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Abstract

In cloud radio access networks (C-RANs), the baseband unitsand radio units of base stations

are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we

consider the delay-aware fronthaul allocation problem forC-RANs. The stochastic optimization problem

is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of

dimensionality, we derive a closed-form approximate priority function and the associated error bound

using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-

complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The

proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path

gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through

simulations, and it is shown that significant performance gain can be achieved.
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I. INTRODUCTION

The cloud radio access network (C-RAN) [1] provides a new architecture for 5G cellular

systems. In C-RANs, the baseband processing of base stations is carried out in the cloud, i.e.,

a centralized base band unit (BBU), which launches joint signal processing with coordinated

multi-point transmission (CoMP) and makes it possible to mitigate inter-cell interference. The

separation of the BBU and the radio units (RUs) brings a new segment, i.e., fronthaul links, to

connect both parts. The limited capacities of fronthaul links have a significant influence on the

system performance of C-RANs.

There are several existing works on fronthaul links in C-RANs. Efficient signal quantiza-

tion/compression for fronthaul links is designed to maximize the network throughput for the

uplink and downlink in [2] and [3], respectively. In [4], fronthaul quantization and transmit

power control are optimized jointly. In [5], energy-efficient CoMP is designed for downlink

transmission considering fronthaul capacity. In [6], the capacities of fronthaul links are allocated

under a sum capacity constraint to maximize the total throughput. In [7], the fronthaul links

are reconfigured to apply appropriate transmission strategies in different parts according to both

heterogeneous user profiles and dynamic traffic load patterns. However, these existing works have

all focused on the physical layer performance without consideration of bursty data arrivals at

the transmitters or of the delay requirement of the information flows. Since real-life applications

(such as video streaming, web browsing or VoIP) are delay-sensitive, it is important to optimize

the delay performance of C-RANs.

To take the queueing delay into consideration, the fronthaul allocation policy should be a

function of both the channel state information (CSI) and thequeue state information (QSI). This

is because the CSI reveals the instantaneous transmission opportunities at the physical layer and

the QSI reveals the urgency of the data flows. However, the associated optimization problem

is very challenging. A systematic approach to the delay-aware optimization problem is through

a Markov Decision Process (MDP). In general, the optimal control policy can be obtained by

solving the well-knownBellman equation. Conventional solutions to the Bellman equation, such

as brute-force value iteration or policy iteration [8], have huge complexity (i.e., the curse of
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dimensionality), because solving the Bellman equation involves solving an exponentially large

system of non-linear equations.

In this paper, we focus on minimizing the average delay by fronthaul allocation. There are

two technical challenges associated with the fronthaul allocation optimization problem:

• Challenges due to the Average Delay Consideration: Unlike other works which optimize

the physical layer throughput, the optimization involvingaverage delay performance is

fundamentally challenging. This is because the associatedproblem belongs to the class of

stochastic optimization[9], which embraces bothinformation theory(to model the physical

layer dynamics) andqueueing theory(to model the queue dynamics). A key obstacle to

solving the associated Bellman equation is to obtain the priority function, and there is no

easy and systematic solution in general [8].

• Challenges due to the Coupled Queue Dynamics: The queues of data flows are coupled

together due to the mutual interference. The associated stochastic optimization problem is a

K-dimensional MDP, whereK is the number of data flows. ThisK-dimensional MDP leads

to the curse of dimensionality with complexity exponentialto K for solving the associated

Bellman equation. It is highly nontrivial to obtain a low complexity solution for dynamic

fronthaul allocation in C-RANs.

In this paper, we model the fronthaul allocation problem as an infinite horizon average cost

MDP and propose a low-complexity delay-aware fronthaul allocation algorithm. To overcome

the aforementioned technical challenges, we exploit the specific problem structure that the cross

link path gain is usually weaker than the home cell path gain.Utilizing the perturbation analysis

technique, we obtain a closed-form approximate priority function and the associated error

bound. Based on that, we obtain a low-complexity delay-aware fronthaul allocation algorithm.

The solution is shown to be asymptotically optimal for sufficiently small cross link path

gains. Furthermore, the simulation results show that the proposed fronthaul allocation achieves

significant delay performance gain over various baseline schemes.

The rest of this paper is organized as follows. In Section II,we establish the wireless access

link, fronthaul link and cloud baseband processing models as well as the queue dynamics. In
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Figure 1. C-RAN topology

Section III, we formulate the fronthaul allocation problemand derive the associated optimality

conditions. In Section IV, we propose a low-complexity fronthaul allocation solution. Following

this, the delay performance of the proposed algorithm is evaluated by simulation in Section V.

Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we introduce the C-RAN topology and the associated models of the access

link, the fronthaul link and the cloud baseband processing.Based on the models, we obtain the

throughput and the dynamics of packet queues.

A. C-RAN Topology

We consider a C-RAN withK cells, each of which has an RU with a single antenna. In each

cell, the data are transmitted from a single-antenna user equipment (UE) to the RU via wireless

access links and then to the BBU via the fronthaul link over fiber/microwave, as shown in Fig.

1.

The time is slotted and the duration of each time slot isτ . The BBU collects necessary

information and makes the resource allocation decisions periodically at the beginning of each

time slot.
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B. Wireless Access Link Model

The wireless access links are modeled as an interference channel. In the uplink, the UEs

transmit signals to their corresponding RUs respectively,and in the meantime, cause interference

to other RUs in the network. The signals received by the RUs are

y = Hx+ z, (1)

wherex = (x1, x2, · · · , xK)
T is a K-dimensional vector of the transmitted signals, in which

xk is transmitted by thek-th UE with powerP , y = (y1, y2, · · · , yK)T is a K-dimensional

vector of the signals received by the RUs, in whichyk is the signal received by the RU in

the k-th cell, H = (Hkj)K×K, in which Hkj is the complex channel fading coefficient of the

uplink transmission from thej-th UE to the RU in thek-th cell, z = (z1, z2, · · · , zK)T and

zk ∼ CN (0, N0) is the white Gaussian thermal noise with powerN0.

DefineH(t) as theglobal CSI for uplink access links at thet-th slot. We have the following

assumption onH(t).

Assumption 1 (CSI Model):The CSIH(t) remains constant within a time slot and is i.i.d.

over time slots.Hkj (t) is independent over the indicesk andj.1 Hkj (t) is composed of two parts,

i.e., Hkj (t) =
√

LkjH̃kj(t), whereH̃kj(t) is the short-term fading coefficient which follows a

complex Gaussian distribution with mean 0 and unit variance, and Lkj is the corresponding

large-scale path gain, which is constant over the duration of the communication session.

C. Fronthaul Link Model

DenoteCk(t) as the capacity allocated to the fronthaul link between the RU in the k-th cell

and the BBU at thet-th slot. Let C(t) = (C1(t), C2(t), · · · , CK(t)) be the uplink fronthaul

allocation. With limited-capacity fronthaul links, the signals transmitted between the RUs and

the BBU have to be quantized. In the uplink, the RU in each cellunderconverts its received

1In C-RANs, the simultaneously transmitting UEs using the same resource block are located in different cells. Thus, the

distances between the RUs and those between the UEs are always large enough to make the channel fading coefficients

independent.



6

signal and sends the quantized signal to the BBU. Defineŷ = (ŷ1, ŷ2, · · · , ŷK) T , where ŷk is

the quantized signal at the RU in thek-th cell. The signals are assumed to be quantized for each

fronthaul link separately. The quantization leads to the distortion of signal, which can be treated

as the quantization noise, denoted asn = (n1, n2, · · · , nK)
T , wherenk is the quantization noise

over thek-th fronthaul link. The signals received by the BBU are expressed as

ŷ = y + n. (2)

The relationship betweenyk and ŷk depends on the fronthaul capacityCk according to the

rate-distortion theory [10], which is given byI (yk : ŷk) ≤ Ck, whereI (yk : ŷk) is the mutual

information betweenyk and ŷk. Let N(t) = (N1(t), N2(t), · · · , NK(t)), whereNk(t) is the

power of the quantization noisenk at thet-th slot. The quantization noise power induced by the

transmission over thek-th uplink fronthaul link at thet-th slot is given by [6]

Nk (t) =
P
∑K

j=1 ‖Hkj (t)‖2 +N0

2Ck(t) − 1
, (3)

where‖•‖ is the Euclidean norm.

D. Throughput with Cloud Baseband Processing

The BBU performs joint decoding for the received uplink signals, which benefits the system

performance by joint cloud processing of the signals for different cells. The cloud baseband

processing for uplink signals at the BBU is introduced in thefollowing assumption.

Assumption 2 (Zero Forcing Joint Detection):Assume that ZF joint detection [11], [12] is

adopted for the uplink in the cloud baseband processing to eliminate the inter-cell interference.

The linear ZF receiver at the BBU can be represented by a matrix S(t) = (Skj(t))K×K at the

t-th slot, whereS(t) is the inverse2 of the channel matrixH(t), i.e.,S(t) = H(t)−1.

The uplink transmission model is described in Fig. 2. With the ZF joint detection at the BBU,

the post-processing signal is

Sŷ = x + S(z+ q). (4)

2According to Assumption 1, the elements ofH(t) are independent. Thus,rank (H(t)) = K,∀t and the inverse ofH(t)

exists.
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Figure 2. Uplink transmission model of a C-RAN

Considering both the thermal noise powerN0 and the quantization noise powerN(t), we

obtain the uplink data rate for thei-th UE as

Rk (H (t) ,C (t)) = log2

(
1 +

P
∑K

j=1 ||Skj(t)||2 (N0 +Nj (t))

)
, (5)

whereN(t) is a function ofH (t) andC (t), andS(t) is a function ofH (t). Note that there is

an implicit coupling among theK uplink data flows in the sense thatRk depends not only on

the fronthaul capacity allocationCk but also onCj, ∀j 6= k.

E. Queue Dynamics

There is a bursty data source for each UE. LetA(t) = (A1(t)τ, · · · , AN(t)τ) be the random

arrivals (number of bits) from the application layers at theend of thet-th time slot3. We have

the following assumption onA(t).

Assumption 3 (Bursty Source Model):Assume thatAk (t) is i.i.d. over slots according to a

general distributionPr[Ak]. The moment generating functions ofAk exist with E[Ak] = λk.

Ak (t) is independent w.r.t.k. Furthermore, the arrival ratesλ = (λ1, λ2, . . . , λK) lie within the

stability region [14] of the system with the given uplink resource.

3We assume that the transmitters are causal so that the packets arrived at the time slot are not observed when the control

actions of this time slot are performed.
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Each UE has a data queue for the bursty traffic flows towards theassociated RU. LetQk(t) ∈
[0,∞) be the queue length (number of bits) at thek-th UE at the beginning of thet-th slot. Let

Q(t) = (Q1(t), · · · , QN(t)) ∈ Q , [0,∞)K be theglobal QSI. The queue dynamics for the

k-th UE can be written as

Qk(t+ 1) = max {Qk(t)− Rk(H(t),C(t))τ, 0}+ Ak(t)τ. (6)

Remark 1 (Coupling Property of Uplink Queue Dynamics):In the uplink, theK queue dy-

namics are coupled together due to the ZF processing in the BBU. Specifically, according to (5),

the queue departureRk(H(t),C(t)) for the i-th UE depends on not only the allocated capacity

Ck(t) for the k-th fronthaul link, but also all the other elements ofC(t).

III. A C ONTROL FRAMEWORK OF DELAY-AWARE UPLINK FRONTHAUL ALLOCATION

In this section, we formulate the delay-aware control framework of uplink fronthaul allocation.

We first define the control policy and the optimization objective. We then formulate the design as

a Markov Decision Process (MDP) and derive the optimality conditions for solving the problem.

A. Fronthaul Allocation Policy

For delay-sensitive applications, it is important to dynamically adapt the fronthaul capacities

C(t) based on the instantaneous realizations of the CSI (captures the instantaneous transmission

opportunities) and the QSI (captures the urgency ofK data flows). Letχ = (H,Q) denote the

global system state. We define the stationary fronthaul allocation policy below:

Definition 1 (Stationary Fronthaul Allocation Policy):A stationary control policy for thek-th

UE Ωk is a mapping from the system stateχ to the fronthaul allocation action of thek-th UE.

Specifically,Ωk(χ) = Ck ≥ 0. Let Ω = {Ωk : ∀k} denote the aggregation of the control policies

for all theK UEs.

The CSIH is i.i.d. over time slots based on the block fading channel model in Assumption 1.

Furthermore, from the queue evolution equation in (6),Q(t+ 1) depends only onQ(t) and the

data rate. Given a control policyΩ, the data rate at thet-th slot depends onH(t) andΩ(χ(t)).
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Hence, the global system stateχ(t) is a controlled Markov chain [8] with the following transition

probability:

Pr[χ(t+ 1)|χ(t),Ω(χ(t))] =Pr[H(t+ 1)] Pr[Q(t+ 1)|χ(t),Ω(χ(t))] , (7)

where the queue transition probability is given by

Pr[Q(t + 1)|χ(t),Ω(χ(t))] =





∏
k Pr

[
Ak (t)

]
if Qk (t+ 1) is given by (6), ∀k

0 otherwise,
(8)

where the equality is due to the i.i.d. assumption ofH(t) in Assumption 1.

For technical reasons, we consider theadmissible control policydefined below.

Definition 2 (Admissible Control Policy):A policy Ω is admissible if the following require-

ments are satisfied:

• Ω is a unichain policy, i.e., the controlled Markov chainχ (t) underΩ has a single recurrent

class (and possibly some transient states) [8].

• The queueing system underΩ is second-order stable in the sense that

limt→∞ E
Ω[
∑K

k=1Q
2
k(t)] < ∞, whereEΩ means taking expectation w.r.t. the probability

measure induced by the control policyΩ.

B. Problem Formulation

As a result, under an admissible control policyΩ, the average delay for thek-th data queue

is given by

Dk(Ω) = lim sup
T→∞

1

T

T−1∑

t=0

E
Ω

[
Qk (t)

λk

]
, ∀k. (9)

Similarly, under an admissible control policyΩ, the average fronthaul capacity for thek-th data

queue is given by

Ck(Ω) = lim sup
T→∞

1

T

T−1∑

t=0

E
Ω [Ck (t)] , ∀k. (10)

We formulate the delay-aware fronthaul allocation problemfor C-RANs as follows:
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Problem 1 (Delay-Aware Fronthaul Allocation Problem):The delay-aware fronthaul alloca-

tion problem is formulated as

min
Ω

L(Ω) =

K∑

k=1

(
βkDk(Ω) + γkCk(Ω)

)

= lim sup
T→∞

1

T

T−1∑

t=0

E
Ω [c (Q (t) ,Ω (χ (t)))]

(11)

wherec (Q,C) =
∑K

k=1

(
βk

Qk

λk
+ γkCk

)
. β = {βk > 0 : ∀k} are the positive weights for the

delay cost andγ = {γk > 0 : ∀k} are the prices for the data transmission over fronthaul links.

Note that Problem 1 is an infinite horizon average cost MDP, which is known as a very

difficult problem.

C. Optimality Conditions for Uplink Fronthaul Allocation

Problem 1 is an MDP and theBellman equation[8] provides its optimality conditions. The

Bellman equation involves the entire system stateχ = (H,Q). Exploiting the i.i.d. property of

H(t) according to Assumption 1, we obtain theequivalent Bellman equationin the following

theorem.

Theorem 1 (Sufficient Conditions for Optimality):For any given weightsβ, assume there

exists a(θ∗, {V ∗(Q)}) that solves the followingequivalent Bellman equation:

θ∗τ + V ∗(Q) = E

[
min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

Q′

Pr
[
Q′
∣∣χ,Ω

(
χ
)]
V ∗(Q′)

]∣∣∣∣Q
]
, ∀Q ∈ Q,

(12)

Furthermore, for all admissible control policiesΩ, V ∗ satisfies the followingtransversality

condition:

lim
T→∞

1

T
E
Ω [V ∗ (Q (T ))] = 0. (13)

Thenθ∗ is the optimal average cost, andV ∗ (Q) is thepriority function of theK data flows. If

there exists an admissible stationary policyΩ∗ (χ) = C∗ whereC∗ attains the minimum of the

R.H.S. of (12) for allQ ∈ Q, thenΩ∗ is the optimal control policy for Problem 1.

Proof: Please refer to Appendix A.
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Remark 2 (Interpretation of Theorem 1):The equivalent Bellman equation in (12) is defined

on the QSIQ only. Nevertheless, the optimal control policyΩ∗ obtained by solving (12) is

still adaptive to the entire system stateχ. At each stage, when the queue length isQ(t), the

optimal action has to strike a balance between the current cost c
(
Q,Ω

(
χ
))

and the future

cost
∑

Q′ Pr
[
Q′
∣∣χ,Ω

(
χ
)]
V ∗(Q′) because the action taken will affect the future evolution of

Q(t+ 1).

IV. L OW-COMPLEXITY FRONTHAUL ALLOCATION

One key obstacle in deriving the optimal fronthaul policyΩ∗ is to obtain the priority function

V ∗(Q) of the Bellman equation in (12). Conventional brute force value iteration or policy

iteration algorithms can only give numerical solutions andhave exponential complexity inK,

which is highly undesirable. In this section, we shall exploit the characteristics of the topology of

C-RANs. Specifically, we defineδ = max {Lkj : ∀k 6= j} be the worst-case path gain among all

the cross links, which is usually weaker than the home cell path gain due to the C-RAN network

architecture. We adopt perturbation theory w.r.t.δ to obtain a closed-form approximation of the

priority function V ∗(Q) and derive the associated error bound. Based on that, we obtain a low

complexity delay-aware fronthaul allocation algorithm.

A. Calculus Approach for Solving the Bellman Equation

We adopt a calculus approach to obtain a closed-form approximate priority function. We first

have the following theorem for solving the Bellman equationin (12).

Theorem 2 (Calculus Approach for Solving (12)):Assume there existc∞ and J (Q; δ) of

classC2(RK
+ ) that satisfy

• the following partial differential equation (PDE):

E

[
min
Ω(χ)

[ K∑

k=1

(
βk

Qk

λk

+ γkCk

)
− c∞ +

K∑

k=1

(
∂J (Q; δ)

∂Qk

(
λk − Rk

(
H,C

)))]
∣∣∣∣∣Q
]
= 0,

∀Q ∈ R
K
+

(14)

with boundary conditionJ (0; δ) = 0;
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• For all k, ∂J(Q;δ)
∂Qk

is an increasing function of allQk;

• J (Q; δ) = O (‖Q‖2).

Then, we have

θ∗ = c∞ + o(1), V ∗ (Q) = J (Q; δ) + o(1), ∀Q ∈ Q, (15)

where the error termo(1) asymptotically goes to zero for sufficiently smallτ .

Proof: Please refer to Appendix B.

Theorem 2 suggests that if we can solve for the PDE in (14), then the solution(J (Q; δ) , c∞)

is only o(1) away from the solution of the Bellman equation(V ∗(Q), θ∗).

B. Closed-Form Approximate Priority Function via Perturbation Analysis

The queues of theK uplink data flows are coupled due to the coupling ofRk in (5). The

following lemma establishes the intensity of the queue coupling.

Lemma 1 (Intensity of the Uplink Queue Coupling):The coupling intensity of uplink data

queues induced byRk in (5) is given by||Skj(t)||2 = O (δ) , ∀k 6= j.

Proof: Please refer to Appendix C.

As a result, the solution of (14) depends on the worst-case cross link interference path gainδ

and, hence, theK-dimensional PDE in (14) can be regarded as a perturbation ofa base system,

as defined below.

Definition 3 (Base System):A base system is characterized by the PDE in (14) withδ = 0.

According to Lemma 1, we have||Skj(t)||2 = 0, ∀k 6= j in the base system. We first study

the base system and useJ(Q; 0) to obtain a closed-form approximation ofJ(Q; δ).

We have the following lemma summarizing the priority function J(Q; 0) of the base system.

Lemma 2 (Decomposable Structure ofJ(Q; 0)): The solutionJ(Q; 0) for the base system has

the following decomposable structure:

J (Q; 0) =

K∑

k=1

Jk (Qk) , (16)
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whereJk (Qk) is theper-flow priority functionfor the k-th data flow given by




Qk(ν) =
λk

βk

(
νeak

ln 2
E1

(
akν

ν − γk

)
− λkν − γk

ln 2
E1

(
akγk
ν − γk

)
+ c∞k

)

Jk(ν) =
λk

2βk ln 2

(
γk (γk − ν) e

akγk
γk−ν + eakν2E1

(
akν

ν − γk

)

+ (ak − λk)E1

(
akγk
ν − γk

)
− λkν

2 ln 2

)
+ bk,

(17)

where ak , N0

PLkk
; c∞k = γk

ln 2
E1

(
akγk
dk−γk

)
, where dk satisfies eak

ln 2
E1

(
akdk
dk−γk

)
= λk; E1(z) ,

∫∞

1
e−tz

t
dt =

∫∞

z
e−t

t
dt; bk is chosen to satisfy4 the boundary conditionJk(0) = 0.

Proof: Please refer to Appendix D.

Note that whenδ = 0, we haveLkj = 0 for all k 6= j and, hence, there is no coupling

between the UE-RU pairs. As a result, theK data queues are totally decoupled and the system

is equivalent to a decoupled system withK independent queues. That is why the priority function

J (Q; 0) in the base system has the decomposable structure in Lemma 2.

Whenδ > 0, J(Q; δ) can be considered as a perturbation of the solution of the base system

J(Q; 0). Using perturbation analysis on the PDE (14), we establish the following theorem on

the approximation ofJ(Q; δ):

Theorem 3 (First Order Perturbation ofJ(Q; δ)): J(Q; δ) is given by

J (Q; δ) =J (Q; 0) +

K∑

k=1

(
K∑

j=1,j 6=k

Lkj

(
ΦkQ

2
k

K∑

l=1,l 6=k

N0

Lll
+
N0

Ljj

K∑

i=1,i 6=k,j

ΦiQ
2
i

)
+ o

(
Q2

k

)
)

+O
(

1

δ2

)
,

(18)

whereΦk = βk

λk

(
1− ake

akE1(ak)
N0

)
/ (eakE1 (ak)− λk ln 2).

Proof: Please refer to Appendix E.

The priority functionV (Q) is decomposed into the following three terms: 1) the base term
∑

k Jk(Qk) obtained by solving a base system without coupling, 2) the perturbation term

accounting for the first order coupling due to the joint processing in the BBU, and 3) the

residual error term which goes to zero in the order ofO(1/δ2). As a result, we adopt the

4To find bk, firstly solveQk(ν) = 0 using one-dimensional search techniques (e.g., bisectionmethod). Thenbk is chosen

such thatJk(ν) = 0.



14

following closed-form approximation ofV (Q):

Ṽ (Q) =

K∑

k=1

Jk(Qk) +

K∑

k=1

(
K∑

j=1,j 6=k

Lkj

(
ΦkQ

2
k

K∑

l=1,l 6=k

N0

Lll
+
N0

Ljj

K∑

i=1,i 6=k,j

ΦiQ
2
i

))
. (19)

C. Fronthaul Allocation Algorithm

In this section, we use the closed-form approximate priority function in (19) to capture the

urgency information of theK data flows and obtain a low complexity delay-aware fronthaul

allocation algorithm. Using the approximate priority function in (19), the per-stage control

problem (for each state realizationχ) is given by5

max
C

K∑

k=1

(
∂Ṽ (Q)

∂Qk

Rk (H,C)− γkCk

)
, (20)

where ∂Ṽ (Q)
∂Qk

can be calculated from (19), which is given by

∂Ṽ (Q)

∂Qk
=J ′

k (Qk) + 2Φk

(
K∑

j=1,j 6=k

Lkj

K∑

l=1,l 6=k

N0

Lll
+

K∑

i=1,i 6=k

K∑

j=1,j 6=i,k

Lij
N0

Ljj

)
Qk. (21)

The per-stage problem in (20) is similar to the weighted sum-rate (WSR) optimization [15],

which can be considered as a special case of network utility maximization. However, unlike

conventional WSR problems, where the weights are static, the weights here in (20) are dynamic

and are determined by the QSI via the priority function∂Ṽ (Q)
∂Qk

. As such, the role of the QSI is

to dynamically adjust the weight (priority) of the individual flows, whereas the role of the CSI

is to adjust the priority of the flow based on the transmissionopportunity in the rate function

Rk(H,C).

One approach to solve the WSR problem is solving the local optimization problem for each

flow iteratively [15]. In each local optimization problem for thek-th flow, the total WSR objective

is maximized, assuming that the capacities of other linksCj , ∀j 6= k do not change. The local

optimization problem is formulated as

max
Ck

K∑

k=1

(
∂Ṽ (Q)

∂Qk
Rk (H,C)− γkCk

)
. (22)

5Note thatJ ′
k (Qk) =

(

dJk(ν)
dν

/

dQk(ν)
dν

) ∣

∣

∣

ν=ν(Qk)
= ν (Qk), whereν (Qk) satisfiesQk (ν (Qk)) = Qk.
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The above local optimization problem is still difficult to solve directly. An alternative method

is simplifying the effect ofCk on the other links as a linear function6 [16]. Defineπik as the

marginal increase in the utility of thei-th flow per unit increase inCk, i.e.,

πik =

∂Ṽ (Q)
∂Qi

P ‖Sik‖2 Yk
2Ck

(2Ck−1)
2

(
P + Iik + ‖Sik‖2

(
N0 +

Yk

2Ck−1

))(
Iik + ‖Sik‖2

(
N0 +

Yk

2Ck−1

)) , (23)

whereIik =
∑K

j=1,j 6=k ‖Sij‖2
(
N0 +

Yj

2Cj−1

)
andYj = P

∑K
l=1 ‖Hjl‖2 +N0.

Adopting the linear simplificationπikCk for the effect ofCk on thei-th flow in the per-stage

local optimization problem (22), we have the Karush-Kuhn-Tucker (KKT) condition as

∂Ṽ (Q)
∂Qk

P‖Skk‖
2Yk2

Ck

(2Ck−1)
2

(
Ikk + ‖Skk‖2

(
N0 +

Yk

2Ck−1

))(
P + Ikk + ‖Skk‖2

(
N0 +

Yk

2Ck−1

)) +

K∑

i=1,i 6=k

πik = γ. (24)

By solving (24), we obtain the optimal fronthaul capacityCk for the local optimization problem

as

Ck = log2
ηk + ζk +

√
η2k + 2ηkζk + P 2 ‖Skk‖4 Y 2

k

2
(
P + Ikk + ‖Skk‖2N0

) (
Ikk + ‖Skk‖2N0

) , (25)

whereζk = 2I2kk + 2Ikk(P + 2 ‖Skk‖2 N0 −‖Skk‖2 Yk) + ‖Skk‖2 (2 ‖Skk‖2N2
0 − PYk + 2PN0 −

2 ‖Skk‖2N0Yk) andηk =
∂Ṽ (Q)
∂Qk

P‖Skk‖
2Yk

γ−
∑K

i=1,,i6=k πik
.

Based on the above analysis, we propose a low-complexity fronthaul allocation algorithm

launched at the beginning of each slot, which is described using pseudo codes as Algorithm

1. We denoteC(n) = (C
(n)
1 , C

(n)
2 , · · · , C(n)

K ) as the allocated fronthaul capacities in then-th

iteration.

Although the per-stage problem (20) is not convex in general, the following lemma states that

it is a convex problem for sufficiently smallδ.

Lemma 3 (Asymptotic Convexity):When δ is sufficiently small, the objective in (20) is a

concave function ofC, and the problem (20) is a convex problem.

Proof: Please refer to Appendix F.

6We will show later that this simplification does not affect the convergence property.
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Algorithm 1 Delay-Aware Fronthaul Allocation

1: Initialize n = 0 andC(0)
k = 0, ∀k

2: repeat

3: for all userk do

4: CalculateC(n+1)
k based onC(n) according to (25)

5: end for

6: n = n + 1

7: until The difference betweenC(n) andC(n+1) is below a given threshold

According to Lemma 3, we provide the convergence property and asymptotic optimality of

Algorithm 1 in the following theorem:

Theorem 4 (Asymptotic Optimality):When δ is sufficiently small, starting from any feasible

initial point C(0), Algorithm 1 converges to the optimal solution of the original Problem 1.

Proof: Please refer to Appendix G.

V. SIMULATION

In this section, we evaluate the performance of the proposedlow-complexity delay-aware

fronthaul allocation algorithm for C-RANs. For performance comparison, we adopt the following

two baseline schemes.

• Baseline 1 [Throughput-Optimal Fronthaul Allocation]: The throughput-optimal fron-

thaul allocation algorithm determines the fronthaul capacities for maximizing the total data

rate without considering the queueing information, which is similar to that in [6] but with

ZF processing.

• Baseline 2 [Queue-Weighted Fronthaul Allocation]: The queue-weighted fronthaul

allocation algorithm exploits both CSI and QSI for queue stability by Lyapunov drift [14]

and solves the per-stage problem (20) replacing ∂Ṽ (Q)
∂Qk

with Qk [17].

In the simulation, the performance of the proposed fronthaul allocation algorithm is evaluated

in a C-RAN cluster with seven cells. A single channel is considered, and one user over the
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channel is located randomly in each cell, with radius 500m. Poisson data arrival is considered,

with an average arrival rateλk for the k-th UE, which is uniformly distributed between[0, 2λ]

with meanλ. The path gain is calculated asLkj = 15.3+37.6 log10 dkj, with the fading coefficient

distributed asCN (0, 1). The average transmit power is 23dBm and the noise power spectrum

density is -174dBm/Hz. The system bandwidth is 10MHz and theduration of the decision slot is

10ms. The weightsγk are the same andβk = 1 for all k. For comparison, the delay performances

of different schemes are evaluated with the same total fronthaul capacity by adjustingγk. For

obtaining the average performance, we consider 20 random topologies, each of which has 100

time slots.

Fig. 3 shows the average delay versus the average arrival rate whenthe total fronthaul capacity

is 350Mbps. For all algorithms, the average delay increaseswhen the average traffic load

increases. It can be observed that the proposed fronthaul allocation algorithm outperforms both

baselines, which verifies the accuracy of the priority function approximation in the proposed

algorithm.

Fig. 4 shows the average delay versus the total fronthaul capacity when the average arrival rate

is 30Mbps. The proposed fronthaul allocation algorithm also achieves better performance than

the baseline schemes. When the total fronthaul capacity is small, the average delay decreases

significantly with the increase of the total fronthaul capacity. In contrast, when the total fronthaul

capacity is large, the change in the average delay is relatively small with adjustment of the total

fronthaul capacity.

Table I illustrates a comparison of the MATLAB computational time of the proposed solution,

the baselines and the brute-force value iteration algorithm [8] in one time slot. From the results,

our proposed algorithm has much less complexity than the brute-force value iteration algorithm.

The computational time of our proposed algorithm is close tothose of Baselines 1 & 2, and

the difference is due to the computation of the approximate priority function. Therefore, our

proposed algorithm achieves significant performance gain compared to the baselines, with small

computational complexity cost.



18

5 10 15 20 25 30 35 40 45 50

0.00

0.05

0.10

0.15

0.20

0.25

Baseline 2

Queue-weighted  

A
v
e

ra
g

e
 D

e
la

y
 (

s
)

Average Arrival Rate (Mbps)

Proposed

Baseline 1

Throughput-optimal

Figure 3. Performance comparison with different average arrival rates whenC = 350Mbps

Table I

COMPARISON OF THEMATLAB COMPUTATIONAL TIME

Algorithm Time

Baselines 1 & 2 0.006s

Proposed Algorithm 0.043s

Brute-Force Value Iteration > 105s

VI. CONCLUSIONS

In this paper, we propose a low-complexity delay-aware fronthaul allocation algorithm for the

uplink in C-RANs. The delay-aware fronthaul allocation problem is formulated as an infinite
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Figure 4. Performance comparison with different total fronthaul capacity whenλ = 30Mbps

horizon average cost Markov decision process. To deal with the curse of dimensionality, we

exploit the specific problem structure that the cross link path gain is usually weaker than the home

cell path gain. Utilizing the perturbation analysis technique, we obtain a closed-form approximate

priority function and the associated error bound. Based on the closed-form approximate priority

function, we propose a low-complexity delay-aware fronthaul allocation algorithm, solving the

per-stage optimization problem. The proposed solution is further shown to be asymptotically

optimal for sufficiently small cross link path gains. The simulation results verify the accuracy of

the priority function approximation and show that the proposed fronthaul allocation algorithm

outperforms the baselines.
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APPENDIX A

PROOF OFTHEOREM 1

Following Prop. 4.6.1of [8], the sufficient conditions for the optimality ofProblem 1are that

(θ∗, {V ∗ (Q)}) solves the following Bellman equation:

θ∗τ + V ∗ (χ) =min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

χ′

Pr
[
χ′
∣∣χ,Ω

(
χ
)]
V ∗ (χ′)

]

=min
Ω(χ)

[
c
(
Q,Ω

(
χ
))
τ +

∑

Q′

∑

H′

Pr
[
Q′
∣∣χ,Ω

(
χ
)]

Pr
[
H′
]
V ∗ (χ′)

]] (26)

andV ∗ satisfies the condition in (13) for all admissible policiesΩ. Thenθ∗ = min
Ω(χ)

L
(
Ω
(
χ
))

.

Taking expectation w.r.t.H on both sides of (26) and denotingV ∗ (Q) = E
[
V ∗ (χ)

∣∣Q
]
, we

obtain the equivalent Bellman equation in (12) in Theorem 1.

APPENDIX B

PROOF OFTHEOREM 2

In the proof, we shall first establish the relationship between the equivalent Bellman equation

in (12) in Theorem 2 and the approximate Bellman equation in (27) in the following Lemma 4.

Then, we establish the relationship between the approximate Bellman equation in (27) in Lemma

4 and the PDE in (14) in Theorem 2.

1. Relationship between the Equivalent Bellman and Approximate Bellman Equations

We establish the following lemma on the approximate Bellmanequation to simplify the

equivalent Bellman equation in (12):

Lemma 4 (Approximate Bellman Equation):For any given weightsβ, if

• there is a unique(θ∗, {V ∗ (Q)}) that satisfies the Bellman equation and transversality

condition in Theorem 1;

• there existθ and V (Q) of class7 C2(RK
+ ) that solve the followingapproximate Bellman

7f(x)(x is a K-dimensional vector) is of classC2(RK
+ ) if the first and second order partial derivatives off(x) w.r.t. each

element ofx are continuous whenx ∈ R
K
+ .
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equation:

θ = E

[
min
Ω(χ)

[
c
(
Q,Ω

(
χ
))

+
K∑

k=1

∂V (Q)

∂Qk

[
λk −Rk

(
H,Ω(χ)

)]]∣∣∣∣Q
]
, ∀Q ∈ Q (27)

and for all admissible control policiesΩ, the transversality condition in (13) is satisfied for

V ,

then, we have

θ∗ = θ + o(1), V ∗ (Q) = V (Q) + o(1), ∀Q ∈ Q, (28)

where the error termo(1) asymptotically goes to zero for sufficiently small slot duration τ .

Proof of Lemma 4:Let Q′ = (Q′
1, · · · , Q′

k) = Q(t+1) andQ = (Q1, · · · , Qk) = Q(t). For

the queue dynamics in (6) and sufficiently smallτ , we haveQ′
k = Qk−Rk (H,C) τ+Akτ , (∀k).

Therefore, ifV (Q) is of classC2(RK
+ ), we have the following Taylor expansion onV (Q′):

E
[
V (Q′)

∣∣Q
]
=V (Q) +

K∑

k=1

∂V (Q)

∂Qk

(
λk − E

[
Rk

(
H,Ω(χ)

)∣∣∣Q
])

τ + o(τ). (29)

For notation convenience, letFχ(θ, V,Ω(χ)) denote theBellman operator:

Fχ(θ, V,Ω(χ)) =
K∑

k=1

∂V (Q)

∂Qk

(
λk − Rk

(
H,Ω(χ)

))
− θ + c (Q,Ω (χ)) + νGχ (V,Ω (χ))

(30)

for some smooth functionGχ and ν = o(1) (w.r.t. τ ). Denote Fχ(θ, V ) =

minΩ(Q) Fχ(θ, V,Ω(χ)). Suppose(θ∗, V ∗) satisfies the Bellman equation in (12), we have

E
[
Fχ (θ∗, V ∗)

∣∣Q
]
= 0, ∀Q ∈ Q. Similarly, if (θ, V ) satisfies the approximate Bellman

equation in (27), we have

E
[
F †
χ
(θ, V )

∣∣Q
]
= 0, ∀Q ∈ Q, (31)

where F †
χ
(θ, V ) = minΩ(Q) F

†
χ
(θ, V,Ω(χ)) and F †

χ
(θ, V,Ω(χ)) = Fχ(θ, V,Ω(χ)) −

νGχ(V,Ω(χ)). We then establish the following lemma.

Lemma 5: If (θ, V ) satisfies the approximate Bellman equation in (27), then
∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) for anyQ ∈ Q.

Proof of Lemma 5: For any χ, we have Fχ(θ, V ) = minΩ(χ)

[
F †
χ
(θ, V,Ω(χ)) +

νGχ(V,Ω(χ))
]
≥ minΩ(χ) F

†
χ
(θ, V,Ω(χ)) + νminΩ(χ)Gχ(V,Ω(χ)). Besides this,Fχ(θ, V ) ≤



22

minΩ(χ) F
†
χ
(θ, V,Ω(χ)) + νGχ(V,Ω

†(χ)), where Ω† = argminΩ(χ) F
†
χ
(θ, V,Ω(χ)). Since

E
[
minΩ(χ) F

†
χ
(θ, V,Ω(χ))

∣∣Q
]
= 0 according to (31), andF †

χ
and Gχ are all smooth and

bounded functions, we have
∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) (w.r.t. τ ).

We establish the following lemma to prove Lemma 4.

Lemma 6:SupposeE
[
Fχ(θ

∗, V ∗)
∣∣Q
]
= 0 for all Q together with the transversality condition

in (13) has a unique solution(θ∗, V ∗). If (θ, V ) satisfies the approximate Bellman equation in

(27) and the transversality condition in (13), thenθ = θ∗ + o (1), V (Q) = V ∗ (Q) + o (1) for

all Q, whereo(1) asymptotically goes to zero asτ goes to zero.

Proof of Lemma 6: Suppose for someQ′, V (Q′) = V ∗ (Q′) + O (1) (w.r.t. τ ). From

Lemma 5, we have
∣∣E
[
Fχ(θ, V )

∣∣Q
]∣∣ = o(1) (w.r.t. τ ). Lettingτ → 0, we haveE

[
Fχ(θ, V )

∣∣Q
]
=

0 for all Q and the transversality condition in (13). However,V (Q′) 6= V ∗ (Q′) due toV (Q′) =

V ∗ (Q′)+O (1). This contradicts the condition that(θ∗, V ∗) is a unique solution ofFχ(θ
∗, V ∗) =

0 for all Q and the transversality condition in (13). Hence, we must haveV (Q) = V ∗ (Q)+o (1)

for all Q. Similarly, we can establishθ = θ∗ + o(1).

2. Relationship between the Approximate Bellman Equation and the PDE

For notation convenience, we writeJ (Q) in place of J (Q; δ). It can be observed that if

(c∞, {J (Q)}) satisfies (14), it also satisfies (27). Furthermore, sinceJ (Q) = O(
∑K

k=1Q
2
k),

then limt→∞ EΩ [J (Q(t))] < ∞ for any admissible policyΩ. Hence,J (Q) = O(
∑K

k=1Q
2
k)

satisfies the transversality condition in (13). Next, we show that the optimal policyΩJ∗ obtained

from (14) is an admissible control policy according to Definition 2.

Define a Lyapunov functionas L(Q) = J (Q). We define theconditional queue driftas

∆(Q) = EΩJ∗[∑K
k=1 (Qk(t + 1)−Qk(t))

∣∣Q(t) = Q
]

and theconditional Lyapunov driftas

∆L(Q) = EΩJ∗[
L(Q(t + 1)) − L(Q(t))

∣∣Q(t) = Q
]
. We first have the following relationship

between∆(Q) and∆L(Q):

∆L(Q) ≥E
ΩJ∗

[
K∑

k=1

∂L(Q)

∂Qk
(Qk(t + 1)−Qk(t))

∣∣∣∣Q(t) = Q

]
(a)

≥ ∆(Q) (32)

if at least one of{Qk : ∀k} is sufficiently large, where(a) is due to the condition that∂J(Q)
∂Qk

is
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an increasing function of allQk.

Since (λ1, . . . , λK) is strictly interior to the stability regionΛ, there existsλ = (λ1 +

κ1, . . . , λK + κK) ∈ Λ for some positiveκ = {κk : ∀k} [14]. From Corollary 1 of [18],

there exists a stationary randomized QSI-independent policy Ω̃ such that

K∑

k=1

E
Ω̃
[
γkCk

∣∣Q(t) = Q
]
= C̃(κ) (33)

E
Ω̃
[
Rk(H,C)

∣∣Q(t) = Q
]
≥ λk + κk, ∀k, (34)

where C̃(κ) is the minimum time-averaging total fronthaul capacity forthe system stability

when the arrival rate isλ. The Lyapunov drift∆L(Q) is given by

∆L(Q) + E
ΩJ∗

[
K∑

k=1

γkCkτ

∣∣∣∣Q(t) = Q

]

≈
K∑

k=1

∂L(Q)

∂Qk

λkτ + E
ΩJ∗

[
K∑

k=1

(
γkCkτ − ∂L(Q)

∂Qk

Rk(H,C)τ

)∣∣∣∣Q(t) = Q

]

(b)

≤
K∑

k=1

∂L(Q)

∂Qk
λkτ + E

Ω̃

[
K∑

k=1

(
γkCkτ − ∂L(Q)

∂Qk
Rk(H,C)τ

) ∣∣∣∣Q(t) = Q

]

(c)

≤ −
K∑

k=1

∂L(Q)

∂Qk
κkτ + C̃(κ)τ

(35)

if at least one of{Qk : ∀k} is sufficiently large, where(b) is becauseΩJ∗ achieves the

minimum of (14) and(c) is due to (33) and (34). Combining (35) with (32), we have

∆(Q) ≤ ∆L(Q) ≤ −∑K
k=1

∂L(Q)
∂Qk

κτ + C̃(κ)τ < 0 if at least one of{Qk : ∀k} is sufficiently

large. Therefore,E
[
Ak −Gk(H,ΩJ∗(χ))

∣∣Q
]
< 0 when Qk > Qk for some largeQk. Let

φk(r,Q) = ln
(
E
[
e(Ak−Gk(H,ΩJ∗(χ)))r∣∣Q

])
be thesemi-invariant moment generating functionof

Ak−Gk

(
H,ΩJ∗(χ)

)
. Then,φk(r,Q) will have a unique positive rootr∗k(Q) (φk(r

∗
k(Q),Q) = 0)

[19]. Let r∗k = r∗k(Q), whereQ = (Q1, . . . , QK). Using the Kingman bound [19] result that



24

Fk(x) , Pr
[
Qk ≥ x

]
≤ e−r∗kx, if x ≥ xk for sufficiently largexk, we have

E
ΩJ∗

[J (Q)]

≤C
K∑

k=1

E
ΩJ∗ [

Q2
k

]
= C

K∑

k=1

[∫ ∞

0

Pr
[
Q2

k > s
]
ds

]

≤C

K∑

k=1

[∫ x2
k

0

Fk(s
1/2)ds +

∫ ∞

x2
k

Fk(s
1/2)ds

]

≤C

K∑

k=1

[
x2
k +

∫ ∞

x2
k

e−r∗ks
1/2

ds

]
< ∞ (36)

for some constantC. Therefore,ΩJ∗ is an admissible control policy and we haveV (Q) = J (Q)

andθ = c∞.

Combining Lemma 4, we haveV ∗ (Q) = J (Q) + o(1) and θ∗ = c∞ + o(1) for sufficiently

small τ .

APPENDIX C

PROOF OFLEMMA 1

The coupling among theK uplink data queues is induced byS(t) in the expression ofRk in

(5). According to Assumption 2,S(t) = H(t)−1. The time indext is omitted in this proof for

simplicity of expression. We adopt the adjoint matrix to obtain the inverse of the channel matrix

H as

S =
1

det(H)
adj(H) =

1

|H|




M11 M12 · · · M1K

M21 M22 · · · M2K

...
...

. . .
...

MK1 MK2 · · · MKK




T

, (37)

whereMkj is the(k, j) algebraic cofactor, which is the determinant of the submatrix formed by

deleting thek-th row andj-th column ofH multiplied by (−1)k+j.
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With δ = max {Lkj : ∀k 6= j}, we can rewrite the channel matrixH as


O(1) O(
√
δ) · · · O(

√
δ)

O(
√
δ) O(1) · · · O(

√
δ)

...
...

. . .
...

O(
√
δ) O(

√
δ) · · · O(1)




, (38)

where theK diagonal entries areO(1) and the other entries areO(
√
δ).

If k 6= j, the submatrix formed by deleting thek-th row andj-th column ofH includesK−2

diagonal entries ofH, i.e.,O(1). As a result, when calculating the determinant of the submatrix,

each term of the determinant is the product ofK − 1 entries and at least oneO(
√
δ) term is

included. Therefore, we obtain the coupling intensity||Skj(t)||2 = O (δ) , ∀k 6= j, and Lemma

1 holds.

APPENDIX D

PROOF OFLEMMA 2

We first prove thatJ (Q; 0) =
∑K

k=1 Jk (Qk). The PDE in (14) for the base system is

E

[
min
Ω(χ)

[ K∑

k=1

(
βk

Qk

λk

+ γkCk +
∂J (Q; 0)

∂Qk

(
λk − Rk

(
H,C

)))]∣∣∣∣Q
]
− c∞ = 0. (39)

We have the following lemma to prove the decomposable structures ofJ (Q; 0) andc∞ in (39).

Lemma 7 (Decomposed Optimality Equation):Suppose there existc∞k and Jk (Qk) ∈
C

2 (R+) that solve the following per-flow optimality equation (PFOE):

E

[
min
Ck≥0

[
βk

Qk

λk

+ γkCk + J ′
k(Qk)

(
λk − R0

k

(
Hkk, Ck

))]∣∣∣∣Qk

]
− c∞k = 0, (40)

where R0
k

(
Hkk, Ck

)
= log2

(
1 + P‖Hkk‖

2

N0+Nk

)
and Nk = P‖Hkk‖

2+N0

2Ck−1
. Then, J (Q; 0) =

∑K
k=1 Jk (Qk) and c∞ =

∑K
k=1 c

∞
k satisfy (39).

Lemma 7 can be proved using the fact that the dynamics of theK queues at the UEs are

decoupled whenδ = 0. The details are omitted for conciseness.

Next, we solve the optimization problem in (40). The optimalfronthaul capacityC∗
k from (40)

is given by

C∗
k =

(
log2

(
P ‖Hkk‖2

N0

(
J ′
k(Qk)

γk
− 1

)+
))+

. (41)
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Substituting the optimal allocated fronthaul capacityC∗
k into (40), and using the fact that‖Hkk‖2

follows a negative exponential distribution with meanLkk according to Assumption 1, we

calculate the expectations in (40) as follows:

If J ′
k(Qk) > γk, the expected fronthaul capacity is

E
[
γkC

∗
k

∣∣Qk

]
=

∫ ∞

N0γk

PLkk(J′
k
(Qk)−γk)

log2

(
PLkkx

N0

(
J ′
k(Qk)

γk
− 1

))
e−xdx

=
γk
ln 2

E1

(
N0γk

PLkk (J ′
k(Qk)− γk)

)
,

(42)

whereE1(z) ,
∫∞

z
e−t

t
dt is the exponential integral function. Otherwise,E

[
γkC

∗
k

∣∣Qk

]
= 0.

Similarly, if J ′
k(Qk) > γk, the expected data rate is

E
[
R0

k

(
Hkk, C

∗
k

)∣∣Qk

]
=

∫ ∞

N0γk

PLkk(J′
k
(Qk)−γk)

log2


 1 + PLkkx/N0

1 + 1

(J ′
k(Qk)/γk−1)


 e−xdx

=
e

N0
PLkk

ln 2
E1

(
N0J

′
k(Qk)

PLkk (J ′
k(Qk)− γk)

)
.

(43)

Otherwise,E
[
R0

k

(
Hkk, C

∗
k

)∣∣Qk

]
= 0.

We then calculatec∞k . Since (40) should hold whenQk = 0, we have

c∞k = E
[
γkC

∗
k

∣∣Qk = 0
]

(44)

E
[
R0

k

(
Hkk, Ck

)∣∣Qk = 0
]
= λk. (45)

Using (42) and (43), we can calculatec∞k as shown in Lemma 2. Substituting (42), (43), and

c∞k into (40) and lettingak , N0

PLkk
, we have the following ODE:

βk
Qk

λk

+
γk
ln 2

E1

(
akγk

J ′
k(Qk)− γk

)
+ J ′

k (Qk)λk − J ′
k (Qk)

eak

ln 2
E1

(
akJ

′
k(Qk)

J ′
k(Qk)− γk

)
− c∞k = 0.

(46)

According to Section 0.1.7.3 of [20], we can obtain the parametric solution of (46), as shown

in (17) in Lemma 2.
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APPENDIX E

PROOF OFTHEOREM 3

Taking the first order Taylor expansion of the L.H.S. of the Bellman equation in (14) atLij = 0

(∀i 6= j), Ck = C∗
k , whereC∗

k minimizes the L.H.S. of (40), and using parametric optimization

analysis [21], we have the following result regarding the approximation error:

J (Q; δ)− J (Q; 0) =

K∑

i=1

K∑

j=1,j 6=i

Lij J̃ij(Q) +O(δ2), (47)

whereJ̃ij(Q) captures the coupling terms inJ (Q) satisfying

K∑

k=1


λk − E


 log2


1 +

PLkk

∥∥∥H̃kk

∥∥∥
2

N0 +N∗
k




∣∣∣∣∣∣∣
Q







∂J̃ij (Q)

∂Qk

+ E




∥∥∥H̃ij

∥∥∥
2

ln 2




J ′
i(Qi)

N0+N∗
i

1 +
N0+N∗

i

PLii‖H̃ii‖2

K∑

l=1,l 6=i

N0 +N∗
l

Lll

∥∥∥H̃ll

∥∥∥
2

+
K∑

k=1,k 6=i,j

J ′
k(Qk)

N0+N∗
k(

1 +
N0+N∗

k

PLkk‖H̃kk‖2

) N0 +N∗
j

Ljj

∥∥∥H̃jj

∥∥∥
2




∣∣∣∣∣∣∣∣
Q


 = θ̃ij ,

(48)

with boundary conditionJ̃ij (Q)
∣∣
Qi=0

= 0 or J̃ij (Q)
∣∣
Qj=0

= 0, whereN∗
k =

PLkk‖H̃kk‖2
+N0

2
C∗
k−1

and θ̃ij = ∂θ
∂Lij

is constant (where we treatθ as a function of{Lij : ∀i 6= j}). According to (42),

we have

E


 log2


1 +

PLkk

∥∥∥H̃kk

∥∥∥
2

N0 +N∗
k




∣∣∣∣∣∣∣
Q


 =

eakE1 (ak)

ln 2
O (1) . (49)

Then, we calculate the second term in (48) and each part is calculated as follows:

E




J ′
i(Qi)

N0+N∗
i

1 +
N0+N∗

i

PLii‖H̃ii‖2

∣∣∣∣∣∣∣
Q


 =E




PLii

∥∥∥H̃ii

∥∥∥
2

(
N0 + PLii

∥∥∥H̃ii

∥∥∥
2
)
N0

∣∣∣∣∣∣∣∣
Q


O (J ′

i(Qi))

=
βi

λi

(
1− aie

aiE1 (ai)

N0

)
O (Qi)

(50)

E




N0 +N∗
j

Ljj

∥∥∥H̃jj

∥∥∥
2

∣∣∣∣∣∣∣
Q


 =

2N0

Ljj
E




1∥∥∥H̃jj

∥∥∥
2

∣∣∣∣∣∣∣
Q


O (1) =

2N0

Ljj
O (1) . (51)
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Substituting these calculation results into (48), we rewrite the PDE as
K∑

k=1

(
λk −

eakE1 (ak)

ln 2
O (1)

)
∂J̃ij (Q)

∂Qk

+
βi

λi ln 2

(
1− aie

aiE1 (ai)

N0

) K∑

l=1,l 6=i

2N0

Lll
O (Qi)

+
K∑

k=1,k 6=i,j

βk

λk ln 2

(
1− ake

akE1 (ak)

N0

)
2N0

Ljj

O (Qk) = 0.

(52)

Using 3.8.2.1of [22] and taking into account the boundary conditions, we obtain that

J̃ij (Q) =

βi

λi

(
1− aie

aiE1(ai)
N0

) K∑
l=1,l 6=i

N0

Lll

eaiE1 (ai)− λi ln 2
O
(
Q2

i

)
+

N0

Ljj

K∑

k=1,k 6=i,j

βk

λk

(
1− ake

akE1(ak)
N0

)

eakE1 (ak)− λk ln 2
O
(
Q2

k

)
.

(53)

Substituting it into (47) and exchanging the indicesi andk, we obtain the first order perturbation

(18) in Theorem 3.

APPENDIX F

PROOF OFLEMMA 3

We adopt the following argument to prove the convexity [23]:given two feasible pointsx1

andx2, defineg(t) = f(tx1 + (1− t)x2), 0 ≤ t ≤ 1, thenf(x) is a convex function ofx if and

only if g(t) is a convex function oft, which is equivalent tod
2g(t)
dt2

≥ 0 for 0 ≤ t ≤ 1. To use

this argument, we rewrite problem (20) as

min
C

f (C, δ) =

K∑

k=1

(
γkCk −

∂Ṽ (Q)

∂Qk
Rk (H,C)

)
. (54)

Consider the convex combination of two feasible solutions,C(1) =
{
C

(1)
k : ∀k

}
andC(2) =

{
C

(2)
k : ∀k

}}
, asCc =

{
Cc

k = tC
(1)
k + (1 − t)C

(2)
k : ∀k

}
and0 ≤ t ≤ 1. Whenδ is sufficiently

small, the second order derivative off (Cc, δ) is calculated as

d2f (Cc, δ)

dt2
=

K∑

k=1

(
∂Ṽ (Q)

∂Qk
ln 2

(
−P 2 − 2PZk

(P + Zk)
2 Z2

k

(
K∑

j=1

XjYj ‖Skj‖2 (C(1)
j − C

(2)
j )

(Xj − 1)2

)2

+
P

(P + Zk)Zk

K∑

j=1

(
X2

j +Xj

)
Yj ‖Skj‖2 (C(1)

j − C
(2)
j )2

(Xj − 1)3

))
,

(55)
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whereXj = 2tC
(1)
j +(1−t)C

(2)
j andZk =

∑K
j=1 ‖Skj‖2 (N0 +Nj). Whenδ is sufficiently small, the

terms in the order ofO(δ) can be ignored and we simplifyd
2f(Cc,δ)

dt2
as

d2f (Cc, δ)

dt2
≈

K∑

k=1

∂Ṽ (Q)
∂Qk

PX3
kYk

(
PN0 + ‖Skk‖2N2

)
‖Skk‖4

(
C

(1)
k − C

(2)
k

)2
ln 2

(Xk − 1)4 (P + Zk)
2 Z2

k

. (56)

It is obvious thatd
2f(Cc,δ)

dt2
> 0 in (56), and thus, the problem (20) is a convex optimization

problem for sufficiently smallδ.

APPENDIX G

PROOF OFTHEOREM 4

We prove the convergence by the fictitious game model [16]. Wefirst construct the following

capacity-price fictitious game model. The optimization problem of the fictitious capacity player

k is

max
Ck

uFW
k =

∂Ṽ (Q)

∂Qk
Rk (H,C)− γkCk +

∑

i=1,i 6=k

πikCk. (57)

The optimization problem of the fictitious price player is

max
πik

uFC
ik = −


πik −

∂
(

∂Ṽ (Q)
∂Qi

Ri (H,C)
)

∂Ck




2

. (58)

Each player in this game adopts the myopic best response (MBR) to update his strategy. From

[24], the MBR updates converge to Nash Equilibrium in the supermodular games, in which the

payoff function is supermodular in playeri’s strategy and has increasing differences between

any component of playerk’s strategy and any component of any other player’s strategy. Now,

we check if this fictitious game is supermodular. It is obvious that each player’s payoff function

is supermodular in its own one-dimensional strategy. According to the method in [16], we have
∂uFW

k

∂Ck∂πik
= 1 > 0, ∀i 6= k and the increasing difference condition is satisfied. Therefore, the

fictitious game is a supermodular game and always converges.

When δ is sufficiently small, according to Lemma 3, the problem is convex and the

supermodular game converges to the unique global optimal solution of the per-stage problem.

Furthermore, the approximation error of the priority function in Theorem 3 approaches 0 with
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sufficiently smallδ. Therefore, the supermodular game converges to the optimalsolution of

Problem 1 with sufficiently smallδ.
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