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Abstract—We consider a multihop network where a source
node must reliably deliver a set of data packets to a given
destination node. To do so, the source applies a fountain code
and floods the encoded packets through the network, until they
reach their destination or are lost in the process. We model
the probability that the destination can recover the original
transmissions from the received coded packets as a function of the
network topology and of the code redundancy, and show that our
analytical results predict the outcome of simulations very well.
These results are employed to design distributed forwarding poli-
cies that achieve a good tradeoff between the success probability
and the total number of transmissions required to advance a
packet towards the destination. We finally develop in detail the
case where intermediate relays can inject additional redundancy
in the network, provided that they have successfully decoded the
source packets.

Index Terms—Fountain codes; flooding; restricted flooding;
heuristic policies; analysis; simulation.

I. INTRODUCTION

FOUNTAIN codes [1], [2] have been introduced to achieve

reliable communications in generic networks, where the

packet loss probability may not be known a priori. The latter

condition makes fountain codes particularly well suited to

wireless networks [3], [4], where the ability to dynamically

adjust the amount of redundancy offers a means to compensate

for link outage events and communication failures [5].

In multihop wireless networks, and especially in those

conditions where a high degree of reliability is sought [6],

fountain-coded packets may be coupled with some form

of redundant network-layer transmission pattern, e.g., flood-

ing [7]. Flooded fountain codes introduce a double layer of

redundancy: on one hand, each coded packet is generated by

encoding over multiple source packets, and inherently carries

information about all of them. As a result, each coded packet

is useful not just for an intended relay, but rather it helps all

nodes downstream increase their probability to correctly invert

the fountain code. Furthermore, each coded source packet is

retransmitted by a number of relays, i.e., those that participate

in the flooding process. This double layer of redundancy

substantially increases the opportunities for each relay between

the source and the destination to correctly receive the packets,
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and thus be able to retransmit them. However, many replicas

of each packet are circulated, possibly leading to a waste of

resources.

Fountain codes have been widely considered in the literature

as a flexible error control technique in both wired and wireless

networks experiencing erasure channels. For example, the

SYNAPSE++ protocol [3] employs a fountain code to reliably

disseminate firmware over a wireless sensor network. Fountain

codes have also been shown to improve the performance of

unicast communications, provided that early acknowledgment

packets are sent in order to prevent the generation of useless

redundancy [8]. In [6], the introduction of fountain codes

in vehicular networks leads to a significant performance im-

provement compared to a simpler approach where data pack-

ets are periodically retransmitted. Delay-Tolerant Networks

(DTNs) [9] and distributed storage systems [10] also benefit

from the distribution of redundancy that comes from the use of

fountain codes. Therefore, it is important to design a procedure

to disseminate fountain-coded data through a network in an

effective yet controlled method. Ideally, such method should

exploit the double redundancy offered by coding and flooding

in order to deliver packets successfully, while at the same time

avoiding excessive packet replication and the resulting energy

wastage.

In our recent work [11], we analyzed the interplay be-

tween fountain codes and flooding, by considering both a full

flooding and a restricted flooding policy. Given the amount

of redundancy generated at the source, the number of hops,

and the number of relays that interact at each hop, we derive

the average number of transmissions required to achieve a

prescribed probability of success at the destination. The latter

is employed to analyze the interplay between the number of

transmissions and the code redundancy.

In this paper, we extend the work in [11] in several respects.

First, while we maintain the analysis simple and tractable,

we employ a more realistic physical layer model including

path loss and fading in our simulation results. We extend our

analytical results to forecast the behavior of the network in dif-

ferent topologies and under different deployment assumptions.

Our forwarding schemes are evaluated based both on a simple

error model and on a more realistic block fading model, which

validate our analytical results. Second, we propose a family

of simple policies that implement restricted flooding distribut-

edly, based only on the local decisions of each node. We also

formulate an adaptive policy that approaches the behavior of

full flooding, but with a significantly lower retransmission

overhead. Both policies combine forwarding with practical

medium access control (MAC)-level considerations that help

reduce the complexity and cost of packet forwarding.

The remainder of this paper is organized as follows. In the

next section we survey the related literature. In Section III
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we introduce our network model: we analytically characterize

the probability of success and the number of transmissions

taking place in the network under different packet forwarding

schemes, and introduce practical and distributed forwarding

policies; in Section IV, we evaluate the performance of these

policies and compare them to the results obtained from the

analytical model; in Section V we develop in detail one among

several possible extensions to our work. Finally, Section VI

concludes the paper.

II. RELATED WORK

Several works in the literature have applied fountain codes

to scenarios of interest, mostly considering end-to-end com-

munications throughout a network. In [5], an analytical model

is provided for the throughput performance of a fountain code

transmitted through either a conventional or a cooperative

multihop network, both in the delay tolerant and in the delay-

constrained case, assuming a Nakagami fading model. The

work in [12] derives an analytical expression for the average

number of received packets in delay-constrained networks,

whereas [8] measures the complexity of different fountain code

relaying strategies. In [13], the authors consider a multihop

scenario with a single node at each relay stage, and analyze

the probability distribution of the transmission time in the

presence of interference from randomly distributed nodes.

However, in [5], [8], [12], [13], multihop communications take

place through a single, fixed path determined a priori, rather

than considering a flooding scenario as we do in this paper.

In [14], erasure codes have been applied to multicast trans-

missions of short duration in a single-hop cellular scenario.

Fountain codes have also been shown to improve data dis-

semination [15], MAC layer communications [16] and reliable

transport [4] in underwater networks. Random linear packet

coding is applied to single-hop broadcast networks in [17].

Transmit power adjustment policies are proposed based either

on the performance of the worst link or on the average

performance of all links. In [18], in order to increase the

reliability of packet delivery over multihop unicast connec-

tions, a node determines the lost packets thanks to an implicit

acknowledgment procedure and retransmits them at a later

time if needed. In [19], restricted flooding is proposed, where

a node transmits with probability p after receiving the mth

copy of a message, where p is selected based on percolation

theory.

Several approaches have been proposed to mitigate the

overhead coming from the excessive transmission redundancy.

In [20], a network coding-based approach is discussed to

find the minimum forwarding probability required to achieve

a given outreach probability over random graphs. The au-

thors in [21], [22] discuss dynamic probabilistic broadcasting

schemes in MANETs: the retransmission probability is ad-

justed based on the number of neighboring nodes (the higher

the number of neighboring nodes, the lower the rebroadcasting

probability). In [23], adaptive probabilistic flooding is applied

to path discovery in multipath routing: the retransmission prob-

ability of advertisement messages is progressively reduced to

limit the flooding process. A similar scheme is also considered

in [24] to reduce transmissions in a vehicular ad hoc network,

where the rebroadcasting probability is tied to the vehicle

speed. Recently, [25] proposed that a node tunes network

coding based on packet reception probability estimates for

neighboring nodes, in order to maximize the aggregate number

of source packets decoded by all neighbors while limiting the

dissemination delay. These estimates are evaluated based on

the link quality correlation among the neighboring nodes.

In [26], lower bounds for the required number of packet

retransmissions at the MAC layer are derived in order to

support broadcast with and without applying network coding

techniques. In [27], a reliable broadcast transmission approach

based on random linear network coding is considered, in

which all source packets are initially transmitted, and once

the ACK/NACK storm has finished, the source transmits

network-coded packets to improve the performance of the

worst receiver. In [28], the authors proposed a low-complexity

and energy-efficient fractional transmission scheme (FTS)

broadcasting approach that employs fountain codes over a

multihop wireless network. Based on hop distance, a fraction

of the encoded packets to be transmitted to a particular node

is assigned among its neighboring nodes. If the sum of the

received fractions exceeds one, then the assigned fractions can

be adapted to reduce the number of redundant transmissions.

After successful decoding, a node starts transmitting additional

encoded packets.

Unlike previous work, in this paper we study the interaction

of flooding and fountain codes via a fundamental approach. We

start with a mathematically tractable model of the network per-

formance that is proven to match realistic simulations quite ac-

curately. We employ the analysis to identify desirable working

points in terms of retransmission overhead and probability of

success, and finally proceed to propose heuristic policies that

can approximate the desired probabilistic forwarding behavior,

in terms of both probability of success and overhead. Unlike

in such works as [18], [19], [23], our practical policies rely

on decisions that are made by each node in a fully distributed

manner. Moreover, unlike [20], [25]–[27], our policies do not

rely on further network coding, hence the source is in control

of the behavior of the flooding process.

III. SCENARIO DESCRIPTION, ANALYTICAL MODEL, AND

PRACTICAL FLOODING POLICIES

We consider a multihop network scenario, where a source

S has m packets to send to a given destination node D.

To protect the communication from packet losses, the source

encodes these m packets into M > m packets using a random

fountain code over the Galois field of size η, Fη , η ≥ 2. We

define E = M − m as the number of redundancy packets

injected into the network to favor the decoding process at the

destination, and to combat packet loss over the network links.

All packets are forwarded towards the destination through a

multihop network where we assume that there are r relay

stages between S and D, and each stage i consists of Ni

relays. This way, the shortest path joining S and D requires

r + 1 hops. In addition, we assume a Bernoulli error model,

whereby the probability of packet error over each link is
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constant and equal to p. While this assumption is required to

make the problem tractable, we will show in Section IV that

it is a very good approximation for more realistic link error

models.1 In the following three subsections, we will model the

forwarding process from S to D, by considering different types

of flooding. We will derive the probability that D can decode

the fountain code, as well as the number of transmissions that

the network carries out to advance the fountain code packets

towards the destination. Specifically, Section III-A focuses

on a baseline, unrestricted flooding paradigm; Section III-B

describes distributed and tunable forwarding policies that

achieve a good tradeoff between the probability of decoding

success at D and the number of transmissions in the network;

Section III-C extends the analytical model to a form of

restricted flooding, which is leveraged to provide insight on

the practical policies; finally, Section III-D comments on the

fundamental interplay between the Galois field size employed

for the fountain code and the network performance.

A. Unrestricted flooding model

We start by assuming that the forwarding paradigm adopted

in the network is a baseline full flooding, i.e., a multihop

forwarding process where every unique packet is transmitted

once by the source, and forwarded exactly once by each

node that correctly receives it. Possible collisions among the

transmissions by two or more relays of either the same or

different stages can be avoided in several ways. Feasible

measures include channel sensing, fine-tuned backoff times

and transmission pipelining [3], and typically introduce addi-

tional delays. However, we note that applications relying on

flooding to convey data through a network are most likely

concerned about the probability of successful delivery than

about the time it takes to deliver a packet. Therefore, in

this paper, we focus mainly on the probability of success,

discuss a model to measure it, and present effective distributed

ways to achieve successful packet delivery while limiting

the number of transmissions in the network. In this light, a

collision avoidance mechanism that introduces some delay is

not a restraining assumption.2 For reference, a scheme of our

network scenario is provided in Fig. 1.

We recall that, assuming at least ℓ ≥ m packets are received

by D, the probability Pe,D that D cannot decode the fountain

code is upper-bounded by [29]

Pe,D ≤ η−(ℓ−m) , ℓ ≥ m (1)

1It could be argued that allowing nodes at generic stage i to receive
transmissions from farther stages rather than just i − 1 would help improve
the probability of correct reception at stage i and, as a consequence, at the
destination as well. In our extensive set of simulations (not shown here due
to lack of space) we confirmed that this is not the case, except in a very
restricted set of scenarios with benign channels (i.e., very low p) and very
few nodes in each stage. The latter is typical of standard multi-hop routing
scenarios, which are not the focus of this paper. In all other cases, the gain is
negligible because either a) the probability of error from stage i− 2 to stage
i is very high or b) the flooding process compensates for transmission errors
and is thus the main reason behind successful reception at stage i.

2A possible alternative for collision modeling would be to incorporate the
probability of collision into the link error probability p. This entails the
analysis of the interplay between MAC- and routing-level performance, and
is left as a future extension.
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Figure 1. Reference scenario for a multihop network with multiple relay
stages between a source S and a destination D. The probability of error over
any link is equal to p.

where η is the size of the Galois field over which the code is

designed, e.g., η = 2 for a binary fountain code. If ℓ < m,

we set Pe,D = 1.

Based on the assumptions above, we now derive the prob-

ability of decoding error at D. Assume for the moment that

r = 1, i.e., there is only one relay stage between S and D,

and the length of the path from S to D is 2 hops. The event

that a given encoded packet does not reach D is equivalent to

the event that no relay receives the packet correctly, or that all

relays that received the packet fail to forward it further to D.

The probability of this event is

q1 =

N1
∑

j1=0

(

N1

j1

)

pj1(1− p)N1−j1pN1−j1 =
(

p+ (1− p)p
)N1

,

(2)

where we recall that p is the link error probability. The argu-

ment of the summation means that if N1−j1 nodes out of N1

receive the packet correctly, all these nodes fail in forwarding

it to D over the second hop. We note that the number of

nodes that fail to receive a packet at relay stage 1 follows

a binomial distribution B(N1, p, j1) with parameters N1 and

p, hence its average is N1p. Considering the degenerate cases

where p = 1, j1 = N1 (all nodes fail to receive if the link error

probability is identically 1) and when p = 0, j1 = 0 (all nodes

are successful if the link error probability is identically 0), we

note that B(N1, p, j1) should be extended to yield 1 in both

cases. We therefore define B
(

N1, p, j1
)

= 1 if p = 1, j1 = N1

or p = 0, j1 = 0, and B
(

N1, p, j1
)

=
(

N1

j1

)

pj1(1 − p)N1−j1

otherwise.

Assume now that r = 2, i.e., there are two relay stages

between S and D, respectively, containing N1 and N2 relays.

The probability that a packet is correctly received by any

given number of relays 1, 2, . . . , N2 of stage 2 depends on the

number of nodes that successfully received the same packet at

stage 1. Hence the probability that the packet does not reach

D is

q2 =

N1
∑

j1=0

N2
∑

j2=0

B
(

N1, p, j1
)

B
(

N2, p
N1−j1 , j2

)

pN2−j2 , (3)

where j1, j2 track the number of relays that failed the reception

of the packet at stages 1 and 2, respectively. We note that, for
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a given value of j1, the probability of failing to advance a

packet from stage 1 to any node in stage 2 is pN1−j1 . In the

general case, there are r relay stages between S and D, and

the expression for the probability of error can be given as

qr =

N1
∑

j1=0

N2
∑

j2=0

· · ·

Nr
∑

jr=0

B
(

N1, p, j1
)

B
(

N2, p
N1−j1 , j2

)

× · · ·

× B
(

Nr, p
Nr−1−jr−1 , jr

)

pNr−jr , (4)

where j1, j2, . . . , jr are the numbers of relays that failed the

reception of the packet at the first, second, up to the rth stage,

respectively, and therefore (Nr−1 − jr−1) is the number of

nodes which received the packet correctly at the (r−1)th relay

stage. Finally, by virtue of the approximate formula in (1), the

probability that D fails to decode the fountain code is upper-

bounded by 1 whenever D correctly receives only m or fewer

coded packets. Conversely, the probability of decoding failure

is upper-bounded as in (1) whenever at least m + 1 packets

are received. Therefore, we have the following upper bound:

Pfail(qr) ≤
m
∑

k=0

B
(

M, 1− qr, k
)

+
M
∑

k=m+1

B
(

M, 1− qr, k
)

η−(k−m)

(5)

which in non-degenerate cases can be explicitly re-written as

Pfail(qr) ≤
m
∑

k=0

(

M

k

)

qM−k
r (1− qr)

k

+

M
∑

k=m+1

(

M

k

)

qM−k
r (1− qr)

k η−(k−m) ,

(6)

where k −m is the number of extra packets received by D.

The formula in (4) does not admit a closed-form expression,

and neither do (5) and (6). However, we will now illustrate

a conveniently compact way to write (4), which will be

leveraged to compute other metrics. We start by grouping

the probabilities that a given number of relays fail packet

reception at a given stage into matrices. To do so, we define

the following probabilities

pS,j = B
(

N1, p, j
)

, pi,jk = B
(

Ni, p
Ni−1−j , k

)

, pD,k = pNr−k .

(7)

In particular, pS,j is the probability that j nodes at the first re-

lay stage fail to receive the packet from S; pi,jk is the probabil-

ity that k nodes at the ith relay stage fail to receive the packet

given that j nodes failed to receive it at stage i−1; pD,k is the

probability that the destination D fails to receive the packet,

given that k nodes (out of the available Nr nodes at stage

r) failed to receive it at stage r. We now define the column

vectors pS = [ pS,0 pS,1 · · · pS,N1
01×(Nmax−N1) ]T ,

pD = [ pD,0 pD,1 · · · pD,Nr
01×(Nmax−Nr) ]T , and

the matrix

Pi =











pi,00 · · · pi,0Ni

...
. . .

... 0(Ni−1+1)×(Nmax−Ni)

pi,Ni−10 · · · pi,Ni−1Ni

0(Nmax−Ni−1)×(Nmax+1)











,

(8)

where Nmax = maxi Ni, and we remark that pi,Ni−1Ni
= 1 is

the only non-zero element of the Nith row. Eq. (4) can now

be rewritten as

qr = pT
S

(

r
∏

i=1

Pi

)

pD , (9)

where it is intended that P1 = INmax+1, the (Nmax + 1) ×
(Nmax + 1) identity matrix. The value of qr thus derived can

be finally plugged into (6) to obtain an upper bound to the

probability of decoding the fountain code at D.

We illustrate the formulation above via a simple example.

Consider a scenario with r = 2 and N1 = N2 = 1. In this

case, pS = [1− p p]T , pD = [p 1]T , and matrix P1 is given

as

P2 =

[

B
(

1, p, 0
)

B
(

1, p, 1
)

B
(

1, 1, 0
)

B
(

1, 1, 1
)

]

=

[

(1− p) p
0 1

]

. (10)

Finally we have

q2 = pT
SP1P2pD =

[

1− p p
]

[

1− p p
0 1

] [

p
1

]

= (1− p)2p+ (1− p)p+ p .
(11)

For convenience note that, if r = 2, (3) can be rewritten as

q2 =

N1−1
∑

j1=0

N2
∑

j2=0

(

N1

j1

)

pj(1− p)N1−j1

×

(

N2

j2

)

(pN2−j1)k(1− pN1−j1)N2−j2pN2−j2+pN1 , (12)

where the last term conveys the fact that if all nodes at stage

1 fail to receive a packet from the source, the destination will

also fail to receive it. For N1 = N2 = 1 and r = 2, (12)

expands to

q2 = (1− p)2p+ (1− p)p+ 0 + p , (13)

where the four terms are computed for (j1, j2) = (0, 0), (0, 1),
(1, 0) and (1, 1), respectively. As expected, (11) equals (13),

and both equal 1− (1− p)3, i.e., the probability of error over

a 3-hop path, where the error probability over each link is p.

Along the same line of (9), we now compute the average

number of transmissions that all nodes carry out to advance a

given packet towards the destination (regardless of whether the

packet actually reaches the destination or not). Focus on relay

stage i and assume that ji−1 nodes failed the reception of the

packet at stage i−1. The conditional number of transmissions

that take place at stage i is equal to the number of nodes

that received the transmission correctly. Its average over the

distribution of the number of successful nodes at stage i can

be found as

ui|ji−1···j1 =

Ni
∑

ji=0

B
(

Ni, p
Ni−1−ji−1 , ji

)

(Ni − ji)

= Ni(1− pNi−1−ji−1) ,

(14)

Eq. (14) must be averaged over ji−1, ji−2, . . . , j1 to yield the

unconditional average number of transmissions at the ith relay
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stage. Call this quantity ui. To compute the average of (14), we

can replicate the structure of (9) by first defining the column

vectors

ti =
[

Ni Ni−1 · · · 1 0
]T

. (15)

Thus, ui = pT
S

(
∏i−1

j=0 Pj

)

ti, and the average total number of

transmissions is found as

Tavg = 1 +
r
∑

i=1

ui . (16)

We remark that u1 = N1(1 − p) and u2 = N2

(

1 − (p +
(1 − p)p)N1

)

, after which no closed-form expression can be

obtained for the remaining uis.

If we assume that each stage hosts the same number of

relays N , then Pi = P ∀i, where P is an N + 1 × N + 1
matrix, and we can simplify (9) to yield

qr = pT
SP

r−1pD , (17)

and Tavg = 1 +
∑r

i=1 p
T
SP

i−1ti.

B. Distributed Flooding Policies

In many cases, typically if the link error probability is

sufficiently low, the multiplicity of the flooding process is

excessive, and leads to several packet replicas being uselessly

transmitted, without noticeably increasing the success proba-

bility at the destination. It is therefore appropriate to design

practical flooding policies that attempt to reduce this number

of transmissions. Specifically, each node should decide locally

whether to retransmit a given packet or not, without explicit

coordination mechanisms.

We achieve this by allowing the nodes to overhear nearby

traffic to understand how many relays have retransmitted a

given packet at each stage. We design two policies for this

purpose: the first is named Predetermined Restriction (PR),

and the second is Adaptive Restriction (AR). PR is aimed

at enforcing a maximum number of transmitters per stage.

Conversely, the objective of AR is to keep the flooding

process running by adapting to the network conditions: if many

successful retransmissions are detected, fewer nodes will tend

to transmit; if overheard traffic suggests that a given packet is

not being correctly advanced to subsequent stages, more nodes

will act to support the flooding process.

For all policies, we assume the presence of a MAC protocol

that avoids collisions between retransmissions by different

relays. In practice, this can be achieved with very high

probability by having relays back off before performing a

retransmission, where the length of the backoff interval is

drawn within a sufficiently long backoff window, or by loosely

synchronizing subsequent relay stages in order to make trans-

mission pipelining possible [3]. To fix ideas, in the following

we assume the case of a backoff-based MAC protocol. We

also assume that each node listens to the channel during the

backoff period and, when its own backoff timer expires, the

decision to transmit is made based on the policies described

in the following subsections.

1) Flooding with Predetermined Restriction (PR): The PR

flooding policy prescribes that a node at a given stage should

avoid retransmitting a packet if it overhears at least one

retransmission of the same packet by any other node at the

same stage, and the SNR of this transmission is greater than

a prescribed value θr. Therefore, we can approach some

desired average maximum number of relays per stage, N̂ res,

by varying θr.

To formalize the above ideas, assume, without loss of gen-

erality, that the nodes are ordered and numbered increasingly

in subsequent relay stages, i.e., those of the first stage are

numbered from 1 to S1, those of the second stage from S1+1
to S2, and those of the ith stage from Si−1 + 1 to Si, where

Sk =
∑k

ℓ=1 Nℓ. As a packet is forwarded from stage i− 1 to

stage i, the nodes at stage i start entering backoff periods

to relay the packet, and keep listening for retransmissions

in the meantime. As a node, say j, is ready to retransmit a

packet from stage i, it will check if there exists at least one

additional relay Si−1 + 1 ≤ k ≤ Si, for which γkj ≥ θr,

where γkj is the SNR of node k’s transmission as measured

by node j. In this case the node will refrain from transmitting,

otherwise it will relay the packet to the next stage. We note

that, by increasing θr, fewer overheard retransmissions will

meet the SNR threshold; in turn, the probability that a node is

silenced decreases, and the average number of relays per stage

increases. Conversely, by decreasing θr, a node can be silenced

on average by a larger number of retransmitted packets, hence

the probability that the node will refrain from retransmitting

increases. As a result, this will limit the average number of

relays per stage.

2) Flooding with Adaptive Restriction (AR): The AR policy

is designed to achieve a high probability of success while

at the same time reducing the overhead of the full flooding

mechanism. Focusing on a given packet with sequence number

n, the AR policy proceeds over the following two steps.

Step 1: Perform a relaying step according to the PR policy.

At a generic stage i, this will result in some nodes having

relayed the packets, whereas other nodes will have refrained

from doing so according to the rules of the PR policy (see

Section III-B1). For packet n, call C
(s)
i (n) the set of the nodes

silenced at stage i: we note that the set can vary for different

packets, hence for different values of n. All silenced nodes in

C
(s)
i (n) remain in a listening state, attempting to overhear

packet n being forwarded further downstream by nodes at

stage i+ 1.

Step 2: For stage i, any node that hears packet n being

transmitted at least once from stage i+ 1 to stage i+ 2 exits

the flooding process for packet n permanently. Conversely,

the nodes that could not hear packet n being forwarded from

stage i+ 1 to stage i+ 2 assume that the forwarding process

might have been unsuccessful. Therefore, they break silence

and relay packet n from stage i to stage i+ 1.

We note that this further transmission step may result in

additional nodes that receive the packet successfully at stage

i+ 1. In the meantime these nodes will have overheard other

transmissions in their neighborhoods, and will also decide to

transmit or not according to steps 1 and 2 of the AR policy.

However, in no event will a node forward a received packet
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more than once. Therefore, the number of transmissions car-

ried out under the AR policy will be always less than or equal

to that of unrestricted flooding. Both the PR and AR policies

work based on the idea that the forwarding operations could

take advantage of some inherent MAC-level mechanisms that

are typically present in MAC protocols for wireless networks,

including idle listening and backoff. Instead of restricting such

operations to the role of informing the MAC logic, we leverage

on them to optimize the flooding performance by achieving

a good tradeoff between the probability of decoding success

at D and the number of transmissions. Further insight on this

aspect is provided in our performance evaluation in Section IV.

C. Restricted flooding model

Both the PR and the AR policies act by reducing the total

number of relays per stage, either in a fixed (PR) or in an

adaptive fashion (AR). An analytical framework to assess the

performance of these policies can be provided by extending

the model of Section III-A to include restricted flooding.

Restricted flooding is generally defined as a flooding policy

where some nodes refrain from forwarding a packet even

though they received it correctly. In this paper, we model

restricted flooding as a limit N res on the maximum number

of nodes that relay a packet at each stage.3 To simplify the

analysis, we assume that the number of successful nodes is

known to all relays of a given stage, and that some form of

arbitration takes place, in order to make sure that up to N res

relays transmit. Note that this assumption was already relaxed

in the design of our proposed heuristic policies (Section III-B).

Under the assumptions above, the analysis carried out so

far offers a straightforward way to model restricted flooding.

Assume that we have the same number of relays at each stage,

which is the case, e.g., in (17): the analysis can be easily

extended to the more general case of Eq. (9). Restricting the

maximum number of relays to N res means that whenever

more than N res relays correctly receive a packet at a given

stage, only N res of them will actually retransmit. This can be

modeled by setting the first N −N res + 1 lines of matrix P

in (17) to be equal to the vector

pres = [ p(N−Nres)0 p(N−Nres)1 · · · p(N−Nres)N ]T (18)

to yield

Pres =





















(pres)T

...

(pres)T

p(N−Nres+1)0 · · · p(N−Nres+1)N

...
. . .

...

pN0 · · · pNN





















. (19)

In the same vein, pD becomes pres
D =

[ pD,N−Nres · · · pD,N−Nres pD,N−Nres+1 · · · pD,N ]T ,

so that qresr = pT
S (Pres)

r−1
pres
D , and the probability that D

3Note that, in this model, Nres denotes the (exact) maximum number of
nodes that will forward a correctly received packet at any stage, as opposed
to the average number of nodes allowed to forward a packet at each stage in

the PR and AR policies, which was denoted as N̂res in Section III-B.

fails to decode the fountain code is Pfail(q
res
r ). To compute

the average number of transmissions in the network, we first

define the column vector

tresD =
[

N−N res · · · N−N res N−N res−1 · · · 0
]T

, (20)

and finally the average number of transmissions is found as

T res
avg = 1 +

r
∑

i=1

pT
S (Pres)

i−1
tresD . (21)

D. Selecting the Galois field size η

Before proceeding to present analysis and simulation results

in Section IV, it is useful to choose the size of the Galois

field over which the flooded fountain code is designed. We do

this by evaluating the interplay between the Galois field size

and 1− Pfail. In fact, a typical fountain code packet contains

an encoding vector that defines how many packets have been

linearly combined, and with which coefficients. Designing the

fountain code over a small Galois field (at the minimum, F2)

keeps the encoding vector short at one bit per encoded packet;

however, in this case Eq. (1) dictates that the probability of

successful decoding at the destination becomes lower for a

fixed number of redundancy packets E. Conversely, a large

Galois field (e.g., F256 as typically assumed in rateless code

design) provides a higher probability of success for equal E,

but at the same time it increases the size of each coded packet.

Given that we consider the flooding of fountain codes through

a network, where each packet is expected to be retransmitted

several times by different nodes at each hop, we need to find

a good tradeoff between the overhead yielded by the encoding

vector size, and that yielded by the number of extra packets.

Assume that each packet has the following structure: a fixed

overhead that represents generic protocol information (e.g.,

Time-To-Live and version fields, flags, etc.) of size αfix; a

sequence number that distinguishes different sequences of m
source packets, of size αseq; and an encoding vector of m ×
ξ bits, where ξ = log2 η, and η is defined in (1); finally,

a payload of L bits. We calculate the transmission overhead

affecting a sequence of m source packets as

Otx =
(m+ E)(αfix + αseq +mξ) + E · L

(m+ E)(αfix + αseq +mξ + L)
. (22)

Fig. 2 shows a plot of 1 − Pfail(qr) vs. Otx for different

values of ξ, E and 1 − p. The packet parameters are αfix =
24 bits, αseq = 8 bits, L = 256 bits. For each value of 1−p, a

set of markers of the same color is shown; the set is spanned

from bottom-left to top-right by increasing ξ from 1 to 8. Three

sets of curves are shown, respectively for E = 1, E = 4
and E = 8: a curly brace encompasses the horizontal span

of each set. As expected, the probability of success increases

with increasing ξ, and with increasing E for fixed ξ. However,

both improvements come at the cost of an increase in Otx.

While the increase of Otx with E is expected and depends

on the configuration of the code, the value of ξ can still be

optimized. In particular, we observe that 1−Pfail(qr) remains

almost constant after ξ = 4. Therefore, we will fix this value

throughout the rest of this paper.
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Figure 2. 1 − Pfail(qr) vs. Otx for different values of ξ, E and of the
probability of link error p. For each value of p, a set of markers of the same
color is shown; the set is spanned from bottom-left to top-right by increasing
ξ from 1 to 8. The results show no significant improvement in 1−Pfail(qr)
for ξ ≥ 4.

IV. NUMERICAL RESULTS

A. Simulation scenario

We now present some results related to the flooding of foun-

tain codes through a multihop network. We will show that our

analytical model, albeit based on a simple uniform Bernoulli

error process, matches simulations based on a more realistic

Rayleigh fading propagation model with good accuracy, pro-

vided that an appropriate map between the error probability p
of the Bernoulli model and the average probability of error in

the Rayleigh fading scenario is used.

The simulations are set up as follows. We represent each

relay stage as a set of nodes whose position is drawn at random

within a cell of size 20 m × 60 m, where the centers of any

two nearest cells are ∆ = 60 m apart. This scenario makes

it possible to test that our analysis is still valid even after

removing one of the assumptions of Section III, namely that

any two nodes belonging to subsequent relay stages are always

connected. The source S and the destination D are located,

respectively, at the center of the first and last cells. We assume

that all nodes transmit with a power PT . Therefore, if two

nodes i and j are located at a distance dij , the Signal-to-

Noise Ratio (SNR) γij of the link between the two nodes can

be computed as

γij = ρij PT d−α
ij /PN (23)

where α is the path-loss exponent, ρij is an exponentially

distributed power fading coefficient of average value 1 (which

corresponds to a Rayleigh fading amplitude) representing the

fading realization on the link from i to j, and PN is the noise

power. We assume that a transmission from i to j is successful

if and only if γij ≥ θ, where θ is a minimum SNR threshold.

In order to compare the Rayleigh fading simulations with

the Bernoulli link error model presented in Section III, we map

the parameter p of the Bernoulli model to the average error

probability computed via a stochastic geometry argument.

Consider two nodes i and j, where i belongs to stage ℓ,

ℓ = 1, 2, . . . , r − 1 and j to stage ℓ + 1. Without loss of

generality, let ℓ = 1, i.e., focus on the first and second relay

stages. Call (xi, yi) and (xj , yj) the coordinates of nodes i
and j, and assume that they take values in [0, Xi], [0, Yi],
[∆,∆+Xj ], [0, Yj ], respectively. In our simulation scenario,

Xi = Xj = 20 m, Yi = Yj = 60 m and ∆ = 60 m. The map

is obtained as follows:

p =

∫ Xi

0

dxi

∫ Yi

0

dyi

∫ ∆+Xj

∆

dxj

∫ Yj

0

dyj

∫ +∞

0

dρij
(

e−ρij

Ai Aj

1

[

ρij PT d−k
ij

PN

< θ

]

)

, (24)

where Ai = XiYi, Aj = XjYj , e−ρ/(Ai Aj) is the joint

distribution of fading and of the locations of nodes i and

j, and 1[ · ] denotes the indicator function, which returns 1

whenever the argument is true. We remark that (24) computes

the average value of the indicator function over all random

parameters that concur to the computation of the link error

probability. Such an average is by definition the probability of

a Bernoulli event [30, Section 3.1], which is fully in line with

our Bernoulli link error probability model. In the following,

we set α = 2, PT = 34 dBm and PN = −17 dBm, we

consider the network to be composed of r = 5 relay stages,

and we assume that there are exactly 10 nodes in any stage,

i.e., N1 = · · · = Nr = 10. Different probabilities of success

are obtained by varying θ between 0 and 20 dB. All results

are averaged over 2000 random draws of the nodes’ positions,

and over 10 different fading realizations for each position.

In the next Subsection, we will discuss the performance

of flooded fountain codes in the presence of both full and

restricted flooding. In Subsection IV-C, we will discuss the

performance of our proposed practical policies, while in

subsection IV-D, we will compare these policies with the

restricted flooding model. In Section V, we show the flexibility

of our formulation by extending the analysis to the case of a

“helper” node injecting additional redundancy in the network,

and discuss the optimal placement of that node.

B. Performance of fountain codes under unrestricted flooding

We start from Fig. 3, which shows 1 − Pfail(qr) vs. p in

the case of unrestricted flooding, by comparing our analytical

model against Rayleigh fading simulation outcomes, for two

different values of E. We observe that the probability of

decoding success at the destination for E = 8 remains

practically equal to 1 for p ≤ 0.75, after which it sharply

falls and becomes practically 0 for p ≥ 0.85 due to the

excessive number of forwarding errors. The anticipated effect

of a lower number of redundancy packets, for E = 2, is that

the probability of success is practically 1 only for p ≤ 0.5,

and the transition to 0 is also smoother. In both cases, Fig. 3

shows a very good agreement between the simulations and the

analytical model.

A second metric of interest for characterizing the network

behavior is the average number of nodes that successfully

receive a given packet at each relay stage for different values

of p. This metric is depicted in Fig. 4. The results show that

the number of successful nodes at each stage increases for
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Figure 3. Success probability 1− Pfail(qr) vs. p for m = 10, r = 5 and
N = 10, for varying number of redundancy packets, E. The probability that
the destination can decode the fountain code, mainly driven by E, dominates
the performance for sufficiently low values of p.
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Figure 4. Average number of nodes that received a given packet correctly
as a function of the relay stage (from 1 to 5) for different values of p. For
sufficiently high link error probability (p = 0.8), in every stage there exist
some nodes that fail to receive a given packet.
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Figure 5. Probability of decoding success at D as a function of p for different

combinations of N̂res and Nres, for the PR and the AR policies, compared
to the analysis for unrestricted flooding.
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Figure 6. Average number of transmissions as a function of p for the PR

policy for different values of N̂res, compared to the analysis for unrestricted
flooding.

decreasing p and that, even for moderately high values of p
(up to 0.6 in Fig. 4), practically all Nr = 10 nodes in the

last relay stage have correctly received the packet. Conversely,

p = 0.8 reduces the number of correct transmissions, and it

is difficult for the flooding process to involve several nodes

before the packet traverses the last relay stage. In all cases,

the simulations match the analysis very well.

One of the main conclusions from the previous results is

that 1 − Pfail(qr) remains equal to 1 even for significantly

high values of p. This further motivates the design of practical

policies that achieve the probability of success of unrestricted

flooding, while requiring fewer transmissions. The following

subsection presents the performance evaluation of the PR and

AR policies, introduced in Section III-B1 and III-B2.

C. Performance of the PR and AR policies

The behavior of the PR and AR policies is simulated by

assuming the Rayleigh fading propagation model discussed

in Section IV-A, and compared to the analytical model for

unrestricted flooding via the map for p given in (24).

Fig. 5 shows a plot of the probability of correct decoding

at D against p obtained via the simulation of the PR and

AR policies, compared to the unrestricted flooding analysis.

For the latter, this is equivalent to 1 − Pfail(qr). The PR and

AR curves are plotted for different values of N̂ res. There

are N = 10 nodes in all relay stages, and the number

of redundancy packets transmitted by the source S is fixed

to E = 4. Considering the PR policy, we observe that

increasing the N̂ res parameter (by choosing θr as explained

in Section III-B1) correspondingly increases the number of

relays that are allowed to re-forward a packet at each stage. For

example, according to our simulation setup, setting θr ≈ 40 dB

corresponds to N res = 8, whereas θr ≈ 21 dB corresponds

to N res = 2. Increasing N̂ res by increasing θr progressively

improves the probability of success as a function of p, until

it finally matches that of unrestricted flooding for N̂ res = 10.

Contrary to the PR policy, the AR policy is adaptive. Posing
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Figure 7. Average number of transmissions for a single packet carried out

by the AR policy as a function of p for different values of N̂res, compared
to the number of transmissions of unrestricted flooding.

restrictions on the number of forwarders via N̂ res makes the

policy react by allowing more silenced relays to retransmit,

in case they fail to hear relays at the next stage re-forward

a packet. Therefore, as we observe from Fig. 5, the success

probability of the AR policy is always comparable to that

of unrestricted flooding. This proves the effectiveness of the

policy at compensating for forwarding errors.

It is interesting to evaluate the behavior of the PR and AR

policies in terms of the number of transmissions performed per

packet carried through the network. This metric is depicted in

Fig. 6 for PR, and shows the expected behavior that a higher

value of N̂ res results in more relays being activated per stage,

hence in more transmissions. For the same configurations

shown in Fig. 6, we observe a steady increase in the number

of transmissions. For N̂ res = 10, PR transmits practically as

many packets as unrestricted flooding. A different behavior is

observed for the average number of transmissions per packet

of the AR policy as a function of p (Fig. 7). When p < 0.2,

the low probability of error makes the choice of N̂ res = 4 very

inefficient, as in this condition it is highly likely that the nodes

will overhear other transmissions, refrain from transmitting,

and hear the packet be correctly retransmitted by the nodes

at the next stage. Instead, only a few relays will suffice to

correctly convey a packet to D. In this respect choosing, e.g.,

N̂ res = 2 would achieve very good success probability with

about half the transmissions compared to the case N̂ res = 4.

The ranking among the curves is progressively inverted when p
increases, as in this case more relays are needed to guarantee

success. For example, for p = 0.5, N̂ res = 4 yields fewer

transmissions than even N̂ res = 1 (which is too restrictive,

and often causes several silenced nodes to transmit, after they

fail to hear the relays at the next stage forward the packets

further on). Fig. 7 also suggests that N̂ res = 2 and N̂ res = 3
are good choices for almost all values of p, except perhaps

if p < 0.2. Finally, note that the AR policy performs similar

to unrestricted flooding in terms of probability of successful

decoding at D (Fig. 5), but requires much fewer transmissions

to attain this, as confirmed by Fig. 7.
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Figure 8. Interplay between the probability of decoding success at D and
the average number of transmissions achieved by the PR policy, compared to

restricted flooding, for p = 0.5 and for different values of Nres, N̂res, and
E. Curves are spanned from left to right by increasing Nres (for restricted

flooding) or N̂res (for the PR policy).

D. Insight from the restricted flooding model

The restricted flooding model described in Section III-C

offers a good means to understand the behavior of the PR and

AR policy. In Fig. 8, we consider the interplay between the

probability of decoding success at D and the number of trans-

missions performed in the whole network. The graph shows

a comparison between restricted flooding (lines) and the PR

policy (markers), for p = 0.5 and for different values of N res,

N̂ res and E. The restricted flooding curves are spanned from

left to right by increasing N res, the PR curves by increasing

N̂ res: in both cases the effect is to increase the probability of

decoding success at the price of an increase in the number of

transmissions. The figure marks four choices of the (N̂ res, E)
pairs that achieve a probability of success of at least 0.9.

We observe that the PR policy is an effective distributed

implementation of restricted flooding, and that it helps achieve

the same performance in terms of number of transmissions, at

the price of a very small decrease in the success probability,

mainly due to the distributed implementation. In any event,

the mismatch becomes negligible for N̂ res ≥ 3.

Fig. 9 compares the performance of the AR policy against

the analysis of restricted flooding for p = 0.5 and for different

values of N res, N̂ res and E. The plot suggests that the AR

policy behavior typically leads to an increased number of

transmissions. However, this is compensated by the advantage

of a higher probability of success. This is especially the case

for low values of E, which implies that the typical overhead

achieved by the AR policy is lower (see also Fig. 2). Once

the probability of success has achieved a value of about 1,

a further increase of N̂ res yields a negligible improvement

and, as expected, causes the number of transmissions to

increase. In any event, the increase is limited with respect

to plain restricted flooding, as the AR policy achieves a very

high probability of success already for low values of E. For

example, for E = 2 the AR policy already attains a probability

of success close to 1, and requires fewer transmissions than

plain restricted flooding in order to achieve the same result.
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P hlp
fail (qr, qv) ≤

m
∑

j=0

kmax
∑

k=0

(

M

j

)

qM−j
r (1− qr)

j

(

Eh

k

)

qEh−k
v (1− qv)

k +

M
∑

j=jmin

Eh
∑

k=kmin

(

M

j

)

qM−j
r (1− qr)

j

(

Eh

k

)

qEh−k
v (1− qv)

kη−j+k−m

(28)
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Figure 9. Interplay between the probability of decoding success at D and
the average number of transmissions achieved by the AR policy, compared to

restricted flooding, for p = 0.5 and for different values of Nres, N̂res, and
E. Curves are spanned from left to right by increasing Nres (for restricted
flooding).

V. EXTENSION: HELPER NODES

The study presented in this paper considers fountain-coded

data flooded through a network up to a given destination, and

provides fundamental insights on the interplay between the

probability of success and the number of transmissions re-

quired to achieve it. Two policies are proposed to optimize the

flooding process by reducing the total number of transmissions

without decreasing the probability of success. The study lends

itself to several extensions, in terms of both functionality and

modeling. In the following subsection, we extend the study by

allowing relays that successfully decoded the fountain-coded

packets from the source to become “helper nodes,” and inject

additional redundancy. In general, this redundancy will be

different from that sent by the source, and thus it will help

the nodes downstream decode the source packets.

A. Additional redundancy from intermediate “helper” nodes

In the following, we assume that there exists one node

that received enough packets to decode the fountain code and

reconstruct the original information sent by the source S. This

node becomes able to inject additional redundancy packets. We

call this node a helper node, and refer to it via the subscript h.

We will now elaborate on the performance of the network in

the presence of a helper, provide design guidelines for where

this node should be placed, and discuss the utility yielded by

the presence of additional helper nodes.

We start by noting that node h must belong to one of the

relay stages between the source S and the destination D. In

particular, we assume that out of the r stages that separate S
from D, there are u stages between S and h, and v stages

between h and D, so that r = u + v + 1. After successful

decoding, h transmits Eh additional redundancy packets, in

order to increase the probability of successful decoding at D.

For this analysis, we assume that only one helper node exists

in the network.

We start from the probabilities qu that a packet fails to reach

node h after u relay stages, and qv that D fails to receive

an extra redundancy packet transmitted by h; using the same

formulation of (9), we can write

qu = pT
S

(

u
∏

i=1

Pi

)

pD , qv = pT
S

(

v
∏

i=1

Pi

)

pD . (25)

The probability of decoding failure at the relay stage of the

helper node is found via qu as

Pfail(qu) ≤

m
∑

j=0

(

M

j

)

qM−j
u (1− qu)

j

+

M
∑

j=m+1

(

M

j

)

qM−j
u (1− qu)

j η−(j−m)

(26)

The probability that at least one node successfully decodes

the fountain code (out of the N nodes belonging to the relay

stage of node h) is 1− Pfail(qu)
N

. Now, a fountain decoding

failure occurs at D in one of the following two cases: i) h
fails to decode the fountain code and thus cannot help: in this

case, D may fail to decode after the M packets transmitted

by S according to the same arguments in Section III-A; ii) h
successfully decodes the fountain-coded packets received from

S and floods Eh extra redundancy packets towards D, but D
still fails to decode. The total probability of failure is finally

upper-bounded by

(

1−Pfail(qu)
Nu+1

)

P hlp
fail (qr, qv)+Pfail(qu)

Nu+1Pfail(qr), (27)

where P hlp
fail (qr, qv) is the probability of fountain decoding

failure at D, given the probability qr that D fails the reception

of a packet from S, and the probability qv that D fails a

reception from h. As in (6), we distinguish between two

cases, namely that D receives up to m packets and that D
receives more than m packets. In both cases, the packets may

either come only from S or be a combination of packets

from S and h. We have the formula in Eq. (28), where

kmax = min{Eh,m − j}, jmin = max{0,m + 1 − Eh} and

kmin = max{0,m+1− j}. In the computation of the average

number of transmissions T hlp
avg in the presence of h, we need

to account for the extra effort paid by the network to forward

h’s packets. We have

T hlp
avg = MTavg(S → D) + EhTavg(h → D) , (29)

where Tavg(S → D) = 1 +
∑r

i=1 p
T
S

(

∏i−1
j=0 Pj

)

ti and

Tavg(h → D) = 1 +
∑v

i=1 p
T
S

(

∏i−1
j=0 Pj

)

ti respectively
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Figure 10. Analysis and simulation of 1 − Pfail(qr) vs relay stage in the
case Ni = N = 10 ∀i, for m = 10, r = 5, and E = 1, for varying
number of redundancy packets Eh from the extra transmitting node. For
higher values of the link error probability p, a helper node located at stage
r = 4 yields better probability of success, whereas for lower values of p,
r = 3 is a better choice.
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Figure 11. Interplay between 1− Pfail(q
res
r ) and T res

avg for the case where
only the source S transmits compared to the case with an extra helper node.
For the former, we consider the analysis in Section III-C for different values
of E; for the latter, we show simulation results for different (Nres, E,Eh)
triples, for p = 0.5. Curves are spanned from left to right by increasing
Nres.

represent the average number of transmissions from S to D
and the average number of transmissions from h to D.

Fig. 10 plots the probability of successful decoding at the

destination in the presence of a helper node, as a function of

the relay stage where the helper is located, and for different

values of the link error probability p, where N = 10, r = 5
and E = 1. We observe that the actual value of the success

probability increases with the number of redundancy packets

sent by h, Eh, and that the best performance for each value

of p depends on the relay stage where h is located.

For example, consider the case of p = 0.7. Choosing to

have h at stage 4 would make the success probability achieve

a value of ≈1 for Eh = 8 packets. However, this is not the

case if the helper node h is placed at any other relay stage,

especially at the 1st or 5th stage. Similarly, for p = 0.6 and,

say, Eh = 3, having the helper node at stage 3 achieves a

probability of success very close to 1, whereas a placement in

any other stage would be less effective.

While the position of node h that maximizes the success

probability depends also on N and E, the example above

shows our point that h should not be located too close to

S or D. The intuition behind the above result is that if h
were too close to S, it would not benefit from the flooding

of source packets and the higher decoding probability that

results. Conversely, if h were too close to D, any sufficiently

high probability of error would make the packet flooding

process die out before reaching h. In turn, h would not be

able to reconstruct the source information and inject new

redundancy packets. Moreover, even if h could decode the

message, extra redundancy packets would not benefit from the

flooding process on the way to the destination.

Assuming that h is located at stage 4, in Fig. 11 we show

the interplay between the probability of decoding success at D
and the number of transmissions in the network in the presence

of h. We consider restricted flooding (see Section III-C) and

plot different curves, each for a different value of E. All

curves are spanned from left to right by increasing N res. In

addition to these curves, we plot a set of points described

by the triplets (N res, E,Eh), which correspond to the cases

where a helper node is present. We observe that the inclusion

of h helps reduce the average number of transmissions (where

the saving is larger for higher values of E). In fact, the

best probability of success for the same total redundancy

E+Eh would be achieved if S sent all the redundancy itself.

However, this would also lead to the largest possible number of

transmissions because of the flooding process. Having a helper

node between S and D helps save considerable resources

by reducing the total transmissions while not harming the

probability of success. This demonstrates the feasibility of the

helper node solution.

We now consider the possibility of having either limited

or unlimited helper nodes, and to allow each helper to inject

either a limited or an unlimited number of redundancy packets.

More specifically, in the same simulation scenario consid-

ered so far, we allow any intermediate node that correctly

received a sufficient number of packets from S to become a

potential helper. When a helper injects additional redundancy

packets, these may be received by intermediate nodes and

thereby generate additional helpers in a sort of avalanche

effect. Helpers act only if D failed to decode the fountain

code via the source packets relayed by the network. In this

case, we pick a helper node at random and let it transmit

one redundancy packet each time. This packet will be flooded

through the network between the helper and D and, if received

by D, it will help decoding the fountain coded packets of S.

The duration of this process and the set of helper nodes are

regulated by the following four policies:

1) Limited number of helpers, limited redundancy per helper:

only nodes that decoded the fountain code using the packets

received from S can become helpers (no avalanche). Only one

redundancy packet can be transmitted by each helper.

2) Unlimited number of helpers, limited redundancy per
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Figure 12. Probability of decoding success at D against p for different helper
policies. The best performance is achieved when one or more helper nodes
are allowed to send an unlimited number of redundancy packets. Nres = 6,
E = 2.
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Figure 13. Conditional average number of transmissions per packet against p,
for the only cases where helper nodes are needed to achieve correct decoding
at D. The most aggressive helper policies experience failure only if p is
sufficiently high to avoid that any helpers actually exist. Nres = 6, E = 2.

helper: any node that decoded the fountain code using any set

of packets, including those sent by other helpers, can become a

helper itself (avalanche allowed). Only one redundancy packet

can be transmitted by each helper.

3) Limited number of helpers, Unlimited redundancy per

helper: helper avalanche not allowed, helpers can transmit an

unlimited4 number of redundancy packets, until the destination

decodes the packet successfully.

4) Unlimited number of helpers, Unlimited redundancy per

helper: helper avalanche allowed, helpers can transmit an

unlimited number of redundancy packets.

We compare the four policies above with the case of a single

helper node chosen at random in the network, and allowed

to transmit unlimited redundancy packets, akin to the case

discussed for Figs. 10 and 11.

Fig. 12 shows the probability of successful decoding at D
for N res = 6 and E = 2. The leftmost curve corresponds

to the case where only S transmits. Any helper node policy

provides better performance. Specifically, the policies allowing

only limited redundancy per helper start failing more often for

p ≥ 0.7, as transmission failures prevent D from receiving

the helper packets; moreover, it becomes increasingly less

likely that there are any helpers at all. Conversely, the policies

that allow unlimited redundancy per helper achieve a very

good performance. In particular, the policy allowing unlimited

helpers and redundancy per helper only fails in those cases

where no helper is present in the network.

The cost of the improvement in the probability of success

is measured by the number of transmissions carried out to

relay each packet in the network. For those cases where the

helper nodes actually transmit, this metric is shown in Fig. 13.

The policies with limited redundancy per helper progressively

decrease their number of transmissions for p ≥ 0.7, supporting

the discussion above. Conversely, the policies allowing unlim-

4Allowing an unlimited number of redundancy packet transmissions per
helper implies the design of a stopping rule or protocol, so that the destination
can communicate that the fountain code has been correctly decoded. The
design of such a rule is beyond the scope of this paper.
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Figure 14. Average total number of transmissions per packet against p,
including both the cases where helpers node are required and the cases where
they are not. Nres = 6, E = 2.

ited redundancy keep increasing the number of transmissions

until p is sufficiently high to prevent the generation of helpers

in the network. The total average number of transmissions in

Fig. 14 (taken over both the cases where helpers act and those

where they do not), further confirms the above discussion, and

shows that the largest number of transmissions is reached for

very high values of p, as expected.

We remark that a helper node injects redundancy packets

only when it has successfully decoded the source packets.

Removing the latter constraint would mean that the injected

redundancy could only help recover the set of source packets

originally encoded into the fountain-coded packets received

by the helper. The evaluation of this case is left as a future

extension.

VI. CONCLUSIONS

We considered the flooding of fountain-coded packets

through a multihop network, and analytically determined the
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probability that the destination can recover the original data

packets as a function of the number of nodes in the network,

of the link error probability and of the amount of redundancy

generated by the code. We showed that our model matches

simulation results very well. Based on the conclusions drawn

from the model, we designed practical, distributed policies

that achieve the same success probability performance while

requiring fewer (re)transmissions to advance a packet through

the network. We measured the performance of these policies

and justified their behavior in light of an analytical model for

flooding under a restriction on the number of relays per hop.

Among several possible extensions to this work, we con-

sidered the case of intermediate relays being able to decode

the source packets and thereby inject additional redundancy

in the network. We thoroughly developed and evaluated this

case. Future extensions may involve, e.g., the inclusion of

plain retransmissions (without decoding the fountain code) or

the explicit modeling of MAC-layer issues such as backoff

mechanisms, interference and collisions.
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