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Abstract—One of the many problems faced by current cellular
network technology is the under utilization of the dedicated,
licensed spectrum of network operators. An emerging paradigm
to solve this issue is to allow multiple operators to share some
parts of each others’ spectrum. Previous works on spectrum
sharing have failed to integrate the theoretical insights provided
by recent developments in stochastic geometrical approaches to
cellular network analysis with the objectives of network resource
allocation problems. In this paper, we study the non-orthogonal
spectrum assignment with the goal of maximizing the social
welfare of the network, defined as the expected weighted sum rate
of the operators. We adopt the many-to-one stable matching game
framework to tackle this problem. Moreover, using the stochastic
geometrical approach, we show that its solution can be both stable
as well as socially optimal. This allows for computation of the
game theoretical solution using generic Markov Chain Monte
Carlo method. We also investigate the role of power allocation
schemes using Q-learning, and we numerically show that the
effect of resource allocation scheme is much more significant
than the effect of power allocation for the social welfare ofthe
system.

Index Terms—Multi-operator spectrum sharing, non-
orthogonal spectrum sharing, matching game theory,
reinforcement learning, stochastic geometry, 5G

I. I NTRODUCTION

The next generation 5G cellular network will need to satisfy
the performance requirements (e.g., quality-of-service (QoS)
and latency) of various applications such as video streaming,
data services, and voice communication [1]-[2]. In the near
future, the total number of existing smart-phones and tablets
are projected to be more or less equal to the human population.
Most of the devices are expected to be massive machine type
communication devices that transmit only a few bytes of data.
As such, the spectrum utilization will be an important issue
[2]-[3]. The network operators (OPs) will need to manage their
licensed spectrum more efficiently in order to provide service
with desired performance requirements [2].

In recent years, multi-OP spectrum sharing has been gaining
attention [3]-[7]. Multi-OP spectrum sharing refers to the
ability of OPs jointly agreeing on sharing some parts of
their licensed spectrum. This approach has emerged as a
potential solution to the problem of under-utilization of the
dedicated spectrum. The inefficient utilization occurs because
the spectrum is often found to be idle at various times.
In co-primary (or horizontal) spectrum sharing, OPs have
equal ownership of the spectrum [9]. The spectrum may be
shared either orthogonally or non-orthogonally among the

OPs. Furthermore, an a-priori agreement should be reached
on the spectrum usage with respect to long term sharing of
each OP.

A. Related Work

In [4], the authors studied the performance of spectrum shar-
ing in multi-OP LTE networks by using network simulator-
3 (NS-3). They had considered orthogonal spectrum sharing
system, where the OPs pool their spectrum with only one
OP is allowed to use the spectrum at any given time. Co-
primary spectrum sharing with multiple-input single-output
(MISO) and multiple-input multiple-output (MIMO) multiple
users in two small cell networks was proposed in [5] and [6],
respectively. The authors considered the case where each base
station schedules its users to utilize the shared band when the
number of subcarriers in the dedicated band is not enough
to serve all users. A matching game based on Gale-Shapley
method is proposed for subcarrier allocation. Then, after the
users obtain subcarriers, the small cell base stations (SBSs)
perform power allocation [5]-[6]. In [7], co-primary spectrum
sharing in a dense local area was investigated. The authors
designed a mechanism to provide flexible spectrum usage
between two OPs. The performance of the proposed method
was evaluated by system level simulators based on LTE
specifications. In [8], the orthogonal spectrum sharing between
two OPs was shown to be an important aspect to improve
the achievable throughput. The gains in terms of network
efficiency is enhanced by sharing spectrum between two OPs.
Link level simulation and two hardware demonstrations are
given. In [10], a potential game with a learning algorithm
was shown to reach the system equilibrium which enhances
spectrum efficiency between the OPs. A distributed method is
shown to reduce the complexity of inter-OP spectrum sharing,
whereas in [11], the same problem is formulated as a two
OP non-zero sum game. The utility function of both the OPs
was defined by taking the spectrum price and the blocking
probability into consideration. Co-primary spectrum sharing
was proposed in both centralized and distributed manner
in [12]. System-level simulations for two indoor, small cell
layouts were performed. In [13], spectrum sharing for multi-
operator small cell networks with a guarantee of long term
fairness was proposed. Gibbs sampling was studied to develop
the decentralized mechanism. A brief version of the current
submission is provided in [14].
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B. Contributions and Organization

In this paper, we consider the multi-OP spectrum shar-
ing problem for small cell networks, as shown in Fig. 1.
Each OP is assumed to serve multiple SBSs, which are
spatially distributed according to homogeneous Poisson point
process (PPP). Furthermore, each OP connects to a distributed
spectrum controller (SC) which is responsible for assigning
resource blocks (RBs) from a common pool to the OPs. Here
the RB implies one subcarrier. The SC can exchange messages
with its components to define a mutual agreement on spectrum
sharing policy. We study the problem of spectrum assignment
in which the SC can allocate several RBs to an OP, such that
multiple OPs can use the same RB.

Fig. 1. Iteration between Matching Game and Q-learning

We summarize the main contributions of this paper as
follows:

• We study the non-orthogonal spectrum assignment with
the aim of maximizing the social welfare of the network,
defined as the expected weighted sum rate of the OPs.
This is essentially a combinatorial optimization problem.
We adopt the many-to-one stable matching game frame-
work to solve this problem. We show that under certain
condition, the stable matching solution corresponds to the
local optima of the welfare maximization problem.

• To give a technical proof of this result, we resort to
long term average of the network performance in which
stochastic geometrical analysis of the expected rate is
proposed. Essentially, the average performance depends
only on the large scale system parameter like the SBS
intensity.

• The Markov Chain Monte Carlo (MCMC) method is
proposed to compute the global solution of social welfare
maximization which also leads to the solution of stable
matching. The maxima of social welfare can be reached
using the MCMC approach, where the sufficient condition
given in Corollary 1 is satisfied.

• In the stochastic analysis as well as the matching game in
the operator level, the transmit power of SBS is assumed
to be a random variable, but the exact distribution is left
undefined. Since the SBS has control over its transmit
power scheme, it is natural to assume that the SBS is

interested in maximizing its long term expected data rate
by optimizing its power strategy. Thus, we use the Q-
learning method to find such an optimal random transmit
power scheme for an SBS.

• From the numerical study, we find that changes in
spectrum allocation has a bigger impact on the system
performance than changes in power allocation strategy.

The rest of the paper is organized as follows. Section II
describes the system model. Section III gives a stochastic
geometrical analysis of the expected rate of the SBSs. Section
IV presents inter-OP spectrum sharing using the concept of
matching theory. Section V describes Q-learning for random
power allocation. The performance evaluation results are pre-
sented in Section VI. Section VII states the conclusion.

II. SYSTEM MODEL

We propose a multi-OP spectrum sharing for small cell
network deployment. The SBSs and the user equipments
(UEs) are equipped with single antenna. Fig. 2 illustrates the
system model under consideration, where SBSs are spatially
distributed as homogeneous PPP. The macro base stations
(MBs) are assumed to transmit in channels orthogonal to the
SBSs; thus, interference from MBs to SBSs is absent. Each
OP serves multiple SBSs, and multiple UEs are subscribed
to each SBS. Since the system considers single antenna and
the SBS is assumed to employ time division multiple access
(TDMA) scheme, hence each SBS can serve only one UE in a
given time slot. The problem of user scheduling is not the main
concern and is beyond the scope of this paper. Nevertheless,
the analysis does not lose its generality, since we tend to
consider an “average” UE, in the sense that we ultimately
average over the random channel gains as well as the random
distance of the UE from the SBS.

The spectrum of OPs serving the SBSs is assumed to be
divided into dedicated bands and a shared band. The dedicated
band of an OP can be allocated only to the SBSs associated
with the given OP, while the shared band can be accessed by
multiple OPs and can be allocated to their respective SBSs.
Since the dedicated spectrum of each OP is assumed to be
fixed and predetermined, our study focuses only on allocating
the shared spectrum to the OPs.

Fig. 2. System architecture of the multi-OP spectrum sharing

Consider a set of multiple OPs given byK with K OPs.
Let the set of SBSs subscribed to an OP-k be given by theFk



3

with Fk SBSs. We assume that each OP has the same spatial
intensity of SBSs per u nit area. Also, letF = ∪k∈KFk be
the set of all SBSs. Since each SBS is assumed to serve a
single UE at a given time slot, for an SBS-f in f ∈ F , we
will denote its associated UE by UE-f at any given time. The
channel state information is assumed to know at each SBS.
The set of RBs in the shared band available to the network
is given byL with L RBs. LetLk ⊂ L be the set of RBs
assigned to OP-k with Lk RBs.

The SBSs associated with OP-k can select any one of the
RBs in Lk to serve its UE. We assume that the SBS will
uniform randomly choose a single RB fromLk. Hence, an
SBS’s transmit power is restricted to a single RB. Let the total
power of each SBS be given byptot, which is discretized into
N = ptot

δ levels, whereδ is a quanta of power. Thus, the set
of transmit power levels that an SBS-f can choose from is
Pf = {0, δ, 2δ, . . . , (N − 1)δ}. We shall denote the transmit
power of the SBS-f by pf ∈ Pf . The SBSs are assumed
to use a probabilistic scheme to select a suitable power level
n ∈ {0, 1, . . . , N − 1}. Thus, any given action taken by an
SBS can be simply represented byn.

We consider the analysis of a single time slot of the overall
system, so the utility of SBSs has been calculated as the
expected data rate when a single UE is present. We further
assume that any RBs allocated to an OP can be accessed by
more than one SBS associated with that OP. Thus, the expected
rate of the UE-f associated with SBS-f is given by

Rf = E

[

log2

(

1 +
h
(l)
ffr

−α
ff pf

∑

f ′∈Il
h
(l)
f ′fr

−α
f ′fpf ′ + σ2

)]

, (1)

wherepf is the transmit power of SBS-f on RB-l, h(l)f ′f is
the channel fading gain between UE-f and SBS-f ′ using
RB-l. For simplicity, we assume the fading to be Rayleigh.
Also, α denotes pathloss exponent andrf ′f is the distance
between the UE-f and SBS-f ′. TheIl ⊂ F is the set of SBSs
using the same RB-l, while σ2 is the noise variance. Here,
the expectation is taken with respect to the random channel
gains, the random distance of the UE from the SBS, as well as
probabilistic channel access and power allocation strategy. We
can interpret this averaging effect as averaging over multiple
time slots as SBS serves different UEs in different locations
with differing channel gains.

The interference experienced by a UE of an SBS can
be categorized as either intra-OP interference or inter-OP
interference. The intra-OP interference is caused by the fact
that the SBSs associated with a given OP can access any RB
assigned to that OP. Thus two SBSs served by the same OP
can access the same RB. On the other hand, the inter-OP
interference is caused by the fact that a given RB can be shared
by two or more OPs.

The expected data rate of OP-k will be the sum of expected
rates of each SBS. We can express the rate of OP-k as,

ROPk
(Fk,Lk) =

∑

f∈Fk

ρfRf , (2)

whereρf denotes the weight of each SBS which is a positive
real number.

III. PRELIMINARY ANALYSIS OF EXPECTEDRATE

In this section, we deal with the analysis of the expected
rate of an SBS, where we explicitly consider the randomness
due to channel fading, distance geometry, and random channel
access. Thus, the only source of randomness we will not
analyze is the one due to the power allocation method. In this
section, we assume that a form of random power allocation
method is available, then it will be updated with the optimal
random power allocation scheme using Q-learning method to
be explained in Section V.

Let the rate of a generic downlink SBS-UE system trans-
mitting in a fixed RB-l and at fixed power leveln be given
by,

R(l)
n = log(1 + SINR(l)

n ). (3)

Here theSINR(l)
n is given by,

SINR(l)
n =

h
(l)
ffr

−α
ff pf

∑

f ′∈Il
h
(l)
f ′fr

−α
f ′fpf ′ + σ2

. (4)

Taking the expectation ofR(l)
n with respect to the channel

gains and interference, we getE[R(l)
n ] = E

h
(l)
ff
,I

(l)
f

[

log
(

1 +

h
(l)
ff
r−α

ff
pf

I
(l)
f

+σ2

)]

, where I(l)f =
∑

f ′∈Il
h
(l)
f ′fr

−α
f ′fpf ′ is the inter-

ference experienced by UE-f in RB-l. Using the fact that,
the expectation of any positive random variablex can be
given by E[x] =

∫∞
0
P (x > t)dt, the integral becomes

E[R
(l)
n ] = E

I
(l)
f

[

∫∞
t=0

P
(

h
(l)
ff >

rαff (e
t−1)(σ2+I

(l)
f

)t

pf

)

dt
]

.

Since we have assumed Rayleigh fading,h(l)ff is expo-

nentially distributed (i.e.h(l)ff ∼ exp(η)). Thus, we have

E[R
(l)
n ] = E

I
(l)
f

[

∫∞
t=0 exp

{

η
rαff (e

t−1)(σ2+I
(l)
f

)t

pf

}

dt
]

. Putting

ν =
ηrαff (e

t−1)t

pf
, we can simplify the expression as,E[R

(l)
n ] =

∫∞
t=0

exp(−νσ2) · E
I
(l)
f

[exp(−νI(l)f )]dt. Here, we can recog-

nize the expectation with respect to the interference as the
Laplace transform ofI(l)f as L

I
(l)
f

(ν) = E
I
(l)
f

[exp(−νI(l)f )].

Thus, we have

E[R(l)
n ] =

∫ ∞

t=0

exp(−νσ2)L
I
(l)
f

(ν)dt. (5)

For the homogeneous PPPΦ, the moment generating func-
tional of a two dimensional (2D) space PPPΦ can be obtained
by taking the Laplace transform of

∑

x∈Φ f(x) of intensityλ
using the formula [15],L(ν) = E[exp(−ν∑x∈Φ f(x))] =
exp{−λ

∫

R2(1− e−νf(x))dx}.
Let λk,l denote the spatial intensity of SBSs served by OP-k

and using RB-l. By the merging property of a Poisson process,
the total intensity of SBSs under OP-k is λk =

∑

l∈Lk
λk,l.

Also, when the RBs are uniform randomly selected, via
thinning property of Poisson process, we haveλk,l = λk/Lk.
Again, via the merging property of Poisson process, the total
intensity of interfering SBSs utilizing an RB-l is given by

λl =
∑

k∈IOP
l

λk,l =
∑

k∈IOP
l

λk
Lk
, (6)
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whereIOPl ⊂ K is the set of OPs allocated with RB-l Since
we assumed that each OP has the same spatial intensity of
SBSs per unit area, we haveλk = λ.

For our case, theλl from (6) is the required intensity of the
interfering SBSs per unit area. For a given RB-l, this is the
sum of individual intensities of all OPs transmitting in that
RB. Thus, we have

L
I
(l)
f

(ν) =E
I
(l)
f

[exp(−νI(l)f )] = exp{−λl
∫

R2

(1−

E
h
(l)

f′f

Epf′
[exp(−νpfr−αf ′fh

(l)
f ′f )])dAf ′f}.

For 2D space,dAf ′f = 2πrf ′fdrf ′f , so

L
I
(l)
f

(ν) = exp{−2πλlrf ′f

∫ ∞

0

(1−

E
h
(l)

f′f

Epf′
[exp(−νpfr−αf ′fh

(l)
f ′f )])drf ′f}.

Following [16], this expression can be simplified to obtain

L
I
(l)
f

(ν) = exp{−πλlEpf′
[p

2/α
f ′ ] E

h
(l)

f′f

[h
(l)2/α
f ′f ]ν2/αΓ(1−2/α)},

(7)
where pf ′ is the transmit power of an SBS in the set of
interferers andΓ(z) is the complete Gamma function. By
substituting the expression (7) in (5), we get

E[R(l)
n ] =

∫ ∞

0

exp(−νσ2) exp(−Cν2/α)dt,

whereC = πλlEpf′
[p

2/α
f ′ ] E

h
(l)

f′f

[h
(l)2/α
f ′f ]Γ(1− 2/α).

Since dense small cell networks will be interference limited,
we can neglect the noise termexp(−νσ2) in the integral for
the expected rate, so the only significant term to be integrated
is E[R

(l)
n ] =

∫∞
0

exp(−Cν2/α)dt. Furthermore, when we
take α = 4, we obtain an analytically tractable form of

E
h
(l)

f′f

[
√

h
(l)
f ′f ] as given in [16],E

h
(l)

f′f

[
√

h
(l)
f ′f ] =

1
2

√

π
η . Thus,

assumingη = 1 and substituting the expression forν, we get
the equation for the expected rate as

E[R(l)
n ] =

∫ ∞

0

exp
(−λlπ2r2ffE[

√
pf ′ ]

2
√
pf

√

(et − 1)t
)

dt. (8)

Note that this formula forE[R(l)
n ] is independent of the num-

ber of interfering SBSs in RB-l. The expected rate depends
only on the intensity of SBSsλl, the probability mass function
(PMF) of the interferers selecting transmit power of leveln
in RB-l, and the actual transmit power of SBS-f . The PMF
of pf ′ can either be interpreted as the percentage of SBSs
transmitting in RB-l with power leveln or the distribution
resulting from some random power selection method.

If we assume that the UE associated with the SBS is located
uniform randomly around a circular area of radiusrc with the
SBS as the center, thenfR(rff ) =

2rff

r2c
, for rff > 0. De-

conditioning onrff , we have

E[R(l)
n ] =

1

πλlr2c

∫ ∞

0

dt

∫ ∞

0

2πλlrff exp(−Bπλr2ff )drff ,

whereB =
πE[

√
pf′ ]

2
√
pf

√

(et − 1)t. We can integrate integral

to the right as
∫∞
0 2πλlrff exp(−Bπλr2ff )drff = 1/B.

Substituting the expression forB, we have

E[R(l)
n ] =

E[
√
pf ′ ]

2λlr2c
√
pf

∫ ∞

0

√

(et − 1)tdt. (9)

Discussions:

1) The above analysis holds for any generic SBS located
at any location. This is guaranteed by the Slivnyak’s
theorem [15], according to which the statistics for the
PPP is independent of the test location. This also implies
that the SBSs transmitting over an RB-l are identical.
That is, every SBS will experience same interference
statistics.

2) Since the SBS-f can access any one ofLk RBs assigned
to its associated OP-k with equal probability of1/Lk,
we can expressRf in (1) in terms ofR(l)

n in (3) as,

Rf = En,l[E[R
(l)
n ]] =

1

Lk

∑

l∈Lk

En[E[R
(l)
n ]]. (10)

For fixed PMFs of pf and pf ′ , the expression
En[E[R

(l)
n ]] will be some constant dependent on the

value of λl for the RB-l. Thus, the average rateRf
depends only on the intensity of interfering SBSsλl in
RB-l and the number of available RBsLk.

3) For the important special case, whenLk = 1 for all
k ∈ K, we will have from (6),λl =

∑

k∈IOP
l

λk. When
we further assume constant intensities of SBS for all
OP,λk = λ, thenλl = |IOPl |λ. In this case, it is clear
thatRf will depend only on|IOPl |, the number of OPs
assigned to the same RB-l, provided that the PMF of
both pf andpf ′ remain fixed.

IV. M ULTI -OPERATORSPECTRUM SHARING USING

MATCHING GAME

A. Problem Statement

Consider the social welfare of the network to be the overall
weighted sum rate as follows:

S(µ) =
∑

l∈L

∑

k∈K
xlkρkROPk

(Fk,Lk), (11)

where X = |L| × |K| is a matching matrix{xlk : (l, k) ∈
L× K}. We denote the matrixX as,

xlk =

{

1 iff µ(OPk) = RBl
0 otherwise,

(12)

whereµ is a matching. Lastly,ρk is the weight of OP-k.
The objective of the matching game for the multi-OP

spectrum sharing is to maximize the social welfare. Thus, the
optimization problem can be expressed as,

S∗(µ) = max
X

∑

l∈L

∑

k∈K
xlkwkROPk

(Fk,Lk),

s.t. (C1)
∑

l∈L
xlk ≤ bl ∀l ∈ L, (13)

(C2)
∑

k∈K
xlk ≤ ck ∀k ∈ K.
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Condition (C1) assures that each RB-l can be allocated to
at mostbl OPs, and condition (C2) guarantees that each OP-
k gets at mostck RB. We will refer to ck as the resource
“demand” of OP-k, while bl as the resource “supply” ofl ∈ L.
This is a binary integer programming problem. In this paper,
we try to solve it by providing a method based on a game
theoretic model known as matching games. We will use the
framework of many-to-one matching game with externality
which is described as follows.

B. Matching Theory for Multi-Operator Spectrum Sharing

Since the OPs are assumed to be able to communicate
with each other through a distributed SC during the spectrum
sharing process, it makes sense to use the cooperative game
theory to model the decision process of the OPs. Here we
will describe our solution approach using the matching game
theory, which is an instance of cooperative game theory.
Unlike the traditional matching games, which are based on
preference relationships defined between two sets of players,
we will be following a more recent framework described in
[17], which directly deals with utilities rather than preferences.
In our case, the sets of players can be written as, (K,L). In
our application, we have slightly modify the approach given
in [17] to suit our purpose.

The kind of matching game we are interested in is compli-
cated by the presence of externalities. Normally, it is assumed
that the preference of a player does not depend on the other
players’ preferences. This assumption does not fit in our multi-
OP spectrum sharing problem. The choice made by an OP-
k to select an RB will affect the data rate of other OP-k′,
wherek′ 6= k, that transmits over the same RB. This in turn
will determine the desirability of the RB for the other OP-
k′. Hence, the preferences of each OP over the set of RB
depends on the particular matchingµ. In game theory, such
a phenomenon is known as an externality. These are external
effects that dynamically change the performance of each OP.
Thus, the proper framework to deal with our problem is to
utilize matching games with externalities [17],[18].

Theoretically, our problem fits into the framework of many-
to-many matching with externality. However, since many-to-
many matching with externality is still a topic of ongoing
research, we will adapt the better understood framework of
many-to-one matching with externality for our work. In many-
to-one framework, a matchingµ describes the assignment of
OPs to RBs such that one OP can be matched to only one RB,
whereas one RB can be matched to multiple OPs.

One further complication with this approach is that the
direct application of existing many-to-one matching algorithms
would result in allocation of at most a single RB to an OP.
However, our problem allows us to allocate more than one RB
to an OP, as given by constraint (C2) in (13). To tackle this
problem, we create an augmented set of players by producing
identical copies of OPs, as shown in Figure 3. Each copy of OP
inherits all the SBSs associated with its OP-k, k ∈ K, which
we shall refer to as the parent OP. LetKk = {k1, . . . , kck}
denote the set of identical copies of OP-k, which we shall refer
to as children OPs of parent OP-k. Thus, our augmented set of

Fig. 3. Matching between RB and OPs

OPs isKaug = ∪k∈KKk. Since each child OP is assigned with
at most one RB in many-to-one matching, if the number of
children OPs is equal to the the resource demand of the parent
OP-k, ck, then this method guarantees that each parent OP can
obtain more than one RB. At the same time, by allocating at
most one RB to each child OP, it ensures that each parent OP
will get at most the maximum number of allowed RBs.

However, it requires that the children of OP-k in the group
of playersKk coordinate with each other such that no two
players inKk selects the same RB. Otherwise, each parent
OP will be assigned with a lower number of RBs than the
requirement. We illustrate these ideas in Fig. 3. Here, OP-1
requires two RBs, so it makes two copies of itself; whereas
OP-2 requires three RBs, so it makes three copies of itself.

For a given parent OP-k, we will take the rate of SBS and
child OP to be given by (10) and (2), respectively. Note that for
SBSs associated with child OP, the number of RB,Lk′ , where
k′ ∈ Kk, used in (10) is at most unity. Thus the special case
given in the third point of Discussion in Section III applies.
Since the children OP inherits all the SBS of its parent OP, we
will need to take the average rate of parent OP with respect
to the number of available RBs, as

ROPk
=

∑

k′∈Kk
ROPk′

Lk
. (14)

To address these concerns, we will use the idea of swap
matching as described in [17], which considers peer effectsof
a social network and a weaker notion of stability, known as
two-sided exchange stability. This model is distinguishedby
the use of utility functions rather than traditional preference
ordering. The authors of [17] have applied their idea to
student-hostel matching problem. In our work, the studentsare
represented by OPs while the hostels are represented by RBs.
Thus, we propose a decentralized approach that can guarantee
the maximum number of RBs required for each OP, while at
the same time ensuring that each RB is not utilized by more
than the limited number of OPs.
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C. Many-to-One Matching with Externalities

In this part, we will describe the framework of many-to-one
matching with externalities, with some modifications for our
purpose. More formally, we can describe a matching as:

Definition 1 : For many-to-one matching, a matching is a
subsetµ ⊆ L × Kaug such that|µ(k)| = 1 and |µ(l)| = bk
whereµ(k) = {l ∈ L : (l, k) ∈ µ} andµ(l) = {k ∈ Kaug :
(l, k) ∈ µ}.

Also, for anyk ∈ Kaug, let µ2(k) denote the children of the
same parent OP-k who utilize the same RB-l. We will denote
the desirability of RB-l for any OP-k by Dk

l ∈ R
+ ∪ {0}. In

our case, the desirability of an RB for children OPs is given
by the weighted sum rate obtained by the OP, when it accesses
that RB as given in (2). For a given matchingµ, we can write
the desirability asDk

µ(k). The utility of OP-k is given by,

Uk(µ) = Dk
µ(k) · Iµ(k), (15)

where the indicator functionI(·) is given by Iµ(k) =
{

0 if µ2(k) 6= ∅
1 otherwise.
In other words, if two children of the same parent OP access

the same RB, they will be punished. This has the effect of
ensuring that two sibling OPs will access different RBs. Here
we have modified the definition of utility given in [17] by
using the product of desirability with an indicator function,
instead of defining the utility as the sum of desirability anda
penalty term.

A swap matching µk
′

k is a matchingµ in which the OPsk
and k′ switch places while keeping all assignments of other
OPs the same. More formally:

Definition 2 : Given a matchingµ, a swap matchingµk
′

k =
{µ\{(k, l), (k′, l′)}} ∪ {(k, l′), (k′, l)}.

The players involved in the swap are two OPs and two
RBs. The two OPs switch their respective RBs while all other
assignments remain the same. In this framework, it is possible
that one of the OPs involved is a “hole,” representing an
available vacancy in RB that an OP can move to fill in. When
two actual OPs are involved, this type of swap is a two-sided
version of “exchange.”

Two-sided exchange stability requires that the two OPs
involved approve the swap. Here, we give a slightly modified
version of its definition.

Definition 3 : A matchingµ is two-sided exchange-stable
(pairwise stable) iff there does not exist a pair of OPs(k, k′)
such that

1) ∀i ∈ {k, k′}, Ui(µk
′

k ) ≥ Ui(µ),
2) ∃i ∈ {k, k′}, Ui(µk

′

k ) > Ui(µ), and
3) ∀i ∈ {µ(l), µ(l′)}\{k, k′}, Ui(µk

′

k ) ≥ Ui(µ).
In other words, a swap matching in which all OPs involved

are indifferent is called two-sided exchange-stable. Also, a
swap is approved if both OPs involved in a switch experience
an improvement in their utilities, with at least one OP doing
strictly better than before. A “hole” will always be indifferent.
We have modified the definition given in [17] by adding a third
condition which states that, for the approval of the swap, all
the OPs occupying the RBs involved in the swap should see
an improvement in their utilities as well.

D. Stability of Many-to-one Matching with Externalities

In this part, we will show the existence of the many-to-
one stable matching with externalities for multi-OP spectrum
sharing. We will prove that all local maximas of the social
welfare are pairwise stable. We first define what we mean by
local maxima, and then give a few lemmas, after which we
will prove our theorems.

First, let the potential of the system be defined as,

φ(µ) =
∑

k∈Kaug

Dk
µ(k)Iµ(k). (16)

Definition 4: The local maximum of the potentialφ(µ) is
the matchingµ for which there exists no matchingµ′ which
is obtained fromµ by swapping any two OPsk, k′ such that
φ(µ′) > φ(µ).

We now show that the desirability of RB-l for the rest of
the OPs that use this RB-l, and which are not involved in a
swap process, either improves or remains unchanged after the
swap has occurred.

Lemma 1 : For any swap matchingµk
′

k , Dj

µk′

k
(j)
≥ Dj

µ(j)

for all j ∈ Kaug\{k, k′}.
Proof : Since each OP inKaug utilizes only a single RB,

we can invoke the third point in the Discussion given in
Section III. There are three possible cases. First, for all OP-
j not assigned to RB-l or RB-l′ (i.e., µ(j) /∈ {l, l′}), the
number of OPs associated with its RB,µ(j), does not change;
hence itsDj

µk′

k
(j)

= Dj
µ(j). Second, assuming (without loss

of generality) that OP-k′ is a “hole”, for all OP-j assigned to
RB-l, after the swap, the number of OPs on RB-l decreases.
So, its Dj

µk′

k
(j)

> Dj
µ(j). Lastly, For all OP-j assigned to

either RB-l or RB-l′ (i.e., µ(j) ∈ {l, l′}), after the swap, the
number of OPs on RB-l and RB-l′ remain the same. Thus,
Dj

µk′

k
(j)

= Dj
µ(j). �

Lemma 2 : Any swap matchingµk
′

k such that,
1) ∀i ∈ {k, k′}, Ui(µk

′

k ) ≥ Ui(µ),
2) ∃i ∈ {k, k′}, Ui(µk

′

k ) > Ui(µ), and
3) ∀i ∈ {µ(l), µ(l′)}\{k, k′}, Ui(µk

′

k ) ≥ Ui(µ).
leads toφ(µk

′

k ) > φ(µ).
Proof : The difference in potential between two matching

is given by φ(µk
′

k ) − φ(µ) =
∑

i∈Kaug
[Di

µk′

k
(i)
Iµk′

k
(i) −

Di
µ(i)Iµ(i)]. According to Lemma1, Di

µk′

k
(i)

= Di
µ(i) for all

i ∈ Kaug\{µ(l), µ(l′)}. That is, the desirability of an RB-
l for the rest of the OPs occupying RBs other than RB-l
and RB-l′ does not change after the swap. This also means
that for these OPs,Iµk′

k
(i) = Iµ(i). Then the difference in

potential is only due to the differences in the desirabilityof
the OPs occupying the RBs involved in the swap:φ(µk

′

k ) −
φ(µ) = Dk

l′Iµk′

k
(k) −Dk

l Iµ(k) +Dk′

l Iµk′

k
(k′) −Dk′

l′ Iµ(k
′) +

∑

j∈{µ(l),µ(l′)}\{k,k′}[D
j

µk′

k
(j)

Iµk′

k
(j)−Dj

µ(j)Iµ(j)].

Assuming that the conditions (1), (2) and (3) of the lemma
are satisfied, then without loss of generality, assume that the
performance of OP-k strictly improves. Then the change in
utility of OP-k is 0 < Uk(µ

k′

k ) − Uk(µ) = Dk
l′Iµk′

k
(k) −

Dk
l Iµ(k). Similarly, for OP-k′, we have0 ≤ Uk′(µ

k′

k ) −
Uk(µ) = Dk′

l Iµk′

k
(k′) − Dk′

l′ Iµ(k
′). Lastly, for OP-j, where
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j ∈ {µ(l), µ(l′)}\{k, k′}, we have0 ≤ Uj(µ
k′

k ) − Uj(µ) =
Dj

µk′

k
(j)

Iµk′

k
(j)−Dj

µ(j)Iµ(j). Adding the inequalities, we have

0 < φ(µk
′

k )− φ(µ), proving our lemma.�
In the following theorems, the Theorem1 ensures the

existence of an optimal matching, while Theorem2 ensure
that this matching is pairwise-stable.

Theorem 1: There exists at least one optimal matching.
Proof : This is easily seen to be the case since the number of

matching is finite. Thus, there must exist at least one optimal
matching which leads to the maximum social welfare.�

Theorem 2 : All local maxima ofφ are pairwise stable.
Proof : Let the matchingµ be the local maximum ofφ(µ).

Lemma 2 shows that any swap matching that satisfies both
conditions in Lemma2 strictly increases the overall social
welfare. If there exists another swap matchingµ′, then this
contradicts the assumption thatµ is a local maximum. Thus,
µ must be stable.�

Corollary 1 : If Iµ(k) = 1 for all k ∈ Kaug, then all local
maxima of the system objectiveS are pairwise stable.

E. Swap Matching Algorithm

Computationally, the swap matching can be performed
by any pair of OPs by calculating their own local utilities
and swapping their obtained RBs with each other based on
mutually beneficial conditions given in Lemma2. Thus, in
theory, the swap matching can be implemented distributively
by comparing the local utilities of the pairs of OPs, withoutthe
need for a central controller. The problem with this approach
is that the system can be stuck in a local optima.

However, as stated in Theorem2 and its corollary, all local
maxima of the social welfare are also pairwise stable, under
certain condition. In other words, the solution to the swap
matching problem corresponds to the solution of the social
welfare maximization problem. It also means that we can alter-
natively compute the stable matching solutions by computing
the solution to a global social welfare function. Since finding
the maxima of the social welfare is a combinatorial problem,
the maxima of social welfare can be reached using the generic
approaches.

Algorithm 1 proceeds to optimize the social welfareS via
the Markov Chain Monte Carlo (MCMC) method. We first
initialize with a random matching, and at each iteration, we
proceed to accept a swap of random pair of OPs based on the
probability that depends on the change in social welfare. It
keeps track of the best matching found thus far. We can give a
greedy version of the Algorithm 1 by removing the exploration
steps given in the lines9 to 11. The resulting Greedy Swap
Algorithm proceeds in a greedy fashion to improve the social
welfare, and it is possible to implement it distributively.Since
the social welfare strictly improves with each iteration, this
algorithm converges to a two-sided exchange-stable matching.

In the MCMC and Greedy Swap approaches, the sufficient
condition of Corollary1 is satisfied by carefully selecting the
pair of RBs and OPs to be swapped. The MCMC approach
is efficient in the sense that it enables us to find a better
optima by giving the system a chance to overcome a local
optima in which it can be stuck. The computation of such

global objective function necessitates a centralized system.
Nevertheless, both approaches lead to the same solution of
social welfare maximization.

Algorithm 1 MCMC Swap Algorithm
1: Initialize the matching matrixX.
2: Compute the initial data rate of each OP-k.
3: for all t ≤ maxIterationsdo
4: Select a random pair of RBs{l, l′}.
5: Search for OPs{k, k′ ∈ Kaug} using the RBs{l, l′},

respectively.
6: Swap the two RBs for each OP{k, k′} to obtainµk

′

k .
7: Update the expected rate of augmented OPs{k, k′},

k, k′ ∈ Kaug, with the Q-learning.
8: Compute the social welfareSt(µ) in (11).
9: Compute the transition probability PTb

=
1

1+e−Tb(S(µk′

k
)−S(µ))

.

10: if rand() < PTb
then

11: µ← µk
′

k andSt(µ) = St(µ
k′

k )
12: else if St(µ) > St−1(µ

k′

k ) then
13: µ← µk

′

k

14: Update the social welfareSt(µ) = St(µ
k′

k )
15: end if
16: t← t+ 1.
17: end for

V. POWER ALLOCATION FOR SMALLCELL BASE STATIONS

USING Q-LEARNING STRATEGY

In our paper, we have discretized the transmit power levels
of SBS and have assumed that the SBS transmits by accessing
any one of the power levels by some fixed randomization
scheme. Recall that welfare maximization problem (11) formu-
lated among the OPs in Section IV does not regard the transmit
power of SBSs as one of the optimization parameters. As such,
any randomization scheme would have been sufficient for the
purpose of the welfare maximization and the swap matching
process among the OPs. Similarly, in Section III, we dealt
with the analysis of the expected rate of an SBS, where we
implicitly assumed that some random power allocation method
was available, although it was left undefined, from which we
could calculate the expected rate, with respect to the random
power.

In this section, we investigate the optimal transmit power
scheme. Since an SBS has control over its transmit power, it is
natural to assume that the SBS is interested in maximizing its
long term expected data rate by optimizing its power strategy.
However, the optimal probability mass function (PMF) defined
over the discrete power levels is not known a-priori by the
SBS. Thus, we will use Q-learning to find such an optimal
power PMF for an SBS.

The Q-learning method is a distributed algorithm which
relies only on local information available at each SBS. Hence,
there is no information exchange and coordination among
SBSs. We assume that all the SBSs are able to estimate
the interference they experience on each RB and accordingly
tune their transmission strategies towards a better performance.
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With this ability to learn, each SBS-f , f ∈ Fk, belonging to
OP-k, wherek ∈ Kaug, uses the RB allocated to OP-k to
serve its corresponding UE based on Q-learning.

TheQ-learning model consists of a set of statesS and ac-
tionsA aiming at finding a policy that maximizes the observed
rewards over the interaction time of the agents/players. For our
case, the agents are the SBSs. Every SBSf ∈ Fk served by
an OP-k, wherek ∈ Kaug explores its environment, observes
its current states, and takes a subsequent actiona, according
to a decision policyψ : s → a. With their ability to learn,
the knowledge about other players’ strategies is not needed.
Instead, aQ-function preserves what they have learned from
their interaction with other players in the network, based on
which, better decisions can be made.

For each OP-k belonging to the setk ∈ Kaug, let us
denote byGQk =

(

Fk, {Pf}f∈Fk
, {wf}f∈Fk

)

theQ-learning
game. Here, the players of the game are the SBSsf ∈ Fk
which seek to allocate power in the RBs assigned to its
corresponding OP. Thesf (t) is the state of SBS-f at time
t. The state of an SBS is a binary variable,sf (t) ∈ {0, 1},
which indicates whether SBS-f experiences interference in
RB-l assigned to its corresponding OP-k such that its required
QoS is violated. The QoS requirement is said to be violated
when SINR(l)

n < SINRth, where SINR(l)
n is given by

(4). The af (t) is the action of SBS-f , whereaf (t) ∈ Pf .
Any given action can be represented by an integer variable
af (t) ≡ n, wheren represents the power level. Finally,wf (t)
is the reward or payoff of SBS-f at time-instantt, which we
take as the instantaneous rate of SBS-f at time-instantt as
given by (3) if the QoS is satisfied, otherwise it is taken to be
zero:

wf (t) =

{

R
(l)
n iff SINR(l)

n ≥ SINRth
0 otherwise.

(17)

The expected discounted reward over an infinite horizon is
given by:

V ψ(s) = E

[

γt × w(st, ψ∗(st))|s0 = s
]

, (18)

where0 ≤ γ ≤ 1 is a discount factor andw is the agent’s
reward at timet. Equation (18) can be rewritten as:

V ψ(s) =W (s, ψ∗(s)) + γ
∑

v∈S
Ps,v(ψ(s))V

ψ(v), (19)

whereW (s, ψ∗(s)) = E{w(s, ψ(s))} is the mean value of
rewardw(s, ψ(s)), andPs,v is the transition probability from
state s to v. Moreover, the optimal policyψ∗ satisfies the
optimality criterion:

V ∗(s) = V ψ
∗

(s) = max
a∈A

(

W (s, a) + γ
∑

v∈S
Ps,v(a)V

∗(v)

)

,

(20)
It is generally difficult to explicitly calculate the reward

W (s, a) and transition probabilityPs,v(a). However, through
Q-learning, the knowledge of these values can be gradually
learnt and reinforced with time. For a given policyψ, we can
define aQ-value as:

Q∗(s, a) =W (s, a) + γ
∑

v∈S
Ps,v(a)V

ψ(v), (21)

which is the discounted reward when executing actiona at
states and then following policyψ thereafter.

Here, we use theQ-learning algorithm to iteratively approx-
imate the state-action value functionQ(s, a). The agent keeps
trying all actions in all states with non-zero probability and
must sometimes explore by choosing at each step a random
action with probabilityǫ ∈ (0, 1), and the greedy action with
probability (1− ǫ). This is referred to asǫ-greedy exploration
[20], [21]. Another option is to use the Boltzmann exploration
strategy with temperature parameterTp [22], where the action
a in states is taken with a probabilityP (a|s), and the SBS
receives a reinforcementw. The actions are chosen according
to theirQ-values as:

P (a|s) = eQ(sk,a)/Tp

∑

a′ 6=a e
Q(sk,a′)/Tp

. (22)

TheQ-learning process aims at findingQ(s, a) in a recur-
sive manner where the update equation is given as [21]:

Qt+1(st, at) =(1− βt)Qt(st, at)+

βt

[

w(st, at) + γ max
a′t 6=at

Qt(st, a
′
t)

]

, (23)

where βt is the learning rate, such that0 ≤ βt < 1. The
Q-learning algorithm for power allocation at each SBS-f is
described in the Algorithm 2.

Algorithm 2 Q-learning algorithm for power allocation

1: Q(s, a) = 0
2: for all t ≤ maxIterationsdo
3: for k = 1 : Kaug do
4: Calculate the utilityuf
5: if rand() ≤ γ then
6: Randomly choose an action (power level)n
7: else
8: Choose a state withn∗ = argmaxnQ(s, a)
9: end if

10: Each SBS-f computes the expected date rate (Rf ).
11: UpdateQ-valueQt+1(st, at) = (1−βt)Qt(st, at)+

βt
[

w(st, at) + γmaxa′t 6=at Qt(st, a
′
t)
]

.
12: t← t+ 1
13: end for
14: end for

A. Convergence of Q-Learning

The optimal Q-function is a fixed point of a contraction
operatorH, defined for a functionQ : S × A → R for the
decision policyψ as,

HQ(s, a) =W (s, a) + γ
∑

v∈S
Ps,v(a)max

a′ 6=a
Q(s, a′). (24)

This operator is a contraction in the sup-norm [22] such that,

||HQ1 −HQ2 ||∞ ≤ γ||Q1 −Q2||∞ (25)

With any initial estimateQ0, the Q-learning uses the update
rule as in (23) to converge to an optimal decision policy. To
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show the convergence proof of Q-learning algorithm, we need
the following auxiliary result from stochastic approximation
[22], [23]:

Theorem 3 : Let a random process{∆t}, taking values in
R
n, be defined as∆t+1(s) = (1−βt)∆t(s)+βtFt(s), then∆t

converges to zero with probability one under the assumptions:

1) 0 ≤ βt ≤ 1,
∑∞
t=1 βt =∞ and

∑∞
t=1 β

2
t <∞

2) ||E[Ft(s)|| ≤ γ||∆t||, with γ ∈ (0, 1)
3) var[Ft(s)] ≤ C(1 + ||∆t||2) for C is some constant.

Theorem 4 : The Q-function converges to its optimal value
with probability one under the condition that:0 ≤ βt ≤ 1,
∑∞

t=1 βt =∞,
∑∞

t=1 β
2
t <∞.

Proof : Following the update equation of Q-learning in
(23), subtractingQ∗(st, at) from both sides and letting
∆t(st, at) = Qt(st, at) − Q∗(st, at) yields, ∆t(st, at) =
(1 − βt)∆t(st, at) + βt[w(st, at) + γmaxa′ 6=aQt(v, a′) −
Q∗(st, at)].

Let Ft(s, a) be given byFt(s, a) = w(s, a,X(s, a)) +
γmaxa′ 6=aQt(v, a′) − Q∗(s, a), whereX(s, a) is a random
sample state obtained from the Markov chain(S, Ps,v(a)).
Taking the expectation ofFt, we haveE[Ft(s, a)] =W (s, a)+
∑

s∈S Ps,v[γmaxa′ 6=aQt(v, a′) − Q∗(s, a)] = HQt
(s, a) −

Q∗(s, a). Here, the second equality follows from the definition
of HQ as given in (24), while

∑

s∈S Ps,vQ
∗(s, a) = Q∗(s, a),

sinceQ∗(s, a) is a constant. The fixed point due to contraction
operatorH leads toQ∗ = HQ∗. Thus, we can re-express
E[Ft(s, a)] = HQt

(s, a)−HQ∗(s, a). Now from the contrac-
tion property ofHQ given in (25),||E[Ft(s, a)]||∞ ≤ γ||Qt−
Q∗||∞ = γ||∆t||∞. This verifies the second assumption given
in Theorem3.

Since the reward in our case is the rate of UE-f associated
with SBS-f , as given by (1), the reward is a bounded,
deterministic function. This ensures that the third assumption
given in Theorem3 is also confirmed, as shown in [23].

Thus, by the Theorem3, ∆t converges to zero with proba-
bility one. That is,Qt converges toQ∗ with probability one.
�

VI. N UMERICAL RESULTS

In this section, we present numerical results to evaluate
the performance of our multi-OP spectrum sharing framework
and proposed algorithms. The system is iteratively updatedas
shown in Fig. 1. The SBSs are spatially distributed according
to homogeneous PPP inside a500 meters radius of circular
area. Moreover, each OP is assumed to have the same intensity
of SBSs per unit area. We assume the intensity of SBS to be
8/(π× 5002) per square meter. Each SBS serves a single UE
and each UE is located within20 meters of the SBS. For
K OPs, let the resource demand made by each OP be given
by the vectorc = [c1, . . . , cK ]. The vectorc also tells us
how many children of each parent OP will there be in the
augmented OP set. For simplicity, we assume the weights in
the social utility function to beρf = ρk = 1. The direct
pathloss between SBS and SBS-UE at distanced meters is
given byPL(d) = 37+ 20 log10(d) dB, and the pathloss due
to the wall (PLwall) is 15 dB. The standard deviation of log-
normal shadow fading is assumed to be4 dB. The cross-gain

pathloss between SBS and SBS-UE at distancedS-UE is given
by PL(dS-UE) = 7+ 56 log10(dS-UE) +PLwall. The maximum
transmit power of each SBS is10 dBm, and the noise variance
is −120 dBm. The SINR threshold at each user is3 dB.
The temperatureTb in MCMC algorithm is set to be100. In
the Q-learning algorithm, we set the parameters as: discount
factorγ = 0.95, exploration probabilityǫ = 0.1, learning rate
βt = 0.5. In all the cases, the summation for all elements of
c is kept less than or equal to number of RBs assigned to
the OP-k i.e.

∑

k∈K ck ≤
∑

l∈L bl, in order to ensure that the
total resource demand is less than the total supply of resources.
Also, we keepck ≤ L, to ensure that the resource demand of
each OP is always fulfilled.

Unless otherwise stated, for the stochastic averaging during
the simulations, we have taken the ensemble average from
2000 instances of random geometric configurations of 8 SBS
per OP, scattered uniform randomly over a circular area of
radius 500 meters. Also the swap algorithms were run for
2000 iterations.

A. Convergence of the Swap Algorithms
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Fig. 4. The convergence of social welfare forK = 4 OPs using MCMC
and greedy swap algorithms with full power allocation, power allocation using
Q-learning, and uniform power allocation

In Fig. 4, the convergence of the social welfare using
MCMC and greedy swap algorithms is given when there are
K = 4 OPs with full power allocation, power allocation using
Q-learning, and uniform power. We fixc = [4, 4, 4, 4] for
K = 4, L = 6, and bl = 4 and the running average of the
social welfare is plotted against the iteration. In this figure, we
run 2500 iterations for the swaps algorithms. We see that the
system converges to a steady state. We also notice that for a
given power allocation scheme, both the MCMC and greedy
swap algorithms converge to similar steady state performance.
This demonstrates that both the swap algorithms are equally
effective.

At the steady state, the full power allocation achieves
the highest average social welfare, while the uniform power
allocation achieves the lowest average social welfare. The
difference in steady state performance between full power and



10

uniform power allocation schemes is about 20 bps/Hz. The
reason why the Q-learning power allocation scheme does not
perform better than full power allocation scheme is that there is
always a non-zero probability for the Q-learning to visit a less
than optimal power allocation method during its exploration
step.

We also note that for full power allocation, the greedy
swap algorithm takes longer time to converge to the steady
state than MCMC swap algorithm. Similarly, for power allo-
cation using Q-learning, the greedy swap algorithm converges
faster than the MCMC swap algorithm. Lastly, for uniform
power allocation, both the greedy swap as well as MCMC
swap algorithm converge at similar rate. However, since the
operation of the swap algorithm does not depend on the
underlying power allocation algorithm, it would be incorrect to
associate these differences in speed due to the power allocation
algorithm being used. This means that, given our data, it
remains inconclusive as to which of the two swap algorithms
is faster.

B. Effect of Changing the Number of Operators and Power
Allocation Scheme
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Fig. 5. Comparison of the cumulative distribution function(CDF) of social
welfare forK = 2, 3, 4, 5 and6 OPs using MCMC algorithm with full power
allocation, power allocation using Q-learning, and uniform power allocation

In Fig. 5, we plot the cumulative distribution function
(CDF) of the overall social welfare (bits/sec/Hz) using MCMC
algorithm for different numbers of OPs and different power
allocation schemes. We fix the number of available RBs to
L = 6 and the number of OPs that can utilize the same RB-l
is bl = 4 for all l ∈ L, andck = 4 for all k ∈ K. We consider
cases when each SBS allocates power to its UE using uniform
power allocation, Q-learning, and full power allocation. Afew
observations are as follows:

1) The CDF of social welfare occurs as discontinuous steps.
This can be explained by the fact that during the search for
optimal matching using Greedy Swap Algorithm or MCMC
Swap Algorithm, the system gets stuck in a number of locally
optimal solutions. The percentage of time spent in each local
optima is given by the height of the step. For example, when

K = 2, the system spend around 70% of its time in a solution
that gives around 350 bps/Hz, while the system spends less
than 30% of its time in a solution that gives around 250
bps/Hz.

2) The height of the last step, which represents the best
locally optimal solution obtained within a fixed number of
iterations, is seen to be decreasing as the number of OPs
increases. This means that the system tends to spend less
time in that state as the number of OPs increase. This can
be explained by the fact that as the number of OPs increase,
the number of possible matching of the system increases, but
since we have used only a fixed number of iterations to run
the swap algorithm, this shortens the amount of time spent in
the best solution.

3) For a given number of OPs, we see that the difference
in performance caused by differing power allocation scheme
is much smaller than the change in performance caused by
differing matching scheme. In other words, for a given number
of OPs, when we look at the family of CDF curves for various
power allocation schemes, the difference in the width of the
step of the CDF curve, caused by the system’s transition to a
new matching scheme, is much larger than the difference in
performance due to differing power allocation scheme for a
particular matching. For example, whenK = 3 the difference
in performance, when the locally optimal matching is changed,
is roughly 100 bps/Hz, as given by the width of the steps
of its CDF curve. This is in contrast to the difference in
performance due to power allocation scheme when the system
is in a given matching, which forK = 3, is about 25 bps/Hz.
Thus, the effect of resource allocation scheme is much more
significant than the effect of power allocation scheme for the
social welfare of the system.

4) The difference in the median values of the CDFs tends
to remain more or less constant as the number of OPs is
increased. This is because forL = 6, when there are three
or more OPs in the system, the system becomes interference
limited. As such, the average social welfare obtained per OP
is similar, as can be seen in Fig. 6 forL = 6. Thus as the
number of OPs increase, the median tends to increase linearly.
This is in contrast to the case whenK = 2. For this case, since
c = [4, 4] andL = 6, the best configuration is where each OP
has two RBs that it does not share with the other OP. Thus,
out of four required RBs, two RBs are free from inter-operator
interference while the other two RBs are not free from inter-
operator interference. This leads to a higher average social
welfare for each OP. Thus, the median of the CDF forK = 2
is closer to the median of the CDF ofK = 3.

C. Effect of Changing the Number of Resource Blocks

In Fig. 6, we show the average social welfare per OP
(bits/sec/Hz/OP), when there are different numbers of OPs,
versus the number of available RBs (L). We consider resource
demand of each OP to beck = 4 for all k ∈ K. The number
of OPs that can use the same RB-l is assumed to bebl = 4
for all l ∈ L. For fixedK, it can be observed that when we
increase the number RBs, the average social welfare per OP
increases. Thus, higher number of available RBs will enhance
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Fig. 6. Average social welfare per OP forL = 6, 8, 10, 12, 14 and 16 for
different OPs

the average social welfare per OP. This is not unexpected as
the number of available RBs to be chosen from has increased.
However, for fixedL, as the number of OPs in the system
increases, there is a decrease in average social welfare per
OP. This is also not unexpected since increasing the number
of OPs, utilizing a fixed number of common RBs, tends to
increase the inter-operator interference.

It is interesting to note that when the number of OPs,K, is
held fixed, the average social welfare per OP tends to saturate
after a certain value ofL. Increasing the number of RBs
does not change the performance anymore. We can easily
predict the value ofL where this saturation occurs. Since
each daughter OP of a parent OP is allocated with orthogonal
RBs, inter-operator interference can only occur between the
daughter OPs of different parent OP. If the number of RBs is
sufficiently large such that each daughter OPs of every parent
OPs is allocated RBs orthogonally, then such a saturation
occurs, since there is no longer inter-operator interference.
For example, sinceck = 4 for all k ∈ K, when there are
K = 2 OPs, the saturation occurs whenL = c1 + c2 = 8. At
this point, each OP is allocated with orthogonal RBs. Adding
more RBs does not change the orthogonality of the allocation.
Similarly, when there areK = 3, the saturation occurs when
L = c1 + c2 + c3 = 12; whereas whenK = 4, this happens
whenL = 16.

D. Effect of the Changing the Resource Demand

Fig. 7 presents the CDF of the overall social welfare
(bits/sec/Hz) when the number of OPs isK = 3, when the
number of RBs isL = 6, andbl = 4 for different sets ofc. We
can observe that when the number of RBs is fixed, with higher
resource demandck, ∀k ∈ K of c, the CDF curve of the overall
social welfare degrades and shifts towards the left. This is
because increasing the values ofck has the effect of increasing
the size of the augmented set of OPs. Since each sibling OPs of
a parent OP is allocated with orthogonal RBs, more RBs are
consumed. However, since the children OPs of other parent
OPs need to share the same common resources, this tends
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Fig. 7. Comparison of the cumulative distribution function(CDF) of social
welfare forK = 3 OPs with different sets ofc whenL = 6 and bl = 4

to create higher chances of inter-operator interference, when
the total number of RB,L, is fixed. This leads to an overall
decrease in social welfare. For instance, we see that when
c = [2, 2, 2], the total resource demandc1 + c2 + c3 = L = 6.
Thus, each OP is allocated with orthogonal RBs, and they are
interference free. As the resource demand increases, thereare
more chances of overlapping assignment of the RBs between
the OPs. Whenck = 6, each parent OP is assigned with all six
available RBs, thus making the system interference limited. In
Fig. 7, we also observe the dramatic change in the performance
of the system when the resource demand isc = [2, 2, 2] and
the system is interference free, to when the system starts to
become interference limited whenc = [4, 4, 4].
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Fig. 8. Comparison of the cumulative distribution function(CDF) of social
welfare forK = 4 OPs with differentL whenbl = 4 andc = [5, 9, 9, 9]

In Fig. 8 and Fig. 9, we investigate the effect of high and
low resource demands by OP as the number of available RBs
change. For both the figures, we have fixed the number of
OPs to beK = 4 and the number of OPs allowed to use
the same RB-l to be bl = 4 for all l ∈ L. In both the
figures, we have plotted the CDF of the overall social welfare
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Fig. 9. Comparison of the cumulative distribution function(CDF) of social
welfare forK = 4 OPs with differentL whenbl = 4 andc = [4, 4, 4, 4]

(bits/sec/Hz) when the number of RBs is changed such that
L = 8, 10, 12, 14, 16. For Fig. 8, we have assumed the resource
demand by each OP to be high, such thatc = [5, 9, 9, 9];
whereas for Fig. 9, we have assumed a much smaller resource
demand by each OP, such thatc = [4, 4, 4, 4]. Both Fig. 8 and
Fig. 9 complements the Fig. 7, since in both cases, we see the
expected increase in social welfare asL is increased, when
the resource demand is held fixed. This is because whenL
increases, there is less chance of inter-operator interference via
RB sharing; and the OPs can choose better RBs to maximize
their own utilities. Thus, the overall social welfare improves.

In Fig. 8, sincec = [5, 9, 9, 9] represents a high demand,
we observe that the CDF of social welfare is enhanced
dramatically when the number of RBs is changed fromL = 8
to L = 10. This is because, whenL = 8, we have

∑

k∈K ck =
∑

l∈L bl = 32. Therefore, whenL = 8, the total supply of
resources is equal to the total demand of resources; and the
OPs tend to utilize the overall supply of resources. As such,
whenL is increased, it creates a surplus of resource supply.
This means, the number of OPs that need to share the same
RB goes down, creating lesser inter-operator interference; and
hence, the social welfare tends to enhance significantly.

This is in contrast to Fig. 9, where the resource demand
is assumed to bec = [4, 4, 4, 4], which is much smaller
compared to that of Fig. 8. As such, in Fig. 9, although the
social welfare improves with increasingL, we do not see any
dramatic improvement in social welfare as witnessed in Fig.
8.

E. Effect of the Changing the SBS Intensity

In Fig. 10, we illustrate the effect of changing the SBS
intensity on the overall social welfare. We have plotted the
CDF of the overall social welfare as the spatial intensity of
SBS is changed from8 SBSs perπ × 1002 to 8 SBSs per
π × 5002. We consider the number of OPs to beK = 3 and
the number of available RBs to beL = 6. The number of OPs
that can use the same RB-l is assumed to bebl = 4, while the
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Fig. 10. Comparison of the cumulative distribution function (CDF) of social
welfare forK = 3 OPs by varying the intensity of SBSs

resource demand of each OP is assumed to bec = [4, 4, 4].
The radius of circular area under consideration is varied from
100 to 500 meters. Each OP is assumed to serve an 8 SBSs.
We can observe that the median of the CDF curves of the
social welfare improves as the area increases. This is because
when we increase the size of the area, the spatial intensity of
the SBS decreases, which leads to less interference.

VII. C ONCLUSION

In this paper, the spectrum assignment for non-orthogonal
multi-operator spectrum sharing system, where multiple oper-
ators shared a common pool of spectrum among each other,
was formulated as a social welfare optimization problem.
Using the results from stochastic geometrical analysis, we
showed that, under certain condition, the solution to this
problem coincided with the solution to a corresponding stable
matching game. This result inspired the use of Markov Chain
Monte Carlo algorithm to find the stable and socially optimal
matchings. The Q-learning method was also proposed to find
the optimal random transmit power strategy of the small cell
base stations. Numerical simulations were performed to access
the performance of the system under various conditions. From
the numerical study, one of the conclusions we can draw is that
the spectrum allocation has greater effect on the performance
of the system than power allocation.
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