIMO) transmission is
emerged. The success behind D-MIMO relies on the multiptpgiains, which are produced by
the classical MIMO transmission, and the diversity gainkiclw are manifested from the use of
DAS [3].

Due to the complementary benefits of CR and D-MIMO, the cogni(D-)MIMO systems

are of paramount research interest nowadays, e.g./ 5€@|[4d references therein.



A. Related Work and Motivation

The performance of spectrum sensing, i.e., the accuradyeofi¢tection method used by the
cognitive system plays a key role to the performance of bdo¢hprimary and secondary network.
It acts as an important tool for finding idle spectrum instnfthe so-calledpectrum hole§8])
to efficiently deliver cognitive data, while protecting tbemmunication quality of the primary
service at the same time. Several spectrum sensing ape®acve been proposed so far to
preserve transparency of CR networks, which can be catsgbimto two main types; quietl[9]
and active[[1D0].

The quiet spectrum sensing type is the conventional approaehich each potential cognitive
transmitter first senses the spectrum for a fixed time-sgrdumation and then transmits its data
in the remaining time, when it senses the channel as idle.nf&ie@ problem of this approach
is the capacity reduction in terms of cognitive data trarssion within a given frame duration.
Moreover, the detection accuracy is questionable by adgtie quiet type, since the sensing-
time duration is rather limited (i.e., only a fraction of teatire frame duration) and, hence, the
required number of sensing samples is constrained.

In order to overcome this problem, the more sophisticatet/easensing type has been
proposed. The idea behind this approach relies on the ireprent of the former shortages
produced by quiet sensing. In particular, a simultaneoestspm sensing and data transmission
technique was proposed ih_J11], where the receiver first elanthe secondary data using
interference cancellation and then senses the remaingmalsfor the presence or absence of
a primary activity. However, the scenario of a single trait@mreceiver pair for the cognitive
system was considered in_|11] with the presence of only oimagsy node, a rather infeasible
condition for practical applications. Other active segstechniques for multi-user cognitive
systems were proposed in_[10] and[12]. In both studies, & assumed that some secondary
nodes transmit while others perform spectrum sensing.drcéise of a primary signal detection,
the latter nodes inform the former ones about the primarivigcto stop their transmissions.
Nevertheless, several problems arise by following thesthoaks; more spectrum resources are
required because of the signaling overhead caused by tbemimfg process, whereas extra
power resources are consumed from the sensing nodes dpeetiem sensing and because of

transmitting their sensing reports.



More recently, authors in [13] and [14] proposed a spat@hison technique on the antennas of
each cognitive node in a sense that some antennas are déwogpectrum sensing while others
for data transmission. The main drawback of this approatieisarge amount of self-interference
produced during spectrum sensing, which can not always Heisatly canceled. Hardware
constraints and/or impairments represent an immediatadbswhereas an appropriate physical
distance between the sensing and transmitting antennasdshe maintained (i.e., in the order
of 20 — 40cm [15], [16]), which is not always feasible or preferable ®mple small-sized
equipment.

In addition, the concept of simultaneous data reception gmettrum sensing for single-
antenna nodes was studied in[[17],1[18], while for multiplgenna nodes i _[19]. However,
these works used the central limit theorem to approximagedtal received signal as a Gaussian
input (invoking the constraint of sufficiently large amowoftreceived samples), whereas they
provided only semi-analytical and/or simulation resulithwespect to the system performance.

Capitalizing on the aforementioned observations, in tlEpgp, a new simultaneous (active)
spectrum sensing and data transmission approach for CRorkstus presented. The spectrum
sensing is performed at the secondary receiver upon thalbgggnal reception from multiple
secondary transmitters. The spatial multiplexing mode pération is adopted, for the first
time, where all the potential secondary transmitters séett data streams simultaneously in
a given frame duration. Thus, the self-interference pmoble tackled, since all antennas at
the receiver are used first for signal detection/decodingtlie secondary data and then for
spectrum sensing in the same frame duration. The receiiestthe linear MMSE approach
to efficiently detect the secondary streams. Since the n@sance is, in principle, a requisite
for the MMSE detection/decoding, the optimum energy dete¢ED) can be used for the
following spectrum sensing process (which also requireskiiowledge of the noise variance).
However, since the spectrum sensing is implemented at teéves, it is possible that a primary
activity in the vicinity of one or more secondary transmitenay not be sensed by the receiver,
mainly due to the different link distances and/or independgynal propagation losses. To avoid
the latterhidden terminalproblem, a distributed power allocation scheme is impleegkrioy
each secondary transmitter, upon signal transmissionedas this scheme, each secondary
transmitter appropriately adjusts its power in order notdase any harmful interference to the

potentially active primary node(s), preserving transpeyeof the secondary activity.



Overall, the main benefits of this work are twofold: (a) ancgdint tradeoff between sensing
time and data transmission time and its relevant computasiono longer an issue; and (b) the
self-interference problem is effectively mitigated, grtbe simultaneous transmission and spec-
trum sensing are implemented by different (i.e., suffidieseparated in terms of transmission

wavelength) nodes.

B. Contributions

The contributions of this work are summarized as follows:

« A new mode-of-operation and protocol design for cognitietworks is presented and
analytically described. The novelty of this scheme relieslee fact that it uses the spatial
multiplexing transmission scheme, where multiple sirgienna secondary nodes may send
their streams simultaneously to a multiple-antenna seyn@ceiver, under the presence of
multiple primary nodes. Independent and non-identicai$tributed (i.n.i.d.) statistics are
considered, suitable for practical networking setups, (déferent link-distances amongst
the primary and secondary nodes). To this end, the considereondary system forms a
(virtual) D-MIMO infrastructure. The receiver simultanesdy performs signal detection and
spectrum sensing in the same frame duration. Further, abditgdd power allocation scheme
is applied on the involved secondary transmitters.

« New analytical closed-form expressions are derived foresamportant system measures
when all signals undergo Rayleigh channel fading, nameéy/outage and detection proba-
bilities, the transmission power for each secondary nodktla@ probability of unexpected
interference at the primary nodes.

« As it is explicitly indicated in the upcoming analysis, thecaracy of the detection scheme
plays a key role to the system performance. Thereby, we duitivestigate the detection
performance with the aid of the receive operating charesties (ROC) curves, and a solid
performance measure, the area under the ROC curve (AUC).wAaxact closed-form
expression of AUC for the considered system is also obtained

« For the above derivations, the channel aging effect andreiasstimation errors are both
considered. In other words, the analysis incorporatesabetidchannel state information
(CSI) and/or imperfect CSI for i.n.i.d. Rayleigh fading anals. The results are simplified

for the scenario of independent and identically distriduie.d.) statistics.



C. Organization of the paper

The rest of this paper is organized as follows. This Sectiomtioues with some notational
definitions for the most important mathematical symbolsdusethe subsequent analysis. In
Section[l, the considered system model and the proposecd: rabdperation are described in
detail. Key statistical derivations regarding the recdiggnal-to-interference-plus-noise ratio
(SINR) are obtained in Sectidnllll. In SectidnllV, the corsied system is thoroughly ana-
lyzed, whereas the aforementioned performance measwresbtained in closed form. Further,
important insights regarding the transmission power usethe secondary nodes are presented
in Section[Y. In Sectio_VI, the proposed framework is vak@thand cross-compared with
simulation results, while some useful engineering insgéate revealed. Finally, Sectign VII
concludes the paper.

Notation Vectors and matrices are represented by lowercase boddetyp and uppercase bold
typeface letters, respectively. AlsX ! is the inverse ofX andx; denotes theth coefficient
of x. A diagonal matrix with entrieg, - - - , z,, is defined asliag{z;}"_,. The superscript§ )’
and (-)* denote transposition and Hermitian transposition, regpy, || - || corresponds to the
vector Euclidean norm, whilé- | represents absolute (scalar) value. In additibnstands for
the v x v identity matrix, E[-] is the expectation operatof'&, represents equality in probability
distributions and Ri] returns probability. Alsofx(-) and F'x(-) represent probability density
function (PDF) and cumulative distribution function (CDB) the random variable (RV)X,
respectively. Complex-valued Gaussian RVs with m@aand variances?, while chi-squared
RVs with v degrees-of-freedom are denoted, respectively;/d$., %) and X3, . Furthermore,
['(a) = (a — 1)! (with a € N*) denotes the Gamma function [20, Eq. (8.310.1)],, ) is the
upper incomplete Gamma function_[20, Eq. (8.350.2)], whilg is the Pochhammer symbol
with p € N [20, p. xliii]. Further, Jy(-) represents the zeroth-order Bessel function of the first
kind [20, Eq. (8.441.1)],F\(-,-;-) denotes the Kummer’s confluent hypergeometric function
[20, Eq. (9.210.1)],F:(+, -, ;) denotes the Gauss hypergeometric functior [20, Eq. (9],100)
and@,(-,-) is the generalizedth order Marcumg function [21].



II. SYSTEM MODEL

Consider a cognitive (secondary) communication systemgclwls consisted ofn,. single-
antenna cognitive transmitters and a receiver equippéda Wit- m,. antennasoperating under
the presence ofz, single-antenna primary nodes. Notice that althodgbr m,. is a necessary
condition in order to capture the available degrees-aeoan during the detection of the streams
from the cognitive transmitting nodes, it holds théts (m, + m.). Moreover, i.n.i.d. Rayleigh
flat fading channels are assumed, reflecting non-equalndissaamong the involved nodes with
respect to the receiver, an appropriate condition for pralcapplications.

The spatial multiplexing mode of operation is implementethie secondary system, where
independent data streams are simultaneously transmigtéoebcorresponding secondary nodes.
A suboptimal yet quite efficient detection scheme is adgptesl so-called linear MMSE, which
is performed at the secondary receiver.

Letting M = m,, + m,, the received signal at theth sample time-instance reads as

~

yln] = Hin]s[n] + win], (1)

where y[n] € CN*!, H[n] € CV*M, s[n] € CM*! and w[n] € CV*! denote the received
signal, the estimated channel matrix, the transmittedasignd the additive white Gaussian noise
(AWGN), respectively. It holds thas 4 CN (0, NoIy) with Ny denoting the AWGN variance
ands = [s1,. .., Sm,, 51, - » Sm] " With E[ss*] = T, In addition,H = [hy, ..., h,,  hy, ... h,],
whereash, 4 CN(0, Bily), for 1 <i < M, with ; £ p;/(d), wherep;, d;, andw; correspond
to the signal power, normalized estimated distance (wittference distance equal tkm) from

the receiver and path-loss exponent of itretransmitter, respectively.

A. Protocol Description

The mode of operation for the considered cognitive systetonstituted by three main phases;
namely, thetraining, data transmissiorand spectrum sensinghases, which are periodically
alternating.

In the training phase, all the involved nodes (i.e., primangl secondary transmitters) broad-

cast certain (orthogonal) pilot signals. The secondargivec monitors the available spectrum

11t follows from the subsequent analysis that the considsystem is equivalent to the case when a single cognitivetmiter

is used equipped witln. antennas.
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Fig. 1: a) Flowchart of the proposed mode of operation at #eoisdary receiver; b) The
considered system configuration, wheyeFs and SR stand for thih secondary transmitter (with

1 <7< m,), jth primary transmitter (with. < j <m,) and secondary receiver, respectively.

resources in order to acquire the instantaneous channed §am all the existing nodes (both
primary and secondary). Meanwhile, all the secondary tmétsrs also monitor the channel in
order to acquire channel gains between the primary nodeshamaselves. This occurs in order
to appropriately modify their power, which will use for pat&l transmission in the subsequent
data phase. It is assumed that the channel remains constamg this phase. However, its status
may change in subsequent time instances.

Afterwards, the system enters the data phase, where thadsegonodes stay inactive for
one symbol-time duration. During this time period, the setayy receiver senses the spectrum
SO as to capture the presence of a primary communicatiovitgodir not. In the former case,
no transmission activity is performed by the secondarysimatiers (lack of triggering from
the secondary receiver in this case is interpreted as a husgtram notification to all the
transmitters). This procedure is repeated in every sulesggsymbol-time duration, until the
receiver senses the spectrum idle. In the latter case, t@vee broadcasts a certain probe
message in order to initiate the secondary transmissiofgihce, in the next symbol-time
instance, all active secondary nodes may simultaneousshgmnit their data streams. Upon the
overall signal reception, MMSE detection is performed a #slecondary receiver and all data
streams are decoded concurrently.

After the removal of all secondary signals from the receiggghal, the spectrum sensing

phase is implemented (within the same symbol-time insfavageere the receiver monitors the



remaining signal for the presence of a potential primariegtIf the remaining signal is sensed
idle (i.e., only the presence of noise), the same procedaspsk on (i.e., data transmission-
spectrum sensing), until the next training phase. If attlea® primary signal is detected at
the remaining signal, then the receiver immediately braatfcanother certain message in order
to coarsely finalize all the secondary transmissions. Arr@pjate ceiling on the transmission
power of the receiver is utilized in order not to cause unetge co-channel interference to the
primary communication(s). Similarly, all the active sedary transmitters use a relevant ceiling
for their transmissions due to the same reason (explicéildedn this ceiling are provided into
the next section). The basic lines of reasoning of the prepesheme are sketched in Figs. 1a
and[1b.

It is noteworthy that the motivation behind the proposedesysconfiguration relies on certain
conditions and/or limitations, which are viable in variaeslistic networking implementations.
More specifically, conventional CR services based on teileni white spaces may use the
traditional quiet spectrum sensing (without the trainingage requirement). This is because
the number of TV channels is limited (approximatély~70, each with a bandwidth — 8MHz,
within a total spectrum range betweén — 862MHz [22]). In this spectrum range, spectrum
sensing time is indeed acceptable, whereas most IEEE2 equipments are for indoor instal-
lation and, hence, their power consumption is not an actuablem [23]. Nonetheless, more
sophisticated CR services, such as the IEBH0.4 standard[[24], are designed to use spec-
trum resources from multiple radio-access-technologyTR#eterogeneous primary networking
systems, e.g., cellular systems. Consequently, spectagerfor these systems is emphatically
increased (e.g450MHz-3GHz), while the spectrum sensing time and the corresponelieggy
cost are extremely increased in this case, thus, becomimgfficient. To this end, training-based
signaling, which is, in principle, utilized for primary ¢elar configurations can be used from the
cognitive/secondary system to perform spectrum sensidfaacquire important statistics, such
as channel gains and transmission powers of primary nogkgs/uBesides, long-term evolution
(LTE) has initiated a CR-based operation quite recently],[2Bder the concept of licensed-

assisted access/licensed-shared access (LAA/LSA), vdpehates with the aid of training (pilot)

signaling [26]-[28].
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B. Training Phase: Channel Estimation

During the training phase\l/ orthogonal pilot sequences (i.e., unique spatial sigmglagures)
of length M symbols are assigned to the primary and cognitive an’dften, the received pilot

signal can be expressed as
Yy [n] = Hy [n]‘I’ + Wy [n]v (2)

where Yy [n] € CV*M  Hy[n] € CV*M, ¥ € CM*M and Wy [n] € CV*M denote the received
signal, the channel matrix, the transmitted pilot signald AWGN, respectively, all representing
the training phase. Also, the pilot signals are normalizitf/ing E[¢ ¥*] = I,,.

The MMSE channel estimate df;[n], 1 < i < M, is given by [30, Eq. (10)]1A12-[n] =
Bi (No + Zj]‘il @-) - Iy <Z§‘il h;[n] + Wtr[n]), wherewy[n] is the AWGN at theith channel
during the training phase. It is noteworthy that with MMSEanhel estimation, the channel
estimate and the channel estimation error remain uncteckl@.e., due to the orthogonality

principle [31]). In particular, we have that
h;[n] = hy[n] + hyn], 1<i< M, (3)

where h; 4 CN(0, (8; — B,-)IN) is the true channel fading of thah transmitter anch, 4
CN (0, 31Iy) denotes its corresponding estimation error withe 53/(23{1 B; + No) [30, Eq.
(12)].

Except the channel estimation errors, the channel agirgcteficcurs in several practical
network setups. This is mainly because of the rapid chanaahtons during consecutive
sample time-instances, due to, e.g., user mobility andéwere fast fading conditions. The
popular autoregressive (Jakes) model of a certain ofd€r [B&ed on Gauss-Markov block

fading channel, can accurately capture the latter effecteMspecifically, it holds that

M-1
h;[n] = a™hy[n — M] + Zamei[n_m]7 (4)
m=0

2In various network setups, primary users periodically grait training signals intended for primary receivers toisiss
them in channel estimation and/or synchronization [22.3.1]. Building on this feature, secondary nodes canhaaarthese
transmissions to capture their own estimates amongst thegyr nodes and themselves. The first step is to enable timnga
process for the secondary nodes along with the primary dbeisig so, the secondary receiver is able to acquire CSkttai

from both networks.
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wherea £ Jy(2nfpT,) with fp and7T, denoting the maximum Doppler shift and the symbol
sampling period, respectively. Moreovey, = Z%:‘Ol a™e;[n — m] stands for the stationary
Gaussian channel error vector due to the time variation efcthannel, which is uncorrelated
with h;[n — M], while €, £ CA(0, (1 — a?)B,Iy). For the sake of mathematical simplicity
and without loss of generality, we assume that the chanmeaires unchanged over the time
period of training phase, while it may change during the sghent data transmission phase.

Thus, adopting the autoregressive model of order die, @pldies to

h;[n] = ah;[n — 1] + e;[n). (5)
Substituting [(B) into[(5), we have tHat
h; = ah; + ah; +e; £g +e, (6)

whereg; < CN(0, (8; — f;)a’Ty) ande; < CA'(0,02; + (1 — a?)B;)Tx).
It should be noted that the latter model [d (6) combines bbth dhannel aging effect and

the channel estimation error. Hence, by definig = 81, 8m,s 81, 8m.] aNd E =
[€1,...,€m,, €1,..., €], (1) can be reformulated as
y=Gs+ Es+w. (7)

C. Data Transmission Phase: Signal Detection

Benefiting from the training phase whereby estimating thendel gains of all the signals,
the cognitive receiver proceeds with the detection/dewpdif the simultaneously transmitted
streams from then. cognitive nodes. The mean-squared error (MSE) ofitheeceived stream

(1 <i<m,)is formed as
2
MSE = & [|s; - o'y ["]. ®)
where ¢, is the optimal weight vector.

Corollary 1: The optimal weight vector, which minimizes MSE of tith received stream is
given by

¢ = \/Bi (Cdiag{5,}},C* + NoIy) ' ¢, (9)

3In what follows, the time-instance index is dropped for ease of presentation, since all the involstiom vectors are

mutually independent.
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whereC € C¥*M andC £ CA(0,1y), while c; is its ith column vector.

Proof: The proof of [9) is relegated in AppendiX A. u
At the receiverg!'y is utilized for the detection of théh transmitted stream, yielding

5= Oy = g+ ) dlgs; + ¢l Es+ ¢f'w

j#i
= (A_lgi)H g S; + (A_IGZ‘)H giSi + Z ¢Z-ng8j + ¢Z-LES + QbZ{W, (10)
&P, i _
AR,

where A £ Cdiag{3;}}L,C* + Nyly.

D. Spectrum Sensing

ED is the optimum detection method, since channel gainsakignd noise variances are all
known (or estimated)_[33]. In addition, the use of multiplgennas at the secondary receiver
can overcome the estimation uncertainty and improve thimpeance of spectrum sensing, by
exploiting many available observations in the spatial dona4]. Let the remaining signal, after
decoding then, secondary signals (thus, after removing their impact froearemaining signal),

be defined as. Then, [T) becomes
r = G,s, + E,s, + w = C, diag{\/5;}/"s, + W, (11)

wherer € CNV*!, G, € CV*™, E, € CV*™, C, € CV*™ ands, € C™*! denote the
remaining received signal, the true channel matrix, thenagton error matrix, the equivalent
(joint) channel matrix and the transmitted signal from thiémary nodes, respectively. Also,
C, 2 CN(0,Iy).

In practice, perfect removal of th@. secondary signals (after decoding) may not always be
the case due to, e.g., hardware constraints and/or impaisna¢ the secondary receiver. Hence,
this process may cause residual noise onto the remainimglsggior to spectrum sensing. In

this case,[(111) becomes
r = C, diag{\/B;} /"5, + W', (12)

wherew’ 2 w + w,. with w, being the additive post-noise after the aforementionedeifept

cancellation/removal. Assuming that. is a zero-mean Gaussian distributed vector [33]] [35],
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we can model the post-noise as € RV*! while w. 2 A(0,0%Iy), whereo? denotes the

level of impact due to imperfect cancellation of the secopdagnals. Typically, the value of
o2 can be captured by the secondary receiver via measuremaiing eperation[[36] and/or is
predetermined from the system manufacturer. With kneyinthe total noisew’ is modeled as
w' £ CN(0, NoIy) with Ny £ N, + o2

Thereby, the binary hypothesis test is formed as

L—1
Hi
Teo 2 [r(D))* s A, (13)
1=0 Ho

where L and A denote the number of samples for the received signal andnge threshold,
respectively. Moreover, the two hypothesks and 7{; correspond to the cases of no primary
signal transmission arat leastone primary signal transmission, respectively. They apiexy

defined by the structure of the received signal’'s covarianatrix as

Ho : Elrr’] = NoIy, no signal is present (14)
H,: E[rr*] = any positive semi-definite matrix.

[1l. STATISTICS OFSINR

We commence by defining the SINR for each stream with its sporeding CDF with
respect to the cognitive communication performance, ¥a¢id by the false alarm and detection
probabilities with respect to the spectrum sensing perémge. Then, the unconditional outage
probability of the considered system is formulated in a etbsorm. Then, other important
system measures are also obtained in closed form, namel@, Aie transmission power of
the secondary nodes, and the probability of unexpectechaor®l interference at the primary
nodes.

Notice from [7) that(g; + €;) 4 VBic; and, thus, it is straightforward to show that g
CN(0,0253; + (1 — a2)B,Iy) = (\/aQBZ- + (1 — a?)B;)c;. Hence, it follows that

Ale — A \/04261' + (1 —a?); &, (15)

Bi

“In what follows, for ease of presentation and without losg@tferality, No = Ny is assumed (which implies that’ = w).
On the other hand, when the variance of post-neiseis not available, exact closed formulations for the detecand false
alarm probabilities are not feasible; yet, current onesgg@nted in the following section) can serve as a performbanehmark

or upper performance bounds.
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while based on[(15), we have from {10) that
P, 4 ((@ _ Bz-)ozz) (Ale,) e (16)
Using the above methodology, it also holds frdm] (10) that
Ri = ¢]'CI})s + ¢l'w, (17)

whereIQ\(}') is a special diagonal matrix, which is formed as

. M
| diog {\/B}L
Iy 2 (18)
\/oﬂBi + (1 — o?)p;, for the ith position

Thereby, sinc&[R,RY] = ¢ (CT))2C" + Nyly)a,, the SINR of theith transmitted stream
reads as

SINR, — P <(ﬁz — Bi)a? (A71e;)™ Cz’)2 B <(5z — Bi)a? (A71e;)™ Cz')2
B[RRI oMCIRCH + Noly)d; B (A1) ™ (C(ID)2CH + NoLy) (A-'c,)

((52‘ LS (A_lci)H Ci>2 ((5; — Bz’)a2>2 oy . M ~H -1
N Bi (A_IC,-)Z-{ C; B B; ¢ (Cdlag{ﬁj i=1C +NOIN) Ci.

(19)
The approximation stage in the latter expression is formgadsuming tha(C(Iﬁ))ZCH +
Noly) ~ Cdiag{s;}¥1,C* + NoIy = A. It becomes exact in the case when perfect CSI
conditions OCCLE
Based on Woodbury’s identity [37, Eq. (2.1.5]],(19) careadatively be expressed as
~ 2
(Bi=5)?) "\ s,
Bi 14+ @,

SINR; = (20)

-1

where ®; £ ¢} ( K diag{s;}L, K" +NOIN) ci, while K £ 3" c;. The form of [2D) is
i : - .
preferable than(19) for further analysis, becausand K are statistically independent.

®As indicated from the numerical results provided in Secliih the approximation error remains negligible in moderate

channel estimation error conditions.
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Lemmal: The CDF of SINR for theth transmitted stream for a system with simultaneous

transmitting nodes and’ receive antennas, while< i < m,, is presented in a closed form as

NxM NxM x
FS(INEZ- () = F<I(> o ((B:i—Bi)a2) ’ &)
Bi

where

i—1
N No,,\i—1 N No
FM) () =1 — exp <_% ) [Z G S M

-y 1) - 1!
Bi i=1 (i =1 i=max{1,N—M+1} (i 1)

S (k)
j=N—i

+1 1§n1<~~~<nj§M
x - ] (22)
B’!L
]1 (1 + Ey)
neti
Wheng, = 8, = --- = By 2 3, (22) reduces to
-1 M-l
No M—-1 j
No ) [ (Reg)i o () X e
Fq()]YxM)(y) =1—exp <__Oy> L _ Z . j=N—i+1 ‘
Z 5 i=1 (Z N 1)' t=max{1,N—-M+2} (Z N 1)'(1 T y)M_l
(23)
Proof: The proof is provided in Appendix]B. [ ]

The CDF in [28), implies identical channel fading condisdior all the nodes (i.e., equal
distances with regards to the receiver), which is a rathfeasible scenario. Nonetheless, it can

be used as a performance benchmark and/or a good appraxinveltien; ~ s ~ - - - ~ ().

IV. PERFORMANCEMETRICS
A. Detection Probability

It suffices to show that in the case Hf, hypothesis, even if only the weakest signal is present,

Tep > X should hold. The latter condition can be modeled as

I'min = V 5mincmin8min +w, (24)

where r,;, represents the remaining received signal, when only thegmsi node with the

weakest channel gain (at the secondary receiver) is aclire. transmitted signal from the
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corresponding primary node is defineH agin With E[syins?i,] = 02, AlS0, v/BrinCmin Satisfies
that Buin ||Coin||” = min{ B llcp.l° 1%, wherec,; represents théth column vector ofC,.
Notice that a Gaussian vector is isotropically distributeel., it remains Gaussian distributed
even if its norm is under some constraint|[38, Theorem L.FBlIS,\/BminCmin 4 CN (0, Buinly)

and Bin HcminH2 is the minimum ofm,, non-identicaly3, RVs.

Lemma2: The PDF of)Y £ Bn ||cmin||2 is presented in a closed-form as

SE-E A (- (Be)e) e
= T s exp | — AR
s=1 t;=0 tmy, =0 M F(N) t=1

tFts iy, #ts

Proof: The CDF of) stems as

Py <a]=1— <Pr[51 leal? > 2] - - P, [|em, ||” > x]) . (26)
Using the standard complementary CDF of@, RV into the previous expression yields
me (N, £
' B

t=1

By differentiating [27), it holds that

me N1 exp (—é) mp T <N, m)

P =2 ey U 29

s=1 t=1

t#s
Further, expandin@'(.,.) in terms of finite sum series according o [20, Eq. (8.352.629) is
obtained. m

The detection probability is defined @ = Pr{Tep|H, > A]. In the case of ED, it is given

by [39, Eq. (63)]
2Lo?
V= [\ ) (29)

®In general, the signal variance can be estimated by the sawapiance for sufficiently large number of samples(yésu
(/L) Sr 2 |smin (D] — (1/L) o175 smin(1))?. If the sample mean goes to zero, theh~ (1/L) 1" |smin(1)]*.
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Corollary 2: The unconditional detection probability of the consetesystem with/V receive

antennas andah,, active primary nodes is presented in a closed form as

P A, ﬁ Y R e B (i 2007
B S S !F(N) DR \/;02@
l#s

s=1 t1=0 tmp =0
t1#ts tmp;éts

(30)
where
F (k,m,a,b,p) ér(k)kr(m>§) i a’b*™ (k) exp (-%) kz_i( % )z
P(m) mlpk2m(a? + 2p) =0 a? + 2p
a’b?
o QHMH;M)' (31)

Proof: Based on[(29), the unconditional detection probabilityvialeated as

00 2Lo%x
P = [ @ [\ ) e (32)

Plugging [25) into[(3R), integrals of the following form agmy

/ " exp(—pa)Qu(av/E, B)de, {a,bm,p,k} > 0. (33)
0

Fortunately, such integrals were analytically evaluated4id, Eq. (12)]. Thus, using the latter
result into [(32) and after performing some straightforwaranipulations,[(30) arises. [ ]

At this point, it should be stated that when the first two argota of,F(.,.;.) are non-
negative integers, this expression can be relaxed to finiteseries including simple elementary
functions, according td [41, Eq. (7.11.1.10)]. In factstis the case presented in31), returning

only simple elementary functions, which reads as

( l-m Q22 \F
a2b2 (m—l)k(—m>
eXp (2a2+4p) E : El(m+1), ’ L>m
k=0

m—Il—1 022

T = = ‘
z+1 E : m+1 2a2+4p>
a2b2

2a +4p k=
l 2,2

k
a?b? (=D 2(:12+4p>
— exp <2a2+4p> ) , l<m

\ =0

(34)

o
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B. False Alarm Probability and Threshold Design

The scenario of a false alarm probability, namel;()\), can be modeled by’;(\) £

PrTep|Ho > A]l. Under theH, hypothesis,Tgp is the sum of the square df L independent
and identically distributed Gaussian RVs with zero mean \&arthnceNy, i.e, Tgp 4 NoXang-
Hence, using the standard complementary CDF of a chi-sdeidré yields
r (NL, ﬁ)

I'(NL)
As it is obvious from [(3b), the false alarm probability is affline operation, i.e., it is

Pr(A) = (35)

independent from the instantaneous channel gain and théeruof primary signals. Thus,
a convenient yet effective strategy is to select the optinemergy threshold using (85). Doing
so, it holds that

N = P(7), (36)

where \* represents the optimum energy threshold for a predetedrsrget (on the false
alarm probability), WhilePf‘l(.) denotes the inverse function &%(.), which can be efficiently
calculated by using well-known inverse algorithms, eld2]]

Afterwards, theonlinedetection probability can be directly computed by caldngiPCENxmp)()\*),

using [30).

C. Outage Probability

Based on the above key analytical results, we are now in dipo$d formulate the outage
probability of the considered system. Outage probabilitye ith stream { < i < m,), Po(f,)t(%h),
is defined as the probability that the SINR of tile stream falls below a certain threshold value

7 2 2% — 1, whereR stands for a given data transmission rate in bps/Hz.

Theorem The outage probability of thé&h stream { < ¢ < m,) is presented in a closed form

as
Pam) = (1= PrOV) PHSYE R (w) + > (1= P00 (x))
j:mc+1
J—me M—j )
< T Patad T (1= Phtda)) FER ). (37)
di=1 da=1
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where PA{A} represents the probability that primary nodes are active, while{&} denotes

that there is no active primary node (i.e., an empty set) agilien time-instance.

Proof: The proof is given in Appendik]C. [ |

It is noteworthy that”’{-} is directly related to the transmission arrival rate of epdimary
node. For instance, a typical model used thoroughly in eg®lsystems for the distribution of

data traffic is the widely known Poisson process [43]. In taise, P {-} follows the inter-arrival
exponential distribution modeled d3,{z} = exp(—vT), wherewv is the average transmission
arrival rate. Nevertheless, the analysis and/or the eficigodeling of transmission arrival rates

represents a research topic out of the scope of current work.

D. Area Under the ROC Curve

The accuracy of ED plays a crucial role to the outage prolgbithich is reflected on the
underlying detection and false alarm statistics. Due te tkiason, we further investigate the
performance of ED using a more solid measure, the so-callé@. A’he main benefit of AUC
is that it jointly evaluates the performance of both the cisd@ and false alarm in the entire
energy threshold region.

More specifically, the conditional AUC (on a given channeinyas defined as/[44, Eq. (5)]

oN
where \' stands for the normalized energy threshald® /N,

AUC(Y) = — / b Pd(X)8P ! <X)dx, (38)
0

Corollary 3: The conditional AUC of the considered ED scheme is preskint a closed form

as

LO_Qy NL—-1 L0'2y
AUC(y):1—exp( ) Z Z'QNLHlFl (NL+Z,NL; e ) (39)

Proof: The detailed proof is presented in Appendix D. [ |
Averaging [(39) over the PDF @¥, the unconditional (average) AUC is presented as follows.

Proposition The unconditional AUC is given by

No1 o one1 (NS BN BT (Z;n bt N)
. 17&5

I=0 k=0 s=1 t;=0 tmy =0 mp 1 o3
tllaﬁts tm:;é [12NEF3) L ( )(Zt 1 gt _) s
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k
m Lo?2
-0 (N2~ En) -
%;ﬁ; k \ 2MNo (Z;npl ﬁlt + LNOP)

X ST (40)
K(NL), [ 1- Loy s
(NL)y ( 2NO(ZZP1%+LNL§)>
Proof: The proof is relegated in AppendiX E. [ |

V. IMPACT OF THE TRANSMISSION POWER USED BY THE SECONDARY NETWORK
A. Transmission Power of Secondary Nodes

First, we define the transmission power of the receiver indase of the aforementioned
signaling process (c.f., Fig.11a). Recall that in the casenthe receiver senses the spectrum busy
(idle) by a primary transmission, upon an ongoing secondanymunication, then it immediately
informs the secondary nodes to terminate (initiate) theingmissions using a certain probe
message. In order not to cause an additional co-channefdargace to the potentially active
primary nodj{i,), the power used for this message is apptepriupper bounded. Particularly,

it is defined

PR = min {pma)n %} > (41)

whereQr = E[max;{||g:||*}:-], wy denotes the outage power threshold of the primary service
with regards to the secondary transmission(s), which igraed as a predetermined parameter,
already known to all the secondary nodes, ang. denotes the maximum achievable (uncon-

strained) power of the secondary system.

Corollary 4: The aforementioned transmission power at the receiveris expressed as

m=(1 +@§_, 42)

Pmax Wth

where(Qr is given in a closed form by

ZZ ey RZZ PPN

ni=1 ny= lkl =0 kl:()
————

N1 FEng £l

mp My mp mp N-—1 N—l(

1)

(43)

"Note thatpr is the fixed power of the secondary receiver, whereas it isrdgbed by theQr statistic, which is computed

during the training phase. It can be updated in a per framis,bass., in a consecutive training phase.
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4

wherebg,; = (8; — Bi)oﬂ is a certain parameter corresponding to the link betweemsg¢bhendary

receiver and théth primary node [ < i < m,).

Proof: The proof is provided in Appendix] F. [ |

Notice thatpy is formed by using the channel estimates from the trainingsphHowever,
since the secondary receiver has full awareness of the eh&éinme-variation (i.e., knowny),
(@3) represents quite an efficient ceiling on the correspanttansmission power.

The transmission power for all the secondary transmitters lze obtained quite similarly.
In particular, referring back to the structure B, = [hy,... h, h;,... h, | and ¥ =
Y1, W Y15 Py, ] from (@), each secondary transmitter sends its pilot in dses
sponding symbol-time duration. Notice that the pilots frprimary nodes are foregoing the ones
of the secondary nodes. Hence, each secondary transnaitte&apture its channel response with
regards to every primary node, by monitoring the first pilots, during the training phase. Then,
using MMSE channel estimation (as explicitly describediegr the jth transmission power at

the corresponding secondary noge, is determined by

1 AN
pj:( +&) L 1<j<m. (44)
Pmax Wth

where @; is directly obtained from[(43), but denoting thth secondary transmitter this time,

instead of the secondary receiker.
In the remaining symbol-time duration of training phaseevehthe secondary pilot symbol
transmissions are sequentially establishgd,}’; are used to inform the secondary receiver

about the corresponding channel states.

B. Unexpected Co-channel Interference at the Primary Nodes

All the simultaneous secondary transmissions should nasecanexpected co-channel inter-

ference to any primary node. Thereby, the following cowditshould be satisfied

Ij S Wth, 1 S ] S my, (45)

8We assume that the secondary system is not aware of thetms¢anis transmit/receive status for each primary nodecht ea
frame duration. Hencel r is formulated so as to proteell the links between secondary receiver and primary nodeshdn t
simplified scenario when the secondary receiver knows theterimary receiver at each frame (or when it is fixed), then
is still obtained from[(4B) by settingn, = 1.

®We use channel reciprocity between primary and secondatesnin order to formulate the aforementioned transmission

powers in [(41) and(44).
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whereZ; denotes the aggregate interfering power to itieprimary node from all the secondary
transmitters.

In order to analytically evaluat&;, consider the case when the receiver senses the channel
busy during an ongoing multi-noden(-fold) secondary transmission and then broadcasts its
termination signal back to the secondary transmittersn®ao, the worst case scenario in
terms of unexpected co-channel interference includesdgesgate interfering power ofi. + 1
signals. Assuming that the phases of the individual seagrsignals fluctuate significantly, due
to mutually independent modulation, the latter aggregatterfierence can be efficiently formed
as an incoherent addition of the powers fram -+ 1 signals [45], which is a suitable model for
practical applications [46]. Hence, for Rayleigh fadingaghels, each secondary signal power
follows the exponential distribution and, thus, is distributed by[[477, Eq. (5)]

me+1 7 B exp (_pg )
— Pidj,i L1, ;—
= gt | 1= teomelt @)
1= — 9
ki

whereg;; = d;;" denotes the link distance between tjta primary andith secondary node,
while R stands for the secondary receiver. Then, using the starmarglementary CDF of
exponential RVs, the probability of unexpected co-chammelrference at thgth primary node
is expressed as

. me+1 i
PrZ; > wy] = / fr(@de =Y [ T] (qupi]m P <_ - ) . “n

Win i=1 \ k=1 Pidjii
kit

VI. NUMERICAL RESULTS

In this section, analytical results are presented and @rosgared with Monte-Carlo simula-
tions. There is a good match between all the analytical aadebpective simulation results and,
hence, the accuracy of the proposed approach is verifiedcdfiemh, for notational simplicity
and without loss of generality, we assume a common pathelgssnenty = 4, corresponding to
a classical macro-cell urban environmeént [43, Table 2.Bjlawve fix the probability of transmis-
sion for all the primary nodeg?, = 0.5. Also, we setx = 0.1, ag = 1 andp.x = 20dBm, while
all the primary nodes usg,., for their transmissions. Some of the following numericaulés

are presented with respect to the input SNR of the primanesodferred as SNR pax/No.
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Fig. 2: Analytical ROC curve of the considered schemerfgr= 4 with d; = 0.31, d, = 0.1,
ds = 0.15, andd, = 0.2.
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Fig. 3: Analytical ROC curve of the considered schemeNot 2, various numbers of primary

nodes and identical link distances with respect to the stargnreceiver, i.e.{d;}."% = 0.1.

Figured 2 andl3 present the ROC curves for the scenario ofdemmical and identical statistics,
respectively. Obviously, the performance of detectiorbplulity against false alarm probability
improves for higher number of receive antennas. This ish&renhanced when the available
number of samples is increased. In addition, the presenceooé primary users degrades the
detection performance, since adding more unknown primgnyats would be indistinguishable
from noise. This result is in agreement with [48, Fig. 7].

Similar conclusions can be drawn from Hig. 4, where the AU@gumance is presented as a
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Fig. 5: Detection probability vs. various input SNR valuesthe primary nodes, whefil;} ", =
0.3, m, = 2 and P; = 0.01.

means of a more concrete performance tool in the entire griergshold region, not only for the
optimum \*. In fact, the unconditional (average) AUC performance igicted against different
distances between the primary nodes and secondary reckican be seen that the detection
accuracy is reduced for far-distanced links, as expectad, td the unavoidable propagation
attenuation on the received signals. Severe fading dueofmagation losses results to noise-like
signals. On the other hand, increasing SNR and/or the nuofb@railable samples for sensing

result to a more accurate detection performance (i.e., Aelt@id to unity).Additionally, the
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Fig. 6: CDF of the received SINR of & x M system vs. various values of the normalized

outage threshold, whefy;}, = 0.8 + 0.05i.
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Fig. 7: Outage probability of the considered scheme vsouarivalues of the normalized outage

threshold for identical link distancesl; }, = 0.8, while m, = 2.

presence of more receive antenna elements enhances theaeperformance of the secondary
receiver, as indicated in Figl 5. This occurs due to the amed spatial diversity for highe¥
values, which is manifested by capturing many differentiapabservations for the same sample
time-instance.

In Fig.[8, the CDF of the considered (virtual) x M MIMO system is presented with non-
identical statistics, where the analytical curves are thase(21). As can be seen, the performance

improves for higher number of receive antennas with fixedlmemof simultaneously transmitting
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normalized outage threshold (for the primary service), whe= m, = 4.

nodes, because of the emerged diversity gain. On the otht, hlae performance is reduced
for higher number of simultaneously transmitting nodes ariked number of receive antennas,
since adding more co-channel interfering signal power albgg the total SINR. Importantly,

the difference between the analytical curves and simulgimints is rather marginal (there is a
difference due to the approximation stage[in] (19), yet itather negligible), which enhances
the efficiency of the proposed scheme.

Moreover, Fig[7 demonstrates the total (unconditionatage performance for some selected
system scenarios. It is obvious that the target on the fdé&sengprobability (i.e., the efficiency
of detection scheme) and the available spatial DOFs playyardde to the outage probability.
Finally, Fig.[8 presents the probability of unexpected riieience at the primary nodes. To
preserve non-symmetrical distances (i.e., non-idensitzistics appropriate for practical setups)
let g;; = d1(0.01i+0.015). Interestingly, the latter probability is reduced for shiiak-distances
between secondary and primary nodes and/or increased nwhkecondary transmitters. As
an illustrative example, the cases whén < 0.7 return negligible probability of unexpected

interference for practical applications (i.e., bela®r ).

VIlI. CONCLUSION

A D-MIMO cognitive (secondary) system was investigatedichtoperates under the presence

of multiple primary nodes/users. A novel communicationtpcol was presented and evaluated
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when the secondary receiver utilizes MMSE detection. Neshdical expressions for important
performance metrics were derived in closed form, such astkege and detection probabilities,
the unconditional AUC and the impact of the transmission power from the secontathe

primary system. It was demonstrated that the probabilityunéxpected interference to the
primary nodes remains quite low, by following the proposedlglines, while the performance

of the secondary system is directly associated with theasigatection accuracy.

APPENDIX
A. Derivation of [9)
From (8), it holds that
MSE: = E [(si — ¢'y) (s: = #l'y)"| =1+ ¢/'Ad, — siy", — l'ys]"
=1+ (¢H (g +€)"A ) A (¢H (g + Gi)HA_l)H —(gi+€)"A7 (g + &),

(A.1)
whereA £ E[yy"] = Cdiag{8;}}L,C*+ N,y represents the covariance matrix of the received
signal. Since only the first term of (A.1) depends ¢pn the optimal solution that minimizes
MSE; is ¢, = A~!(g; +¢;). Finally, noticing that G + E) = Cdl&g{f}J 1» @) can be easily
extracted.

B. Derivation of [21)

From (20), it holds that PSINR; < x| equals[(2ll). Hence, the derivation &f. (-) is required
to obtained the CDF of SINR for tha&h transmitted stream. To this enH,(-) is derived in a
closed form as[[49, Eq. (11)]

F ™ (y) =1 —exp (—%y) Z (B.1)

where A(y) =1 whenN > M +i—1, or
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whenN < M +i—1. With the aid of [50, Egs. (65) and (70)], a combined formatid the latter
expression can directly be derived [n]22) ahd| (23) for the-identical and identical statistics,
correspondingly.

C. Derivation of [(3¥)

Outage probability can be modeled by using the total prdiatiheorem. Specifically, an
outage event may occur if one of the following conditionsdhdla) when there is no active
(transmitting) primary node, the receiver accurately ssitise idle spectrum, and evaluates outage
probability under the presence of. independent signals; (b) when there is a miss detection
event (i.e., the complement of detection probability) unthe presence of one primary node
averaging over its related probability; or (c) when thereaisniss detection event under the
presence of two primary nodes averaging over its relatetatmitity, and so on.

Condition (a) is explicitly defined in the first term &f (37)hike conditions (b), (c) and so on
are modeled by the second term [ofl(37) involving nested fiita series (corresponding to the
cases fromn,. + 1 to m. + m,, total active transmitted streams). Usigl(2L).] (30)] (354 [36)

into (37), outage probability can be directly computed in@sed-form, concluding the proof.

D. Derivation of [39)

Plugging the first derivative of the false alarm probabitify; (\') /0N = N?NE~1exp(—\"?/2)
J(2NEFID(N L)) and [29) into[(3B), we have that

0o 2L 2
AUC(Y) = Wl(i\@)/o tNEL exp (—%) Qnr ( % f) (D.1)

A closed-form solution for the latter expression was regubiin [40, Eq. (8)]. Thus, after some

simple manipulations[ (39) is extracted.

E. Derivation of [4D)

In principle, the unconditional AUC can be capturedA$C £ [~ AUC(z) fy(x)dz. Hence,
using [39) and[(25), while utilizing [20, Eq. (7.621.4)], wave that

NL—1 mp N—1 No1 (NLYB - BN 5mimPF (Z tl+N)
l;és

m:l—ZZZ'“Z S AN

=0 s=1 t1=0 tm, =0 1 o}
t117$ts tms# l|2NL+lt1 ( ) <Z;ﬂp1 Bt _) l#s
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m.
P Lo}

xoFy | NL+1,Y t,NL; e (E.1)
2 (TR

Using [51, Eq. (07.23.03.0145.01)] into (E.1), we arrive(4).

F. Derivation of [42) and[{43)
Regarding the derivation of (#2) and recalling the Rayldayting condition, the PDF of the

SNR for the probe message transmitted from the receivembeso

No exp(— Noz. )

Pmax X R Wth
pmaxXR ’ QR < Pmax ’
fxp(z) = (F.1)
NoQpr=
NoQ R exp (— o X 1 ) Qp > o
wih X R ) R Pmax

where X and X denotes the instantaneous and average input SNR of theveeddence, it

yields that

Fxp(@) = 1= (1= Fxyipn(@)) (1= Fyyem (@) = 1—exp | = a

(F.2)
By differentiating [[E.2), the corresponding PDF follow tblassical exponential PDF with the
yielded transmission power as defined in[(42).

Based on[{[7) and(11), we have that the actual channel matrixhe primary nodes can
be expressed a&, = C, diag{\/B;} .-, — E,. Although the instantaneous valuesfare not
available, its distribution is known froni](6), using MMSEasinel estimation. It easily follows
that

mp

G, < C, diag { (Bi — Bz’)a2} . (F.3)

=1
Thus, using the standard PDF/CDF expressions for chi-squBvs, the maximum squared

column norm ofG, is distributed as

fmaxi{”gi”z}?;pl (z) = Z be,ing(l") H FbR,ing (z)
i
N-1 N b
mp pIN— exp <_b22> mp X -1 (b;l)
= : 1— — : F.4
2 Y T(N) 11 P ( bR,Z-) k! (F4)

i=1
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invoking the product expansion identities [52, Eq. (6H.4) becomes after some simple

manipulations

Mp  Mp Iy,N M mp N-—1

)bg b
sttt @ =D T N}; DRI Z H o

i=1 [=0 ni=1 n;=1k1=0 k=0
———
S S
!
l —
x exp | — bR,H‘E b, | @ | x2=t BN (F.5)
t=1

Thereby, recognizing thap = [/~ « masx,{ g2} (x)dx and utilizing [20, Eq. (3.381.4)][.(43)

is derived.
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