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The Learning and Prediction of Application-level
Traffic Data in Cellular Networks

Rongpeng Li, Zhifeng Zhao, Jianchao Zheng, Chengli Mei, Yueming Cai, and Honggang Zhang

Abstract—Traffic learning and prediction is at the heart of the
evaluation of the performance of telecommunications networks
and attracts a lot of attention in wired broadband networks.
Now, benefiting from the big data in cellular networks, it becomes
possible to make the analyses one step further into the application
level. In this paper, we firstly collect a significant amount of
application-level traffic data from cellular network operators.
Afterwards, with the aid of the traffic “big data”, we make a
comprehensive study over the modeling and prediction frame-
work of cellular network traffic. Our results solidly demonstrate
that there universally exist some traffic statistical modeling char-
acteristics at a service or application granularity, including α-
stable modeled property in the temporal domain and the sparsity
in the spatial domain. But, different service types of applications
possess distinct parameter settings. Furthermore, we propose a
new traffic prediction framework to encompass and explore these
aforementioned characteristics and then develop a dictionary
learning-based alternating direction method to solve it. Finally,
we examine the effectiveness and robustness of the proposed
framework for different types of application-level traffic. Our
simulation results prove that the proposed framework could
offer a unified solution for application-level traffic learning and
prediction and significantly contribute to solve the modeling and
forecasting issues.

Index Terms—Big data, cellular networks, traffic prediction, α-
stable models, dictionary learning, alternative direction method,
sparse signal recovery.

I. INTRODUCTION

Traffic learning and prediction in cellular networks, which is
a classical yet still appealing field, yields a significant number
of meaningful results. From a macroscopic perspective, it
provides the commonly believed result that mobile Internet
will witness a 1000-folded traffic growth in the next 10 years
[1], which is acting as a crucial anchor for the design of
next-generation cellular network architecture and embedded
algorithms. On the other hand, the fine traffic prediction on
a daily, hourly or even minutely basis could contribute to the
optimization and management of cellular networks like energy
savings [2], opportunistic scheduling [3], and network anomaly
detection [4] . In other words, a precisely predicted future
traffic load knowledge, which contributes to improving the
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network energy efficiency by dynamically configuring network
resources according to the practical traffic demand [5], [6],
plays an important role in designing greener traffic-aware
cellular networks.

Our previous research [7] has demonstrated the microscopic
traffic predictability in cellular networks for circuit switching’s
voice and short message service and packet switching’s data
service. However, compared to the more accurate prediction
performance for voice and text service in circuit switching
domain, the state-of-the-art research in packet switching’s
data service is still not satisfactory enough. Furthermore,
the fifth-generation (5G) cellular networks, which is under
the standardization and assumed to be the key enabler and
infrastructure provider in the information communication tech-
nology industry, aim to cater different types of services like en-
hanced mobile broadband (eMBB) with bandwidth-consuming
and throughput-driving requirements, ultra-reliable low latency
service (URLLC), etc. Hence, if we can detect the coming of
the service with higher priority, we can timely reserve and
specifically configure the resources (e.g., shorter transmission
time interval) to guarantee the service provisioning. In a
word, a learning and prediction study over application-level
data traffic might contribute to understanding data service’s
characteristics and performing finer resource management in
the 5G era [8]. But, as listed in Table I, the applications (i.e.,
instantaneous message (IM), web browsing, video) in cellular
networks are impacted by different factors and also signif-
icantly differ from those in wired networks. Hence, instead
of directly applying the results generated from wired network
traffic, we need to re-examine the related traffic characteristics
in cellular networks and check the prediction accuracy of the
application-level traffic. In order to obtain general results, we
firstly collect a significant amount of practical traffic records
from China Mobile1. By taking advantage of the traffic “big
data”, we then confirm the preciseness of fitting α-stable
models to these typical types of traffic and demonstrate α-
stable models’ universal existence in cellular network traffic.
We later show that α-stable models can be used to leverage the
temporally long range dependence and guide linear algorithms
to conduct the traffic prediction. Besides, we find that spatial
sparsity is also applicable for the application-level traffic and
propose that the predicted traffic should be able to be mapped
to some sparse signals. In this regard, benefiting from the

1It is worthwhile to note here that we also collect another dataset from
China Telecom to further verify the effectiveness of the thoughts inside in
this paper. Due to the space limitation, we put the results related to China
Telecom dataset in a separate file available at http://www.rongpeng.info/files/
sup file twc.pdf.
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latest progress in compressive sensing [9]–[12], we could
calibrate the traffic prediction results with the transform matrix
unknown a priori. Finally, in order to forecast the traffic with
the aforementioned characteristics, we formulate the prediction
problem by a new framework and then develop a dictionary
learning based alternating direction method (ADM) [12] to
solve it.

A. Related Work

Due to its apparent significance, there have already existed
two research streams toward the fine traffic prediction issue in
wired broadband networks and cellular networks [7]. One is
based on fitting models (e.g., ON-OFF model [13], ARIMA
model [14], FARIMA model [15] , mobility model [16], [17],
network traffic model [17], and α-stable model [18], [19]) to
explore the traffic characteristics, such as spatial and temporal
relevancies [20] or self-similarity [21], [22], and obtain the
future traffic by appropriate prediction methods. The other is
based on modern signal processing techniques (e.g., princi-
pal components analysis method [23], [24], Kalman filtering
method [24], [25] or compressive sensing method [2], [12],
[23], [26]) to capture the evolution of traffic. However, it is
useful to first model large-scale traffic vectors as sparse linear
combinations of basis elements. Therefore, some dictionary
learning method [27] is necessary to learn and construct the
basis sets or dictionaries.

However, the existing traffic prediction methods in this
microscopic case still lag behind the diverse requirements of
various application scenarios. Firstly, most of them still focus
on the traffic of all data services [28] and seldom shed light
on a specific type of services (e.g., video, web browsing,
IM, etc). Secondly, the existing prediction methods usually
follow the analysis results in wired broadband networks like
the α-stable models2 [29], [30] or the often accompanied self-
similarity [21] to forecast future traffic values [15], [19], [22].
But the corresponding results need to be validated before
being directly applied to cellular networks [7], since cellular
networks have more stringent constraints on radio resources
[31], relatively expensive billing polices and different user
behaviors due to the mobility [32] and thus exhibit distinct
traffic characteristics.

B. Contribution

Compared to the previous works, this paper aims to answer
how to accurately model, effectively profile, and efficiently
predict mobile traffic at an application or service granularity.
Belonging to one of the pioneering works toward application-
level traffic analyses, we take advantage of a large amount of
practical records (as summarized in Table II and Table III) and
provide the following key insights:

• Firstly, this paper visits α-stable models and confirms
their accuracy to model the application-level cellular
network traffic for all three service types (i.e., IM, web
browsing, video). To our best knowledge, it is the first in

2In this paper, the term “α-stable models” is interchangeable with α-stable
distributions.
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Fig. 1. The illustration of application-level traffic prediction framework .

the literature to find an appropriate model for application-
level traffic in cellular networks and show the modeling
accuracy of α-stable models. Moreover, this paper shows
the application-level traffic obeys the sparse property and
demonstrates the distinct characteristics among different
service types. Therefore, the paper contributes to a gen-
eral understanding of the cellular network traffic.

• Secondly, in order to encompass and explore these afore-
mentioned characteristics, this paper provides a traffic
prediction framework in Fig. 1. Specifically, the proposed
framework consists of an “α-Stable Model & Predic-
tion” module to generate coarse prediction results, a
“Sparsity & Dictionary Learning” module to impose a
sparse constraint and refine the prediction results, and an
“Alternating Direction Method” module to provide the
algorithmic details and obtain the final results.

• Thirdly, this paper further demonstrates appealing predic-
tion performance by extensive simulation results. In other
words, this paper proves the existence and effectiveness
of a unified solution for application-level mobile traffic.
Hence, it could simplify the modeling, analyses and
prediction for application-level traffic and contribute to
the building of service-aware networks in the 5G era.

The remainder of the paper is organized as follows. In
Section II, we first present some necessary background of
required mathematical tools. In Section III, we introduce the
dataset for traffic prediction analyses and later talk about the
characteristics (i.e., α-stable models and spatial sparsity) of
the application-level dataset. In Section IV, we propose a new
traffic prediction framework and its corresponding solution.
Section V evaluates the proposed schemes and presents the
validity and effectiveness. Finally, we conclude this paper in
Section VI.

Notation: In the sequel, bold lowercase and uppercase
letters (e.g., x and X) denote a vector and a matrix, re-
spectively. (·)T denotes a transpose operation of a matrix or
vector. ‖x‖0 is an l0-norm, counting the number of non-zero
entries in x, while an lp-norm ‖x‖p, p ≥ 1 of a 1 × n
vector x = (x1, · · · , xn) is defined by p

√∑n
i |xi|p. The

operation 〈x,y〉 denotes the summation operation of element-
wise multiplication in x and y with the same size. sgn(x) with
respect to x ∈ R is defined as sgn(x) = x/|x| when x 6= 0;
and sgn(x) = 0 when x = 0.
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TABLE I
THE DIFFERENCES FOR APPLICATIONS IN CELLULAR AND WIRED NETWORKS

Key Difference Typical Service Remarks

Protocol Instantaneous Messaging
(IM)

Compared to their counterparts (Skype) in wired networks, mobile IM
and social networking applications depend on the keep-alive mechanism
to timely receive newly arrived information. In other words, user devices
periodically wake up and consume certain signaling resources to build
connections, when the keep-alive timer exceeds a predefined threshold.

User Mobility Web Browsing

In wired networks, users usually rely on almost immobile personal
computers to connect the Internet. However, users in cellular networks
might travel in cars or trains, thus requiring the network to hand over
the signaling and data information from one cell to another.

Billing Policy Video
Wired network operators charge subscribers by bandwidth while most
cellular network operators charge subscribers by consumed data volume.
Hence, users in cellular networks are reluctant to watch expensive movies.

II. MATHEMATICAL BACKGROUND

A. α-Stable Models

Following the generalized central limit theorem, α-stable
models manifest themselves in the capability to approximate
the distribution of normalized sums of a relatively large num-
ber of independent identically distributed random variables
[33] and lead to the accumulative property. Besides, α-stable
models produce strong bursty results with properties of heavy
tailed distributions and long range dependence. Therefore, they
arise in a natural way to characterize the traffic in wired
broadband networks [34], [35] and have been exploited in
resource management analyses [36], [37].
α-stable models, with few exceptions, lack a closed-form

expression of the probability density function (PDF) and are
generally specified by their characteristic functions.

Definition 1. A random variable T is said to obey α-stable
models if there are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤
1, and µ ∈ R such that its characteristic function is of the
following form:

Φ(ω) = E(exp jωT )

=


exp

{
−σα|ω|α

(
1− jβsgn(ω) tan

πα

2

)
+ jµω

}
,

α 6= 1;

exp

{
−σ|ω|

(
1 + j

2β

π
sgn(ω) ln |ω|

)
+ jµω

}
, α = 1.

(1)
Here, the function E(·) represents the expectation operation
with respect to a random variable. α is called the characteristic
exponent and indicates the index of stability, while β is identi-
fied as the skewness parameter. α and β together determine the
shape of the models. Moreover, σ and µ are called scale and
shift parameters, respectively. In particular, if α = 2, α-Stable
models reduce to Gaussian distributions.

Furthermore, for an α-stable modeled random variable T ,
there exists a linear relationship between the parameter α and
the function Ψ(ω) = ln {−Re [ln (Φ(ω))]} as

Ψ(ω) = ln {−Re [ln (Φ(ω))]} = α ln(ω) + α ln(σ), (2)

where the function Re(·) calculates the real part of the input
variable.

Usually, it’s challenging to prove whether a dataset follows
a specific distribution, especially for α-stable models without
a closed-form expression for the PDF. Therefore, when a
dataset is said to satisfy α-stable models, it usually means
the dataset is consistent with the hypothetical distribution and
the corresponding properties. In other words, the validation
needs to firstly estimate parameters of α-stable models from
the given dataset and then compare the real distribution of the
dataset with the estimated α-stable model [35]. Specifically,
the corresponding parameters in α-stable models can be de-
termined by maximum likelihood methods, quantile methods,
or sample characteristic function methods [34], [35].

B. Sparse Representation and Dictionary Learning

In recent years, sparsity methods or the related compressive
sensing (CS) methods have been significantly investigated
[9]–[12]. Mathematically, sparsity methods aim to tackle this
sparse signal recovery problem in the form of

min ‖s‖0,
s.t. y = Ds,

(3)

or
min ‖s‖0,

s.t. ‖y −Ds‖ ≤ ι.
(4)

Here, s denotes a sparse signal vector while y denotes a
measurement vector based on a transform matrix or dictionary
D. Besides, ι is a predefined integer indicating the sparsity. By
leveraging the embedded sparsity in the signals, sparsity meth-
ods could successfully recover the sparse signal with a high
probability, depending on a small number of measurements
fewer than that required in Nyquist sampling theorem. Basis
pursuit (BP) [38], one of typical sparsity methods, solves the
problem in terms of maximizing a posterior (MAP) criterion
by relaxing the l0-norm to an l1-norm. On the other hand,
orthogonal matching pursuit (OMP) [39] greedily achieves
the final outcome in a sequential manner, by computing
inner products between the signal and dictionary columns and
possibly solving them using the least square criterion.

For sparsity methods above, there usually exists an as-
sumption that the transform matrix or dictionary D is al-
ready known or fixed. However, in spite of their computation
simplicity, such pre-specified transform matrices like Fourier
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TABLE II
DATASET 1 UNDER STUDY

IM
(Weixin)

Web Browsing
(HTTP)

Video
(QQLive)

Traffic Resolution
(Collection Interval) 5 min 5 min 5 min

Duration 1 day 1 day 1 day

No. of Active Cells 2292 4507 4472

Location Info.
(Latitude & Longitude) Yes Yes Yes

TABLE III
DATASET 2 UNDER STUDY

IM
(QQ)

Web Browsing
(HTTP)

Video
(QQLive)

Traffic Resolution
(Collection Interval) ∆t 30 min 30 min 30 min

Duration 2 weeks 2 weeks 2 weeks

No. of Active Cells 5868 5984 5906

Location Info.
(Latitude & Longitude) Yes Yes Yes

transforms and overcomplete wavelets might not be suitable to
lead to a sparse signal [40]. Consequently, some researchers
proposed to design D based on learning [27], [40]. In other
words, during the sparse signal recovery procedure, machine
learning and statistics are leveraged to compute the vectors
in D from the measurement vector y, so as to grant more
flexibility to get a sparse representation s from y. Math-
ematically, dictionary learning methods would yield a final
transform matrix by alternating between a sparse computation
process based on the dictionary estimated at the current stage
and a dictionary update process to approach the measurement
vector.

III. APPLICATION-LEVEL TRAFFIC DATASET AND ITS
CHARACTERISTICS

A. Traffic Dataset Description

In this paper, our datasets are based on a significant number
of practical traffic records from China Mobile in Hangzhou,
an eastern provincial capital in China via the Gb interface of
2G/3G cellular networks or S1 interface of 4G cellular net-
works [41]. Specifically, the datasets encompass nearly 6000
cells’ location records3 with more than 7 million subscribers
involved. The datasets also contain the information like times-
tamp, corresponding cell ID, and traffic-related application-
layer information, thus being possible for us to differentiate
applications. In particular, we can determine web browsing
service and video service by the applied HTTP protocol
and streaming protocol respectively, while we assume traffic
records to belong to the IM service, after fitting them to

3Indeed, at one specific location, there might exist several cells operating
on different frequencies or modes. For simplicity of representation, in the
following analyses, we merge the information for different cells at the same
location into one.
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Fig. 2. The traffic variations of applications in different service types in the
randomly selected (single) cells.

the learning results of regular IM packet pattern (e.g., port
number, Internet protocol address, and explicit application-
layer information in the header). Moreover, the traffic volume
could be calculated after aggregating packets to each influx
base station. Notably, the paper aims to predict the traffic
volume in each BS instead of the entire cellular network.

According to the traffic resolution (e.g., the traffic collection
interval, namely 5 minutes and 30 minutes), the collected
data can be sorted into two categories. Table II summarizes
the information of per 5-minute traffic records collected on
September 9th, 2014 with Weixin/Wechat4, HTTP Web Brows-
ing, and QQLive Video5 selected as the representatives of these
three service types. Here, the term “no. of active cells” refers to
the number of cells where a specific type of service happened.
Similarly, Table III lists the corresponding details of per 30-
minute traffic records from July 14th, 2014 to July 27th, 2014
with QQ6, HTTP Web Browsing, and QQLive Video as the
representatives, respectively.

Based on the datasets in Table II and Table III, Fig. 2
illustrates the traffic variations generated by these applications
in the randomly selected cells. Indeed, the phenomena in Fig.
2 universally exist in other individual cells and lead to the
following insight.

Remark 1. Different services exhibit distinct traffic character-
istics. IM and HTTP web browsing services frequently produce
traffic loads; while distinct from them, video service with more
sporadic activities may generate more significant traffic loads.

For simplicity of representation, we introduce a traffic vector
x, whose entries archive the volume of traffic in one given
cell at different moments. Furthermore, by augmenting the

4Weixin/Wechat provides a Whatsapp-alike instant messaging service devel-
oped by Tencent Inc. and is one of the most popular mobile social applications
in China with more than 400 million active users.

5QQLive Video is a popular live streaming video platform in China.
6QQ is another instant messaging service developed by Tencent Inc. with

more than 800 million active users. Due to some practical reasons, per 30-
minute Weixin traffic records are unavailable. Therefore, Table III includes
QQ’s traffic records.
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TABLE IV
THE PARAMETER FITTING RESULTS IN THE α-STABLE MODELS BASED

ON DATASET 1

Name Parameters K-S Test
α β σ µ GoF 95% Thres.

IM 1.61 1 188.67 221.83 0.0576 0.0800
Web Browsing 1.60 1 32.33 42.75 0.0434 0.0800

Video 0.51 1 1×10−10 0 0.0382 0.0800

TABLE V
THE PARAMETER FITTING RESULTS IN THE α-STABLE MODELS BASED

ON DATASET 2

Name Parameters K-S Test
α β σ µ GoF 95% Thres.

IM 0.70 1 26.32 -100.69 0.0483 0.0524
Web Browsing 2 1 2.03×103 2.01×103 0.0504 0.0524

Video 0.51 1 136.52 -341.15 0.0237 0.0524

traffic vectors for different cells, we refer to a traffic matrix
X to denote the traffic records in an area of interest. Then,
every row vector of traffic matrix indicates traffic loads at
one specific cell with respect to the time while every column
vector reflects volumes of traffic of several adjacent cells at
one specific moment. Specifically, for a traffic resolution ∆t,
X(i, t) in a traffic matrix X denotes traffic loads of cell i
from t to t+ ∆t.

Remark 2. Traffic prediction can be regarded as the proce-
dure to obtain a column vector x̂p = X̂(:, t)T at a future
moment t, based on the already known traffic records. Each
entry x̂(i)p in x̂p corresponds to the future traffic for cell i.

B. The α-Stable Modeling and Sparse Properties

In this section, we examine the results of fitting the
application-level dataset to α-stable models. Firstly, in Table
IV and Table V, we list the parameter fitting results using
quantile methods [42], when we take into consideration the
traffic records in three randomly selected cells (each for one
service type) of Table II and Table III and quantize the volume
of each traffic vector into 100 parts.

Afterwards, we use the α-stable models, produced by the
aforementioned estimated parameters, to generate some ran-
dom variable and compare the induced quantized cumulative
distribution function (CDF) with the real quantized one. Table
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Fig. 3. An illustration of the PDF induced by α-stable models.
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Fig. 4. For different service types, α-stable model fitting results versus the
real (empirical) ones in terms of the cumulative distribution function (CDF).

IV and Table V summarize the related fitting parameters. No-
tably, as the parameter µ indicates the shift of the probability
density function (PDF) and equals the mean of the variable
when α ∈ (0, 1), the PDF for some negative interval is non-
zero and then it makes no sense for the cellular network
traffic when µ < 0. Consequently, in the stricter sense, when
we discuss the α-stable modeling, we only consider the non-
negative interval of the variable and normalize the PDF during
such an interval with practical meaning. Mathematically, for a
variable X with the PDF P(X), the normalized PDF P̄(X)
could be expressed as

P̄(X = x) =


P(x)∫

y≥0
P(y)dy

, x ≥ 0;

0, x < 0.

(5)

For example, Fig. 3(a) illustrates the PDF of an α-stable
modeled video service with α = 0.51, β = 1, σ = 136.52
and different µ. From Fig. 3(a), when µ varies, the PDF shifts
accordingly. For the video service with µ = −341.15, we
actually talk about the normalized PDF in Fig. 3(b). Fig. 4
presents the corresponding comparison between the simulated
results and the real ones. Notably, due to the quantization in the
real and estimated CDF, if the PDF at the first quantized value
does not equal to zero (e.g., 0.3 for Fig. 4(a) and Fig. 4(b)),
the corresponding CDF will start from a positive value. As
stated in Section II-A, if the simulated dataset has the same or
approximately same distribution as the real one, the empirical
dataset could be deemed as α-stable modeled. Therefore,
Fig. 4 indicates the traffic records in these selected areas
could be simulated by α-stable models. We also perform the
Kolmogorov-Smirnov (K-S) goodness-of-fit (GoF) test [43]
and compare the K-S GoF values and the 95%-confidence
thresholds in Table IV and Table V. From the tables, the GoF
values are smaller than the thresholds, which further validates
the conclusion drawn from Fig. 4.
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On the other hand, recalling the statements in Section II,
for an α-stable modeled random variable X , there exists a
linear relationship between the parameter α and the function
Ψ(ω) = ln {−Re [ln (Φ(ω))]}. Thus, we fit the estimated
parameter α with the computing function Ψ(ω) and provide
the preciseness error CDF for all the cells in Fig. 5. According
to Fig. 5, the normalized fitting errors for 80% cells in both
datasets are less than 0.02. Therefore, the practical application-
level traffic records follow the property of α-stable models (in
Eq. (2)) and further enhance the validation results by Fig. 4.
Moreover, different application-level traffic exhibits different
fitting accuracy. In that regard, the video traffic in Fig. 5(c)
has the minimal fitting error, while the fitting error of the web
browsing traffic in Fig. 5(b) is the largest. But, the fitting error
quickly decreases along with the increase in traffic resolution,
since a larger traffic resolution means a confluence of more
application-level traffic packets and could better demonstrate
the accumulative property of α-stable models.
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Fig. 5. The preciseness error CDF for all the cells after fitting Ψ(ω) with
respect to ln(ω) to a linear function.

Remark 3. Due to their generality, α-stable models are
suitable to characterize the application-level traffic loads in
cellular networks, even though it might not be the most
accurate one.

Indeed, the universal existence of α-stable models also
implies the self-similarity of application-level traffic [21].
Hence, in the following sections, it is sufficient to only
present and discuss the results from Dataset 1 in Table II.
On the other hand, the phenomena that application-level traffic
universally obeys α-stable models can be explained as follows.
Our previous study [44] unveiled that the message length of
one individual IM activity follows a power-law distribution.
Moreover, according to the generalized central limit theorem
[45], the sum of a number of random variables with power-
law distributions decreasing as |x|−α−1 where 0 < α < 2
(and therefore having infinite variance) will tend to an α-
stable model as the number of summands grows. Hence,
the application-level traffic within one cell follows α-stable

models, as the traffic distribution within one cell can be
regarded as the accumulation of lots of IM activities.

Additionally, data traffic in wired broadband networks [23]
and voice and text traffic in circuit switching domain of
cellular networks [2] prove to possess the spatio-temporal
sparsity characteristic. Indeed, the application-level traffic spa-
tially possesses this sparse property as well. Fig. 6 depicts the
traffic density in 10AM and 4PM in randomly selected dense
urban areas. Here, the traffic density is achieved by dividing
the cell traffic of each BS by the corresponding Voronoi cell
area [46]. When the derived traffic density in one cell is
comparatively larger than that in others, it is depicted as a
red “hot spot”. As shown in Fig. 6, there appear a limited
number of traffic hotspots and the number of “hot spots”
change in both temporal and spatial domain. This spatially
clustering property is also consistent with the findings in [20]
and proves the traffic’s spatial sparsity. It can also be observed
that that the locations of “hot spots” are also service-specific.
In other words, different services have distinct requirements on
bandwidth, thus leading to various types of user behavior. For
example, video service, which usually consumes huge traffic
budget and only is affordable for few subscribers, yield only
the smallest number of “hot spots”.

Remark 4. The application-level traffic dataset further vali-
dates that the traffic for different service types of applications
follows a spatially sparse property. Besides, compared to IM
and web browsing service, video service exhibits the strongest
sparsity.

IV. APPLICATION-LEVEL TRAFFIC PREDICTION
FRAMEWORK

Section III unveils that the application-level cellular network
traffic could be characterized by α-stable models and obey the
sparse property. In this section, we aim to fully take advantage
of these results and propose a new framework in Fig. 1 to
predict the traffic. The proposed framework consists of three
modules. Among them, the “α-Stable Model & Prediction”
module would take advantage of the already known traffic
knowledge to learn and distill the parameters in α-stable
models and provide a coarse prediction result. Meanwhile, the
“Sparsity & Dictionary Learning” module imposes constraints
to make the final prediction results satisfy the spatial sparsity.
But, these two modules inevitably add multiple parameters
unknown a priori and thus need specific mathematical oper-
ations to obtain a solution. Hence, the proposed framework
also contain an “Alternating Direction Method” module to
iteratively process the other modules and yield the final result.

A. Problem Formulation

Previous sections unearth several important characteristics
in application-level traffic in cellular networks, including
spatial sparsity and temporally α-stable modeling. All these
factors could be leveraged for forecasting the future traffic
vector x̂p.

• Temporal modeling component. As Section III-B states,
the application-level traffic loads follow α-stable models.
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Fig. 6. The application-level cellular network traffic density in 10AM and 4PM in randomly selected dense urban areas for three service types of applications.
The area for IM, Web Browsing, and Video contains 23, 39, 35 active cells, respectively.

Therefore, benefiting from the substantial body of works
towards α-stable model based linear prediction [29], [35],
coarse prediction results can be achieved by computing
linear prediction coefficients in terms of the least mean
square error criterion, the minimum dispersion criterion,
or the covariation orthogonal criterion [18]. Due to its
simplicity and comparatively low variability, the covari-
ation orthogonal criterion [18], [19] is chosen in this
paper to demonstrate the α-stable based linear prediction
performance.
Without loss of generality, assume that there exist N cells
in the area of interest. For a cell i ∈ N with a known n-
length traffic vector x(i) = (x(i)(1), · · · ), x̂(i)α in α-stable
models-based predicted traffic vector x̂α =

(
x̂
(1)
α , · · ·

)
is approximated by

x̃(i)α =

m∑
j=1

a(i)(j)x(i)(n+ 1− j), (6)

with 1 < m ≤ n, where a(i) = (a(i)(1), · · · , a(i)(m))
denotes the prediction coefficients by α-stable models-
based linear prediction algorithms. For example, in order
to make the 1-step-ahead linear prediction x̃

(i)
α covari-

ation orthogonal to x(i)(t),∀t ∈ {1, · · · , n}, coefficient
a(i)(h),∀h ∈ {1, · · · ,m} should be given as [35]

a(i)(h)

=

m∑
l=1

 n∑
j=max(h,l)

x(i)(j − l + 1)
(
x(i)(j − h+ 1)

)<α−1>

×
n∑

j=l+k

x(i)(j)
(
x(i)(j − k − l + 1)

)<α−1>

 .
Here, the signed-power ν<α−1> = |ν|(α−1)sgn(ν). For
simplicity of representation, the terminology “(n =
36,m = 10, k = 1)-linear prediction” is used to denote
a prediction method, which firstly utilizes n = 36
consecutive traffic records in one randomly selected cell,

then calculates m = 10 prediction coefficients, and finally
predicts the traffic value at the next (i.e., k = 1) moment.

• Noise component. For any prediction algorithm, there
dooms to exist some prediction error. Therefore, final
traffic prediction vector x̂p is approximated by x̂α plus
Gaussian noise z7. Combining the temporal modeling and
noise components, x̂p could be achieved by

min
x̂p,x̂α,z

‖x̂α − x̃α‖22 + λ1‖z‖22,

s.t. x̂p = x̂α + z, (7)

x̃α =
(
x̃(1)α , · · · , x̃(N)

α

)
, (8)

x̃(i)α =

m∑
j=1

a(i)(j)x(i)(n+ 1− j), (9)

∀i ∈ {1, · · · , N} .

For simplicity of representation, we omit constraints in
Eq. (8) and Eq. (9) in the following statements.

• Spatial sparse component. In Section III-B, application-
level traffic is shown to exhibit the spatial sparsity.
Therefore, x̂p could be further refined by minimizing the
gap between x̂p and a sparse linear combination (i.e.,
s ∈ RK×1) of a dictionary D ∈ RN×K , namely

min
x̂p,D,s

‖x̂p −Ds‖22, s.t.‖s‖0 ≤ ε. (10)

Notably, in Fig. 6, we observe sparse application-level
cellular network traffic density. In other words, there
merely exist few traffic spots with significantly large

7There are two reasons leading to the assumption that noise is Gaussian
distributed. Firstly, Gaussian distributed noise is widely used to characterize
the fitting error between models and practical data. Secondly, we have
conducted an experiment to examine the prediction performance of a simple
(n = 36,m = 10, k = 1)-linear prediction procedure and found that the
prediction procedure could well predict the traffic trend. However, there would
exist some gap between the real traffic trace and the predicted one. But, Fig.
7 indicates that the prediction error can be approximated by the Gaussian
distribution. The K-S test further shows the GoF statistics for the IM, web
browsing and video services are 0.0319, 0.0657 and 0.0437, respectively,
smaller than the 95%-confidence threshold (i.e., 0.3507). So, we model the
prediction error by Gaussian distribution.
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Fig. 7. The result by fitting the prediction error to a Gaussian distribution,
after an α-stable model-based (36, 10, 1)-linear prediction method.

traffic volume. On the other hand, in the area of sparse
representation, a l0-norm, which counts the number of
nonzero elements in the vector, is often used to char-
acterize the sparse property. Therefore, in Eq. (10), we
use a l0-norm to add the sparse constraint to the final
optimization problem. Moreover, the exact representation
of the dictionary, which the previous sparsity analyses
do not mention, remains a problem and would be solved
later.

Therefore, it is natural to consider the original dataset as a
mixture of these effects and propose a new framework to
combine these two components together to get a superior
forecasting performance.

In order to capture the temporal α-stable modeled varia-
tions while keeping the spatial sparsity, a new framework is
proposed as follows:

min
x̂p,x̂α,z,D,s

‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂p −Ds‖22,

s.t. x̂p = x̂α + z, ‖s‖0 ≤ ε.

Due to the nonconvexity of l0-norm, the constraints in Eq.
(11) are not directly tractable. Thanks to the sparsity methods
discussed in Section II-B, an l1-norm relaxation is employed
to make the problem convex while still preserving the sparsity
property [47]. Therefore, Eq. (11) can be reformulated as

min
x̂p,x̂α,z,D,s

‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂p −Ds‖22,

s.t. x̂p = x̂α + z, ‖s‖1 ≤ ε.

where ε is a predefined constraint, similar to ε.

Remark 5. This proposed framework integrates the temporal
modeling and spatial correlation together. Moreover, by ad-
justing λ1 and λ2 to some extreme values, it’s easy to show
that the framework in Eq. (11) is closely tied to some typical
methods in other references.

• If λ1 and λ2 are extremely small, the framework is
simplified to a simple α-stable linear prediction method
[18], [19].

• If λ2 is extremely large, the spatial sparsity factor dom-
inates in the framework [23].

B. Optimization Algorithm

In order to optimize the generalized framework, we first
reformulate Eq. (11) by taking advantage of the augmented
Lagrangian function [48] and then develop an alternating
direction method (ADM) [12] to solve it. Specifically, the cor-
responding augmented Lagrangian function can be formulated
as

L(x̂p, x̂α, z,D, s,m, γ, η)

, ‖x̂α − x̃α‖22 + λ1‖z‖22 + λ2‖x̂p −Ds‖22
+〈m, x̂p − x̂α − z〉 (11)
+γ · ‖s‖1 (12)
+η · ‖x̂p − x̂α − z‖22. (13)

Besides, m and γ are the Lagrangian multipliers, while
η is a factor for the penalty term. Essentially, the aug-
mented Lagrangian function includes the original objective,
two Lagrange multiplier terms (i.e., Eq. (11) and Eq. (12)),
and one penalty term converted from the equality constraint
(i.e., Eq. (13)). Specifically, introducing Lagrange multipliers
conveniently converts an optimization problem with equality
constraints into an unconstrained one. Moreover, for any
optimal solution that minimizes the (augmented) Lagrangian
function, the partial derivatives with respect to the Lagrange
multipliers must be zero [49]. Additionally, the penalty terms
enforce the original equality constraints. Consequently, the
original equality constraints are satisfied. Besides, by including
Lagrange multiplier terms as well as the penalty terms, it’s not
necessary to iteratively increase η to ∞ to solve the original
constrained problem, thereby avoiding ill-conditioning [48].

The ADM algorithm progresses in an iterative manner.
During each iteration, we alternate among the optimiza-
tion of the augmented function by varying each one of
(x̂p, x̂α, z,D, s,m, γ, η) while fixing the other variables.
Specifically, the ADM algorithm involves the following steps:

1) Find x̂α to minimize the augmented Lagrangian function
L(x̂p, x̂α, z,D, s,m, γ, η) with other variables fixed.
Removing the fixed items, the objective turns into

arg min
x̂α
‖x̂α − x̃α‖22

+ 〈m, x̂p − x̂α − z〉+ η · ‖x̂p − x̂α − z‖22,

which can be further reformulated as

arg min
x̂α

1

η
·‖x̂α−x̃α‖22+‖x̂α−(x̂p−z+

m

2η
)‖22. (14)

Letting Jx̂α = x̂p − z + m
2η and setting the gradient of

the objective function in Eq. (14) to be zero, it yields

x̂α =
1

η + 1
· (x̃α + η · Jx̂α). (15)



9

2) Find z to minimize the augmented Lagrangian function
L(x̂p, x̂α, z,D, s,m, γ, η) with other variables fixed.
The corresponding mathematical formula is

arg min
z

λ1‖z‖22 + 〈m, x̂p − x̂α − z〉

+ η · ‖x̂p − x̂α − z‖22.

Similarly, it can be reformulated as

arg min
x̂α

λ1
η
· ‖z‖22 + ‖z − (x̂p − x̂α +

m

2η
)‖22. (16)

Letting Jz = x̂p − x̂α + m
2η and setting the gradient of

the objective function in Eq. (16) to be zero, it yields

z =
1

λ1/η + 1
· Jz. (17)

3) Find x̂p to minimize the augmented Lagrangian function
L(x̂p, x̂α, z,D, s,m, γ, η) with other variables fixed. It
gives

arg min
x̂p

λ2‖x̂p −Ds‖22 + 〈m, x̂p − x̂α − z〉

+ η · ‖x̂p − x̂α − z‖22.

That is

arg min
x̂p

λ2
η
· ‖x̂p −Ds‖22 + ‖x̂p − (x̂α + z − m

2η
)‖22.
(18)

Define Jx̂p = x̂α + z − m
2η and set the corresponding

gradient in Eq. (18) to be zero. It becomes

x̂p = 1

/
(
λ2
η

+ 1) · (λ2
η
Ds + Jx̂p). (19)

4) Find D and s to minimize the augmented Lagrangian
function L(x̂p, x̂α, z,D, s,m, γ, η) with other vari-
ables fixed. In fact, the objective function turns into

arg min
D,s

λ2‖x̂p −Ds‖22 + γ · ‖s‖1. (20)

Obviously, this optimization problem in Eq. (20) is
exactly the sparse signal recovery problem without the
dictionary a priori in Section II-B. Inspired by the
dictionary learning methodology (namely the means to
learn the dictionary or basis sets of large-scale data)
in [27], the corresponding solution alternatively deter-
mines D and s and thus involves two sub-procedures,
namely online learning algorithm [27] and LARS-lasso
algorithm [50]. Algorithm 1 provides the skeleton of this
solution.
In order to update the dictionary in Eq. (22), the
proposed sparse signal recovery algorithm utilizes the
concept of stochastic approximation, which is firstly
introduced and mathematically proved convergent to a
stationary point in [27].
On the other hand, based on the learned dictionary,
the concerted effort to recover a sparse signal could be
exploited. As mentioned above, the well known LARS-
lasso algorithm [50], which is a forward stagewise re-
gression algorithm and gradually finds the most suitable
solution along a equiangular path among the already
known predictors, is used here to solve the problem in

Algorithm 1 The Sparse Signal Recovery Algorithm without
a Predetermined Dictionary

initialize the dictionary D as an input dictionary D(0)

(which could be the dictionary learned in last calling
this Algorithm), the number of iterations for learning a
dictionary as T , two auxiliary matrices A(0) ∈ RK×K

and B(0) ∈ RK×K with all elements therein equaling
zero.

1: for t = 1 to T do
2: Sparse coding: computing s(t) using LARS-Lasso al-

gorithm [50] to obtain

s(t) = arg min
s
λ2‖x̂p −D(t−1)s‖22 + γ · ‖s‖1. (21)

3: Update A(t) according to

A(t) ← A(t) + s(t)(s(t))T .

4: Update B(t) according to

B(t) ← B(t) + x̂p(s
(t))T .

5: Dictionary Update: computing D(t) online learning
algorithm [27] to obtain

D(t) = arg min
D

λ2‖x̂p −Ds(t)‖22 + γ · ‖s(t)‖1

= arg min
D

Tr(DTDA(t))− 2Tr(DTB(t)).

(22)
6: end for
7: return the learned dictionary D(t) and the sparse coding

vector s(t).

Eq. (21). Meanwhile, it is worthwhile to note that other
compressive sensing algorithms [39] could also be used
here.

5) Update estimate for the Lagrangian multiplier m ac-
cording to steepest gradient descent method [51], namely
m←m+η · (x̂p− x̂α−z). Similarly, update estimate
γ by γ ← γ + η · ‖s‖1.

6) Update η ← η · ρ.

In Algorithm 2, we summarize the steps during each iter-
ation. Notably, without loss of generality, consider a known
traffic vector x(0, · · · , t) of a given cell at different moments
(0, · · · , t). Then, we could estimate the α-stable related pa-
rameters according to maximum likelihood methods, quantile
methods, or sample characteristic function methods in [34],
[35]. Afterwards, we could conduct Algorithm 2 to predict
the traffic volume at moment t + 1. Similarly, we need to
estimate the α-stable related parameters according to methods
in [34], [35], in terms of the traffic vector x(0, · · · , t+1), and
perform Algorithm 2 to predict the traffic volume at moment
t + 2. It can be observed that, compared to Algorithm 1,
which is an application of the lines in [27], Algorithm 2 is
made up of some additional iterative procedures to procure the
parameters unknown a priori. Besides, most steps involved in
Algorithm 2 are deterministic vector computations and thus
computationally efficient. Therefore, the whole framework
could effectively yield the traffic forecasting results.
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Algorithm 2 The Dictionary Learning-based Alternating Di-
rection Method
initialize x̂p, x̂α, z, D, s, m, γ, η according to x̂

(0)
p , x̂(0)

α ,
z(0), D(0), s(0), m(0), γ(0), η(0), and the number of
iterations T . Compute x̃α according to α-stable model
based linear prediction algorithms [29], [35].

1: for t = 1 to T do
2: Update x̂α according to x̂

(t)
α ← 1

η(t−1)+1
·(

x̃α + η(t−1) ·
(
x̂
(t−1)
p − z(t−1) + m(t−1)

2η(t−1)

))
.

3: Update z according to z(t) ← 1
λ1/η(t−1)+1

·(
x̂
(t−1)
p − x̂

(t)
α + m(t−1)

2η(t−1)

)
.

4: Update x̂p according to x̂
(t)
p ← 1

/
( λ2

η(t−1) + 1) ·(
λ2

η(t−1)D
(t−1)s(t−1) + x̂

(t)
α + z(t) − m(t−1)

2η(t−1)

)
.

5: Update D and s according to sparse signal recovery
algorithm (i.e., Algorithm 1). In particular, use two
sub-procedures namely online learning algorithm [27]
and LARS-lasso algorithm [50] to update D and s,
respectively.

6: Update m according to m(t) ← m(t−1) + η(t−1) ·
(x̂

(t)
p − x̂

(t)
α − z(t)).

7: Update γ by γ(t) ← γ(t−1) + η(t−1) · ‖s(t)‖1.
8: Update η by η(t) ← η(t−1) · ρ, here ρ is an iteration

ratio.
9: end for

10: return the predicted traffic vector x̂p.

V. PERFORMANCE EVALUATION

We validate the prediction accuracy improvement of our
proposed framework in Algorithm 2 relying on the practical
traffic dataset. Specifically, we choose the traffic load records
of these three service types of applications generated in 113
cells within a randomly selected region from Dataset 1. More-
over, we intentionally divide the traffic dataset into two part.
One is used to learn and distill the parameters related to traffic
characteristics, and the other part is to conduct the experiments
to verify and validate the accuracy of the proposed framework
in Algorithm 2. Specifically, we compare our prediction x̂p
with the ground truth x in terms of the normalized mean
absolute error (NMAE) [12], which is defined as

NMAE =

∑N
i=1 |x̂p(i)− x(i)|∑N

i=1 |x(i)|
. (23)

As described in Algorithm 2, most of the parameters could
be set easily and tuned dynamically within the framework.
Therefore, we can benefit from this advantage and only need
to examine the performance impact of few parameters, namely
λ1, λ2, γ and η, by dynamically adjusting them. By default, we
set λ1 = 10, λ2 = 1, γ = 1 and η = 10−4, and the number of
iterations in Algorithm 2 and sparse signal recovery algorithm
(i.e., Algorithm 1) to be 20 and 3, respectively. Besides, we
impose no prior constraints on D, s, and z, and set them as
zero vectors.

Fig. 8 gives the performance of our proposed framework
in terms of NMAE, by taking advantage of the (36,10,1)-

5AM 7AM 9AM 12PM 4PM
0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) IM
Performance Comparison

Time

NM
AE

 

 
Kalman
ARMA
 −stable Linear
ADM−LARS
ADM−OMP

5AM 7AM 9AM 12PM 4PM
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) Web Browsing
Performance Comparison

Time

NM
AE

 

 
Kalman
ARMA
 −stable Linear
ADM−LARS
ADM−OMP

5AM 7AM 9AM 12PM 4PM
0

5

10

15

20

(c) Video
Performance Comparison

Time

NM
AE

 

 
Kalman
ARMA
 −stable Linear
ADM−LARS
ADM−OMP

Fig. 8. The performance comparison between the proposed ADM framework
with different sparse signal recovery algorithms (i.e., LARS-Lasso and OMP),
and the α-stable model based (36,10,1)-linear prediction algorithm.

linear prediction algorithm in Section IV-A to provide the
“coarse” prediction results x̃α. In other words, we would
exploit traffic records in the last three hours to train the
parameters of α-stable models and predict traffic loads in the
next 5 minutes. In order to provide a more comprehensive
comparison, the simulations run in both busy moments (i.e.,
9AM, 12PM, and 4PM) and idle ones (i.e., 7AM and 9PM)
of one day. We first examine the corresponding performance
improvement of the proposed ADM framework with different
sparse signal recovery algorithm (i.e., LARS-Lasso algorithm
[50] and OMP algorithm [39]). It can be observed that in
most cases, different sparse signal recovery algorithm has little
impact on the prediction accuracy. Therefore, the applications
of the proposed framework could pay little attention to the
involved sparsity methods. Afterwards, we can find that the
proposed framework significantly outperforms the classical α-
stable model based (36,10,1)-linear prediction algorithm (the
“α-stable linear” curve in Fig. 8). In particular, the NMAE
of the proposed framework can be as 12% small (e.g., pre-
diction for 12PM video traffic) as that for the classical linear
algorithm. This performance improvement can be interpreted
as the gain by exploiting the embedded sparsity in traffic and
taking account of the originally existing prediction error of
linear prediction. Furthermore, we also compare the proposed
framework with ARMA and Kalman filtering algorithms and
show that our solution can achieve competitive performance
for IM and web browsing services and yield far more stable
and superior performance for the video service. As shown
in Table IV, the α value for the video service is different
from those of the other services and less than 1, so the
video traffic with distinct characteristics makes ARMA and
Kalman filtering algorithms less effective. We can confidently
reach the conclusion that our proposed framework offers a
unified solution for the application-level traffic modeling and
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Fig. 9. The performance variations with respect to the training data length n
for the proposed ADM framework with LARS-Lasso algorithm.
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Fig. 10. The performance variations with respect to the forecasting time lag
k for the proposed ADM framework with LARS-Lasso algorithm.

prediction with appealing accuracy.
Afterwards, we further evaluate the impact of the training

length n and the forecasting time lag k on the prediction
accuracy, and give the related results in Fig. 9 and Fig. 10,
respectively. Fig. 9 shows the increase of n contributes to
improving the prediction accuracy for all types of applications
especially the video service, which is consistent with our
intuition. Besides, when n varies, the proposed framework
with LARS and OMP algorithms demonstrates more robust
prediction accuracy while the other algorithms might yield
inferior performance for some values of n. Fig. 10 presents
that with the increase of the forecasting time lag k, the
prediction accuracy demonstrates a increasing trend, which
also matches our intuition. Again, for different types of
services and different k, the proposed framework possesses
the strongest robustness.

Next, we further evaluate the performance of our proposed
ADM framework with LARS-Lasso algorithm and provide
more detailed sensitivity analyses. Fig. 11 depicts the perfor-
mance variations with respect to the number of iterations in
Algorithm 2 and the number of prediction coefficients m, re-
spectively. From Fig. 11(a)∼(c), the loss in prediction accuracy
is rather small when the number of iterations decreases from
20 to 4. Hence, if we initialized the prediction process with
20 iterations, we can stop the iterative process whenever the
results between two consecutive iterations become sufficiently
small, so as to reduce the computational complexity. Fig. 11(d)
shows that similar to the case in Fig. 9, the increase of m
also contributes to improving the prediction accuracy for all
types of applications especially the video service. Fig. 12(a),

Fig. 12(b) and Fig. 12(c) show that the prediction accuracy
nearly stays the same irrespective of λ1. This means that the
noise component has limited contribution to the corresponding
performance. It also implies that the choice of λ1 could be
flexible when we apply the framework in practice. Fig. 12(d)
demonstrates that the influence of λ2 is comparatively more
obvious and even diverges for different service types. Specifi-
cally, a larger λ2 has a slightly negative impact on predicting
the traffic loads for IM and web browsing service, but it
contributes to the prediction of video service. Recalling the
sparsity analyses in Section III-B, video service demonstrates
the strongest sparsity. Hence, by increasing λ2, it implies to
put more emphasis on the importance of sparsity and results
in a better performance for video service. It’s worthwhile to
note here that, in Eq. (12), λ2 and γ are coupled together as
well and should have inverse performance impact. Therefore,
due to the space limitation, the performance impact of γ is
omitted here. Fig. 12(e) depicts the performance variation
with respect to η, which is similar to that with respect to
λ2. But, a larger η has a positive impact on predicting the
traffic loads for IM and web browsing service, but it degrades
the prediction performance of video service. This phenomenon
is potentially originated from the very distinct characteristics
of these three services types (e.g., different α-stable models’
parameters and different sparsity representation) and needs a
further careful investigation. However, it safely comes to the
conclusion that the proposed framework provides a superior
and robust performance than the classical linear algorithm.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper, we collected the application-level traffic data
from one operator in China. With the aid of this practical traffic
data, we confirmed several important statistical characteristics
like temporally α-stable modeled property and spatial spar-
sity. Afterwards, we proposed a traffic prediction framework,
which takes advantage of the already known traffic knowledge
to distill the parameters related to aforementioned traffic
characteristics and forecasts future traffic results bearing the
same characteristics. We also developed a dictionary learning-
based alternating direction method to solve the framework and
manifested the effectiveness and robustness of our algorithm
through extensive simulation results.

On the other hand, there still exist some issues to be ad-
dressed. The biggest challenge for the application-level traffic
modeling prediction lies in that as new types of applications or
services continually emerge and blossom, whether the unveiled
characteristics still hold? Furthermore, it is still interesting
to investigate how to leverage the additional information
(e.g., inter-service relevancy) to further optimize the proposed
framework and improve the prediction accuracy.
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