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I. INTRODUCTION

The cloud radio access network (C-RAN) [1] provides a newvhiggcture for 5G cellular
systems. In C-RANSs, the baseband processing of base stasiararried out in the cloud, i.e.,
a centralized base band unit (BBU), which launches joinhaigprocessing with coordinated
multi-point transmission (CoMP) and makes it possible tdigate inter-cell interference. The
separation of the BBU and the radio units (RUs) brings a neymsat, i.e., fronthaul links, to
connect both parts. The limited capacities of fronthaukdimave a significant influence on the
system performance of C-RANS.

There are several existing works on fronthaul links in C-RANEfficient signal quantiza-
tion/compression for fronthaul links is designed to maxienithe network throughput for the
uplink and downlink in [[2] and[[3], respectively. Inl[4], fnthaul quantization and transmit
power control are optimized jointly. In_|[5], energy-effinteCoMP is designed for downlink
transmission considering fronthaul capacity.[Ih [6], the@acities of fronthaul links are allocated
under a sum capacity constraint to maximize the total thinpug In [7], the fronthaul links
are reconfigured to apply appropriate transmission stiegeg different parts according to both
heterogeneous user profiles and dynamic traffic load pattelomwever, these existing works have
all focused on the physical layer performance without adersition of bursty data arrivals at
the transmitters or of the delay requirement of the inforamatlows. Since real-life applications
(such as video streaming, web browsing or VoIP) are delagitee, it is important to optimize
the delay performance of C-RANS.

To take the queueing delay into consideration, the frortladlacation policy should be a
function of both the channel state information (CSI) anddheue state information (QSI). This
is because the CSI reveals the instantaneous transmiggpamtonities at the physical layer and
the QSI reveals the urgency of the data flows. However, thecaded optimization problem
is very challenging. A systematic approach to the delayraveptimization problem is through
a Markov Decision Process (MDP). In general, the optimaltr@drpolicy can be obtained by
solving the well-knowrBellman equationConventional solutions to the Bellman equation, such

as brute-force value iteration or policy iteratidn [8], balluge complexity (i.e., the curse of



dimensionality), because solving the Bellman equatiomlies solving an exponentially large
system of non-linear equations.
In this paper, we focus on minimizing the average delay bytfraul allocation. There are

two technical challenges associated with the fronthawlcalion optimization problem:

« Challenges due to the Average Delay Consideration: Unlike other works which optimize
the physical layer throughput, the optimization involviagerage delay performance is
fundamentally challenging. This is because the assocjat@iolem belongs to the class of
stochastic optimizatioff], which embraces botimformation theory(to model the physical
layer dynamics) andjueueing theory(to model the queue dynamics). A key obstacle to
solving the associated Bellman equation is to obtain theripyifunction, and there is no
easy and systematic solution in general [8].

« Challenges due to the Coupled Queue Dynamics: The queues of data flows are coupled
together due to the mutual interference. The associatetiatic optimization problem is a
K-dimensional MDP, wher&’ is the number of data flows. This-dimensional MDP leads
to the curse of dimensionality with complexity exponent@l” for solving the associated
Bellman equation. It is highly nontrivial to obtain a low cplexity solution for dynamic

fronthaul allocation in C-RANS.

In this paper, we model the fronthaul allocation problem @asndinite horizon average cost
MDP and propose a low-complexity delay-aware fronthaubcation algorithm. To overcome
the aforementioned technical challenges, we exploit tieeifip problem structure that the cross
link path gain is usually weaker than the home cell path ddtiizing the perturbation analysis
technique, we obtain a closed-form approximate prioritpcfion and the associated error
bound. Based on that, we obtain a low-complexity delay-awesnthaul allocation algorithm.
The solution is shown to be asymptotically optimal for sudintly small cross link path
gains. Furthermore, the simulation results show that tlipgsed fronthaul allocation achieves
significant delay performance gain over various baselilne®es.

The rest of this paper is organized as follows. In Sectionvl,establish the wireless access

link, fronthaul link and cloud baseband processing modslsvall as the queue dynamics. In
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Figure 1. C-RAN topology

Section 1ll, we formulate the fronthaul allocation problemd derive the associated optimality
conditions. In Section IV, we propose a low-complexity fitweul allocation solution. Following
this, the delay performance of the proposed algorithm isueted by simulation in Section V.

Finally, conclusions are drawn in Section VI.

1. SYSTEM MODEL

In this section, we introduce the C-RAN topology and the eisded models of the access
link, the fronthaul link and the cloud baseband procesddased on the models, we obtain the

throughput and the dynamics of packet queues.

A. C-RAN Topology

We consider a C-RAN withy cells, each of which has an RU with a single antenna. In each
cell, the data are transmitted from a single-antenna usgpegnt (UE) to the RU via wireless
access links and then to the BBU via the fronthaul link oveerfimicrowave, as shown in Fig.

.

The time is slotted and the duration of each time slot-isThe BBU collects necessary

information and makes the resource allocation decisiom®dgieally at the beginning of each

time slot.



B. Wireless Access Link Model

The wireless access links are modeled as an interferenaenehdn the uplink, the UEs
transmit signals to their corresponding RUs respectiaig in the meantime, cause interference

to other RUs in the network. The signals received by the Rds ar
y = Hx + z, 1)

wherex = (1,29, -+ ,2x)7 is a K-dimensional vector of the transmitted signals, in which
r;, is transmitted by thek-th UE with powerP, y = (y1,v0, -+ ,yx)" is a K-dimensional
vector of the signals received by the RUs, in whighis the signal received by the RU in

the k-th cell, H = (H,,) in which f;; is the complex channel fading coefficient of the

KxK?
uplink transmission from thg-th UE to the RU in thek-th cell, z = (21,2, -, 2x)’ and
2z ~ CN (0, Ny) is the white Gaussian thermal noise with powéy.

Define H(t) as theglobal CSlfor uplink access links at theth slot. We have the following
assumption orH(¢).

Assumption 1 (CSI Model)The CSIH(t) remains constant within a time slot and is i.i.d.
over time slotsH; (t) is independent over the indicésande Hy; (t) is composed of two parts,
i.e., Hy;(t) = \/Lijlkj(t), wheref]kj(t) is the short-term fading coefficient which follows a
complex Gaussian distribution with mean 0 and unit variares®l L,; is the corresponding

large-scale path gain, which is constant over the duratfahecommunication session. ®

C. Fronthaul Link Model

DenoteCy(t) as the capacity allocated to the fronthaul link between tbleifRthe k-th cell
and the BBU at the-th slot. Let C(t) = (Ci(t),Ca(t),---,Ck(t)) be the uplink fronthaul
allocation. With limited-capacity fronthaul links, thegsials transmitted between the RUs and

the BBU have to be quantized. In the uplink, the RU in each getlerconverts its received

!In C-RANSs, the simultaneously transmitting UEs using thensaesource block are located in different cells. Thus, the
distances between the RUs and those between the UEs aresalargg enough to make the channel fading coefficients

independent.



signal and sends the quantized signal to the BBU. Defire (71,7, - ,Ux) ., wherey,, is

the quantized signal at the RU in tketh cell. The signals are assumed to be quantized for each
fronthaul link separately. The quantization leads to trstadtion of signal, which can be treated
as the quantization noise, denotedmas: (ny, n,,--- ,nx)’, wheren, is the quantization noise

over thek-th fronthaul link. The signals received by the BBU are expeal as

y=y+n (2)
The relationship between, and ¢, depends on the fronthaul capacity, according to the
rate-distortion theory [10], which is given b¥(yx : gx) < Cy, wherel (y; : ;) is the mutual
information betweeny, and g,. Let N(¢) = (Ny(t), No(t),- -+, Nk(t)), where Ni(t) is the
power of the quantization noigg, at thet-th slot. The quantization noise power induced by the

transmission over thé-th uplink fronthaul link at the-th slot is given by[[6]

Py s )1 + No
Nk <t> = ’ 2Ck(t) — 1 ) (3)

where ||e|| is the Euclidean norm.

D. Throughput with Cloud Baseband Processing

The BBU performs joint decoding for the received uplink silgn which benefits the system
performance by joint cloud processing of the signals fofedént cells. The cloud baseband
processing for uplink signals at the BBU is introduced in théowing assumption.

Assumption 2 (Zero Forcing Joint Detectionkssume that ZF joint detection [11], [12] is
adopted for the uplink in the cloud baseband processinginaredte the inter-cell interference.

The linear ZF receiver at the BBU can be represented by axn@ft) = (.Sy;()) at the

KxK
t-th slot, whereS(t) is the inversﬁ of the channel matriH(¢), i.e., S(¢t) = H(¢) ™. u

The uplink transmission model is described in FEig. 2. Witk #F joint detection at the BBU,
the post-processing signal is

Sy =x+S(z+q). 4)

2According to Assumptiofill, the elements Hi(t) are independent. Thusank (H(t)) = K, V¢ and the inverse oH(t)

exists.
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Figure 2. Uplink transmission model of a C-RAN

Considering both the thermal noise pow®y and the quantization noise pow®¥(t), we

obtain the uplink data rate for theth UE as

P
R, (H(t),C =log, | 1 K 7 °
 (HL(1),C (1)) =log ( *zjzl||skj<t>||2<No+Nj<t>>> Y

whereN(¢) is a function ofH (¢) and C (¢), andS(¢) is a function ofH (¢). Note that there is
an implicit coupling among thé{ uplink data flows in the sense th&;, depends not only on

the fronthaul capacity allocatiofi;, but also onC;,Vj # k.

E. Queue Dynamics

There is a bursty data source for each UE. Agt) = (A (t)7,--- , Ax(t)7) be the random
arrivals (number of bits) from the application layers at #mal of thet-th time SI(H. We have
the following assumption o ().

Assumption 3 (Bursty Source ModeBhssume thatA, (¢) is i.i.d. over slots according to a
general distributionPr[A;]. The moment generating functions df, exist with E[A;] = .
Ay (t) is independent w.r.tk. Furthermore, the arrival rates = (A1, \s, ..., Ax) lie within the

stability region [14] of the system with the given uplink oesce. [ |

3We assume that the transmitters are causal so that the pamkited at the time slot are not observed when the control

actions of this time slot are performed.



Each UE has a data queue for the bursty traffic flows towardagbeciated RU. LeD,(t) €
[0,00) be the queue length (number of bits) at théh UE at the beginning of theth slot. Let
Q(t) = (Qi(t), - ,Qn(t)) € Q@ = [0,00)% be theglobal QSI The queue dynamics for the

k-th UE can be written as
Qr(t+1) = max {Qx(t) — Rp(H(t), C(t))7,0} + Ap(t)T. (6)

Remark 1 (Coupling Property of Uplink Queue Dynamids):the uplink, the X' queue dy-
namics are coupled together due to the ZF processing in thé BBecifically, according ta 15),
the queue departurB, (H(¢), C(¢)) for thei-th UE depends on not only the allocated capacity

C(t) for the k-th fronthaul link, but also all the other elements©ft). u

[1I. A CONTROL FRAMEWORK OF DELAY-AWARE UPLINK FRONTHAUL ALLOCATION

In this section, we formulate the delay-aware control frari of uplink fronthaul allocation.
We first define the control policy and the optimization objextWe then formulate the design as

a Markov Decision Process (MDP) and derive the optimalityditions for solving the problem.

A. Fronthaul Allocation Policy

For delay-sensitive applications, it is important to dymzatly adapt the fronthaul capacities
C(t) based on the instantaneous realizations of the CSI (captioeeinstantaneous transmission
opportunities) and the QSI (captures the urgencysoflata flows). Lety = (H, Q) denote the
global system state. We define the stationary fronthautation policy below:

Definition 1 (Stationary Fronthaul Allocation Policy)A stationary control policy for thé-th
UE Q; is a mapping from the system stateto the fronthaul allocation action of theth UE.
Specifically,Q2;(x) = Cr > 0. Let Q = {Q. : Yk} denote the aggregation of the control policies
for all the K’ UEs. u

The CSIH is i.i.d. over time slots based on the block fading channell@han Assumptionll.
Furthermore, from the queue evolution equation(in @)t + 1) depends only oQ(¢) and the
data rate. Given a control policg, the data rate at theth slot depends ol (¢) andQ(x(¢t)).



Hence, the global system stagét) is a controlled Markov chain [8] with the following trangiti

probability:

Prix(t + 1)[x (), Qx(#))] = PrH(t + 1)] PriQ(t + 1)[x (1), 2(x(1))] ()

where the queue transition probability is given by

r|Ag if Qy is ai b
Pr{QE 4 1)), ()] — 4 T AR O] T Qe is given by vk
0 otherwise

where the equality is due to the i.i.d. assumptiorHqf) in AssumptiorIL.
For technical reasons, we consider #amissible control policylefined below.
Definition 2 (Admissible Control Policy)A policy 2 is admissible if the following require-
ments are satisfied:
. Qis aunichain policy, i.e., the controlled Markov chair{t) under€2 has a single recurrent
class (and possibly some transient states) [8].
« The queueing system undel2 is second-order stable in the sense that
limy_0o E2[S1, Q3(t)] < oo, where E® means taking expectation w.r.t. the probability

measure induced by the control poli€y. [ |

B. Problem Formulation

As a result, under an admissible control poliQy the average delay for theth data queue
is given by

T-1
Dy(92) = lim sup % ZEQ {Qk (t)} ,  Vk. 9)
=0

T—o00 )\k
Similarly, under an admissible control poli€y, the average fronthaul capacity for theh data
gueue is given by

T-1

C(Q) = lim sup % SRR (G ()], V. (10)
t=0

T—oc0

We formulate the delay-aware fronthaul allocation probfemC-RANs as follows:
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Problem 1 (Delay-Aware Fronthaul Allocation Problemhe delay-aware fronthaul alloca-
tion problem is formulated as

m1n L(Q i <5ka + w@(ﬁ))

k=1
- (11)

= lim sup — ZEQ Q)2 (x (1))

T—o0

wherec (Q,C) = Zsz1 (5&—: +%Ck). B = {Bx > 0 : Vk} are the positive weights for the
delay cost andy = {v, > 0 : Vk} are the prices for the data transmission over fronthauklink
[

Note that Problenfi]1 is an infinite horizon average cost MDFclvlis known as a very

difficult problem.

C. Optimality Conditions for Uplink Fronthaul Allocation

Problem[1 is an MDP and thBellman equatior{8] provides its optimality conditions. The
Bellman equation involves the entire system state: (H, Q). Exploiting the i.i.d. property of
H(¢) according to Assumptionl 1, we obtain tegquivalent Bellman equatiomm the following
theorem.

Theorem 1 (Sufficient Conditions for Optimalityjor any given weights3, assume there

exists a(6*, {V*(Q)}) that solves the followingquivalent Bellman equation

07 +V(Q) = Elg&ﬂ Q. 2(x)7 + ZPr Qx. 2()]V*(@)) Q], vQe Q.
(12)
Furthermore, for all admissible control polici€3, VV* satisfies the followingtransversality
condition
A ZET[VE(Q (1)) =0. (13)

Thend* is the optimal average cost, and (Q) is thepriority function of the K data flows. If
there exists an admissible stationary polfey (x) = C* whereC* attains the minimum of the
R.H.S. of [12) for allQ € Q, thenQ* is the optimal control policy for Problem 1.

Proof: Please refer to Appendix A. [ ]
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Remark 2 (Interpretation of Theordm 1The equivalent Bellman equation in (12) is defined
on the QSIQ only. Nevertheless, the optimal control poli€y* obtained by solving[(12) is
still adaptive to the entire system state At each stage, when the queue lengthQ&), the
optimal action has to strike a balance between the currestt ¢®, Q2 (x)) and the future
costY o Pr [Q|x, 2(x)]V*(Q') because the action taken will affect the future evolution of
Q(t+1). [

[V. Low-COMPLEXITY FRONTHAUL ALLOCATION

One key obstacle in deriving the optimal fronthaul polfey is to obtain the priority function
V*(Q) of the Bellman equation in[{12). Conventional brute forcéugaiteration or policy
iteration algorithms can only give numerical solutions drave exponential complexity i,
which is highly undesirable. In this section, we shall expioe characteristics of the topology of
C-RANSs. Specifically, we definé = max {Ly; : Vk # j} be the worst-case path gain among all
the cross links, which is usually weaker than the home cell gain due to the C-RAN network
architecture. We adopt perturbation theory wd.to obtain a closed-form approximation of the
priority function 1V*(Q) and derive the associated error bound. Based on that, wenabtaw

complexity delay-aware fronthaul allocation algorithm.

A. Calculus Approach for Solving the Bellman Equation

We adopt a calculus approach to obtain a closed-form apmiadei priority function. We first
have the following theorem for solving the Bellman equatior{12).

Theorem 2 (Calculus Approach for Solvingl(12fssume there exist™ and J (Q;0) of
classC?*(R%) that satisfy

« the following partial differential equation (PDE):
K

o[58 ) -0 (429 - mimen )] -

k=1

E

vQ € RX

with boundary condition/ (0; §) = 0;
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9J(Q;9)
0Qx

« J(Q:0) =0(Ql).

Then, we have

o For all &,

Is an increasing function of alDy;

0 =c*+0(1),V"(Q)=J(Q;d) +0(1),VQ € Q, (15)

where the error term(1) asymptotically goes to zero for sufficiently small
Proof: Please refer to Appendix B. [ ]
Theoreni2 suggests that if we can solve for the PDETh (14} the solution(J (Q; ), ™)

is only o(1) away from the solution of the Bellman equatiovi*(Q), 0%).

B. Closed-Form Approximate Priority Function via Pertutimen Analysis

The queues of thél uplink data flows are coupled due to the coupling/f in (5). The
following lemma establishes the intensity of the queue togp

Lemma 1 (Intensity of the Uplink Queue Couplin@he coupling intensity of uplink data
queues induced by, in @) is given by||Sy;(t)[|> = O (8),Vk # j.

Proof: Please refer to Appendix C. [ ]

As a result, the solution of (14) depends on the worst-casgsdink interference path gain
and, hence, thé&l-dimensional PDE in[(14) can be regarded as a perturbati@bake system
as defined below.

Definition 3 (Base SystemA base system is characterized by the PDEID (14) with 0.8

According to Lemmadll, we havgS,;(¢)||* = 0,Vk # j in the base system. We first study
the base system and ugéQ;0) to obtain a closed-form approximation dfQ;d).

We have the following lemma summarizing the priority funati/(Q;0) of the base system.

Lemma 2 (Decomposable Structure diQ;0)): The solution/(Q; 0) for the base system has

the following decomposable structure:

J(Q;0)= > J(Qr), (16)

I
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where J;. (Qy) is the per-flow priority functionfor the £-th data flow given by

( N [ vet apv ar Ve
=— E — ——E —_— o0
Qr(v) Bk <1n2 ! (V—vk) Ar/ In 2 (V—%) T )
Ak

A
Tuw) =5 (e (e — vy e s + e 2By | -2 (17)
2ﬁk In2 V="

+ (ar — M) By (M) ~ A2 In 2) + by,
V="

A No - 00 _ Yk Yk agdy _ . .y
where a;, = L G = o By (dk ) where d, satlsfles E (dk_w) =\ Ei(2) =

“dt = [ e dt bi is chosen to satisfiythe boundary conditior,(0) = 0.

Proof: Please refer to Appendix D. [ ]
Note that wheny = 0, we haveL;; = 0 for all £ # j and, hence, there is no coupling
between the UE-RU pairs. As a result, tRedata queues are totally decoupled and the system
is equivalent to a decoupled system withindependent queues. That is why the priority function

J (Q;0) in the base system has the decomposable structure in Léima 2.

Whens > 0, J(Q;d) can be considered as a perturbation of the solution of the &gstem
J(Q;0). Using perturbation analysis on the POE](14), we estabhighftllowing theorem on
the approximation of/(Q; ):

Theorem 3 (First Order Perturbation of(Q;¢)): J(Q;9) is given by

J(Q:0) =J (Q;0) +Z< i Li; (@kgz EK: % +L— Z <I>Q2>+0(Qk)> <5—12)

l

=1 \j=1,j#k 1=1,1#k 1T i=1,i#k,j
(18)
where @, = & (1 - #) /(e Ey (ag) — A In2).
Proof: Please refer to Appendix E. [ ]

The priority functionV'(Q) is decomposed into the following three terms: 1) the basa ter
>« J(Qr) obtained by solving a base system without coupling, 2) theugdeation term
accounting for the first order coupling due to the joint pssieg in the BBU, and 3) the

residual error term which goes to zero in the order(®(fl/4?). As a result, we adopt the

“To find by, firstly solve Qx(r) = 0 using one-dimensional search techniques (e.g., biseatiethod). Therb,, is chosen

such thatJ, (v) = 0.
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following closed-form approximation of (Q):

“ L& — N N
v Q)ZZJk(Qk>+Z< > Ly (‘Pin > I, L. > @ 3)) (19)
k=1

j=1,j#k I=1,l#k 1T i=1,i#k,j

C. Fronthaul Allocation Algorithm

In this section, we use the closed-form approximate pyidrinction in [19) to capture the
urgency information of the< data flows and obtain a low complexity delay-aware fronthaul
allocation algorithm. Using the approximateH)riority fioo in (19), the per-stage control

problem (for each state realizatioy) is given b

max Z < an C)— %Ck> , (20)

where 27Q) can be calculated fronfi{lL9), which is given by

0Qk
v (Q) .
o =J; (Q) +2<I>k< > Ly Z + Z Z LUL )Qk (21)
j=1,j#k = l,l;ék 1=1,i#k j=1,j#i,k

The per-stage problem ifi_(R0) is similar to the weighted sata-(WSR) optimization [15],
which can be considered as a special case of network utilayimization. However, unlike
conventional WSR problems, where the weights are staticwkights here i (20) are dynamic
and are determined by the QSI via the priority funct%%). As such, the role of the QSI is
to dynamically adjust the weight (priority) of the individuflows, whereas the role of the CSI
is to adjust the priority of the flow based on the transmissipportunity in the rate function
R,(H, C).

One approach to solve the WSR problem is solving the locatmpation problem for each
flow iteratively [15]. In each local optimization problenrfihe k-th flow, the total WSR objective
is maximized, assuming that the capacities of other liiksv; # k£ do not change. The local

optimization problem is formulated as

K ~
max (a‘a/cg?) R, (H,C) — %Ck> : (22)
k=1

SNote that.J}, (Qx) = (%ﬂw dekU@))

Q@) v (Qk), wherev (Qy) satisfiesQy, (v (Qr)) = Q.-
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The above local optimization problem is still difficult tolge directly. An alternative method
is simplifying the effect ofC),, on the other links as a linear functiofil6]. Define r;;, as the

marginal increase in the utility of theth flow per unit increase i}, i.e.,

2L ||y Vi 2y
(2%-1) , (23)
(P+ L+ 1Sl (Mo + ) ) (Fae + 1Siel> (No + 5 ))

Tk =

where I, = 51, Ly 115517 (No + 52

) andy, = PEE, [ HylP + N

Adopting the linear simplificatiom;;,,C}. for the effect ofC) on thei-th flow in the per-stage
local optimization problem(22), we have the Karush-KuhreRer (KKT) condition as

OV (Q) P||Sksll?Y3,2Ck
0Qp (QCk—1)2

(Ikkz + {1 Sk 1” (NO e 1)) (P + L + [| Sl (NO + 5o

i=1,i#k

>
+ T =". (24)
) k

By solving [24), we obtain the optimal fronthaul capadity for the local optimization problem

as

e+ G+ \/77/3 + 2G4+ P2 (| Spe|| ! Y72

Ck: = log )
* 2 (P4 I+ | Siell® No) (I + [ Sk l* No)

(25)

where(, = 212, + 2L (P + 2 || Skell* No — ||Skell> Vi) + |Skill® (21| Ser||* N2 — PYy + 2PN, —

9 _ OV(Q) _ PlSkrl*Yi
2 HSkk’H NOYk) andrn, = Ok y=31 ik ik

Based on the above analysis, we propose a low-complexitytifeml allocation algorithm

launched at the beginning of each slot, which is describédgugseudo codes as Algorithm
1. We denoteC™ = (C{™ ¢, ... ) as the allocated fronthaul capacities in theh
iteration.

Although the per-stage problem {20) is not convex in gendhal following lemma states that
it is a convex problem for sufficiently small

Lemma 3 (Asymptotic ConvexityWWhen ¢ is sufficiently small, the objective i (20) is a
concave function ofC, and the problen{ (20) is a convex problem.

Proof: Please refer to Appendix F. [ |

®we will show later that this simplification does not affece tbonvergence property.
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Algorithm 1 Delay-Aware Fronthaul Allocation
1: Initialize n = 0 and C\” = 0, Vk

2: repeat

3:  for all userk do

4: CalculateC """ based onC™ according to[(25)
5:  end for
6: n=n-+1

7. until The difference betwee@™ and C™*1) is below a given threshold

According to Lemmad3, we provide the convergence property asymptotic optimality of
Algorithm 1 in the following theorem:

Theorem 4 (Asymptotic OptimalityWhen ¢ is sufficiently small, starting from any feasible
initial point C©, Algorithm 1 converges to the optimal solution of the oraifProblen(L.

Proof: Please refer to Appendix G. [ |

V. SIMULATION

In this section, we evaluate the performance of the propdeeecomplexity delay-aware
fronthaul allocation algorithm for C-RANSs. For performa@omparison, we adopt the following

two baseline schemes.

« Basdline 1 [Throughput-Optimal Fronthaul Allocation]: The throughput-optimal fron-
thaul allocation algorithm determines the fronthaul capescfor maximizing the total data
rate without considering the queueing information, whistsimilar to that in[[6] but with
ZF processing.

« Basdline 2 [Queue-Weighted Fronthaul Allocation]: The queue-weighted fronthaul
allocation algorithm exploits both CSI and QSI for queuebsitsr by Lyapunov drift [14]
and solves the per-stage probldﬂ)(replaoing% with Q;. [17].

In the simulation, the performance of the proposed froritaflacation algorithm is evaluated

in a C-RAN cluster with seven cells. A single channel is cdesd, and one user over the
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channel is located randomly in each cell, with radius 500ms$dn data arrival is considered,
with an average arrival rat®, for the k-th UE, which is uniformly distributed betweef, 2\
with mean). The path gain is calculated as; = 15.3+37.6 log;, di;, with the fading coefficient
distributed asC A/(0, 1). The average transmit power is 23dBm and the noise powetrspec
density is -174dBm/Hz. The system bandwidth is 10MHz anddir@tion of the decision slot is
10ms. The weights, are the same an@, = 1 for all £&. For comparison, the delay performances
of different schemes are evaluated with the same total Heaitcapacity by adjusting,. For
obtaining the average performance, we consider 20 randpoidgies, each of which has 100

time slots.

Fig.[Blshows the average delay versus the average arrival rate twbeatal fronthaul capacity
is 350Mbps. For all algorithms, the average delay increagesn the average traffic load
increases. It can be observed that the proposed fronthHaghtbn algorithm outperforms both
baselines, which verifies the accuracy of the priority florctapproximation in the proposed

algorithm.

Fig.[4 shows the average delay versus the total fronthaaaigpwrhen the average arrival rate
is 30Mbps. The proposed fronthaul allocation algorithno ashieves better performance than
the baseline schemes. When the total fronthaul capacitynall sthe average delay decreases
significantly with the increase of the total fronthaul capadn contrast, when the total fronthaul
capacity is large, the change in the average delay is relgtsmall with adjustment of the total

fronthaul capacity.

Tablel illustrates a comparison of the MATLAB computatibtiane of the proposed solution,
the baselines and the brute-force value iteration algorii8] in one time slot. From the results,
our proposed algorithm has much less complexity than theedauce value iteration algorithm.
The computational time of our proposed algorithm is close¢htuse of Baselines 1 & 2, and
the difference is due to the computation of the approximateripy function. Therefore, our
proposed algorithm achieves significant performance gamnpared to the baselines, with small

computational complexity cost.
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Figure 3. Performance comparison with different averagarates wherC' = 350Mbps

Table |

COMPARISON OF THEMATLAB COMPUTATIONAL TIME

Algorithm Time

Baselines 1 & 2 0.006s
Proposed Algorithm 0.043s
Brute-Force Value Iteration > 10°s

VI. CONCLUSIONS

In this paper, we propose a low-complexity delay-awaretfraal allocation algorithm for the

uplink in C-RANs. The delay-aware fronthaul allocation lpiem is formulated as an infinite

45

50
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Figure 4. Performance comparison with different total fraul capacity whem = 30Mbps

horizon average cost Markov decision process. To deal wi¢hdurse of dimensionality, we
exploit the specific problem structure that the cross lintkggin is usually weaker than the home
cell path gain. Utilizing the perturbation analysis teciug, we obtain a closed-form approximate
priority function and the associated error bound. Basedcherctosed-form approximate priority
function, we propose a low-complexity delay-aware fronthalocation algorithm, solving the
per-stage optimization problem. The proposed solutiorurthér shown to be asymptotically
optimal for sufficiently small cross link path gains. The siation results verify the accuracy of
the priority function approximation and show that the pregub fronthaul allocation algorithm

outperforms the baselines.
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APPENDIX A
PROOF OFTHEOREM[

Following Prop. 4.6.10f [8], the sufficient conditions for the optimality &froblem lare that

(0*,{V*(Q)}) solves the following Bellman equation:

9*7+V*(X):g?xn)[ T+ZPr Ix. 9 )}V*(x’)}
(26)
gyl T+ZZPIQ‘X’ ol Pe )V )

and V* satisfies the condition if_(13) for all admissible polici@s Thend* = Qm(u%L (2(x))-
X
Taking expectation w.r.t on both sides of[(26) and denoting (Q) = E[V* (x)|Q], we

obtain the equivalent Bellman equation inl(12) in Theotém 1.

APPENDIX B

PROOF OFTHEOREM[Z

In the proof, we shall first establish the relationship be&mvéhe equivalent Bellman equation
in (I2) in Theoreni.2 and the approximate Bellman equatio®#) (n the following Lemm&l4.
Then, we establish the relationship between the approgiBeliman equation in_(27) in Lemma
4 and the PDE in[{14) in Theorem 2.

1. Relationship between the Equivalent Bellman and Apprate Bellman Equations

We establish the following lemma on the approximate Bellneguation to simplify the
equivalent Bellman equation in ({12):

Lemma 4 (Approximate Bellman Equatiorjor any given weights3, if

. there is a uniqugld*, {V*(Q)}) that satisfies the Bellman equation and transversality

condition in Theoreni]1;
. there exist) and V (Q) of cIasH C*(RE) that solve the followingapproximate Bellman

f(x)(x is a K-dimensional vector) is of clags?(R%) if the first and second order partial derivatives fifx) w.r.t. each

element ofx are continuous whes € R%.
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equation

0 — E[mm[ +Z an [)\k—Rk(HQ ‘Q} vQeo  (27)

Q
and for all admissible control policig3, the transversality condition ifh_(1L3) is satisfied for
v,
then, we have

0 =0+0(1), V' (Q =V(Q) +o(l), VQeQ, (28)

where the error terna(1) asymptotically goes to zero for sufficiently small slot dioa 7. =
Proof of LemméaMLet Q' = (@), -+, Q) = Q(t+1) andQ = (@1, -+ ,Qr) = Q(t). For

the queue dynamics ifl(6) and sufficiently smalive haveQ;, = Qr— Ry (H, C) 7+ Ax7, (VK).

Therefore, ifV (Q) is of cIassC%Rf), we have the following Taylor expansion 6n(Q’):

E[V(Q)| +Z an (Ak—E[Rk(HQ )Q])T+o() (29)

For notation convenience, léi, (¢, V, Q(x)) denote theBellman operatar

B0V, 200) =3 2 Y (0 - B(H.2(0)) — 0+ ¢(Q 2 (1) +1Gy (V.2 ()

. (30)
for some smooth functionG, and v = o(1) (wrt. 7). Denote F,(0,V) =
mingq) Fx (0, V., 2(x)). Suppose(d*,V*) satisfies the Bellman equation if_{12), we have
E [Fy (6, V")

Q} =0, VQ € Q. Similarly, if (0,V) satisfies the approximate Bellman

equation in[(2]7), we have
E[FL(6.V)]Q] =0, vQeQ, (31)

where FI(0,V) = mingq) F1(0,V.Q(x)) and FI(0,V,Q(x)) = Fx(0.V,.Q(x)) —
vGy(V,2(x)). We then establish the following lemma.
Lemma 5:1f (0,V) satisfies the approximate Bellman equation iA](27), then
IE[F(0,V)|Q]| = o(1) for anyQ € Q. |
Proof of Lemma[l5: For any x, we have F)(0,V) = mingx) [F1(0,V.Q(x)) +
vGy(V,02x))] = ming ) FL(0,V,Q(x)) + vming) Gy (V. Q(x)). Besides thisf, (0,V) <
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mingy) FL (0, V,Q(x)) + vGy(V, Q' (x)), where Q' = argmingy Fi(0,V,.Q(x)). Since
E[mmg(x Fi(6,V,92(x))|Q] = 0 according to [[31), and} and GX are all smooth and
bounded functions, we haj&[F(6,V)|Q]| = o(1) (w.r.t. 7). |

We establish the following lemma to prove Lemfja 4.

Lemma 6: Suppose [ Fy (6, V)

Q] = 0 for all Q together with the transversality condition

in (I3) has a unique solutiof®*, V*). If (6,V) satisfies the approximate Bellman equation in

(27) and the transversality condition in_{13), theén- 0* + o (1), V (Q) = V*(Q) + o (1) for

all Q, whereo(1) asymptotically goes to zero asgoes to zero. [ |
Proof of Lemmdl6: Suppose for som&', V (Q') = V*(Q') + O (1) (w.r.t. 7). From

Lemmab, we havelR [F, (6,V)|Q]| = o(1) (w.r.t.7). Letting7T — 0, we haveE[F, (0, V)|Q] =

0 for all Q and the transversality condition in_(13). HoweVEr Q') # V* (Q’) due toV (Q') =

V*(Q')+0O (1). This contradicts the condition thet*, V*) is a unique solution of’ (6*, V*) =

0 for all Q and the transversality condition in_(13). Hence, we musehayQ) = V* (Q)+o (1)

for all Q. Similarly, we can establish = 6* + o(1).

2. Relationship between the Approximate Bellman Equatmahthe PDE

For notation convenience, we writé(Q) in place of J (Q;0). It can be observed that if
(¢, {J(Q)}) satisfies [TH), it also satisfieE {27). Furthermore, sifid€) = O(> 1, Q3),
then lim, .. E? [J (Q(t))] < oo for any admissible policy2. Hence,J (Q) = O(3 1, Q?)
satisfies the transversality condition [n}13). Next, wevslicat the optimal policy2’* obtained
from (I14) is an admissible control policy according to Defom [2.

Define alLyapunov functiomas L(Q) = J(Q). We define theconditional queue driftas
AQ) = E?" [0 (Qu(t+1) — Qi(1) |Q(t) = Q] and theconditional Lyapunov driftas
AL(Q) = E?[L(Q(t + 1)) — L(Q(1))|Q(t) = ] We first have the following relationship
betweenA(Q) and AL(Q):

2 AQ) (32)

an@ 28 |3 22 @+ 1) - i) 'Q(t) _

if at least one of{Q; : Vk} is sufficiently large, wherga) is due to the condition that (™ is
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an increasing function of all);.
Since (A1, ..., \x) is strictly interior to the stability region\, there existsA = (A\; +
LAk + ki) € A for some positivek = {x; : Vk} [14]. From Corollary 1 of [18],

there exists a stationary randomized QSI-independend:;pisuch that

K ~ ~
> E? [wGiQ(t) = Q] = C(k) (33)
k=1

E® [Ry(H, C)|Q(t) = Q] > N+ ki, VE, (34)

where 5(1-;) is the minimum time-averaging total fronthaul capacity fbe system stability

when the arrival rate iS\. The Lyapunov driftAL(Q) is given by

chm Q]

i (i - P mmcrr) | - Q]

AL(Q) + E®”

K
~y OLQ), - 4 go”

~ 0Qk — OQx
o K p (35)
<> 8§g§ AT + E® Z <%Ck7‘— Rk(H C) ) ‘Q Q]

k=1 -1

< — Z IL(Q) k7 + C(K)T

if at least one of{Q, : Vk} is sufficiently large, whergb) is becauseQ’* achieves the
minimum of (I4) and(c) is due to [(3B) and[(34). Combining—(35) with{32), we have

AQ) < ALQ) < =Y, %¥kr + C(k)7 < 0 if at least one of{Q; : Vk} is sufficiently

large. ThereforeE[A; — G(H QJ* )|Q] <0 when Q, > @, for some largeQ,. Let
¢r(r,Q) =In (E[e (Ax—GrH7 (x \Q]) be thesemi-invariant moment generating functiofi
A —Gir(H, 27 (x)). Then,¢x(r, Q) will have a unique positive root; (Q) (¢x(r;(Q), Q) = 0)
[19]. Let r; = 7(Q), whereQ = (Q,,...,Qx). Using the Kingman bound [19] result that
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Fy(z) £ Pr [Qx > | < e, if x > 7, for sufficiently largez;, we have

E*[J(Q)]

K K

SCZEQ]* Qk CZ |:/ PI" Qk>5} :|
k=1 =1
K [ :L‘k (0.0]

SC’Z / Fk(sl/2)ds+/ Fk(sl/Q)ds]
k=1 [ /0 i
K T )

<N |7+ / e—ﬁtsmds] < o0 (36)
k=1 L 7

for some constant’. Therefore 2”/* is an admissible control policy and we havéQ) = J (Q)
andf = ¢>.
Combining Lemmdl4, we have™* (Q) = J (Q) + o(1) and 6* = ¢> + o(1) for sufficiently

small 7.

APPENDIX C

PROOF OFLEMMA 1]

The coupling among th& uplink data queues is induced Byt) in the expression ofz; in
(). According to Assumptioh] 23(¢) = H(¢)~!. The time indext is omitted in this proof for

simplicity of expression. We adopt the adjoint matrix toabtthe inverse of the channel matrix

H as
- 4T
My My --- Mg
1 1 My, My -+ Mg
S = di(H) = — 37
M1 Mgs -+ Mgk

where M,;; is the (k, j) algebraic cofactor, which is the determinant of the submé&drmed by

deleting thek-th row andj-th column of H multiplied by (—1)*+7,



25

With § = max {Ly; : Vk # j}, we can rewrite the channel matHt as

O(1) O(W3) -+ O(V9)

OWs) 0(1) - O )

O(Vs) O(s) -+ 0(1)

where theK diagonal entries aré@(1) and the other entries a@(+/0).

If & # 7, the submatrix formed by deleting tieth row andj-th column ofH includesK — 2
diagonal entries oH, i.e., O(1). As a result, when calculating the determinant of the subirat
each term of the determinant is the productfof— 1 entries and at least on@(+v/) term is
included. Therefore, we obtain the coupling intensjty;;(¢)||* = O (d),Vk # j, and Lemma
[ holds.

APPENDIX D

PROOF OFLEMMA

We first prove that/ (Q;0) = S_1, Ji (Qx). The PDE in[I4) for the base system is

K

We have the following lemma to prove the decomposable strestof.J (Q;0) andc¢™ in (39).
Lemma 7 (Decomposed Optimality Equatio®uppose there exist;® and J; (Qr) €
C? (R,) that solve the following per-flow optimality equation (PFDE

where R)(Hy,, Cr) = log, <1 + Lﬁ(ﬂ“};‘f) and N, = PI\ggﬂf_fNO, Then, J(Q;0) =
Zzﬁil Ji (Qr) and > = Zsz1 e satisfy [39). -

LemmalT can be proved using the fact that the dynamics ofithgueues at the UEs are
decoupled wher = 0. The details are omitted for conciseness.
Next, we solve the optimization problem [0 {40). The optirfftehthaul capacity"; from (40)

, +
o (k)g? (pnﬁfkn? (kam - 1))) | 1)

is given by
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Substituting the optimal allocated fronthaul capacityinto (40), and using the fact thﬁﬂkknz
follows a negative exponential distribution with medn, according to Assumptiofil 1, we
calculate the expectations in_{40) as follows:

If J.(Qk) > vk, the expected fronthaul capacity is
a1 [ PLyx [ J3(Qr) -
I [chk‘Qk} —/ Nos log, < Ny < o~ L)) e de
PLy, (T}(Q) =) (42)

:ﬁEl ( Mo )
In2 PLyy (J3(Qr) — ) )’

A

where E;(z) = fzoo 6Tftdt is the exponential integral function. Otherwié@,[ka;;\Qk] = 0.

Similarly, if J.(Qx) > vk, the expected data rate is

Nok ——
Pka(Jé(Qk)fwk (J;C(Qk)/'ﬂc—l)

> 1+ PLyx/N,
E [R)(Hu, C)|Qk] = / log, (1 - kklx/ 0 ) i
nlias ) (43)

_emhr (i)
m2 '\ PLy (JL(Qr) — ) )

Otherwise E [ R (Hy, C)

Qr] = 0.
We then calculates°. Since [[40) should hold whe®, = 0, we have

CZO =E [’kaZ

Qx = 0] (44)

E [Ry (Hyk, Cr)|Qr = 0] = A (45)

Using (42) and[(43), we can calculatg’ as shown in Lemmal2. Substituting {42),1(43), and

¢ into (40) and letting, = 7>, we have the following ODE:

Qr | W Rl / / e apJi(Qr) oo _
5 e (T ) QN @0 8 (i ) - o
(46)

According to Section 0.1.7.3 of [20], we can obtain the pain solution of [46), as shown
in (I7) in LemmdR.
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APPENDIX E

PROOF OFTHEOREMI[3
Taking the first order Taylor expansion of the L.H.S. of thdlfBan equation in[(14) at;; = 0
(Vi # j), Cr = C, whereC; minimizes the L.H.S. of[{40), and using parametric optirtica
analysis[[211], we have the following result regarding theragimation error:

T(Q;6) = J(Q:0) =Y > LiyJy(Q) + 0O, (47)

i=1 j=1ji

where jz-j(Q) captures the coupling terms ih(Q) satisfying

2
K P Ly HHkkH 07 (Q)
M —E |log, [ 1+ —— " | q| | 22t
; g 52 No+ N; 0Qx
Hﬁ ? J/(@:) K .
E Y No+ Y No + N
M Y TN D (48)
PL;; || H; 2 1=1,1#i Ly HH”H
K J(Qk)
) No+ N? _
No+N, 0
+ Z ON —ile* I ﬁ J2 Q :eij7
helhtig |14 NN ) ) H
( *mkknw) ol

: L~ ~ . PLgk||Hiil|*+N
with boundary condition/; (Q) |, _, = 0 or J; (Q) \QJ:O = 0, where N} = %
and @j = aaT"ij is constant (where we treéitas a function of L;; : Vi # j}). According to [(42),

we have

~ 2 ]
Phas Al Y| N _ e (o
NQ + N]: 1H2

Then, we calculate the second term[inl(48) and each part ¢sletd as follows:

E |log, | 1+ O(1). (49)

2

JH(Q:) PL:: ‘f[
N+NL* (XA (13
E W Q| =E — Q| O (J{(Q:))
PL; || Hil? (No + PLy; || Hyi )No (50)
B aie® Iy (a;)
" N (@)
Ny + N7 2N, 1 2N
—— 5| Q| =T F |-—|Q| 0() = T0(1). (51)
2 N R s R




28

Substituting these calculation results infol(48), we retiie PDE as

—1 In 2 8Qk
Bi Cl,i€ai E1 (az) K 2N0
Tz Ny l;# 7, (@) (52)

K

k ape* El (ak) 2N0
—(1-— =0.
* Z,,)\kan( No 7, 0@ =0
k=1,k#i,j

Using 3.8.2.10f [22] and taking into account the boundary conditions, etam that

K
i a;e%i Fy(a; a
T — — 7 2 0 - : 0(Q3).
J (Q) 6“2'E1 (al) _ )\Z In?2 ( z) ij k:%;ij 6akE1 (ak) . )\k In2 (Qk)

(53)
Substituting it into[(4l7) and exchanging the indi¢emdk, we obtain the first order perturbation

(I8) in Theoren B.

APPENDIX F

PROOF OFLEMMA

We adopt the following argument to prove the convexity| [28len two feasible pointx;
andx,, defineg(t) = f(tx; + (1 —t)x2), 0 <t < 1, then f(x) is a convex function ok if and
only if ¢g(t) is a convex function of, which is equivalent 622 > 0 for 0 < ¢ < 1. To use

dt?

this argument, we rewrite problern {20) as

. = v (Q)
min f(c,a):];(%ck— o Ry (H,C) | . (54)

Consider the convex combination of two feasible solutiad§) = {C" : vk} and C®® =

{C vk}, asCe = {Cg =1 + (1 —1)C? : vk} and0 < ¢ < 1. WhenJ is sufficiently
small, the second order derivative 6{C¢, ) is calculated as

PICD) (W Q) (P 2P (XY 150 () - o))

k=1 j=1

(55)

i (X2 + X)) Y||Sk]|| () — Py
P+Zk (X; —1)3 '

J=1
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where X; = 210100 and 7, = S ISk (No + N-) Whens is sufficiently small, the
F(Ce,8)

terms in the order 0© () can be ignored and we S|mpI| dt2 as
V ) 3 2 (2)
&2f (C°,5) Z PX3Yi (PNo + [[Skell” N2) || S| ( -G ) ln2. (56)
o P (X = D (P + Z)" 22

d?f(Ce.0)

It is obvious that——;

> 0 in (B6), and thus, the problerh {20) is a convex optimization

problem for sufficiently smalb.

APPENDIX G

PROOF OFTHEOREM[4

We prove the convergence by the fictitious game madel [16]fiseconstruct the following
capacity-price fictitious game model. The optimizationlpeon of the fictitious capacity player
k is

rw _ OV (Q)

max uk

Ch oQy,

The optimization problem of the fictitious price player is

Ri(H,C) = nCr+ ) mCh. (57)
i=1,i#k

. o (SR, (H,C)) i

Qi
max Uy, = — | T —

Tik 8Ck

(58)

Each player in this game adopts the myopic best response jMB&pdate his strategy. From
[24], the MBR updates converge to Nash Equilibrium in theesopdular games, in which the
payoff function is supermodular in playés strategy and has increasing differences between
any component of player’s strategy and any component of any other player’s stratigy,
we check if this fictitious game is supermodular. It is obwadhbat each player’s payoff function
is supermodular in its own one-dimensional strategy. Adicwy to the method in [16], we have

FW
Ouy;

o = 1> 0,Vi # k and the increasing difference condition is satisfied. Tioeeg the

fictitious game is a supermodular game and always converges.
When ¢ is sufficiently small, according to Lemmid 3, the problem isnax and the
supermodular game converges to the unique global optimati®o of the per-stage problem.

Furthermore, the approximation error of the priority fuantin Theoreni B approaches 0 with
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sufficiently smalld. Therefore, the supermodular game converges to the opsolation of

Problem[l with sufficiently smal.
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