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Abstract

Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for

future communication systems. In this paper, we study energy-efficient UAV communication with a

ground terminal via optimizing the UAV’s trajectory, a new design paradigm that jointly considers

both the communication throughput and the UAV’s energy consumption. To this end, we first derive a

theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAV’s

flying speed, direction and acceleration, based on which the energy efficiency of UAV communication

is defined. Then, for the case of unconstrained trajectory optimization, we show that both the rate-

maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-

inefficient in general. Next, we introduce a practical circular UAV trajectory, under which the UAV’s

flight radius and speed are optimized to maximize the energy efficiency for communication. Furthermore,

an efficient design is proposed for maximizing the UAV’s energy efficiency with general constraints on its

trajectory, including its initial/final locations and velocities, as well as maximum speed and acceleration.

Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV

communication as compared with other benchmark schemes.

Index Terms

UAV communication, energy efficiency, trajectory optimization, sequential convex optimization.

I. INTRODUCTION

Wireless communication by leveraging the use of unmanned aerial vehicles (UAVs) has

attracted increasing interest recently [1]. Compared to terrestrial communication systems or
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those based on high-altitude platforms (HAPs), low-altitude UAV systems are in general more

cost-effective by enabling on-demand operations, more swift and flexible for deployment and

reconfiguration due to the fully controllable UAV mobility, and are likely to have better communication

channels due to the higher chance of line-of-sight (LoS) communication links.

The main applications of UAV-assisted communications can be loosely classified into three

categories [1]. The first one is UAV-aided ubiquitous coverage [2], where UAVs are employed to

assist the existing terrestrial communication infrastructure, if any, in providing seamless wireless

coverage within the serving area. In this case, the UAVs usually stay quasi-stationarily above the

serving area acting as aerial base stations (BSs). Two typical scenarios are rapid service recovery

after partial or complete infrastructure damage due to natural disasters [3], [4], and base station

offloading in hot spot [5], which are two important scenarios to be effectively addressed in

the fifth-generation (5G) wireless communication systems [6]. Another promising application is

UAV-aided relaying [7]–[9], where UAVs are despatched to provide reliable wireless connectivity

between two or more distant users or user groups in adversary environment, such as between

the front line and the command center for emergency responses or military operations. Last but

not least, UAV systems could also be employed for UAV-aided information dissemination/data

collection [10]. This is especially appealing for periodic sensing or Internet of Things (IoT)

applications, where UAVs could be despatched to fly over the sensors for communications to

greatly reduce the sensors’ operation power and hence prolong the network lifetime.

Despite their ample applications, UAV communication systems face many new challenges [1].

In particular, the endurance and performance of UAV systems are fundamentally limited by the

on-board energy, which is practically finite due to the aircraft’s size and weight constraints. Thus,

energy-efficient communication for maximizing the information bits per unit energy consumption

of the UAV is of paramount importance. Note that energy-efficient designs for UAV communication

systems are significantly different from those in the existing literature on terrestrial communication

systems [11], [12]. Firstly, while the motivation for energy-efficiency maximization in terrestrial

communications is mainly for saving energy consumption and cost, that for UAV systems is

more critical due to the limited on-board energy. For example, given the maximum amount of

energy that can be carried by the aircraft, an improvement in energy efficiency directly increases

the amount of information bits that can be communicated with the UAV before it needs to

be recalled for recharging/refueling. Secondly, besides the conventional energy expenditure on
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communication-related functions, such as communication circuits and signal transmission, the

UAV systems are subject to the additional propulsion power consumption for maintaining the

UAV aloft and supporting its mobility (if necessary), which is usually much higher than the

communication power consumption (e.g., hundreds of watts versus a few watts). As a result,

the communication energy can be even practically ignored compared to the propulsion energy.

Note that the UAV’s propulsion energy consumption is determined by its flying status including

velocity and acceleration, which thus need to be taken into account in energy-efficient design

for UAV communications.

In this paper, we study the energy-efficient designs for a point-to-point communication link

with a UAV employed to communicate with a ground terminal (GT) for a finite time horizon. The

objective is to maximize the energy efficiency in bits/Joule via optimizing the UAV’s trajectory,

which is a new design framework that needs to jointly consider the communication throughput

and the UAV’s propulsion energy consumption. Intuitively, from the throughput maximization

perspective, the UAV should stay stationary at the nearest possible location from the GT so

as to maintain the best channel condition for communication. However, hovering with strictly

zero speed is known to be inefficient (for rotary-wing UAVs) or even impossible (for fixed-wing

UAVs) in terms of propulsion energy consumption [13]. Thus, the energy-efficient trajectory

design needs to strike an optimal balance between maximizing the communication throughput

and minimizing the UAV’s propulsion energy consumption. The main contributions of the paper

are summarized as follows.

• First, we derive a theoretical model for the propulsion energy consumption of fixed-wing

UAVs as a function of the UAV’s flying velocity and acceleration, based on which the

energy efficiency of UAV communication is defined. Note that fixed-wing UAVs usually

have larger payload and higher speed than their rotary-wing counterparts.1 To the best of

our knowledge, this is the first theoretical model that relates the UAV’s energy consumption

with its velocity (i.e., both flying speed and direction) and acceleration, whereas existing

literatures mostly use heuristic energy consumption models only taking into account the

speed parameter [14], [15].

• Next, for the case of unconstrained UAV trajectory, we study the energy efficiency of the

1The analysis in this paper can be extended to rotary-wing UAVs with the energy consumption model modified accordingly.
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rate-maximization and energy-minimization designs to gain insights. It is shown that the

two designs both lead to vanishing energy efficiency, and hence are energy-inefficient in

general.

• We then introduce a practical circular UAV trajectory that is centered at the GT with certain

flight radius and speed, which are jointly optimized to maximize the energy efficiency for

UAV communication. This result provides a practical design on how a fixed-wing UAV

should hover around a GT in order to maximize the communication throughput subject to

its limited on-board energy.

• Furthermore, we study the energy-efficiency maximization problem subject to the general

constraints on the UAV’s trajectory, including its initial/final locations and velocities, as

well as maximum speed and acceleration. An efficient algorithm is proposed to find the

approximately optimal trajectory based on linear state-space approximation and sequential

convex optimization techniques.

Note that energy-efficient UAV communications have been recently studied in e.g., [16], [17],

but without considering the UAV’s propulsion energy consumption. On the other hand, trajectory

optimization for UAV communication systems has been studied for various setups. In [8] and [18],

by assuming that the UAV flies with a constant speed, the UAV’s heading (or flying direction) is

optimized for UAV-assisted wireless relaying and uplink communications, respectively. In [19],

a UAV-based mobile relay is used for forwarding independent data to different user groups. The

data volume as well as the relay trajectory in terms of the visiting sequence to the different user

groups are optimized based on a genetic algorithm. In [20] and [21], the deployment/movement of

UAVs is optimized to improve the network connectivity of a UAV-assisted ad-hoc network. In our

prior work [9], we study the throughput maximization problem of a UAV-enabled mobile relaying

system via joint source/relay power allocation and trajectory optimization. However, none of the

above works on trajectory optimization considers the energy efficiency of the system. It is also

noted that aircraft trajectory optimization has been studied for other systems not specifically for

communication purposes. For instance, mixed-integer linear program (MILP) has been widely

applied for trajectory planning for UAV systems to ensure terrain or collision avoidance [22], [23].

In [15], the authors study the energy-aware coverage path planning for aerial imaging purposes

with the measurement-based energy model of a specific quadrotor UAV. To the authors’ best
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knowledge, this paper is the first work that studies the energy-efficient UAV communication with

a generic UAV energy consumption model, which provides a new framework for designing the

UAV trajectory parameters such as its instantaneous velocity and acceleration for communication

performance optimization.

The rest of this paper is organized as follows. Section II introduces the system model and

defines the energy efficiency for UAV communication based on a theoretically derived model

on UAV propulsion energy consumption. In Section III, the energy efficiency of unconstrained

trajectory optimization for rate maximization or energy minimization is studied. Section IV

considers the circular trajectory for energy efficiency maximization. In Section V, an efficient

algorithm is proposed for the generally constrained trajectory optimization for energy efficiency

maximization. Section VI presents the numerical results. Finally, we conclude the paper in

Section VII.

Notations: In this paper, scalars are denoted by italic letters. Boldface lower-case letters

denote vectors. RM×1 denotes the space of M -dimensional real-valued vector. For a vector a,

‖a‖ represents its Euclidean norm, and aT denotes its transpose. ln(·) and log2(·) denote the

natural logarithm and logarithm with base 2, respectively. tan−1(·) is the inverse tangent function.

For a time-dependent function x(t), ẋ(t) and ẍ(t) denote the derivative and double derivative

with respect to time t, respectively.

II. SYSTEM MODEL AND UAV ENERGY EFFICIENCY

A. System Model

As shown in Fig. 1, we consider a wireless communication system where a UAV is employed

to send information to a GT. Our objective is to optimize the UAV’s trajectory so as to maximize

the energy efficiency in bits/Joule for a finite time horizon T , where energy efficiency is defined

as the aggregated information bits that are transmitted to the GT normalized by the UAV’s total

energy consumption over the duration T .

Without loss of generality, we consider a three-dimensional (3D) Cartesian coordinate system

such that the GT is located at the origin (0, 0, 0). Furthermore, we assume that the UAV flies

horizontally at a constant altitude H . Denote the UAV trajectory projected on the horizontal

plane as q(t) = [x(t), y(t)]T ∈ R2×1, where 0 ≤ t ≤ T . Thus, the time-varying distance from
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Fig. 1: Point-to-point wireless communication from a UAV to a ground terminal.

the UAV to the GT can be expressed as

d(t) =
√
H2 + ‖q(t)‖2, 0 ≤ t ≤ T. (1)

For ease of exposition, we assume that the communication link from the UAV to the GT

is dominated by the LoS channel. Furthermore, the Doppler effect due to the UAV mobility is

assumed to be perfectly compensated. Therefore, the time-varying channel follows the free-space

path loss model, which can be expressed as

h(t) = β0d
−2(t) =

β0

H2 + ‖q(t)‖2
, 0 ≤ t ≤ T, (2)

where β0 denotes the channel power at the reference distance d0 = 1m. Assuming constant

power transmission P by the UAV, the instantaneous channel capacity in bits/second can be

expressed as

R(t) =B log2

(
1 +

Ph(t)

σ2

)
=B log2

(
1 +

γ0

H2 + ‖q(t)‖2

)
, 0 ≤ t ≤ T, (3)

where B denotes the channel bandwidth, σ2 is the white Gaussian noise power at the GT receiver,

γ0 = β0P/σ
2 is the reference received signal-to-noise ratio (SNR) at d0 = 1m. Thus, the total

amount of information bits R̄ that can be transmitted from the UAV to the GT over the duration

T is a function of the UAV trajectory q(t), expressed as

R̄
(
q(t)

)
=

∫ T

0

B log2

(
1 +

γ0

H2 + ‖q(t)‖2

)
dt. (4)
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B. UAV Energy Consumption Model and Energy Efficiency

The total energy consumption of the UAV includes two components. The first one is the

communication-related energy, which is due to the radiation, signal processing, as well as other

circuitry. The other component is the propulsion energy, which is required for ensuring that the

UAV remains aloft as well as for supporting its mobility, if needed. Note that in practice, the

communication-related energy is usually much smaller than the UAV’s propulsion energy, and

thus is ignored in this paper. Furthermore, as shown in Appendix A, for fixed-wing UAVs under

normal operations, i.e., no abrupt deceleration that requires the engine to abnormally produce a

reverse thrust against the forward motion of the aircraft, the total propulsion energy required is

a function of the trajectory q(t), which is expressed as

Ē(q(t)) =

∫ T

0

c1‖v(t)‖3 +
c2

‖v(t)‖

(
1 +
‖a(t)‖2 − (aT (t)v(t))2

‖v(t)‖2

g2

) dt
+

1

2
m
(
‖v(T )‖2 − ‖v(0)‖2

)
, (5)

where

v(t) , q̇(t), a(t) , q̈(t) (6)

denote the instantaneous UAV velocity and acceleration vectors, respectively, c1 and c2 are two

parameters related to the aircraft’s weight, wing area, air density, etc., as expressed in (56) of

Appendix A, g is the gravitational acceleration with nominal value 9.8 m/s2, m is the mass of

the UAV including all its payload.2

The expression in (5) shows that for level flight with fixed altitude, the UAV’s energy consumption

only depends on the velocity v(t) and acceleration a(t), rather than its actual location q(t).

Furthermore, the result in (5) can be interpreted based on the well known work-energy principle.

The integral term in (5), which is guaranteed to be positive, is the work required from the aircraft’s

engine to overcome the air resistance force (or the drag). It depends on the UAV speed ‖v(t)‖,

as well as its centrifugal acceleration a⊥(t) ,
√
‖a(t)‖2 − (aT (t)v(t))2

‖v(t)‖2 , i.e., the acceleration

component that is normal to the UAV velocity vector and causing heading (direction) changes,

yet without altering the UAV speed. The second term in (5), denoted as ∆K , represents the

2For simplicity, we ignore the UAV energy storage weight reduction over time as more fuel or battery is consumed.
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Fig. 2: Typical power required curve versus speed V for a UAV in straight-and-level flight.

change in the UAV’s kinetic energy, an aggregated effect of the UAV’s tangential acceleration

component that is in parallel to the UAV’s velocity vector. Thus, ∆K only depends on the

initial and final speeds ‖v(T )‖ and ‖v(0)‖, rather than the intermediate UAV state. Note that

if ‖v(t′)‖ = 0 for some t′, then the required energy Ē → ∞, which reflects the fact that a

fixed-wing aircraft must maintain a forward motion to remain aloft.

For steady straight-and-level flight (SLF) with constant speed V , we have ‖v(t)‖ = V and

a(t) = 0, ∀t. Thus, (5) reduces to

ĒSLF(V ) = T
(
c1V

3 +
c2

V

)
. (7)

The power consumption of (7) as a function of V is illustrated in Fig. 2, which consists of

two terms. The first term, which is proportional to the cubic of the speed V , is known as the

parasitic power for overcoming the parasitic drag due to the aircraft’s skin friction, form drag,

etc. The second term, which is inversely proportional to V , is known as the induced power for

overcoming the lift-induced drag, i.e., the resulting drag force due to wings redirecting air to

generate the lift for compensating the aircraft’s weight [13].

With (4) and (5), the energy efficiency of the UAV communication system can thus be

expressed as

EE(q(t)) =
R̄(q(t))

Ē(q(t))
. (8)
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III. ENERGY EFFICIENCY WITH UNCONSTRAINED TRAJECTORY

In this section, we study the energy efficiency of unconstrained UAV trajectory for rate

maximization and energy minimization, respectively, to gain insights and provide benchmarks.

A. Rate-Maximization Trajectory

In the absence of any constraint on q(t), it immediately follows from (4) that the rate-

maximization (rm) UAV trajectory should be q(t) = 0, ∀t, i.e., the UAV should stay stationary

just above the GT to maintain the best communication channel. The resulting aggregated information

throughput is

R̄rm = TB log2

(
1 +

γ0

H2

)
. (9)

In this case, since v(t) = q̇(t) = 0, ∀t, the corresponding energy consumption in (5) is Ērm →

∞. Thus, the resulting energy efficiency with the rate-maximization design is

EErm =
R̄rm

Ērm

= 0, ∀T > 0 (10)

which is evidently energy-inefficient.

B. Energy-Minimization Trajectory

Next, we consider the energy-minimization design, i.e., the UAV trajectory q(t) is optimized

merely for minimizing the total energy consumption without considering the communication

performance. By ignoring the change in kinetic energy in the last term of (5), which is independent

of the time duration T and hence is practically negligible for large T , the energy-minimization

trajectory design problem can be formulated as

min
v(t),a(t)

∫ T

0

c1‖v(t)‖3 +
c2

‖v(t)‖

(
1 +
‖a(t)‖2 − (aT (t)v(t))2

‖v(t)‖2

g2

) dt
s.t. a(t) = v̇(t), ∀ 0 ≤ t ≤ T. (11)

Theorem 1. The optimal solution to the energy-minimization (em) problem (11) is

a?(t) = 0, v?(t) = Vem~v, ∀t, (12)
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where Vem , (c2/(3c1))1/4 is the energy-minimum speed and ~v is an arbitrary unit-norm vector

denoting the constant UAV flying direction. The corresponding minimum energy consumption is

Ēem = PminT, (13)

with Pmin ,
(
3−3/4 + 31/4

)
c

1/4
1 c

3/4
2 denoting the minimum power consumption of the UAV.

Proof: Please refer to Appendix B.

Theorem 1 shows that for the unconstrained trajectory optimization, the energy-minimization

solution is simply the steady straight-and-level flight with the power-minimum speed Vem. Note

that the energy-minimization trajectory is non-unique, since the initial UAV location q(0) and

the flying direction ~v can be arbitrary. This thus gives us the degree of freedom to find the best

energy-minimization trajectory that gives the maximum aggregated information throughput. It is

not difficult to show that among all the energy-minimization trajectories, i.e., all straight-and-

level flights with the energy-minimum speed Vem, those being symmetric around the GT (or

the origin) lead to the highest information throughput. Therefore, without loss of optimality, the

trajectory can be expressed as q(t) = [x(t), 0]T , where

x(t) = −VemT

2
+ Vemt, 0 ≤ t ≤ T. (14)

By substituting q(t) into (4), the maximum aggregated information throughput by the energy-

minimization trajectory design can be expressed as

R̄em = B

∫ T

0

log2

(
1 +

γ0

H2 + (−VemT
2

+ Vemt)2

)
dt

=
4B

(ln 2)Vem

[
VemT

4
ln

(
1 +

γ0

H2 + (VemT
2

)2

)
+

√
H2 + γ0 tan−1

(
VemT

2
√
H2 + γ0

)
−H tan−1

(
VemT

2H

)]
, (15)

where (15) follows from the change of variable z = −VemT
2

+Vemt and we have used the integral

formula given in (16) shown on the top of the next page.

As a result, the maximum energy efficiency achievable by the energy-minimization trajectory

design can be obtained in closed-form as EEem = R̄em/Ēem. For sufficiently large operation

duration T →∞, the aggregated information throughput in (15) reduces to

Rem →
2πB

(ln 2)Vem

(√
H2 + γ0 −H

)
, as T →∞, (17)
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F (z) ,
∫

ln

(
1 +

γ0
H2 + z2

)
dz = z ln

(
1 +

γ0
H2 + z2

)
+ 2
√
H2 + γ0 tan

−1

(
z√

H2 + γ0

)
− 2H tan−1

( z
H

)
(16)

circular path

H
x

z

Ground 
terminal

y

r

V

Fig. 3: An illustration of the steady circular flight.

which is finite and independent of T . On the other hand, as the minimum energy consumption

in (13) linearly increases with T , the resulting energy efficiency is thus

EEem → 0, as T →∞. (18)

Thus, the energy-minimization trajectory design is also energy-inefficient in general.

IV. ENERGY-EFFICIENCY MAXIMIZATION WITH CIRCULAR TRAJECTORY

The preceding section shows that neither the rate-maximization nor the energy-minimization

trajectory design is energy-efficient. In general, energy-efficient trajectory design needs to achieve

an optimal tradeoff between these two objectives. In this section, we propose a practical energy-

efficient design by assuming that the UAV follows a circular trajectory centered at the GT with

constant speed V and radius r, as illustrated in Fig. 3. Intuitively, a smaller radius r, though

achieving higher information throughput with the GT, also consumes more power by the UAV

to maintain a more acute heading change, and vice versa. Therefore, both V and r need to be

optimized for maximizing the energy efficiency.

With circular (cir) trajectory, it follows from (4) that the aggregated information throughput

reduces to a function of the radius r as

R̄cir(r) = TB log2

(
1 +

γ0

H2 + r2

)
. (19)



12

Note that R̄cir(r) is maximized when r = 0, i.e., the rate-maximization circular flight reduces

to the extreme case of stationary hovering as studied in Section III-A, which is known to be

energy-inefficient.

On the other hand, for steady circular flight with constant speed V , we have ‖v(t)‖ = V and

aT (t)v(t) = 0, ∀t, i.e., the acceleration (if any) must be perpendicular to the velocity to ensure

no speed variation. Furthermore, the centrifugal acceleration for maintaining the circular path is

known to be proportional to the speed square V 2 and inversely proportional to the circle radius

r, i.e., ‖a(t)‖ = V 2/r, ∀t. As a result, the UAV energy consumption (5) with steady circular

flight reduces to

Ēcir(V, r) = T

[(
c1 +

c2

g2r2

)
V 3 +

c2

V

]
. (20)

It is not difficult to find that Ēcir(V, r) is minimized when r →∞ and V = Vem, i.e., the energy-

minimization circular flight reduces to the extreme case of straight flight with energy-minimum

speed Vem, which has also been shown to be energy-inefficient in Section III-B.

With (19) and (20), the energy efficiency in (8) for circular trajectory reduces to

EEcir(V, r) =
R̄cir(r)

Ēcir(V, r)
=
B log2

(
1 + γ0

H2+r2

)(
c1 + c2

g2r2

)
V 3 + c2

V

. (21)

Note that the energy efficiency in (21) is independent of T . The energy-efficiency maximization

problem can then be formulated as

max
V≥0,r≥0

EEcir(V, r). (22)

To solve problem (22), it is first noted that the numerator of EEcir(V, r) in (21) is independent

of the UAV speed V . Thus, for any fixed radius r, the optimal speed V is obtained by minimizing

the denominator of (21), which can be readily obtained as

V ?
cir(r) =

(
c2

3(c1 + c2/(g2r2))

)1/4

. (23)

The corresponding UAV power consumption, i.e., the denominator of (21), reduces to a univariate

function of r as

P ?
cir(r) =

(
3−3/4 + 31/4

)
c

3/4
2

(
c1 +

c2

g2r2

)1/4

. (24)
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Thus, by discarding the constant terms and defining z = r2, problem (22) reduces to a univariate

optimization problem given by

max
z≥0

η(z) ,
ln
(
1 + γ0

H2+z

)(
c1 + c2

g2z

)1/4
. (25)

Since η(0) = 0 and limz→∞ η(z) → 0, there must exist a finite optimal solution z? to problem

(25), which can be efficiently found numerically. Furthermore, in the low-SNR regime with

γ0 � H2, by applying the result ln(1 + x) ≈ x if x � 1, the optimal solution to (25) can be

obtained in closed-form as

z? =
3c2

8c1g2

[(
1 +

16H2c1g
2

9c2

)1/2

− 1

]
. (26)

As the optimal value to problem (25) is guaranteed to be positive, a strictly positive energy

efficiency is always achievable by the optimized circular trajectory for any T > 0, which

demonstrates its superiority over the rate-maximization or energy-minimization designs considered

in Section III.

V. ENERGY EFFICIENCY MAXIMIZATION WITH GENERALLY CONSTRAINED TRAJECTORY

The preceding two sections study the energy efficiency for unconstrained trajectory designs.

In practice, the UAV’s trajectory q(t) may need to satisfy a number of practical constraints,

such as those on its initial/final states (including location and velocity) and the maximum

speed/acceleration. They are mathematically represented as

C1 : q(0) = q0 (27)

C2 : q(T ) = qF (28)

C3 : ‖v(t)‖ ≤ Vmax, ∀t (29)

C4 : v(0) = v0 (30)

C5 : v(T ) = vF (31)

C6 : ‖a(t)‖ ≤ amax,∀t, (32)

where q0,qF ∈ R2×1 denote the UAV’s destined initial and final locations, respectively, v0,vF ∈

R2×1 are the desired initial and final velocities, respectively, and Vmax and amax represent the



14

maximum speed and acceleration, respectively. In this case, the energy-efficiency maximization

problem can be formulated as

(P1) : max
q(t)

EE(q(t))

s.t. C1–C6,

where EE(q(t)) is given in (8). Problem (P1) is difficult to be directly solved for two reasons.

Firstly, it requires the optimization of the continuous function q(t), as well as its first- and second-

order derivatives v(t) and a(t), which essentially involves an infinite number of optimization

variables. Secondly, the objective function in EE(q(t)) is given by the fraction of two integrals,

which both lack closed-form expressions. In the following, an efficient algorithm is proposed

for (P1) based on two main techniques: discrete linear state-space approximation and sequential

convex optimization.

To this end, it is first noted that the energy consumption in (5) can be upper-bounded by

Ē(q(t)) ≤
∫ T

0

[
c1‖v(t)‖3 +

c2

‖v(t)‖

(
1 +
‖a(t)‖2

g2

)]
dt

+ ∆K , Ēub(q(t)), (33)

with ∆K , 1
2
m (‖v(T )‖2 − ‖v(0)‖2) denoting the change of the UAV’s kinetic energy, which

is fixed with the initial and final velocity constraints C4 and C5. Note that the upper bound in

(33) is tight for constant-speed flight, in which case a(t)Tv(t) = 0, ∀t. Therefore, the energy

efficiency in (8) is lower-bounded by

EE(q(t)) ≥ EElb(q(t)) ,
R̄(q(t))

Ēub(q(t))

=
B
∫ T

0
log2

(
1 + γ0

H2+‖q(t)‖2

)
dt∫ T

0

[
c1‖v(t)‖3 + c2

‖v(t)‖

(
1 + ‖a(t)‖2

g2

)]
dt+ ∆K

. (34)

Thus, (P1) can be approximately solved by maximizing its lower bound as

(P1′) : max
q(t)

EElb(q(t))

s.t. C1–C6. (35)

To obtain a more tractable optimization problem, we apply the discrete linear state-space

approximation to (P1′). Since v(t) , q̇(t) and a(t) , v̇(t) are respectively the time-varying
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velocity and acceleration vectors associated with the UAV trajectory q(t), for any infinitesimal

time step δt, we have the following results based on the first- and second-order Taylor approximations,

v(t+ δt) ≈ v(t) + a(t)δt, ∀t, (36)

q(t+ δt) ≈ q(t) + v(t)δt +
1

2
a(t)δ2

t , ∀t. (37)

As a result, by discretizing the time horizon T into N + 2 slots with step size δt, i.e., t = nδt,

n = 0, 1, · · · , N+1, the UAV’s trajectory q(t) can be well characterized by the discrete-time UAV

location q[n] , q(nδt), the velocity v[n] , v(nδt), as well as the acceleration a[n] , a(nδt),

n = 0, 1, · · · , N + 1. As a result, we have the following discrete state-space model based on

(36) and (37),

v[n+ 1] = v[n] + a[n]δt, (38)

q[n+ 1] = q[n] + v[n]δt +
1

2
a[n]δ2

t , n = 0, 1, · · ·N, (39)

which is linear with respect to q[n],v[n] and a[n]. As a result, problem (P1′) can be rewritten

as

(P2) : max
{q[n],v[n]

a[n]}

B
∑N

n=1 log2

(
1 + γ0

H2+‖q[n]‖2

)
∑N

n=1

(
c1‖v[n]‖3 + c2

‖v[n]‖

(
1 + ‖a[n]‖2

g2

))
+ ∆K

δt

s.t. q[n+ 1] = q[n] + v[n]δt +
1

2
a[n]δ2

t , n = 0, · · ·N (40)

v[n+ 1] = v[n] + a[n]δt, n = 0, · · ·N (41)

q[0] = q0, q[N + 1] = qF (42)

v[0] = v0, v[N + 1] = vF (43)

‖v[n]‖ ≤ Vmax, n = 1, · · · , N (44)

‖a[n]‖ ≤ amax, n = 0, · · ·N, (45)

where (42)–(45) represent the discrete equivalents of C1–C6.

Note that all constraints of problem (P2) are convex. However, the objective is a fractional

function with a non-concave numerator over a non-convex denominator, and hence (P2) is neither

a convex nor quasi-convex problem, which thus cannot be directly solved with the standard

convex optimization techniques. Fortunately, by applying the sequential convex optimization
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technique, an efficient solution can be obtained which is guaranteed to satisfy the Karush-Kuhn-

Tucker (KKT) conditions of (P2). This implies that at least a local optimal solution can be found

for the problem. To this end, we first reformulate (P2) by introducing slack variables {τn} as

(P2.1) : max
{q[n],v[n]
a[n],τn}

B
∑N

n=1 log2

(
1 + γ0

H2+‖q[n]‖2

)
∑N

n=1

(
c1‖v[n]‖3 + c2

τn
+ c2‖a[n]‖2

g2τn

)
+ ∆K

δt

s.t. (40)–(45),

τn ≥ 0, ∀n, (46)

‖v[n]‖2 ≥ τ 2
n, ∀n. (47)

It can be shown that at the optimal solution to (P2.1), we must have τn = ‖v[n]‖, ∀n, since

otherwise one can always increase τn to obtain a strictly larger objective value. Thus, (P2.1)

is equivalent to (P2). With such a reformulation, the denominator of the objective function

in (P2.1) is now jointly convex with respect to {v[n], a[n], τn}, but with the new non-convex

constraint (47). To tackle this non-convex constraint, a local convex approximation is applied.

Specifically, since ‖v[n]‖2 is a convex and differentiable function with respect to v[n], for any

given local point {vj[n]}, we have

‖v[n]‖2 ≥ ‖vj[n]‖2 + 2vTj [n] (v[n]− vj[n])

, ψlb(v[n]), ∀v[n], (48)

where the equality holds at the point v[n] = vj[n]. Note that (48) follows from the fact that the

first-order Taylor expansion of a convex differentiable function is its global under-estimator [24].

Furthermore, at the local point vj[n], both the function ‖v[n]‖2 and its lower bound ψlb(v[n])

have the identical gradient, which is equal to 2vj[n].

Define the new constraint,

ψlb(v[n]) ≥ τ 2
n, ∀n, (49)

which is convex since ψlb(v[n]) is linear with respect to v[n]. Then the inequality in (48) shows

that the convex constraint (49) always implies the non-convex constraint (47), but the reverse is

not true in general.
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Similarly, to tackle the non-concavity of the numerator of the objective function in (P2.1),

for any local point {qj[n]}, define the function

R̄lb ({q[n]}) = B

N∑
n=1

[
αj[n]− βj[n]

(
‖q[n]‖2 − ‖qj[n]‖2

) ]
, (50)

where

αj[n] = log2

(
1 +

γ0

H2 + ‖qj[n]‖2

)
, (51)

βj[n] =
(log2 e)γ0

(H2 + γ0 + ‖qj[n]‖2)(H2 + ‖qj[n]‖2)
, ∀n. (52)

Note that R̄lb ({q[n]}) is a concave function with respect to {q[n]}. Furthermore, we have the

following result.

Theorem 2. For any given {qj[n]}, we have

R̄({q[n]}) , B
N∑
n=1

log2

(
1 +

γ0

H2 + ‖q[n]‖2

)
≥ R̄lb({q[n]}), ∀q[n], (53)

where the equality holds at the point q[n] = qj[n], ∀n. Furthermore, at the point q[n] = qj[n],

∀n, both R̄({q[n]}) and Rlb({q[n]}) have identical gradient, i.e., ∇R̄ = ∇R̄lb.

Proof: Please refer to Appendix C.

As a result, for any given local point {qj[n],vj[n]}, define the following optimization problem,

(P2.2) : max
{q[n],v[n]
a[n],τn}

R̄lb({q[n]})∑N
n=1

(
c1‖v[n]‖3 + c2

τn
+ c2‖a[n]‖2

g2τn

)
+ ∆K

δt

s.t. (40)–(45),

τn ≥ 0,∀n,

ψlb(v[n]) ≥ τ 2
n,∀n.

Based on the previous discussions, it readily follows that the objective value of (P2.2) gives a

lower bound to that of problem (P2.1). Furthermore, problem (P2.2) is a fractional maximization

problem, with a concave numerator and a convex denominator, as well as all convex constraints.

Thus, (P2.2) can be efficiently solved via the bisection method [24] or the standard Dinkelbach’s

algorithm for fractional programming [25].
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Thus, the original non-convex problem (P2.1) can be solved by iteratively optimizing (P2.2)

with the local point {qj[n],vj[n]} updated in each iteration, which is summarized in Algorithm 1.

Algorithm 1 Sequential convex optimization for (P2.1).

1: Initialize {q0[n],v0[n]}. Let j = 0.

2: repeat

3: Solve problem (P2.2) for the given local point {qj[n],vj[n]}, and denote the optimal

solution as {q∗j [n],v∗j [n]}.

4: Update the local point qj+1[n] = q∗j [n] and vj+1[n] = v∗j [n], ∀n.

5: Update j = j + 1.

6: until Converges to a prescribed accuracy.

Let EE∗lb,j denote the corresponding optimal value of (P2.1) obtained via Algorithm 1 at the

jth iteration. We have the following result.

Lemma 1. The energy efficiency lower bound EE∗lb,j obtained in Algorithm 1 is monotonically

non-decreasing, i.e., EE∗lb,j ≥ EE∗lb,j−1, ∀j ≥ 1. Furthermore, the sequence {q∗j [n],v∗j [n]},

j = 0, 1, · · · , converges to a point fulfilling the KKT optimality conditions of the original non-

convex problem (P2.1).

Proof: Lemma 1 directly follows from Proposition 3 of reference [26], by making use

of Theorem 2 as well as the fact that the lower bound ψlb(v[n]) has both identical value and

identical gradient as ‖v[n]‖2 at the local point v[n] = vj[n]. The details are omitted for brevity.

As a final remark, it is noted that Algorithm 1 can also be applied for energy efficiency

maximization with unconstrained trajectory optimization by discarding C1–C6, which gives

an alternative energy-efficient design without restricting to circular trajectory considered in

Section IV. Furthermore, Algorithm 1 can be similarly applied for the rate-maximization and

energy-minimization designs for constrained trajectories, since they correspond to the special

cases of (P2) by only maximizing/minimizing the numerator and denominator, respectively.

These special cases will be considered in the numerical simulations given in the next section.
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Fig. 4: Convergence of Algorithm 1.

VI. NUMERICAL RESULTS

In this section, numerical results are provided to validate the proposed design. The UAV

altitude is fixed at H = 100m. The communication bandwidth is B = 1MHz and the noise

power spectrum density at the GT receiver is assumed to be N0 = −170dBm/Hz. Thus, the

corresponding noise power is σ2 = N0B = −110dBm. We assume that the UAV transmission

power is P = 10dBm (or 0.01W), and the reference channel power is β0 = −50dB. As a result,

the maximum SNR achieved when the UAV is just above the GT can be obtained as 30dB.

Furthermore, we assume that c1 = 9.26 × 10−4 and c2 = 2250, such that the UAV’s energy-

minimum speed is Vem = 30m/s and the corresponding minimum propulsion power consumption

is Pem = 100W. Note that we have P � Pem, thus the UAV transmission power can be practically

ignored.

A. Unconstrained Trajectory Optimization

We first consider the case of unconstrained trajectory optimization in the absence of C1–C6.

Besides the three specific trajectory designs considered in Section III and Section IV, namely

the rate-maximization, energy-minimization, and energy-efficient circular designs, the energy-

efficiency maximization design by applying the similar sequential convex optimization proposed

in Algorithm 1 but without trajectory constraints is also included for comparison.

Under this setup, Fig. 4 shows the convergence of Algorithm 1 with randomly generated
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TABLE I: Performance comparison for various designs with unconstrained trajectory optimization.

Average

speed (m/s)

Average

acceleration

(m2/s)

Average

rate (Mbps)

Average

power

(Watts)

Energy

efficiency

(kbits/Joule)

Rate-maximization 0 0 9.97 ∞ 0

Energy-minimization 30 0 6.06 100 60.6

EE-maximization,

circular

25.20 4.02 8.16 119.10 68.56

EE-maximization,

sequentially optimized

25.67 3.24 8.34 116.02 71.89

initial points. Note that Fig. 4 consists of three curves: the “Accurate EE” corresponds to the

exact energy efficiency based on the energy consumption model (5), the “Lower bound with

energy upper bounding” is that due to the energy upper bounding given in (33), and the “Lower

bound with Taylor approximation” corresponds to the optimal value of (P2.2) by using local

convex approximation. Fig. 4 shows that Algorithm 1 monotonically converges, as expected from

Lemma 1. Furthermore, it also shows that the adopted lower bounds for the purpose of efficient

convex optimization are rather tight, especially as the algorithm converges.

Fig. 5 shows the obtained UAV trajectories projected onto the horizontal plane for four

different designs with T = 60s. As shown in Section III, the unconstrained rate-maximization

and energy-minimization trajectories correspond to stationary hovering with V = 0 and steady

straight flight with power-minimum speed Vem = 30m/s, respectively. On the other hand, for

the EE-maximization circular trajectory, the optimal flight radius and speed are r? = 158m

and V ? = 25.67m/s, respectively. It is observed that the converged trajectory via applying the

sequential convex optimization for EE maximization is rather similar to the circular trajectory.

Table I gives a detailed comparison for these four different designs in terms of the average

UAV speed, acceleration, achievable communication rate, power consumption, and the overall

energy efficiency. It is found that for the unconstrained trajectory setup, the simple circular

trajectory with optimized flight radius and speed gives a comparable performance as that obtained

via sequential convex optimization, and they both notably outperform the rate-maximization or

energy-minimization designs in terms of energy efficiency.
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Fig. 5: Trajectory comparison for unconstrained optimization.

B. Constrained Trajectory Optimization

Next, we consider the constrained trajectory optimization as studied in Section V. As shown

in Fig. 6, we let q0 = [1000, 0]T ,qF = [0, 1000]T ,v0 = vF = 30~v0F , with ~v0F , (qF −

q0)/‖qF − q0‖ denoting the direction from q0 to qF . Furthermore, the maximum UAV speed

and acceleration are set to Vmax = 100m/s and amax = 5m/s2, respectively, and the operation

time is T = 400s. For the sequential convex optimization in Algorithm 1, the initial points are

set to be the direct path from q0 to qF .

Fig. 6 shows the obtained trajectories with the rate-maximization, energy-minimization, and

EE-maximization designs. Note that the rate-maximization and energy-minimization trajectories

are obtained with the similar sequential convex optimization technique as in Algorithm 1 with

the objective function modified accordingly. It is observed from Fig. 6 that besides satisfying

the initial and final location constraints, all the three trajectories are tangential to the direction

vector ~v0F at both the initial and final locations q0 and qF , due to the imposed initial and final

velocity constraints. Furthermore, for the rate-maximization trajectory, it is found that the UAV

hovers around the GT (i.e., the origin) for the maximum possible duration to maintain the best

communication channel. In contrast, the energy-minimization design yields a trajectory mostly

with a large turning radius since it is in general less power-consuming. However, such a trajectory

is expected to incur rather poor communication channels due to the large distance from the GT.

On the other hand, with the proposed EE-maximization trajectory design, upon approaching the
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TABLE II: Performance comparison for various designs with constrained trajectory optimization.

Average

speed (m/s)

Average

acceleration

(m2/s)

Average

rate (Mbps)

Average

power

(Watts)

Energy

efficiency

(kbits/Joule)

Rate-maximization 8.40 3.74 9.56 585.66 16.32

Energy-minimization 29.61 1.10 2.01 102.74 19.60

EE-maximization 26.03 3.21 7.48 118.57 63.08

GT, the UAV hovers around following an approximately “8”-shape path, which is expected to

maintain a sufficiently good communication channel yet without excessive power consumption.

The performance comparison of the above three trajectory designs is given in Table II. It is

observed that the proposed EE-maximization design achieves a good balance between rate

maximization (column 4) and power minimization (column 5), and hence achieves significantly

higher energy efficiency (column 6) than the rate-maximization and energy-minimization designs.

VII. CONCLUSION

This paper studies the energy-efficient UAV communication via trajectory optimization by

taking into account the propulsion energy consumption of the UAV. A theoretical model on the

UAV’s propulsion energy consumption is derived, based on which the energy efficiency of UAV

communication is defined. For the case of unconstrained trajectory optimization, it is shown that
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Fig. 7: A schematic of the forces on an aircraft in straight-and-level flight.

both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency

and thus are energy-inefficient in general. We then consider a practical circular trajectory with

optimized flight radius and speed for maximizing energy efficiency. Furthermore, for the generally

constrained trajectory optimization, an efficient algorithm is proposed to maximize the energy

efficiency based on linear state-space approximation and sequential convex optimization techniques.

Numerical results show that the proposed designs achieve significantly higher energy efficiency

than heuristic rate-maximization and energy-minimization designs for UAV communications.

APPENDIX A

UAV PROPULSION ENERGY CONSUMPTION MODEL

In this appendix, we derive the propulsion energy consumption model of fixed-wing UAVs.

1) Forces on the Aircraft: As shown in Fig. 7, an aircraft aloft is in general subject to four

forces: weight, drag, lift, and thrust [13].

• Weight (W ): the force of gravity, W = mg, with m denoting the aircraft’s mass including

all its payload, and g is the gravitational acceleration in m/s2.

• Drag (D): the aerodynamic force component parallel to the airflow direction. For zero wind

speed, D is in the opposite direction of the aircraft’s motion.

• Lift (L): the aerodynamic force component normal to the drag and pointing upward.

• Thrust (F ): the force produced by the aircraft engine, which overcomes the drag to move

the aircraft forward.
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For an aircraft moving at a subsonic speed V (as usually the case), the drag can be expressed

as [13]

D =
1

2
ρCD0SV

2 +
2L2

(πe0AR)ρSV 2
, (54)

where ρ is the air density in kg/m3, CD0 is the zero-lift drag coefficient, S is a reference area

(e.g., the wing area), e0 is the Oswald efficiency (or wing span efficiency) with typical value

between 0.7 and 0.85 [13], AR is the aspect ratio of the wing, i.e., the ratio of the wing span

to its aerodynamic breadth. The first term in (54) is known as the parasitic drag, which is a

combination of multiple drag components such as form drag, skin friction drag and interference

drag, etc. The parasitic drag increases quadratically with the vehicle speed V . The second term

in (54) is called the lift-induced drag, which is the resulting drag force due to wings redirecting

air to generate lift L.

The drag expression (54) can be rewritten as

D = c1V
2 +

c2κ
2

V 2
, (55)

where

c1 ,
1

2
ρCD0S, c2 ,

2W 2

(πe0AR)ρS
(56)

are two constant parameters, and κ , L/W is known as the load factor, i.e., the ratio of

the aircraft’s lift to its weight. Note that to maintain a level flight (i.e., a flight with constant

altitude), we must have κ ≥ 1 since the lift must at least balance the aircraft weight to avoid

descending. It is then not difficult to conclude from (55) that ∀V > 0, we have D ≥ Dmin,

where Dmin = 2
√
c1c2 is the minimum drag incurred, which corresponds to κ = 1 and the

drag-minimum speed Vdm = (c2/c1)1/4.

2) Power Required for Straight-and-Level Flight: Straight-and-level flight refers to the flight

in which a constant heading (or direction) and altitude are maintained. This implies that: (i) the

horizontal acceleration, if any, must be in parallel with the aircraft’s flying direction so that no

turning occurs; (ii) the lift and weight are balanced so that there is no vertical acceleration. We

thus have the following equations (as illustrated in Fig. 7):

L = W, F −D = ma, (57)
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where a is the acceleration along the aircraft’s flying direction, i.e., a > 0 for accelerating and

a < 0 for decelerating. When a ≥ −D/m, we have F ≥ 0. In this case, the thrust F generated

by the engine is in the same direction as the aircraft’s motion, or forward thrust. In contrast, if

a < −D/m, we have F < 0, in which case the thrust F generated by the engine must be in the

opposite direction as the aircraft’s motion, or reverse thrust. One sufficient (but not necessary)

condition to ensure forward thrust operation is a ≥ −Dmin/m.

By considering an infinitesimal time interval such that the speed can be regarded as unchanged,

it follows from (55) and (57) that the power required for straight-and-level flight with speed V

and acceleration a can be expressed as

PR(V, a) = |F |V =
∣∣∣c1V

3 +
c2

V
+maV

∣∣∣ , (58)

where we have used the fact that power is equal to force times speed. Note that the magnitude

operator in (58) is necessary for the unusual case of reverse thrust with F < 0 when the aircraft

needs to have an abrupt deceleration.

3) Power Required for Banked Level Turn: For a fixed-wing aircraft to change its flying

direction, the aircraft must roll to a banked position so that the lift L generates a lateral

(horizontal) component to support the centrifugal acceleration, i.e., the acceleration component

normal to the velocity. As illustrated in Fig. 8, let φ denote the bank angle, i.e., the angle between

the vertical plane and the aircraft’s symmetry plane. We then have the following equations,

L cosφ = W, L sinφ = ma⊥, (59)

F −D = ma‖, (60)

where a⊥ and a‖ denote the acceleration components that are perpendicular and parallel to

velocity, respectively, with a‖ > 0 for accelerating and a‖ < 0 for decelerating. It then follows

from (59) that the load factor for banked level turn is related to the centrifugal acceleration as

κ =
√

1 + a2
⊥/g

2. Together with (55) and (60), we have

F = c1V
2 +

c2

V 2

(
1 +

a2
⊥
g2

)
+ma‖. (61)

Therefore, the instantaneous power required for the banked level turn flight with speed V ,

tangential acceleration a‖, and centrifugal acceleration a⊥ can be expressed as

PR(V, a‖, a⊥) = |F |V =

∣∣∣∣c1V
3 +

c2

V

(
1 +

a2
⊥
g2

)
+ma‖V

∣∣∣∣ . (62)

It is not difficult to verify that (58) is a special case of (62) with a⊥ = 0.
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Fig. 8: A schematic of the forces on an aircraft in banked level turn. The aircraft moves normal to the page. The

horizontal component of the lift L sinφ causes the centrifugal acceleration a⊥ to change the heading.

4) Energy Required for Trajectory q(t): For given velocity vector v and acceleration vector a,

the tangential and centrifugal accelerations can be obtained by decomposing a along the parallel

and normal directions of v, which gives

a‖ =
aTv

‖v‖
, a⊥ =

√
‖a‖2 − (aTv)2

‖v‖2
. (63)

By substituting (63) and V = ‖v‖ into (62), the instantaneous power required as a function of

v and a can be expressed as

PR(v, a) =

∣∣∣∣c1‖v‖3 +
c2

‖v‖

(
1 +
‖a‖2 − (aTv)2

‖v‖2

g2

)
+maTv

∣∣∣∣. (64)

For an aircraft with trajectory q(t), and hence velocity v(t) = q̇(t) and acceleration a(t) =

q̈(t), the total propulsion energy required is then given by

Ē(q(t)) =

∫ T

0

PR (v(t), a(t)) dt, (65)

with PR(·) given by (64).

For normal aircraft flight without drastic deceleration so that thrust reversal is not required,

the term inside the magnitude operator of (64) is always non-negative. As a result, (65) can be
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rewritten as

Ē(q(t)) =

∫ T

0

c1‖v(t)‖3 +
c2

‖v(t)‖

(
1 +
‖a(t)‖2 − (aT (t)v(t))2

‖v(t)‖2

g2

) dt
+

∫ T

0

maT (t)v(t)dt. (66)

Furthermore, the last term in (66) can be expressed as∫ T

0

maT (t)v(t)dt =

∫ T

0

mv̇T (t)v(t)dt (67)

=
1

2
m
[
‖v(T )‖2 − ‖v(0)‖2

]
, (68)

where the equality in (68) follows from the integral identity
∫
v̇T (t)v(t)dt = 1

2
‖v(t)‖2.

This thus completes the derivation of the UAV energy consumption model in (5).

APPENDIX B

PROOF OF THEOREM 1

To obtain the optimal solution to problem (11), we first consider its relaxed problem by

ignoring the equality constraints a(t) = v̇(t), ∀t, whose optimal value obviously gives a lower

bound to that of problem (11). We then show that the optimal solution to this relaxed problem

automatically satisfies the equality constraints of problem (11), and thus it is also optimal to

(11).

For the relaxed problem, it is evident that the optimal solution should satisfy a?(t) = 0.

Furthermore, by decomposing the velocity vector v(t) as v(t) = V (t)~v(t), with V (t) ≥ 0 and

‖~v(t)‖ = 1 denoting the time-varying speed and direction, respectively, the problem reduces to

min
V (t)

∫ T

0

[
c1V

3(t) +
c2

V (t)

]
dt

s.t. V (t) ≥ 0, ∀t. (69)

Lemma 2. The optimum solution to problem (69) is

V ?(t) = Vem =

(
c2

3c1

)1/4

, ∀t. (70)

Proof: First, we show that constant speed is optimal to problem (69). To this end, define

the function f(V ) = c1V
3 + c2/V , which can be shown to be a convex function for V ≥ 0. For
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any time-varying speed V (t) over a duration T , let V̄ = 1
T

∫ T
0
V (t)dt be the average speed. By

applying the Jensen’s inequality to the convex function f(V ), we have

f(V̄ ) ≤ 1

T

∫ T

0

f(V (t))dt. (71)

Thus, the average speed V̄ always achieves a lower objective value to problem (69). Thus,

constant speed is optimal to (69), i.e., V (t) = V, ∀t. By setting the first-order derivative of f(V )

to zero, the optimal speed in (70) can be obtained.

As a result, the optimal solution to the relaxed problem of (11) is a?(t) = 0, v?(t) =

( c2
3c1

)1/4~v(t), ∀t, with ~v(t) being the arbitrary flying direction. Without loss of optimality, we may

set ~v(t) = ~v, ∀t, i.e., by imposing a time-invariant direction. As such, the equality constraint of

problem (11) is automatically satisfied since a?(t) = v̇?(t) = 0. This thus leads to the optimal

solution in (12). The optimal value in (13) can then be obtained accordingly.

This completes the proof of Theorem 1.

APPENDIX C

PROOF OF THEOREM 2

The proof of the lower bound in (53) follows similar arguments as that for Lemma 2 in [9].

We first define the function h(z) , log2

(
1 + γ

A+z

)
for some constant γ ≥ 0 and A, which

can be shown to be convex for A + z ≥ 0. Using the property that the first-order Taylor

expansion of a convex function is a global under-estimator [24], for any given z0, we have

h(z) ≥ h(z0) + h′(z0)(z − z0), ∀z, where h′(z0) = −(log2 e)γ
(A+z0)(A+γ+z0)

is the derivative of h(z) at

point z0. By letting z0 = 0, we have the following inequality,

log2

(
1 +

γ

A+ z

)
≥ log2

(
1 +

γ

A

)
− (log2 e)γz

A(A+ γ)
, ∀z. (72)

Then for each time slot n, let γ = γ0, A = H2 +‖qj[n]‖2, z = ‖q[n]‖2−‖qj[n]‖2, the inequality

in (53) thus follows.

Furthermore, it can be obtained from (50) that for any n, the gradient of R̄lb with respect to

q[n] is

∇q[n]R̄lb = −2Bβj[n]q[n], ∀n. (73)

The gradient of R̄ in (53) can be obtained as

∇q[n]R̄ =
−2B(log2 e)γ0q[n]

(H2 + γ0 + ‖q[n]‖2)(H2 + ‖q[n]‖2)
,∀n. (74)
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The two gradients in (73) and (74) are identical when evaluated at q[n] = qj[n], ∀n.

This thus completes the proof of Theorem 2.
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