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Abstract—One of the many problems faced by current cellular OPs. Furthermore, an a-priori agreement should be reached

network technology is the under utilization of the dedicatel, on the spectrum usage with respect to long term sharing of
licensed spectrum of network operators. An emerging paradjm each OP.

to solve this issue is to allow multiple operators to share soe

parts of each others’ spectrum. Previous works on spectrum

sharing have failed to integrate the theoretical insights povided

by recent developments in stochastic geometrical approaels to A. Related Work

cellular network analysis with the objectives of network resource In [4], the authors studied the performance of spectrum-shar
allocation problems. In this paper, we study the non-orthognal ing in multi-OP LTE networks by using network simulator-

spectrum assignment with the goal of maximizing the social . .
welfare of the network, defined as the expected weighted sunate 3 (NS-3). They had considered orthogonal spectrum sharing

of the operators. We adopt the many-to-one stable matchingagne ~System, where the OPs pool their spectrum with only one
framework to tackle this problem. Moreover, using the stoclastic OP is allowed to use the spectrum at any given time. Co-

geometrical approach, we show that its solution can be botftable  primary spectrum sharing with multiple-input single-auitp
as well as so.ually opt!mal. Thls allows for computation of he (MISO) and multiple-input multiple-output (MIMO) multigl
game theoretical solution using generic Markov Chain Monte ;
Carlo method. We also investigate the role of power allocabin users |n two small cell network_s was proposed.in [5] arid [6],
schemes using Q-learning, and we numerically show that the respectively. The authors considered the case where eaeh ba
effect of resource allocation scheme is much more significan station schedules its users to utilize the shared band wieen t
than the effect of power allocation for the social welfare ofthe number of subcarriers in the dedicated band is not enough
system. to serve all users. A matching game based on Gale-Shapley
Index Terms—Multi-operator spectrum sharing, non- method is proposed for subcarrier allocation. Then, after t
orthogonal ~ spectrum sharing, matching game theory, ysers obtain subcarriers, the small cell base stations {SBS
reinforcement learning, stochastic geometry, 5G perform power allocatiori [SJ]6]. IF[7], co-primary speatn
sharing in a dense local area was investigated. The authors
|. INTRODUCTION designed a mechanism to provide flexible spectrum usage
The next generation 5G cellular network will need to satisfgetween two OPs. The performance of the proposed method
the performance requirements (e.g., quality-of-servigeS) was evaluated by system level simulators based on LTE
and latency) of various applications such as video stregmirspecifications. In[8], the orthogonal spectrum sharingvben
data services, and voice communication [1]-[2]. In the neawo OPs was shown to be an important aspect to improve
future, the total number of existing smart-phones and tabl¢he achievable throughput. The gains in terms of network
are projected to be more or less equal to the human populatiefiiciency is enhanced by sharing spectrum between two OPs.
Most of the devices are expected to be massive machine typek level simulation and two hardware demonstrations are
communication devices that transmit only a few bytes of .datgiven. In [10], a potential game with a learning algorithm
As such, the spectrum utilization will be an important issugas shown to reach the system equilibrium which enhances
[2]-[B]. The network operators (OPs) will need to managérthespectrum efficiency between the OPs. A distributed method is
licensed spectrum more efficiently in order to provide savi shown to reduce the complexity of inter-OP spectrum sharing
with desired performance requiremernits [2]. whereas in[[Il1], the same problem is formulated as a two
In recent years, multi-OP spectrum sharing has been gaini@® non-zero sum game. The utility function of both the OPs
attention [3][7]. Multi-OP spectrum sharing refers to thevas defined by taking the spectrum price and the blocking
ability of OPs jointly agreeing on sharing some parts gfrobability into consideration. Co-primary spectrum &gr
their licensed spectrum. This approach has emerged asvas proposed in both centralized and distributed manner
potential solution to the problem of under-utilization dfet in [12]. System-level simulations for two indoor, small Icel
dedicated spectrum. The inefficient utilization occurséhse layouts were performed. I [13], spectrum sharing for multi
the spectrum is often found to be idle at various timesperator small cell networks with a guarantee of long term
In co-primary (or horizontal) spectrum sharing, OPs havairness was proposed. Gibbs sampling was studied to develo
equal ownership of the spectrumml [9]. The spectrum may liee decentralized mechanism. A brief version of the current
shared either orthogonally or non-orthogonally among tlseibmission is provided ir[14].
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B. Contributions and Organization

In this paper, we consider the multi-OP spectrum shar-
ing problem for small cell networks, as shown in Fig. 1.
Each OP is assumed to serve multiple SBSs, which are
spatially distributed according to homogeneous Poissdnt po
process (PPP). Furthermore, each OP connects to a disttibut
spectrum controller (SC) which is responsible for assignin

interested in maximizing its long term expected data rate
by optimizing its power strategy. Thus, we use the Q-

learning method to find such an optimal random transmit
power scheme for an SBS.

From the numerical study, we find that changes in

spectrum allocation has a bigger impact on the system
performance than changes in power allocation strategy.

resource blocks (RBs) from a common pool to the OPs. HereThe rest of the paper is organized as follows. Secfidn Il
the RB implies one subcarrier. The SC can exchange messadgscribes the system model. Sectlod Il gives a stochastic

with its components to define a mutual agreement on spectr

geometrical analysis of the expected rate of the SBSs.®ecti

sharing policy. We study the problem of spectrum assignmdRf presents inter-OP spectrum sharing using the concept of
in which the SC can allocate several RBs to an OP, such timaatching theory. SectionlV describes Q-learning for random

multiple OPs can use the same RB.
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Fig. 1. Iteration between Matching Game and Q-learning

power allocation. The performance evaluation results age p
sented in Section VI. Sectidn VIl states the conclusion.

II. SYSTEM MODEL

We propose a multi-OP spectrum sharing for small cell
network deployment. The SBSs and the user equipments
(UEs) are equipped with single antenna. IEg. 2 illustrates t
system model under consideration, where SBSs are spatially
distributed as homogeneous PPP. The macro base stations
(MBs) are assumed to transmit in channels orthogonal to the
SBSs; thus, interference from MBs to SBSs is absent. Each
OP serves multiple SBSs, and multiple UEs are subscribed
to each SBS. Since the system considers single antenna and
the SBS is assumed to employ time division multiple access
(TDMA) scheme, hence each SBS can serve only one UE in a
given time slot. The problem of user scheduling is not thenmai
concern and is beyond the scope of this paper. Nevertheless,
the analysis does not lose its generality, since we tend to

We summarize the main contributions of this paper awnsider an “average” UE, in the sense that we ultimately

follows:
o We study the non-orthogonal spectrum assignment wi

average over the random channel gains as well as the random
ghistance of the UE from the SBS.

the aim of maximizing the social welfare of the network, The spectrum of OPs serving the SBSs is assumed to be
defined as the expected weighted sum rate of the OM#ided into dedicated bands and a shared band. The dedlicate
This is essentially a combinatorial optimization problenand of an OP can be allocated only to the SBSs associated
We adopt the many-to-one stable matching game franiith the given OP, while the shared band can be accessed by

work to solve this problem. We show that under certai

multiple OPs and can be allocated to their respective SBSs.

condition, the stable matching solution corresponds to tfnce the dedicated spectrum of each OP is assumed to be

local optima of the welfare maximization problem.

stochastic geometrical analysis of the expected rate
proposed. Essentially, the average performance depe
only on the large scale system parameter like the SE
intensity.

The Markov Chain Monte Carlo (MCMC) method is
proposed to compute the global solution of social welfal
maximization which also leads to the solution of stabl
matching. The maxima of social welfare can be reach

fixed and predetermined, our study focuses only on allogatin

To give a technical proof of this result, we resort téhe shared spectrum to the OPs.
long term average of the network performance in which
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using the MCMC approach, where the sufficient conditio X
given in Corollary 1 is satisfied. o
In the stochastic analysis as well as the matching game in
the operator level, the transmit power of SBS is assumed. 2. System architecture of the multi-OP spectrum sharin

to be a random variable, but the exact distribution is left

undefined. Since the SBS has control over its transmitConsider a set of multiple OPs given By with K OPs.
power scheme, it is natural to assume that the SBSlist the set of SBSs subscribed to an ®Be given by theF;,

UE



with I}, SBSs. We assume that each OP has the same spatial I1l. PRELIMINARY ANALYSIS OF EXPECTEDRATE
intensity of SBSs per u nit area. Also, |18t = Ugcx Fi be

the set of all SBSs. Since each SBS is assumed to serve,
single UE at a given time slot, for an SBSin f € F, we
will denote its associated UE by UE-at any given time. The
channel state information is assumed to know at each S
The set of RBs in the shared band available to the netwqg
is given by £ with L RBs. LetL; C L be the set of RBs
assigned to OR-with L; RBs.

The SBSs associated with GPean select any one of the
RBs in £, to serve its UE. We assume that the SBS wi
uniform randomly choose a single RB frofy,. Hence, an
SBS'’s transmit power is restricted to a single RB. Let thaltot
power of each SBS be given by,,;, which is discretized into . .
N = Pt evels, where) is a quanta of power. Thus, the set R{) =log(1 + SINR[). ®)
of transmit power levels that an SBS<can choose from is (1) e
Pr=40,6,20,...,(N —1)d}. We shall denote the transmit Here theSTN It is given by,

In this section, we deal with the analysis of the expected
@ of an SBS, where we explicitly consider the randomness
due to channel fading, distance geometry, and random channe
cess. Thus, the only source of randomness we will not
alyze is the one due to the power allocation method. In this
ction, we assume that a form of random power allocation
method is available, then it will be updated with the optimal
random power allocation scheme using Q-learning method to
Re explained in Sectidn]V.

Let the rate of a generic downlink SBS-UE system trans-
mitting in a fixed RB¢ and at fixed power leveh be given

power of the SBSf by p; € P;. The SBSs are assumed " hgf;,r;;épf
to use a probabilistic scheme to select a suitable powet leve SINR,’ = 0 > (4)
n € {0,1,...,N — 1}. Thus, any given action taken by an Dprer hypiyryipg 0

SBS can be simply represented hy
We consider the analysis of a single time slot of the overall _ )

system, so the utility of SBSs has been calculated as @ins and interference, we ge{Z:’] = Eno 1o [IOg (1 +

expected data rate when a single UE is present. We furthébr; »,

assume that any RBs allocated to an OP can be accessed Ky+o2

more than one SBS associated with that OP. Thus, the expedfdgnce experienced by UE-in RB-I. Using the fact that,

Taking the expectation ok with respect to the channel

)], WhereI}l) =D fer hgf,)fr],‘}pf/ is the inter-

rate of the UEf associated with SB$-is given by th_e expectation of any positive random_ variablecan be
o given by E[z] = [~ P(z > t)dt, the integral becomes
hiyrrsep ! 00 ! ro (et —1) (o241t
Ry = E[logy (14 T ] 1y BIRY) = By [T P(f) > DAL .

/ h(l/) —,Ot / 2 . . . .
ez Mty Pl O Since we have assumed Rayleigh fadlr'lg(fl])c is expo-

wherep; is the transmit power of SB$-on RBA, h(fl,)f is nentially distributed (i.e.h}l} ~ exp(n)). Thus, we have
the channel fading gain between UEand SBS#’ using )y o0 9 (e =1) (o + 1))t .
RB-/. For simplicity, we assume the fading to be Rayleing[R” ]a_ tEI}” Utzo eXp{n Py }dt}' Putting
Also, o denotes pathloss exponent angd; is the distance , — %}fl)ﬂ we can simplify the expression dB[,Rgf)] =
between the UEF and SBS#’. TheZ; C F is the set of SBSs oy ) )
using the same RB-while o2 is the noise variance. Here,j;fz0 exp(—vo”) E,I(”[e}fp( VIf )ldt. Here,. we can recog
the expectation is taken with respect to the random chanfé€ the expectation ‘(’}’)'th respect to the mterferen((:g as the
gains, the random distance of the UE from the SBS, as well s@Place transform off;~ as 21}” (v) = ]EI;” [exp(—v1;7)].
probabilistic channel access and power allocation styaisg Thus, we have
can interpret this averaging effect as averaging over pialti /oo
t

time slots as SBS serves different UEs in different location E[RV] = exp(—vo?)L o (v)dt. (5)
with differing channel gains.
The interference experienced by a UE of an SBS canFor the homogeneous PRE the moment generating func-
be categorized as either intra-OP interference or inter-@iPnal of a two dimensionablD) space PPR® can be obtained
interference. The intra-OP interference is caused by the f@y taking the Laplace transform of _, f(x) of intensity A
that the SBSs associated with a given OP can access any WBg the formulal[15],£(v) = Elexp(—v)_ .4 f(2))] =
assigned to that OP. Thus two SBSs served by the same @B{— [;.(1 — e/ (®))da}.
can access the same RB. On the other hand, the inter-ORet )\, ; denote the spatial intensity of SBSs served by/OP-

interference is caused by the fact that a given RB can bedhaa@d using RB- By the merging property of a Poisson process,

()
=0 Iy

by two or more OPs. the total intensity of SBSs under QPis )\, = Zleﬁk Ao l-
The expected data rate of GPwill be the sum of expected Also, when the RBs are uniform randomly selected, via
rates of each SBS. We can express the rate oft@B; thinning property of Poisson process, we havg = \i/Ly.
Again, via the merging property of Poisson process, thd tota
Rop, (Fi, Lr) = Z prity, @) intensity of interfering SBSs utilizing an RBis given by
fEFkK
wherep; denotes the weight of each SBS which is a positive A= Z Akl = Z 2—];, (6)

real number. keZP® keZPOP



whereZPF c K is the set of OPs allocated with RBSince ~Substituting the expression fd®, we have

we assumed that each OP has the same spatial intensity of E[/pF

SBSs per unit area, we have = . E[RW] = \/70“ (9)
For our case, thg, from (@) is the required intensity of the 2/\“"2\/_

interfering SBSs per unit area. For a given RBhis is the  pigcussons

sum of individual intensities of all OPs transmitting in tha

RB. Thus, we have 1) The above analysis holds for any generic SBS located

at any location. This is guaranteed by the Slivhyak’s

£,0() =E,0 [exp(—ul(l))] _ exp{_/\l/ (1— theor_em [[15], according to which the stat_istics fpr the
f f R2 PPP is independent of the test location. This also implies
that the SBSs transmitting over an RBare identical.
Ehu’) Fry lexp(= PRIy f " j)])dAf b That is, every SBS will experience same interference
For 2D spacedA; s = 27 pdry p, SO statistics.
0o 2) Since the SBS* can access any one 6f, RBs assigned
21}1)(V) :exp{—27r)\lrf/f/ (1- to its associated OR-with equal probability ofl /Ly,
0

I we can expres®; in (1) in terms of R in @ as,
By By, lexp(—vpyrp/fhy)])dry g}

_ l)
Following [1€], this expression can be simplified to obtain Ry = EnilE[R IEXL% B (10)
L0 (v) = exp{~-TAE,,, b7 E [hﬁf’f/“] */er(1-2/a)}, For fixed PMFs of p; and p;, the expression
) E,[E Sf)]] will be some constant dependent on the
where ps is the transmit power of an SBS in the set of value of \; for the RB{. Thus, the average rat&;
interferers andl'(z) is the complete Gamma function. By depends only on the intensity of interfering SBgsin
substituting the expressiofl (7) il (5), we get RB-I and the number of available RBS;,.
oo 3) For the important special case, whép = 1 for all
E[RV] = / exp(—vo?) exp(—Cv?/*)dt, k € K, we will have from [6),\; = ZkeIoP Ai. When
0 we further assume constant intensities of SBS for all
whereC' = t\E,, [p?{a] E,0 [h(fl,)ﬁ/a]r(l —2/a). OP, Ay = A, then ), = |ZOP|A. In this case, it is clear
Since dense small cell networks will be interference linhjte that 2 will depend only °n|IlOP_|' the number of OPs
we can neglect the noise tererp(—vo?) in the integral for assigned to the same RBprovided that the PMF of
the expected rate, so the only significant term to be intedrat bothp; andp; remain fixed.

is ]E[Rﬁf)] = [, exp(—Cv?¥*)dt. Furthermore, when we
take o = 4 we obtain an analytically tractable form of IV. MULTI-OPERATORSPECTRUM SHARING USING

IEhu) [\/ ] as given m.],]Ehm [\/h(l) ] = l\/E Thus, MATCHING GAME

assummgn = 1 and substituting the expression foy we get A. Problem Statement

the equation for the expected rate as Consider the social welfare of the network to be the overall
0o N2 R ; weighted sum rate as follows:
E[RV)] :/ exp ( ”2” [fo]\/(et—l)t)dt. ®)
0 VPs S(p) = Z Z rikpr Rop, (Fi, Li), (11)

Note that this formula foE[R "] is independent of the num- feL hek

ber of interfering SBSs in RB- The expected rate dependsvhereX = |£| x |K| is a matching matrix{z;; : (I,k) €
only on the intensity of SBS%;, the probability mass function £ x K£}. We denote the matriX as,

(PMF) of the interferers selecting transmit power of lexel .

in RB-/, and the actual transmit power of SBS-The PMF T = { L iff p(OPk) = RB, (12)

of py can either be interpreted as the percentage of SBSs 0 otherwisg

transmitting in RBt with power leveln or the distribution wherey is a matching. Lastlyp;, is the weight of OPk.
resulting from some random power selection method. The objective of the matching game for the multi-OP

If we assume that the UE associated with the SBS is locatggectrum sharing is to maximize the social welfare. Thus, th
uniform randomly around a Clrcular area of radiyswith the 0pt|m|zat|0n prob|em can be expressed as,

SBS as the center, thefr(rys) = r2 , for rz¢ > 0. De-

conditioning onr; ¢, we have S%(n) = m)%xz > wwwiRop, (Fi, Lr),
1 o0 o leL kek
Ny _ 2
E[RY)] = s / dt / 2\ s exp(—BrArsp)dryy, st.  (Cl1) ;xlk <b V€L, (13)
€
where B = ”E[\/p_f' V(e . We can integrate integral (C2) Z o < Yk eK.

to the right asfo 271'/\17’jfexp( Bﬂ'/\’l’ff)d’l’jf = 1/B. kek



Condition (C1) assures that each RBan be allocated to

at mostb; OPs, and condition (C2) guarantees that each OP- RB-1 OP-1
k gets at most;, RB. We will refer to ¢, as the resource
“demand” of OP%, while b; as the resource “supply” éfc L. "5 OP-1 OP-1

This is a binary integer programming problem. In this paper,
we try to solve it by providing a method based on a game

. . . OP-2

theoretic model known as matching games. We will use the RB-3 0Op-2
framework of many-to-one matching game with externality
which is described as follows. p— OoP-2 Set of OPs
B. Matching Theory for Multi-Operator Spectrum Sharing OP-2

Since the OPs are assumed to be able to communicate Set of RBs
with each other through a distributed SC during the spectrum Each OP
sharing process, it makes sense to use the cooperative game duplicates itself

theory to model the decision process of the OPs. Here we
will describe our solution approach using the matching garﬁ@' 3.
theory, which is an instance of cooperative game theory.
Unlike the traditional matching games, which are based on
preference relationships defined between two sets of @ay@dPs isk,,, = Urexc K. Since each child OP is assigned with
we will be following a more recent framework described imt most one RB in many-to-one matching, if the number of
[17], which directly deals with utilities rather than pregeces. children OPs is equal to the the resource demand of the parent
In our case, the sets of players can be written £5,£). In OP+, ¢, then this method guarantees that each parent OP can
our application, we have slightly modify the approach giveabtain more than one RB. At the same time, by allocating at
in to suit our purpose. most one RB to each child OP, it ensures that each parent OP
The kind of matching game we are interested in is complivill get at most the maximum number of allowed RBs.

cated by the presence of externalities. Normally, it is el However, it requires that the children of GPin the group
that the preference of a player does not depend on the otBelayers K, coordinate with each other such that no two
players’ preferences. This assumption does not fit in outimulpjayers ink;, selects the same RB. Otherwise, each parent
OP spectrum sharing problem. The choice made by an GBP will be assigned with a lower number of RBs than the
k to select an RB will affect the data rate of other ®P- requirement. We illustrate these ideas in Hily. 3. Here,10P-
wherek’ # k, that transmits over the same RB. This in turfiequires two RBs, so it makes two copies of itself; whereas
will determine the desirability of the RB for the other OPOP=2 requires three RBs, so it makes three copies of itself.

k’'. Hence, the prefe_rences of eqch OP over the set of RBror 4 given parent OR; we will take the rate of SBS and
depends on the_ particular matchipg In game theory, such .ild OP to be given by(10) anl(2), respectively. Note tbat f

a phenomenon is I_<nown as an externality. These are extergggs associated with child OP, the number of R, where
effects that dynamically change the performance of eac_h C%P'e K, used in[ID) is at most unity. Thus the special case
T*,“_JS' the proper framewgrk to deall\_/wth our problem is tBiven in the third point of Discussion in Sectiénl Il applies
utilize matching games with externalitiess [17].[18]. Since the children OP inherits all the SBS of its parent OP, we

Theoretically, our problem fits into the framework of manygi need to take the average rate of parent OP with respect
to-many matching with externality. However, since many-tQ, the number of available RBs. as

many matching with externality is still a topic of ongoing
research, we will adapt the better understood framework of

Matching between RB and OPs

many-to-one matching with externality for our work. In many Rop, = M_ (14)
to-one framework, a matching describes the assignment of Ly,

OPs to RBs such that one OP can be matched to only one RB,

whereas one RB can be matched to multiple OPs. To address these concerns, we will use the idea of swap

One further complication with this approach is that thenatching as described in[17], which considers peer effefcts
direct application of existing many-to-one matching aitions a social network and a weaker notion of stability, known as
would result in allocation of at most a single RB to an ORwo-sided exchange stability. This model is distinguisiyd
However, our problem allows us to allocate more than one RBe use of utility functions rather than traditional prefece
to an OP, as given by constraint (C2) [B3}. To tackle this ordering. The authors of__[17] have applied their idea to
problem, we create an augmented set of players by producstgdent-hostel matching problem. In our work, the studargs
identical copies of OPs, as shown in Figuke 3. Each copy of @&presented by OPs while the hostels are represented by RBs.
inherits all the SBSs associated with its ®Pk € C, which Thus, we propose a decentralized approach that can guarante
we shall refer to as the parent OP. Uéf, = {k1,...,k., } the maximum number of RBs required for each OP, while at
denote the set of identical copies of @Pwhich we shall refer the same time ensuring that each RB is not utilized by more
to as children OPs of parent ORP-Thus, our augmented set ofthan the limited number of OPs.



C. Many-to-One Matching with Externalities D. Sability of Many-to-one Matching with Externalities

In this part, we will describe the framework of many-to-one In this part, we will show the existence of the many-to-
matching with externalities, with some modifications for ouone stable matching with externalities for multi-OP spewtr
purpose. More formally, we can describe a matching as: sharing. We will prove that all local maximas of the social

Definition 1 : For many-to-one matching, a matching is avelfare are pairwise stable. We first define what we mean by
subsety C L x Kquy such that|u(k)] = 1 and |u(l)| = by, local maxima, and then give a few lemmas, after which we
whereu(k) = {l € £: (I,k) € u} andpu(l) = {k € Kqug :  Will prove our theorems.

(I,k) € u}. First, let the potential of the system be defined as,
Also, for anyk € Ky, let u?(k) denote the children of the - Z DE I (16)
same parent OR-who utilize the same RB-We will denote - H(k)

the desirability of RBE for any OPk by DF € Rt U {0}. In Felaug

our case, the desirability of an RB for children OPs is given Definition 4: The local maximum of the potential(y) is
by the weighted sum rate obtained by the OP, when it accest#g matchingu for which there exists no matching which
that RB as given in{2). For a given matchipgwe can write iS obtained fromu by swapping any two OPk, &’ such that
the desirability ad)ﬁ(k). The utility of OP+ is given by, o(p') > o).
We now show that the desirability of RBfor the rest of
Ur(p) = Dy gy - Lu(k), (15) the OPs that use this RB-and which are not involved in a
where the indicator functior(-) is given by I,(k) — swap process, either improves or remains unchanged aéer th
e o swap has occurred.
0 it u*(k) 70 Lemma 1 : For an hing®, D , > D’
1 otherwise. : y swap matching; , D’ , D

w6y = T n()
In other words, if two children of the same parent OP accely all j € Kquy\{k, ¥’} '
the same RB, they will be punished. This has the effect of Proof : Since each OP iiC,,, utilizes only a single RB,
ensuring that two sibling OPs will access different RBs.éHewe can invoke the third point in the Discussion given in
we have modified the definition of utility given in_[17] bySectiorEI]] There are three possible cases. First, for & O
using the product of desirability with an indicator funetjo j not assigned to RB-or RB-’ (i.e., u(j) ¢ {l,I'}), the
instead of defining the utility as the sum of desirability and number of OPs associated with its RB.j), does not change;
penalty term. hence |tsDJ G = DM(J) Second, assuming (without loss

A swap matching pf is a matching. in which the OPS:  of generahtys that OR¢ is a “hole”, for all OP4 assigned to
and k" switch places while keeping all assignments of oth@B-/, after the swap, the number of OPs on RBecreases.

OPs t_ht—_:‘_same. More formally:_ o So, |tsD > DW) Lastly, For all OPs assigned to
Definition 2 : Given a matchlngy, a swap matching; = aither RB{ or RB (i.e., u(j) € {1,I'}), after the swap, the
(B, D), (K1)} U{(R, 1), (K, D)} number of OPs on RB-and RB# remain the same. Thus,

The players involved in the swap are two OPs and tWBg - D 0O
RBs. The two OPs switch their respective RBs while all other#x @ rG)"

assignments remain the same. In this framework, it is ptessib Lemma 2 : Any swap matching:f such that,

that one of the OPs involved is a “hole” representing an 1) Vi € {k,k'},U; (Mk ) = Ui(p),

available vacancy in RB that an OP can move to fill in. When 2) 3i € {k,k'},U; (g ) > Ui(p), a/nd

two actual OPs are involved, this type of swap is a two-sided3) Vi € {u(l), u(I')\{k, &'}, Ui(uf ) > Ui(p).

version of “exchange.” leads tog (1) > ¢(u).

Two-sided exchange stability requires that the two OPsProof : The difference in potential between two matching
involved approve the swap. Here, we give a slightly modifieg given by ¢(u') — ¢(u) = Zze,cwg [D ()]Im (i) —
version of its definition. D .1,(i)]. According to Lemmal, D! i for all

Definition 3 : A matchingu is two-sided exchange-stable. “(l) (0 Duto

i € Kaug\{p(1),u(l")}. That is, the de3|rab|I|ty of an RB-
(pairnwise stable) iff there does not exist a pair of QRsh’) l for the rest of the OPs occupying RBs other than RB-

such that , & and RB{’ does not change after the swap. This also means
1) Vz' € {k,k/},Ui(M]]z,) > Ui(p), that for these OPs] . (i) = L.(i). Then the difference in
2) i€ {k, K7}, Uiy ) > Us(o), %nd potential is only due 'to the dlfferences in the desirabitify
3) Vi€ {u(l), p(")I\{k, K"}, Ui(p ) = Us(p). the OPs occupying the RBs involved in the swau!’) —
In other words, a swap matching in which all OPs involved,,) = Dl’?]l . (k) — leﬂ (k) + le/H . (K) — DL, () +

are indifferent is called two-sided exchange-stable. Akso [D I /( ) - Dg L,()]
swap is approved if both OPs involved in a switch experien;7€{“(1) RUOIER I W () m p() L

an improvement in their utilities, with at least one OP domg Assuming that the condmons (1), (2) and (3) of the lemma
strictly better than before. A “hole” will always be indiffent. re satisfied, then without loss of generality, assume teat t
We have modified the definition given in]17] by adding athlr@erformance of OR- strictly |mproves Then tr,le change in
condition which states that, for the approval of the swap, éitl'ty of OP-k is 0 < U’“(“k )~ Us(w) = Dl’]l N (k) —

the OPs occupying the RBs involved in the swap should sé§T, (k). Slm"a”% for OP#’, we have( < Uy (M;C ) —

an improvement in their utilities as well. U(u) = DF1 e (K) = D}'T,,(K). Lastly, for OP4, where



J € {p(), u(')}\{k, k'}, we have0 < U;(u¥') — U;j(u) = global objective function necessitates a centralizedesyst
D, 1 V(j)—DfL(j)]IH(j). Adding the inequalities, we have Nevertheless, both approaches lead to the same solution of

RO . L
0 < ¢(uf') — é(u), proving our lemmal] social welfare maximization.

!n the following t_heorems, Fhe Thgorem ensures the Algorithm 1 MCMC Swap Algorithm
existence of an optimal matching, while Theor@rensure
that this matching is pairwise-stable.

Theorem 1: There exists at least one optimal matching.

Proof : This is easily seen to be the case since the number )
matching is finite. Thus, there must exist at least one o;btimas:
matching which leads to the maximum social welfdre. '

Theorem 2 : All local maxima of ¢ are pairwise stable.

Proof : Let the matching: be the local maximum od(u). -,
Lemma?2 shows that any swap matching that satisfies both’
conditions in Lemma2 strictly increases the overall social
welfare. If there exists another swap matching then this
contradicts the assumption thatis a local maximum. Thus,

1: Initialize the matching matrixxX.
2: Compute the initial data rate of each @P-
03f for all ¢+ < maxlterationsdo
. Select a random pair of RBE,’}.
Search for OPqk, k' € K.} using the RBs{l,1'},
respectively.
Swap the two RBs for each O, &'} to obtainy?’ .
Update the expected rate of augmented QRsk'},
k. k' € Kqug, with the Q-learning.
Compute the social welfar;(x) in (I1).
Compute the transition probability Py, =
1

4 must be stablel] 1o To(SuEH=5m)
Corollary 1 : If T,,(k) = 1 for all k € K., then all local 10:  if rand() < Pr, then ,
maxima of the system objectivg are pairwise stable. 11: p <= i andSy(p) = Si(py)
12: else if S, (1) > S;_1(uf') then
13: < uz,

E. Swap Matching Algorith ,
ap Viaiening Agortim _ 14: Update the social welfar§,(u) = S, (uf)
Computationally, the swap matching can be performegy. g if

by any pair of OES by f:alculating their own local utilitiesm; et 41,
and swapping their obtained RBs with each other based QR ond for
mutually beneficial conditions given in Lemnia Thus, in
theory, the swap matching can be implemented distributivel

by comparing the local utilities of the pairs of OPs, withtha

need for a central controller. The problem with this apphoac- POWERALLOCATION FOR SMALLCELL BASE STATIONS

is that the system can be stuck in a local optima. USING Q-LEARNING STRATEGY

However, as stated in Theore2rand its corollary, all local  In our paper, we have discretized the transmit power levels
maxima of the social welfare are also pairwise stable, underSBS and have assumed that the SBS transmits by accessing
certain condition. In other words, the solution to the swagny one of the power levels by some fixed randomization
matching problem corresponds to the solution of the societheme. Recall that welfare maximization problem (11) form
welfare maximization problem. It also means that we cam-altéated among the OPs in Section IV does not regard the transmit
natively compute the stable matching solutions by computipower of SBSs as one of the optimization parameters. As such,
the solution to a global social welfare function. Since firgdi any randomization scheme would have been sufficient for the
the maxima of the social welfare is a combinatorial problempurpose of the welfare maximization and the swap matching
the maxima of social welfare can be reached using the genqriocess among the OPs. Similarly, in Section IIl, we dealt
approaches. with the analysis of the expected rate of an SBS, where we

Algorithm [T proceeds to optimize the social welfsfevia implicitly assumed that some random power allocation mettho
the Markov Chain Monte Carlo (MCMC) method. We firstvas available, although it was left undefined, from which we
initialize with a random matching, and at each iteration, weould calculate the expected rate, with respect to the mando
proceed to accept a swap of random pair of OPs based on piosver.
probability that depends on the change in social welfare. Itin this section, we investigate the optimal transmit power
keeps track of the best matching found thus far. We can giveseheme. Since an SBS has control over its transmit powser, it i
greedy version of the Algorithid 1 by removing the explorationatural to assume that the SBS is interested in maximizing it
steps given in the line8 to 11. The resulting Greedy Swaplong term expected data rate by optimizing its power stsateg
Algorithm proceeds in a greedy fashion to improve the socibllowever, the optimal probability mass function (PMF) dedfine
welfare, and it is possible to implement it distributive8ince over the discrete power levels is not known a-priori by the
the social welfare strictly improves with each iteratiohist SBS. Thus, we will use Q-learning to find such an optimal
algorithm converges to a two-sided exchange-stable magchipower PMF for an SBS.

In the MCMC and Greedy Swap approaches, the sufficientThe Q-learning method is a distributed algorithm which
condition of Corollaryl is satisfied by carefully selecting therelies only on local information available at each SBS. Hegnc
pair of RBs and OPs to be swapped. The MCMC approattere is no information exchange and coordination among
is efficient in the sense that it enables us to find a bett8BSs. We assume that all the SBSs are able to estimate
optima by giving the system a chance to overcome a lodhk interference they experience on each RB and accordingly
optima in which it can be stuck. The computation of suctune their transmission strategies towards a better pagoce.




With this ability to learn, each SB$; f € Fi, belonging to which is the discounted reward when executing actioat
OP+, wherek € K44, uses the RB allocated to OP{0 states and then following policyy thereafter.
serve its corresponding UE based on Q-learning. Here, we use th&-learning algorithm to iteratively approx-
The @-learning model consists of a set of stafesind ac- imate the state-action value functi6}(s, a). The agent keeps
tions.4 aiming at finding a policy that maximizes the observettying all actions in all states with non-zero probabilityca
rewards over the interaction time of the agents/playensoBo must sometimes explore by choosing at each step a random
case, the agents are the SBSs. Every §BS F, served by action with probabilitye € (0,1), and the greedy action with
an OP%, wherek € IC,,4 explores its environment, observegprobability (1 — €). This is referred to as-greedy exploration
its current states, and takes a subsequent actigraccording [20], [21]. Another option is to use the Boltzmann explovati
to a decision policy : s — a. With their ability to learn, strategy with temperature paramefgr[22], where the action
the knowledge about other players’ strategies is not neededn states is taken with a probability?(a|s), and the SBS
Instead, aQ-function preserves what they have learned fromeceives a reinforcement. The actions are chosen according
their interaction with other players in the network, based do their Q-values as:
which, better decisions can be made.
For each OPRe belonging to the sek € K.y, let us P(a|s) = — )
— . 1 e ’ P
denote byGy’ = (Fi, {Ps}er,, {ws}rer.) the Q-learning Dt €965/
game. Here, the players of the game are the SBSs 7}

: ; k . The Q-learning process aims at findir@(s, «) in a recur-
which seek to allocate power in the RBs assigned t0 i/ manner where the update equation is giverias [21]:
corresponding OP. The,(t) is the state of SBF- at time

eQ(Skaa)/TP

(22)

t. The state of an SBS is a binary variablg(t) € {0,1}, Qur1(s,a) =(1 — B)Qu(se, ar)+
which indicates whether SBE-experiences interference in .
RB-/ assigned to its corresponding @fsuch that its required Be |w(se, ar) + 7 ax Qi(st,a)|,  (23)

QoS is violated. The QoS requirement is said to be violated _ )
when SINR%” < SINR,,, where SINR%” is given by where 3, is the learning rate, such that < 5, < 1. The
@). Thea,(t) is the action of SBSE, wherea(t) € P;. Q-Iearning_algorithm fpr power allocation at each SBS$s
Any given action can be represented by an integer variatlgscribed in the Algorithrl2.

ay(t) = n, wheren represents the power level. Finally, (¢) i : i i
is the reward or payoff of SB$-at time-instant, which we Algorithm 2 @Q-learning algorithm for power allocation
take as the instantaneous rate of SB&t time-instantt as  1: Q(s,a) =0 _

given by [3) if the QoS is satisfied, otherwise it is taken to be2: for all ¢+ < maxlterationsdo

Zero: 3 for k=1: K, do

n o ! 4: Calculate the utilityu
wy(t) = { Ry iff SINRD > SINRoc (17 o i pand() < - then
0 otherwise .
6: Randomly choose an action (power level)

The expected discounted reward over an infinite horizon is 7 else

given by: 8: Choose a state with* = argmax Q(s, a)
VO(s) = B[y x (s v (slso=s), ) S 2aT
’ ' 10: Each SBSf computes the expected date raiey].
where0 < v < 1 is a discount factor ana is the agent’s 1i: UpdateQ-value Q11 (s¢, ar) = (1 —B1)Q¢ (s, ar) +
reward at timet. Equation [IB) can be rewritten as: Br [w(se, ar) + vy maxy; +q, Qi(se, a})].
12: t—t+1
Vﬂ’(s) = W(Sv ¢* (S)) + Z PS,U(w(S))Vw (1)), (19) 13: end for
ves 14: end for
where W (s, ¢*(s)) = E{w(s,%(s))} is the mean value of
rewardw(s, 1 (s)), and Ps , is the transition probability from
state s to v. Moreover, the optimal policy)* satisfies the )
optimality criterion: A. Convergence of Q-Learning
The optimal Q-function is a fixed point of a contraction
V*(s) = Vw*(s) — max <W(s,a) + VZ Ps,v(a)V*(v)> operatorH, defined for a functior@) : S x A — R for the
acA s 6oy decision policyy as,

It is generally difficult to explicitly calculate the reward He(s,a) = W(s,a) +v > Piy(a) {;}%Q(Saa')- (24)

W (s,a) and transition probability’; ,,(a). However, through ves

Q-learning, the knowledge of these values can be gradualfiiis operator is a contraction in the sup-nofml [22] such, that
learnt and reinforced with time. For a given poligy we can
define aQ-value as: Hg, — Hg,|lo <7/1Q1 — @2/l (25)

Q*(s,a) = W(s,a) + v Z P, o(a)V¥(v), (21) With any initial estimate),, the Q-learning uses the update
cs rule as in [ZB) to converge to an optimal decision policy. To



show the convergence proof of Q-learning algorithm, we negdthloss between SBS and SBS-UE at distafice: is given

the following auxiliary result from stochastic approxinet by PL(ds.ug) = 7+ 56log;o(ds-ug) + P Lwai- The maximum

[22], [23]: transmit power of each SBS 19 dBm, and the noise variance
Theorem 3 : Let a random procesgA, }, taking values in is —120 dBm. The SINR threshold at each user 3sdB.

R™, be defined ad\;1(s) = (1—8¢)A¢(s)+ 5. Fi(s), thenA; The temperaturd;, in MCMC algorithm is set to b&00. In
converges to zero with probability one under the assumgtioithe Q-learning algorithm, we set the parameters as: digcoun
1) 0< B <1,50°, B =00 and > 5%, 7 < oo factory = 0.95, exploration probability = 0.1, learning rate

2) |[E[F,(s)|| < v||A¢]], with v € (0,1) B¢ = 0.5. In all the cases, the summation for all elements of

3) var[Fi(s)] < C(1 + ||A.]|?) for C is some constant.  ©C is kept less than or equal to number of RBs assigned to

Theorem 4 : The Q-function converges to its optimal valuéhe IOPk €. %ke/c C’“dg. El:leﬁ I;]l n rc:rder tlo ensmljre fthat the
with probability one under the condition that:< 8, < 1, total resource demand is less than the total supply of ressur

s - 59 Also, we keepcr, < L, to ensure that the resource demand of
Zt:1 By = o0, Zt:1 Bi < oo.

neach OP is always fulfilled.

Proof : Following the update equation of Q-learning i - ) i i
g P d Q d Unless otherwise stated, for the stochastic averagingnguri

(23), subtracting@Q*(s;,a;) from both sides and letting

* ; the simulations, we have taken the ensemble average from
A = - ields, As(sy, = X ’ . ; .
(1t(_st’5a§)A (s %()Stjraé) [w(g gsg’f:)vﬁlax , éz(s(tv a;/)) _ 2000 instances of random geometric configurations of 8 SBS
Q* (st ;t)]t oo A oiFa per OP, scattered uniform randomly over a circular area of

radius 500 meters. Also the swap algorithms were run for

Let Fi(s,a) be given byFi(s,a) = w(s,a,X(s,a)) + 2000 iterations.

Ymaxe £q Q(v,a’) — Q*(s,a), where X (s,a) is a random
sample state obtained from the Markov ch&#\ P; ,(a)).
Taking the expectation df;, we haveE[F,(s,a)] = W(s,a)+ A. Convergence of the Swap Algorithms
S s Peolymaxe o Qu(v,a') — Q*(s,a)] = Hg,(s,a) —

Q*(s,a). Here, the second equality follows from the definitior

of Hg as given in[(Zh), while" ¢ Ps ,Q*(s,a) = Q*(s, a), 640
sinceQ* (s, a) is a constant. The fixed point due to contractio 620
operatorH leads toQ* = HQ*. Thus, we can re-express
E[F;(s,a)] = Hg,(s,a) —Hg«(s,a). Now from the contrac-
tion property ofH, given in [258),||E[F.(s, a)]||sc < 7]|Q:—
Q"o = 7||A¢||- This verifies the second assumption give
in Theorem3.

Since the reward in our case is the rate of YBAssociated
with SBS-f, as given by [{l1), the reward is a boundec
deterministic function. This ensures that the third asdionp
given in Theorens is also confirmed, as shown in [23].
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Thus, by the Theorer8, A, converges to zero with proba- 480 - Greedy Swap with uniform power
bility one. That is,Q); converges ta@Q* with probability one. ‘ ‘ ‘ ‘
O y @ ges ta) P y % 500 1000 1500 2000 2500
Iterations
V1. NUMERICAL RESULTS Fig. 4. The convergence of social welfare far = 4 OPs using MCMC

) ) ] and greedy swap algorithms with full power allocation, poaocation using
In this section, we present numerical results to evaluatgearning, and uniform power allocation

the performance of our multi-OP spectrum sharing framework

and proposed algorithms. The system is iteratively updased In Fig. [4, the convergence of the social welfare using
shown in Fig[ll. The SBSs are spatially distributed accgrdiMCMC and greedy swap algorithms is given when there are
to homogeneous PPP inside580 meters radius of circular K = 4 OPs with full power allocation, power allocation using
area. Moreover, each OP is assumed to have the same inter@ifgarning, and uniform power. We fig = [4,4,4,4] for

of SBSs per unit area. We assume the intensity of SBS to he= 4, L = 6, andb; = 4 and the running average of the
8/(m x 5002) per square meter. Each SBS serves a single W&cial welfare is plotted against the iteration. In this feguve

and each UE is located withiB0 meters of the SBS. For run 2500 iterations for the swaps algorithms. We see that the
K OPs, let the resource demand made by each OP be giggatem converges to a steady state. We also notice that for a
by the vectorc = [¢1,...,ck]. The vectorc also tells us given power allocation scheme, both the MCMC and greedy
how many children of each parent OP will there be in thewap algorithms converge to similar steady state perfocman
augmented OP set. For simplicity, we assume the weightsThis demonstrates that both the swap algorithms are equally
the social utility function to bep; = p,, = 1. The direct effective.

pathloss between SBS and SBS-UE at distasiaeeters is At the steady state, the full power allocation achieves
given by PL(d) = 37 + 201log,,(d) dB, and the pathloss duethe highest average social welfare, while the uniform power
to the wall (PLyay) is 15 dB. The standard deviation of log-allocation achieves the lowest average social welfare. The
normal shadow fading is assumed to4dB. The cross-gain difference in steady state performance between full powdr a
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uniform power allocation schemes is about 20 bps/Hz. Theé = 2, the system spend around 70% of its time in a solution
reason why the Q-learning power allocation scheme does tiwat gives around 350 bps/Hz, while the system spends less
perform better than full power allocation scheme is thatehe than 30% of its time in a solution that gives around 250
always a non-zero probability for the Q-learning to visiead bps/Hz.
than optimal power allocation method during its explomatio 2) The height of the last step, which represents the best
step. locally optimal solution obtained within a fixed number of
We also note that for full power allocation, the greediterations, is seen to be decreasing as the number of OPs
swap algorithm takes longer time to converge to the steamhcreases. This means that the system tends to spend less
state than MCMC swap algorithm. Similarly, for power allotime in that state as the number of OPs increase. This can
cation using Q-learning, the greedy swap algorithm coregrgoe explained by the fact that as the number of OPs increase,
faster than the MCMC swap algorithm. Lastly, for unifornthe number of possible matching of the system increases, but
power allocation, both the greedy swap as well as MCM§&ince we have used only a fixed number of iterations to run
swap algorithm converge at similar rate. However, since tlige swap algorithm, this shortens the amount of time spent in
operation of the swap algorithm does not depend on thee best solution.
underlying power allocation algorithm, it would be incarréo 3) For a given number of OPs, we see that the difference
associate these differences in speed due to the powert#locain performance caused by differing power allocation scheme
algorithm being used. This means that, given our data,ist much smaller than the change in performance caused by
remains inconclusive as to which of the two swap algorithnaiiffering matching scheme. In other words, for a given numbe
is faster. of OPs, when we look at the family of CDF curves for various
power allocation schemes, the difference in the width of the
step of the CDF curve, caused by the system’s transition to a
new matching scheme, is much larger than the difference in
performance due to differing power allocation scheme for a
particular matching. For example, whéh = 3 the difference
in performance, when the locally optimal matching is chahge

B. Effect of Changing the Number of Operators and Power
Allocation Scheme

o9l is roughly 100 bps/Hz, as given by the width of the steps
of its CDF curve. This is in contrast to the difference in
08 performance due to power allocation scheme when the system
071 is in a given matching, which foK = 3, is about 25 bps/Hz.
0.6F Thus, the effect of resource allocation scheme is much more
& o5 significant than the effect of power allocation scheme fer th
© o4l social welfare of the system.

' 4) The difference in the median values of the CDFs tends
03 to remain more or less constant as the number of OPs is
021 IQ_leaming increased. This is because far= 6, when there are three
0.1r —=—Uniform Power|  OF more OPs in the system, the system becomes interference

N J|—o—FulPower | |imited. As such, the average social welfare obtained per OP

800

400 600 1000 1200 imi i —
Social Welfare (bits/sec/Hz) is similar, as can be seen in Fld. 6 far= 6. Thus as the

number of OPs increase, the median tends to increase inearl
Fig. 5. Comparison of the cumulative distribution functi@@DF) of social This is in contrast to the case whéh= 2. For this case, since
welfare for K = 2,3, 4,5 and6 OPs using MCMC algorithm with full power ¢ = [4,4] and L = 6, the best configuration is where each OP
allocation, power allocation using Q-learning, and unifgpower allocation has two RBs that it does not share with the other OP. Thus,
out of four required RBs, two RBs are free from inter-operato
In Fig. [§, we plot the cumulative distribution functioninterference while the other two RBs are not free from inter-
(CDF) of the overall social welfare (bits/sec/Hz) using MCM operator interference. This leads to a higher average Isocia
algorithm for different numbers of OPs and different powagelfare for each OP. Thus, the median of the CDF Kbe= 2
allocation schemes. We fix the number of available RBs t¢ closer to the median of the CDF &f = 3.
L = 6 and the number of OPs that can utilize the same/RB-
isby=4foralll e £, andc, = 4 for all k € K. We consider .
cases when each SBS allocates power to its UE using unifofm Effect of Changing the Number of Resource Blocks
power allocation, Q-learning, and full power allocationfeiv In Fig. [, we show the average social welfare per OP
observations are as follows: (bits/sec/Hz/OP), when there are different numbers of OPs,
1) The CDF of social welfare occurs as discontinuous step&rsus the number of available RB5)(We consider resource
This can be explained by the fact that during the search fdemand of each OP to bg = 4 for all £ € K. The number
optimal matching using Greedy Swap Algorithm or MCMOf OPs that can use the same REBEs assumed to bé, = 4
Swap Algorithm, the system gets stuck in a number of localfgr all I € L. For fixed K, it can be observed that when we
optimal solutions. The percentage of time spent in each lodacrease the number RBs, the average social welfare per OP
optima is given by the height of the step. For example, whémcreases. Thus, higher number of available RBs will enbanc
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Fig. 6. Average social welfare per OP fér= 6, 8,10, 12,14 and 16 for  Fig. 7. Comparison of the cumulative distribution functi@DF) of social
different OPs welfare for K = 3 OPs with different sets of when L = 6 andb; = 4

the average social welfare per OP. This is not unexpectedi@screate higher chances of inter-operator interferendesrw
the number of available RBs to be chosen from has increasgfé total number of RB[, is fixed. This leads to an overall
However, for fixedLZ, as the number of OPs in the systengecrease in social welfare. For instance, we see that when
increases, there is a decrease in average social welfare per [2,2,2], the total resource demarg + ¢, + c3 = L = 6.
OP. This is also not unexpected since increasing the numi@ius, each OP is allocated with orthogonal RBs, and they are
of OPs, utilizing a fixed number of common RBs, tends titerference free. As the resource demand increases, dnere
increase the inter-operator interference. more chances of overlapping assignment of the RBs between
It is interesting to note that when the number of ORS,is  the OPs. Whem;, = 6, each parent OP is assigned with all six
held fixed, the average social welfare per OP tends to saturafailable RBs, thus making the system interference limited
after a certain value of.. Increasing the number of RBsFig.[7, we also observe the dramatic change in the perforenanc
does not change the performance anymore. We can easifithe system when the resource demand is [2,2,2] and
predict the value ofl where this saturation occurs. Sincehe system is interference free, to when the system starts to
each daughter OP of a parent OP is allocated with orthogohglcome interference limited when= [4, 4, 4].
RBs, inter-operator interference can only occur between th
daughter OPs of different parent OP. If the number of RBs
sufficiently large such that each daughter OPs of every par

1 T

. . —L=8

OPs is allocated RBs orthogonally, then such a saturati 0.9 _ _ L=10 1

occurs, since there is no longer inter-operator interfezen 0.8F | -*L=12 1

For example, sincey, = 4 for all £k € K, when there are o7l —"—ﬁg |
Tt leo|=

K = 2 OPs, the saturation occurs whén= c; + cy = 8. At

this point, each OP is allocated with orthogonal RBs. Addir 06r i
more RBs does not change the orthogonality of the allocatic 5 5] ceoececed |
Similarly, when there ardd = 3, the saturation occurs when 0.41 ' R
L = ¢1 + ¢c2 + ¢3 = 12; whereas wherX = 4, this happens 03l :' |
when L = 16. '
0.2t : |
ol [ §

D. Effect of the Changing the Resource Demand

Fig. [@ presents the CDF of the overall social welfar 00 450 Sog?gl Welfaigo(bitslsggfm)
(bits/sec/Hz) when the number of OPsA$ = 3, when the
number of RBs ig, = 6, andb;, = 4 for dlffergnt _sets Ot_' We Fig. 8. Comparison of the cumulative distribution functi@@®DF) of social
can observe that when the number of RBs is fixed, with highgéifare for k' = 4 OPs with differentZ, whenb; = 4 andc = [5,9, 9, 9]
resource demand,, Vk € K of c, the CDF curve of the overall
social welfare degrades and shifts towards the left. This isIn Fig.[8 and Fig[ B, we investigate the effect of high and
because increasing the values:ptas the effect of increasinglow resource demands by OP as the number of available RBs
the size of the augmented set of OPs. Since each sibling OPsludinge. For both the figures, we have fixed the number of
a parent OP is allocated with orthogonal RBs, more RBs aBPs to beKX = 4 and the number of OPs allowed to use
consumed. However, since the children OPs of other paré¢iné¢ same RB-to be b = 4 for all [ € L. In both the
OPs need to share the same common resources, this tdiglges, we have plotted the CDF of the overall social welfare
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Fig. 9. Comparison of the cumulative distribution functi@@DF) of social Fig. 10. Comparison of the cumulative distribution funoticDF) of social
welfare for K = 4 OPs with differentL whenb, = 4 andc = [4,4, 4, 4] welfare for K = 3 OPs by varying the intensity of SBSs

(bits/sec/Hz) when the number of RBs is changed such t#ggource demand of each OP is assumed ta be[4, 4, 4].
L = 8,10,12, 14, 16. For Fig[8, we have assumed the resourcehe radius of circular area under consideration is variechfr
demand by each OP to be high, such tbat= [5,9,9,9]; 100 to 500 meters. Each OP is assumed to serve an 8 SBSs.
whereas for Fig]9, we have assumed a much smaller resoufé@ can observe that the median of the CDF curves of the
demand by each OP, such that [4,4, 4, 4]. Both Fig.[8 and Social welfare improves as the area increases. This is becau
Fig.[d complements the Fifll 7, since in both cases, we see YHeen We increase the size of the area, the spatial intenkity o
expected increase in social welfare Asis increased, when the SBS decreases, which leads to less interference.
the resource demand is held fixed. This is because when
increases, there is less chance of inter-operator ingréervia _ _
RB sharing; and the OPs can choose better RBs to maximizén this paper, the spectrum assignment for non-orthogonal
their own utilities. Thus, the overall social welfare impes. Multi-operator spectrum sharing system, where multiplerop

In Fig.[8, sincec = [5,9,9,9] represents a high demand@ators shared a common pool of spectrum among each other,

we observe that the CDF of social welfare is enhanc#¢és formulated as a social welfare optimization problem.
dramatically when the number of RBs is changed frbre 8 Using the results from stochastic geometrical analysis, we
to L = 10. This is because, wheh = 8, we haveZkelC c, = Showed thf_;lt, _under_ certain co_ndition, the solutiop to this
Zla by = 32. Therefore, whernl, = 8, the total supply of problem coincided with the solution to a correspondinglstab

resources is equal to the total demand of resources; and ff@tching game. This result inspired the use of Markov Chain
OPs tend to utilize the overall supply of resources. As sudfonte Carlo algorithm to find the stable and socially optimal
when L is increased, it creates a surplus of resource suppiatchings. The Q-learning method was also proposed to find
This means, the number of OPs that need to share the sdfifeoptimal random transmit power strategy of the small cell
RB goes down’ Creating lesser inter-opera‘[or interfer;m base stations. Numerical simulations were performEd tesxmcc
hence, the social welfare tends to enhance significantly. the performance of the system under various conditionsnFro
This is in contrast to Fig]9, where the resource demaitide numerical study, one of the conclusions we can draw ts tha
is assumed to be& = [4,4,4,4], which is much smaller the spectrum allocation has greater effect on the perfocman
compared to that of Figl8. As such, in Fid. 9, although tHef the system than power allocation.
social welfare improves with increasirg we do not see any

dramatic improvement in social welfare as witnessed in Fig. REFERENCES
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