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Asymptotic Outage Analysis of HARQ-IR over

Time-Correlated Nakagami-m Fading Channels
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Abstract

In this paper, outage performance of hybrid automatic repeat request with incremental redundancy

(HARQ-IR) is analyzed. Unlike prior analyses, time-correlated Nakagami-m fading channel is consid-

ered. The outage analysis thus involves the probability distribution analysis of a product of multiple

correlated shifted Gamma random variables and is more challenging than prior analyses. Based on

the finding of the conditional independence of the received signal-to-noise ratios (SNRs), the outage

probability is exactly derived by using conditional Mellin transform. Specifically, the outage probability

of HARQ-IR under time-correlated Nakagami-m fading channels can be written as a weighted sum of

outage probabilities of HARQ-IR over independent Nakagami fading channels, where the weightings are

determined by a negative multinomial distribution. This result enables not only an efficient truncation

approximation of the outage probability with uniform convergence but also asymptotic outage analysis

to further extract clear insights which have never been discovered for HARQ-IR even under fast fading

channels. The asymptotic outage probability is then derived in a simple form which clearly quantifies

the impacts of transmit powers, channel time correlation and information transmission rate. It is proved

that the asymptotic outage probability is an inverse power function of the product of transmission

powers in all HARQ rounds, an increasing function of the channel time correlation coefficients, and a

monotonically increasing and convex function of information transmission rate. The simple expression

of the asymptotic result enables optimal power allocation and optimal rate selection of HARQ-IR with

low complexity. Finally, numerical results are provided to verify our analytical results and justify the

application of the asymptotic result for optimal system design.
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Hybrid automatic repeat request with incremental redundancy, time correlation, Nakagami-m fading,

asymptotic outage analysis, product of multiple random variables.

I. INTRODUCTION

Recently, hybrid automatic repeat request (HARQ) technique has found wide applications

in wireless communications due to its high potential for reliable transmissions. It has been

proved from an information-theoretic view in [1] that HARQ with incremental redundancy

(HARQ-IR) can achieve the ergodic capacity in Gaussian collision channels. It also provides

superior performance over other types of HARQ since extra coding gain is obtained through

code combining. Thus this paper focuses on the analysis of HARQ-IR. As shown in [2], the

most fundamental metric to evaluate the performance of HARQ-IR is outage probability and its

analysis essentially turns to determine the cumulative distribution function (CDF) of accumulated

mutual information.

In prior literature, various methods have been proposed to derive the CDF of accumulated

mutual information for HARQ-IR under either quasi-static [3], [4] or fast fading channels [5]–

[14]. To be more specific, for quasi-static fading channels where the same channel realization

is experienced by the transmitted signal in each HARQ round, the CDF of accumulated mu-

tual information is easy to be derived because of the simplicity of handling only one single

random variable (RV). Hereby, [3] and [4] have conducted average rate analysis and power

optimization for HARQ-IR, respectively. Unfortunately, the analytical results under quasi-static

fading channels are only applicable to low mobility environment. In high mobility environment,

the transmitted signals among all HARQ rounds would experience fast fading channels, where

the channel responses vary independently from one transmission to another. Under fast fading

channels, the derivation of the CDF of accumulated mutual information essentially turns to

determine the distribution of the product of multiple independent shifted RVs. There are several

approaches proposed to tackle this problem in the literature. For example, in [5]–[7], Log-

normal approximation is proposed based on central limit theorem (CLT). In [8]–[10], a lower

bound and an upper bound of the CDF are derived based on Jensen’s inequality and Minkowski

inequality, respectively. To calculate the exact CDF, Mellin transform and multi-fold convolution

have been applied in [11], [12] and [13] respectively. Specifically, based on Mellin transform,

[11] derives the exact CDF in terms of generalized Fox’s H function. The analytical results

are then applied for outage analysis in [12]. In [13], noticing that the accumulated mutual
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information is a sum of independent RVs under fast fading channels, the exact CDF is thus

derived by using multi-fold convolution. Moreover, by associating the analytical results in [13]

with matrix exponential distribution through Laplace transform, [14] approximates the CDF of

accumulated mutual information to a matrix exponential distribution. Unfortunately, the exact

results in [11]–[13] are too complicated to provide meaningful insights due to difficulties in

handling generalized Fox’s H function and multi-fold integrals, while the approximated results

in [5]–[7] and [14] involve certain numerical calculations which also hinder the extraction of

clear insights.

The analysis of HARQ-IR becomes more challenging while considering time-correlated fading

channels, which usually occur in low-to-medium mobility environment, because a product of

multiple shifted correlated RVs is involved in the CDF of accumulated mutual information. To

the best of our knowledge, there are only few approximation approaches available to analyze

the performance of HARQ-IR over time-correlated fading channels, that is, Log-normal ap-

proximation [15], polynomial fitting technique [16] and inverse moment matching method [17].

Unfortunately, the Log-normal approximation in [15] is inaccurate when the fading channels

have medium-to-high time correlation. Although the results in [16] and [17] usually can achieve

a good approximation of the CDF of accumulated mutual information, their tightness is proved

in mean square error (MSE) sense. It does not necessarily imply that the approximation error

always approaches to zero and the occurrence of inaccuracy is found especially under low outage

probability/hign signal-to-noise ratio (SNR). In addition, the approximated results in [16], [17]

are still complicated with little insights, thus limiting their applications in practical system design.

In this paper, asymptotic outage analysis is conducted to thoroughly investigate the perfor-

mance of HARQ-IR over time-correlated Nakagami-m fading channels with meaningful insights.

Based on our finding that the received SNRs in multiple HARQ transmissions are conditionally

independent given a certain RV, the CDF of accumulated mutual information can be exactly

derived by using conditional Mellin transform. With the result, the outage probability can be

derived as a weighted sum of outage probabilities of HARQ-IR over independent Nakagami

fading channels, where the weightings are determined by a negative multinomial distribution. A

truncation approximation with uniform convergence is then proposed to ease the computation of

the exact outage probability. Notice that the uniform convergence is stronger than the MSE con-

vergence in [16], [17] and thus offers higher accuracy in the approximation. The analytical result

in this paper also enables the asymptotic outage analysis, which has never been conducted for
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HARQ-IR even under fast fading channels. More specifically, the asymptotic outage probability is

derived in a simple form which clearly quantifies the impacts of transmission powers in multiple

transmissions, channel time correlation and information transmission rate. It is also proved that

the asymptotic outage probability is an inverse power function of the product of transmission

powers in all HARQ rounds, an increasing function of the channel time correlation coefficients,

and a monotonically increasing and convex function of information transmission rate. The simple

expression of the asymptotic result enables optimal power allocation and optimal rate selection

of HARQ-IR through plenty of readily available optimization techniques with low complexity.

Finally, numerical results are provided to verify our analytical results and justify the application

of the asymptotic result for optimal system design.

The remainder of this paper is organized as follows. Section II introduces the system model

and formulates the outage probability. The probability distribution of the product of multiple

correlated shifted RVs which is necessary for outage analysis is derived and the exact outage

probability is given in Section III. Asymptotic outage probability is then derived in a simple form

and meaningful insights are shown in Section IV. In Section V, numerical results are presented

for validation and discussion. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND OUTAGE FORMULATION

A point-to-point HARQ-IR enabled system operating over time-correlated Nakagami-m fading

channels is considered in this paper. The details of the system are introduced as follows.

A. HARQ-IR Protocol

Following HARQ-IR protocol, the source first encodes every b-bits information message into

K codewords each with length of L, where K denotes the maximum allowable number of

transmissions for each message. As a result, the initial coding rate is c = b/L [18]. The K

codewords will be sequentially transmitted to the destination until the message is successfully

decoded. In each transmission, the previously received codewords are combined with the most

recently received codeword for joint decoding. If successful, an acknowledgement (ACK) mes-

sage is fed back from the destination to the source and the source then moves to the transmission

of the next information message. Otherwise, a negative acknowledgement (NACK) message is

fed back from the destination to the source and the source transmits the next codeword until

the maximum number of transmissions K is reached. Similarly to the analyses in the literature
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[12]–[14], error-free feedback channels are assumed here, that is, all feedback messages can be

successfully decoded.

B. Time-Correlated Nakagami-m Fading Channels

Denote xk as the kth codeword with length of L. It is transmitted over a block fading channel,

i.e., each symbol of xk experiences an identical channel realization during the kth transmission.

Therefore, the signal received in the kth transmission is given by

yk = hkxk + nk, (1)

where nk denotes a complex additive white Gaussian noise (AWGN) vector with zero mean

vector and covariance matrix N0IL, i.e., nk ∼ CN (0,N0IL), IL represents an L × L identity

matrix, and hk denotes the block fading channel coefficient in the kth transmission.

Notice that Nakagami-m fading is a general channel model whose parameters can be adjusted

to fit a variety of empirical measurements [19], e.g., it covers one-sided Gaussian channel and

Rayleigh fading as special cases by setting m = 1
2

and m = 1 respectively. It is thus considered

here. Unlike most of the prior analyses, time-correlated fading channels are considered, that is,

the channel coefficients among the K transmissions are correlated. The time correlation usually

occurs in low-to-medium mobility environment [20]. Herein, a widely used Nakagami-m fading

channel model with generalized correlation is adopted and the channel magnitude |hk| is written

as [21]–[23]

|hk| =
√

σk
2

m

∥
∥
∥
∥
∥
∥
∥
∥
∥

√

1− λk
2








ϑk,1

...

ϑk,m








+ λk








ϑ0,1

...

ϑ0,m








∥
∥
∥
∥
∥
∥
∥
∥
∥

, (2)

where ‖·‖ represents ℓ2 norm, ϑk,l and ϑ0,l are independent circularly-symmetric complex Gaus-

sian random variables (RVs) with zero mean and unit variance, i.e., ϑ0,l, ϑk,l ∼ CN (0, 1), m

represents the fading order that indicates the severity of fading channels, σk
2 denotes Nakagami

spread and is equal to the expectation of the squared channel magnitude, i.e., E{|hk|2} = σk
2,

and λ = (λ1, λ2, · · · , λK) specifies the generalized time correlation among fading channels of all

HARQ transmissions [21]. Under this model, the magnitude of channel coefficient |hk| follows

a Nakagami-m distribution, i.e., |hk| ∼ Nakagami(m, σk
2), and the channel magnitudes |hl|
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and |hk| are correlated. Moreover, the cross correlation coefficient between the squared channel

magnitudes |hl|2 and |hk|2 is determined by the time correlation coefficients λ as [21]

E
(
|hl|2|hk|2

)
− E

(
|hl|2

)
E
(
|hk|2

)

√

Var
(
|hl|2

)
Var

(
|hk|2

)
= λl

2λk
2, 1 ≤ l 6= k ≤ K, (3)

where Var(·) denotes the variance of the random variable in the brackets. Without loss of gener-

ality, the time correlation coefficients are assumed to be non-negative, i.e., 0 ≤ λ1, · · · , λK ≤ 1.

Clearly from (2), when λ = 1K , the time-correlated fading channel reduces to quasi-static fading

channel with h1 = h2 = · · · = hK , while when λ = 0K , the time-correlated fading channel

reduces to a fast fading channel where the channel coefficients h1, h2, · · · , hK are mutually

independent. In other words, the Nakagami-m fading channel with generalized time correlation

in (2) includes quasi-static fading channel and fast fading channel as its special cases. Here 1K

and 0K denote an all-ones vector and a null vector, each with length K, respectively. Unless

otherwise indicated, subscript K is omitted in the sequel.

According to (1), the received signal-to-noise ratio (SNR) in the kth transmission is given by

γk =
Pk|hk|2
N0

, (4)

where Pk denotes the transmitted signal power in the kth transmission. Since |hk| is Nakagami-

m distributed, i.e., |hk| ∼ Nakagami(m, σk
2), it is readily proved that γk complies with Gamma

distribution, i.e., γk ∼ G
(

m, Pkσk
2

mN0

)

. Due to the time correlation among the channel coefficients

as given in (3), the SNRs γ = (γ1, γ2, · · · , γK) are correlated Gamma RVs.

C. Outage Formulation

Outage probability has been proved as the most fundamental performance metric of HARQ

schemes [1]. For HARQ-IR, the outage probability is directly determined by the CDF of accu-

mulated mutual information. Specifically, assuming that information-theoretic capacity achieving

channel coding is adopted for HARQ-IR, an outage event happens when the information cannot

be successfully decoded after K transmissions, i.e., the accumulated mutual information IK is

below the information transmission rate R. Notice that the information transmission rate R
depends on the coding rate c, modulation scheme and symbol transmission rate. The outage

probability after K transmissions is thus written as

pout,K = Pr (IK < R) = FIK(R). (5)
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where FIK (·) denotes the CDF of IK . In HARQ-IR protocol, decoding at each transmission is

performed based on the combined codewords received in the previously transmissions and the

current transmission and the accumulated mutual information after K transmissions is given by

IK =
∑K

k=1
log2 (1 + γk). (6)

Accordingly, the outage probability pout,K becomes

pout,K = Pr
(

GK ,
∏K

k=1
(1 + γk) < 2R

)

= FGK

(
2R
)
, (7)

where FGK
(·) denotes the CDF of GK . Noticing that (γ1, γ2, · · · , γK) are correlated Gamma

RVs, the derivation of outage probability pout,K essentially turns to determining the CDF of

the product of multiple correlated shifted-Gamma RVs, i.e., FGK
(x). Due to the presence of

time correlation and Gamma distribution, the outage analysis is more challenging than those for

quasi-static [3], [4] or fast fading channels [5]–[14], [24].

It is worth noting that the CDF of the product of multiple shifted and correlated RVs has

numerous applications in wireless communications and the outage formulation in (5) is also appli-

cable to parallel transmission systems and orthogonal frequency-division multiplexing (OFDM)

systems [25], [26]. Specifically, in OFDM systems, coded signals are transmitted through multiple

subcarriers. Due to close frequency spacing of the subcarriers and limited Doppler spread, the

fading channels on multiple subcarriers are usually correlated [27]. The outage analysis in OFDM

systems is thus also reduced to the analysis of the CDF of the product of multiple shifted and

correlated RVs in (7).

III. PROBABILITY DISTRIBUTION OF THE PRODUCT OF MULTIPLE CORRELATED

SHIFTED-GAMMA RVS

As aforementioned, the derivation of outage probability pout,K essentially turns to determining

the CDF of the product of multiple shifted and correlated Gamma RVs. It is mathematically

difficult due to the presence of time correlation. In the literature, only a few approximated

results are available in [15]–[17]. They are complicated without clear insights and thus are

not favorable for system design. Moreover, their accuracy can not be guaranteed under certain

scenarios. In this paper, we will derive the exact CDF of the product of multiple shifted and

correlated Gamma RVs, based on which a truncation approximation with uniform convergence

can be proposed and asymptotic outage probability can be derived in a simple form with clear

insights.
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A. Exact CDF

From (2) and (4), we can find that the SNRs {γ1, γ2, · · · , γK} are conditionally independent,

given the complex Gaussian RVs ϑ0,1, · · · , ϑ0,m. It has been proved in [28, Theorem 1.3.4] that

{γ1, γ2, · · · , γK} follow independent noncentral chi-squared distributions with 2m degrees-of-

freedom when conditioned on T ,
∑m

l=1 |ϑ0,l|2. The conditional probability density function

(PDF) is given in the following lemma.

Lemma 1. [28, Theorem 1.3.4] The conditional PDF of the SNR γk given T = t is written as

fγk |T (xk| t)=
(

1

Ωk

)m
xk

m−1

Γ (m)
e
−

ukλk
2t+xk

Ωk 0F1



;m;

(√

ukλk
2xkt

Ωk

)2


 , λk 6= 1, (8)

where uk =
Pkσk

2

mN0
, Ωk =

Pkσk
2(1−λk

2)
mN0

, Γ(·) and 0F1(·) denote Gamma function and the confluent

hypergeometric limit function [29, Eq.16.2.1], respectively.

It should be mentioned that (8) is not applicable to quasi-static fading channels, i.e., λ = 1,

because of the occurrence of singularity. Due to its speciality, the outage analysis of HARQ-IR

over quasi-static fading channels will be discussed separately.

Noticing that Mellin transform1 is a powerful mathematical tool to obtain the probability

distribution of a product of multiple independent RVs [11], [12], [24], the conditional indepen-

dence of SNRs γ given T inspires us to derive the conditional PDF of GK in closed-form by

using conditional Mellin transform. Specifically, with the conditional independence, the Mellin

transform of the conditional PDF of GK can be written as a product of the Mellin transforms

corresponding to the conditional PDFs of the shifted SNRs. With this special property, as proved

in Appendix A, the conditional PDF of GK given T = t, fGK |T (x|t), can be derived as

fGK |T (x| t) =
∞∑

ℓ1,··· ,ℓK=0

t
∑K

k=1 ℓke
−t
∑K

k=1

λk
2

1−λk
2

K∏

k=1

1

ℓk!

(
λk

2

1− λk
2

)ℓk

fAℓ
(x), (9)

1 The Mellin transform with respect to a function f(x) is defined as {Mf} (s) =
∫∞

0
xs−1f (x) dx , f̃ (s), and the

associated inverse Mellin transform is given by f (x) = 1

2πi

∫ c+i∞

c−i∞
x−sf̃ (s) dx [30].
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where ℓ is a vector with K elements as ℓ = (ℓ1, · · · , ℓK) and fAℓ
(x) is given by

fAℓ
(x) =

1

2πi

∫ c+i∞

c−i∞

K∏

k=1

Ψ
(

m+ ℓk, s+m+ ℓk;
1
Ωk

)

(Ωk)
m+ℓk

x−sds

=
1

∏K
k=1Ωk

Y K,0
0,K




−

(

0, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

0, 1, 1
ΩK

, m+ ℓK

)

∣
∣
∣
∣
∣
∣

x
∏K

k=1Ωk



 , (10)

with i =
√
−1, Ψ (α, γ; z) = 1

Γ(α)

∫∞

0
e−zttα−1(1 + t)γ−α−1dt denoting Tricomi’s confluent

hypergeometric function [31, Eq.9.211.4], and Y m,n
p,q [·] denoting the generalized Fox’s H function

defined by Mellin-Barnes integral as [11], [12]

Y m,n
p,q




(a1, α1, A1, ϕ1) , · · · , (ap, αp, Ap, ϕp)

(b1, β1, B1, φ1) , · · · , (bq, βq, Bq, φq)

∣
∣
∣
∣
∣
∣

x



 =
1

2πi

∫

L

Mm,n
p,q [s]x−sds, (11)

where L is a Mellin-Barnes contour in the complex s-plane running from c − i∞ to c + i∞,

c ∈ R and Mm,n
p,q [s] is written as

Mm,n
p,q [s] =

∏m
j=1Bj

φj+bj+βjs−1Ψ (φj, φj + bj + βjs;Bj)
∏p

i=n+1Ai
ϕi+ai+αis−1Ψ (ϕi, ϕi + ai + αis;Ai)

×
∏n

i=1Ai
ϕi−ai−αisΨ (ϕi, ϕi + 1− ai − αis;Ai)

∏q
j=m+1Bj

φj−bj−βjsΨ (φj , φj + 1− bj − βjs;Bj)
. (12)

Notice that the generalized Fox’s H function does have two special properties as shown in Ap-

pendix B which can simplify our mathematical derivations, and an efficient MATHEMATICA®

implementation of the generalized Fox’s H function in (11) can be found in [11]. Interestingly

from (10), fAℓ
(x) is the inverse Mellin transform of a product function

∏K
k=1

Ψ
(

m+ℓk ,s+m+ℓk;
1

Ωk

)

(Ωk)
m+ℓk

.

Here the multiplier
Ψ
(

m+ℓk ,s+m+ℓk;
1

Ωk

)

(Ωk)
m+ℓk

in fact is the Mellin transform of the PDF of a shifted-

Gamma RV (1 +Rℓ,k), where Rℓ,k ∼ G(m+ ℓk,Ωk). Therefore, fAℓ
(x) can be regarded as the

PDF of the product of K independent shifted-Gamma RVs i.e., Aℓ =
∏K

k=1(1 +Rℓ,k).

With (9), the PDF of GK can be eventually obtained by integrating the conditional probability

fGK |T (x| t) over the distribution of T , such that

fGK
(x) = ET

{
fGK |T (x|t)

}
=

∫ ∞

0

fGK |T (x| t) fT (t) dt, (13)

where fT (t) denotes the PDF of T . With respect to the distribution of T ,
∑m

l=1 |ϑ0,l|2, since

ϑ0,1, · · · , ϑ0,m are independent and identically distributed (i.i.d.) complex Gaussian RVs with

zero mean and unit variance, it can be proved that |ϑ0,1|2 , · · · , |ϑ0,m|2 are i.i.d. Gamma RVs,
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i.e., |ϑ0,l|2 ∼ G (1, 1). As a sum of m independent Gamma RVs with identical scale parameter,

the random variable T then follows a Gamma distribution with the PDF of [32, p289]

fT (t) =
tm−1

Γ (m)
e−t, t ≥ 0. (14)

Plugging (9) and (14) into (13), it follows by using [31, Eq.3.381.4] that

fGK
(x) =

1

Γ (m)

∞∑

ℓ1,··· ,ℓK=0

∫ ∞

0

t

K
∑

k=1

ℓk+m−1
e
−t

(

1+
K
∑

k=1

λk
2

1−λk
2

)

dt

K∏

k=1

1

ℓk!

(
λk

2

1− λk
2

)ℓk

fAℓ
(x)

=
∑∞

ℓ1,··· ,ℓK=0
WℓfAℓ

(x), (15)

where ℓ is a vector with K elements as ℓ = (ℓ1, · · · , ℓK) and the weighting Wℓ is given as

Wℓ ,
Γ
(

m+
∑K

k=1 ℓk

)

Γ (m)

(

1 +

K∑

k=1

λk
2

1− λk
2

)−m K∏

k=1

wk
ℓk

ℓk!
, ℓ = (ℓ1, · · · , ℓK) ∈ N0

K , (16)

wk =
λk

2

1−λk
2

(

1 +
∑K

l=1
λl

2

1−λl
2

)−1

and N0
K denotes K-ary Cartesian power of natural number set.

By comparing (16) with [33, Eq.13.8-1], it is found that
{
Wℓ, ℓ ∈ N0

K
}

are probabilities of a

negative multinomial distributed vector RV ℓ, i.e., ℓ ∼ NM(m,w), where w = (w1, · · · , wK).

Clearly, we have
∑

ℓ∈N0
K Wℓ = 1. As such, fGK

(x) is expressed as a weighted sum of the PDFs

corresponding to
{
Aℓ, ℓ ∈ N0

K
}

.

Based on (15), the CDF of the product of multiple correlated shifted-Gamma RVs FGK
(x)

can be derived as shown in the following theorem.

Theorem 1. The CDF of GK =
∏K

k=1 (1 + γk) is given by

FGK
(x) =

∫ x

0

fGK
(t) dt =

∑∞

ℓ1,··· ,ℓK=0
Wℓ

∫ x

0

fAℓ
(t)dt =

∑∞

ℓ1,··· ,ℓK=0
WℓFAℓ

(x), (17)

where FAℓ
(x) denotes the CDF of the product of independent shifted-Gamma RVs Aℓ =

∏K
k=1(1+

Rℓ,k) with Rℓ,k ∼ G(m+ ℓk,Ωk) and ℓ = (ℓ1, · · · , ℓK). Specifically, FAℓ
(x) can be expressed in

terms of the generalized Fox’s H function as

FAℓ
(x) = Y K,1

1,K+1




(1, 1, 0, 1)

(

1, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

1, 1, 1
ΩK

, m+ ℓK

)

, (0, 1, 0, 1)

∣
∣
∣
∣
∣
∣

x
∏K

k=1Ωk



 . (18)

Proof. Please see Appendix B.
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Therefore, the outage probability pout,K can be obtained by substituting (17) into (7), such

that

pout,K = FG

(
2R
)
=
∑∞

ℓ1,··· ,ℓK=0
WℓFAℓ

(2R). (19)

Notice that Aℓ =
∏K

k=1(1 + Rℓ,k), Rℓ,k follows Gamma distribution as Rℓ,k ∼ G(m + ℓk,Ωk)

and Ωk =
Pkσk

2(1−λk
2)

mN0
. Clearly, the random variable Rℓ,k can be factorized as Rℓ,k =

Pk|hAℓ,k|2
N0

where |hAℓ,k| follows Nakagami distribution as

|hAℓ,k| ∼ Nakagami

(

m+ ℓk,
(m+ ℓk) (1− λk

2)σk
2

m

)

, 1 ≤ k ≤ K. (20)

Therefore, FAℓ

(
2R
)

can be regarded as the outage probability of HARQ-IR after K transmissions

over independent Nakagami-m fading channels, where Rℓ,k denotes the received SNR in the kth

HARQ transmission and hAℓ,k denotes the Nakagami-m fading channel coefficient in the kth

transmission. Consequently, the outage probability pout,K can be rephrased as a weighted sum

of outage probabilities of HARQ-IR over independent Nakagami fading channels where the

weightings Wℓ are probabilities of the negative multinomial distribution NM(m,w).

It is worth mentioning that the outage result in (19) is applicable to fast fading channels. Under

fast fading channels, the time correlation coefficients are equal to zero, i.e., λ = 0. Putting it

into (16), we have W0 = 1 and Wℓ = 0 for all ℓ 6= 0. Then the outage probability pout,K reduces

to FA0
(2R).

B. Truncation Approximation

Considering that pout,K is represented by an infinite series in (19), it is impossible to compute

the exact value by adding an infinite number of terms up. To enable its computation, it is

natural to truncate pout,K into a finite series. Towards this end, an effective truncation approach

is proposed. Specifically, pout,K in (19) is approximated with a truncation order N as

pout,K ≈
∑

∑K
k=1

ℓk≤N
WℓFAℓ

(
2R
)
, p̃Nout,K . (21)

The truncation error ∇(N) is characterized by the difference between pout,K and p̃Nout,K , such

that

∇(N) = pout,K − p̃Nout,K =
∑

∑K
k=1

ℓk≥N+1
WℓFAℓ

(
2R
)
≥ 0. (22)

Clearly from (22), ∇(N) is a monotonically decreasing function of N and satisfies limN→∞∇(N) =

0. Moreover, since FAℓ

(
2R
)
≤ 1 and Wℓ ≤ 1, the truncation error ∇(N) is in fact uniformly
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upper bounded by
∑
∑K

k=1 ℓk≥N+1Wℓ which is irrespective of the rate R and converges to

zero when N increases. Thus strictly speaking, the truncation approximation in (21) actually

admits a uniform convergence [34, p147]2. This uniform convergence guarantees the truncation

approximation of outage probability with high accuracy for any R. It is different from the

convergence in MSE in [16], [17] which does not necessarily imply that the approximation error

approaches to zero for arbitrary R [35, p86]. Therefore our truncation approximation is expected

to perform better than those in [16], [17], which will be further demonstrated in Section V.

As proved in Appendix C, we further notice that the truncation error ∇(N) is bounded as

∇(N) ≤ W0F
max
Aℓ,N

(
2R
)
ξ (N) , Bu, (23)

where Fmax
Aℓ,N

(
2R
)

= max∑K
k=1

ℓk=N+1

(
FAℓ

(
2R
))

, ξ (N) is a decreasing function of N as

ξ (N) =
(
∑K

k=1wk

)N+1 (m)N+1

(N+1)! 2
F1

(

m+N + 1, 1;N + 2;
∑K

k=1wk

)

, the notation (·)n stands

for Pochhammer symbol, and 2F1(a, b; c; z) =
∑∞

s=0
(a)s(b)s
Γ(c+s)s!

zs denotes hypergeometric function

[29, Eq.15.1.1]. For Rayleigh fading channels, i.e., m = 1, the term ξ (N) reduces to ξ (N) =

W0

−1
(
∑K

k=1wk

)N+1

by using 2F1

(

N + 2, 1;N + 2;
∑K

k=1wk

)

= W0

−1 in [36, Eq.1.40]. To-

gether with Fmax
Aℓ,N

(
2R
)
≤ 1, the truncation error under Rayleigh fading channels is thus further

bounded as ∇(N) ≤ Bu ≤
(
∑K

k=1wk

)N+1

. Since
∑K

k=1wk < 1, the truncation error under

Rayleigh fading channels exponentially decays with N . It implies that the convergence speed of

our truncation approach is fast and also justifies the effectiveness of our truncation approach.

In practice, the truncation order plays an important role in improving the approximation

accuracy and an efficient selection of the truncation order is necessary. Specifically, for a given

accuracy requirement ε, the minimal truncation order N(ε) can be determined by setting the

upper bound Bu in (23) less than the maximum tolerable approximation error ε, such that

N(ε) = min {N ≥ 0| Bu ≤ ε}.

The impact of truncation order on the approximation accuracy is then examined and the results

are shown in Fig. 1. Clearly, the truncated outage probability p̃Nout,K converges quite fast to the

exact outage probability pout,K and the truncation order of N = 3 is sufficient for a very good

approximation of the outage probability. Plugging N = 3 together with R = 1bps/Hz into (23),

the upper bounds Bu of four cases from I to IV can be calculated as 7.0 ∗ 10−5, 7.4 ∗ 10−6,

1.4 ∗ 10−4 and 3.7 ∗ 10−8, respectively. They are very small and thus verify the accuracy of our

2We say that fn(x) converges uniformly to f(x) on its domain D if, given ε, there exists an integer N(ε) independent of x,

such that |fn(x)− f(x)| ≤ ε for all x ∈ D whenever n ≥ N(ε) [34, p147].
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Fig. 1. The impact of truncation order by setting λ1 = · · · = λK = 0.8, σ1
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= 1, P1 = · · · = PK = P and

R = 1bps/Hz.

truncation approach. By comparing the upper bound Bu of Case I with that of Case II, it can be

observed that the increase of K decreases Bu from 7.0 ∗ 10−5 to 7.4 ∗ 10−6, which means that

the increase of K would be beneficial to the reduction of the truncation error and thus improve

the accuracy of our truncation approach. This can be roughly explained as follows. From the

upper bound Bu in (23), we can see that increasing K has twofold impact on the upper bound

Bu. Specifically, the increase of K reduces the first component W0F
max
Aℓ,N

(
2R
)

of Bu on one

hand, while increases the second component ξ (N) on the other hand. Since the first component

dominates particularly in a low-to-medium outage region which is the most concerned region

for practical applications, the upper bound Bu can be viewed as a decreasing function of K.

IV. ASYMPTOTIC OUTAGE ANALYSIS

A. Asymptotic Outage Probability

Although the outage probability of HARQ-IR over time-correlated Nakagami fading channels

can be exactly derived in closed-form as shown in (19) and can be approximated as (21), they

are still complex and hinder the extraction of meaningful insights. Fortunately, after analyzing

the CDF FAℓ
(x), we can find some special properties of FAℓ

(x), which enable us to further

conduct asymptotic outage analysis so that the expression of outage probability can be simplified

with clear insights. To proceed with the analysis, we rewrite the transmission SNRs as
(
P1

N0
,
P2

N0
, · · · , PK

N0

)

=
Ptotal

N0

(
P1

Ptotal
,

P2

Ptotal
, · · · , PK

Ptotal

)

= γθ, (24)
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where Ptotal = P1 + · · · + PK , γ ,
Ptotal

N0
denotes the total transmission SNR and θ =

(θ1, · · · , θK) ,

(
P1

Ptotal
, · · · , PK

Ptotal

)

represents the power allocation vector. With this definition

of the transmission SNR, the CDF FAℓ
(x) in (18) can be rewritten as shown in the following

theorem.

Theorem 2. The CDF FAℓ
(x) can be rewritten as

FAℓ
(x) = γ−dA

ℓ

∏K

k=1

1

Γ (m+ ℓk)

(

m

θkσk
2
(
1− λk

2
)

)m+ℓk

×
∑∞

n1,··· ,nK=0

∏K

k=1

1

nk!

(

− m

γθkσk
2
(
1− λk

2
)

)nk

gn+ℓ (x) , (25)

where dAℓ
= mK +

∑K
k=1 ℓk, n = (n1, · · · , nK), ℓ = (ℓ1, · · · , ℓK) and gℓ (x) is given by

gℓ (x) =

∫

∏K
k=1

(1+tk)≤x

K∏

k=1

tk
m+ℓk−1dt1 · · · dtK−1dtK (26)

=
K∏

k=1

Γ (m+ ℓk)G
0,K+1
K+1,K+1




1, 1 + ℓ1 +m, · · · , 1 + ℓK +m

1, · · · , 1, 0

∣
∣
∣
∣
∣
∣

x



 , (27)

with Gm,n
p,q (·|x) denoting Meijer-G function [31, Eq.9.301].

Proof. Please see Appendix D.

From Theorem 2, when the transmission SNR is high, i.e., γ → ∞, the CDF FAℓ
(x) can be

further expressed as

FAℓ
(x) = γ−dAℓ

K∏

k=1

1

Γ (m+ ℓk)

(

m

θkσk
2
(
1− λk

2
)

)m+ℓk

gℓ (x) + o
(
γ−dAℓ

)
, (28)

where o(·) refers to the little-O notation, and f(γ) ∈ o(φ(γ)) provided that lim
γ→∞

f(γ)/φ(γ) = 0.

Based on (28), the following property of the CDF FAℓ
(x) holds since dAℓ

= mK +
∑K

k=1 ℓk >

dA0
= mK for ℓ 6= 0.

Lemma 2. As γ → ∞, the ratio of FAℓ
(x) to FA0

(x) satisfies

FAℓ
(x)

FA0
(x)

= o (1) , ℓ ∈ N0
K and ℓ 6= 0. (29)

Proof. From (28), we have

lim
γ→∞

FAℓ
(x)

FA0
(x)

=

K∏

k=1

Γ (m)

Γ (m+ ℓk)

(

m

θkσk
2
(
1− λk

2
)

)ℓk
gℓ (x)

g0 (x)
lim
γ→∞

γdA0
−dAℓ = 0, (30)
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where the last equality holds because of dA0
− dAℓ

< 0 when ℓ 6= 0. Then by using the little-O

notation, (29) directly follows.

By applying Lemma 2 into (19), as γ → ∞, the outage probability pout,K can be rewritten as

pout,K = W0FA0

(
2R
)
+
∑

ℓ1+···+ℓK>0
WℓFAℓ

(
2R
)

= W0FA0

(
2R
)

(

1 +
1

W0

∑

ℓ1+···+ℓK>0
Wℓ

FAℓ

(
2R
)

FA0
(2R)

)

= W0FA0

(
2R
)
(

1 +
1

W0

∑

ℓ1+···+ℓK>0
Wℓo (1)

)

= W0FA0

(
2R
)
(1 + o (1)) , (31)

where the last equality holds since Wℓ is irrelevant to the transmission SNR γ and
∑

ℓ1+···+ℓK>0Wℓ =

1−W0 < 1. Now putting (28) into (31) and neglecting the high order terms o (1) and o
(
γ−dA

ℓ

)

when γ → ∞, the outage probability can be asymptotically approximated as

pout,K ≃ W0γ
−mKg0

(
2R
)

K∏

k=1

1

Γ (m)

(

m

θkσk
2
(
1− λk

2
)

)m

, pout asy,K . (32)

Substituting (16) into (32), under high SNR regime, i.e., as γ → ∞, the asymptotic outage

probability pout asy,K can be factorized as

pout asy,K =
K∏

k=1

1

Γ (m)

(
m

θkσk
2

)m

︸ ︷︷ ︸

,ζ(θ)

(ℓ (λ, K))−m

︸ ︷︷ ︸

,̺(λ)






(
g0
(
2R
))− 1

mK

︸ ︷︷ ︸

,C(R)

γ






−mK

, (33)

where ℓ (λ, K) is explicitly given as

ℓ (λ, K) =

(

1 +
∑K

k=1

λk
2

1− λk
2

)
∏K

k=1

(
1− λk

2
)
, (34)

ζ(θ) and ̺(λ) quantify the impacts of transmission power allocation and channel time correlation

and thus are regarded as power allocation impact factor and time correlation impact factor,

respectively, and C(R) is termed as coding and modulation gain since it depends on the

information transmission rate R which eventually is determined by the coding rate, modulation

scheme and symbol transmission rate.

B. Discussions

Clearly from (33), the outage performance is determined by the number of transmissions,

transmission power allocation, channel time correlation and information transmission rate. Their

impacts will be thoroughly investigated through the analysis of the terms ζ(θ), ̺(λ) and C(R).

In addition, outage probability of HARQ-IR under quasi-static fading channels is particularly

discussed as a special case of time-correlated fading channels.
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1) Diversity Order: Diversity order indicates the number of degrees of freedom in com-

munication systems. Roughly speaking, it is equivalent to the number of independently faded

paths that a transmitted signal experiences. Specifically, it is defined as the slope of the outage

probability against the transmission SNR on a log-log scale as [37]

d = − lim
γ→∞

log (pout,K)

log (γ)
. (35)

Putting (33) into (35), the diversity order of HARQ-IR over time-correlated Nakagami-m fading

channels directly follows as d = mK. Noticing that a Nakagami-m fading channel can be

viewed as a set of m parallel independent Rayleigh fading channels, the maximum number of

independent fading channels in a HARQ-IR system with a maximum number of K transmissions

is mK. In other words, channel time correlation would not degrade the diversity order and full

diversity can be achieved by HARQ-IR even under time-correlated fading channels. This result

is consistent with those in [16], [17], and demonstrates the correctness of our asymptotic outage

analysis.

2) Power Allocation Impact Factor ζ(θ): It is clear from (33) that power allocation impact

factor ζ(θ) characterizes the impact of power allocation on outage probability. Specifically, ζ(θ)

is an inverse power function of the the product of power allocation factors
∏K

k=1 θk. It would

decrease as the product of power allocation factors θ increases, which eventually results in the

improvement of outage performance. With the definition of θk = Pk

Ptotal
, we also can conclude that

the asymptotic outage probability is an inverse power function of the product of the transmission

powers in all HARQ rounds. Notice that this clear quantitative relationship between the power

allocation factors and the outage probability hasn’t been discovered even under independent

fading channels. With this quantitative relationship, optimal power allocation to achieve various

objectives is enabled. Taking the energy-limited outage minimization as an example, the power

allocation problem can be formulated as

min
P1,··· ,PK

pout,K

s. t.
∑K

k=1 Pkpout,k−1 ≤ Pgiven

Pk ≥ 0, for 0 ≤ k ≤ K,

(36)

where
∑K

k=1 Pkpout,k−1 refers to the average transmission energy normalized to the codeword

length [4], pout,0 = 1 and Pgiven is the average energy constraint. By substituting Pk = θkPtotal and

using the asymptotic outage probability pout asy,k as the approximation of pout,k, the optimization
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problem is reduced to the maximization of the product of power allocation factors
∏K

k=1 θk

subject to certain constraints. Accordingly, (36) can be easily converted into the generalized

power optimization problem in [38, Eq.6]. Karush-Khun-Tucker conditions can then be applied

to derive the optimal solution in closed-form as shown in [38, Eq.15].

3) Time Correlation Impact Factor ̺(λ): The time correlation impact factor ̺(λ) quantifies

the impact of channel time correlation on the outage probability. Notice that when only one

transmission is allowed, i.e., K = 1, no time correlation is involved and we always have

ℓ (λ, K) = 1 and ̺(λ) = 1. When K > 1, the time correlation impact factor ̺(λ) has one

property as shown in the following lemma. For notational convenience, we define a partial

ordering for two vectors x = (x1, x2, · · · , xK),y = (y1, y2, · · · , yK) ∈ R
K as x � y if

xi ≤ yi, i = 1, 2, · · · , K.

Lemma 3. Given K > 1 and two time correlation vectors λ1 � λ2, we have

1 ≥ ℓ (λ1, K) ≥ ℓ (λ2, K) , (37)

1 ≤ ̺(λ1) ≤ ̺(λ2). (38)

The left equalities in (37)-(38) hold if and only if λ1 = 0, while the right equalities in (37)-(38)

hold if and only if λ1 = λ2 .

Proof. Please see Appendix E.

It can be concluded from (33) and Lemma 3 that although the time correlation does not affect

the diversity order, the increase of time correlation coefficients would cause the increases of

̺(λ) and the outage probability, thus resulting in the degradation of outage performance.

4) Coding and Modulation Gain C(R): As defined in (33), C(R) =
(
g0
(
2R
))− 1

d . For a

given outage probability, the increase of C(R) can result in the reduction of the SNR γ. In

other words, C(R) can quantify the amount of SNR reduction for a given outage probability

under certain coding and modulation scheme. It is thus termed as coding and modulation gain

[19]. After analyzing the function g0
(
2R
)
, we have the following property of the coding and

modulation gain.

Lemma 4. The function g0
(
2R
)

is a monotonically increasing function of the information

transmission rate R, and is convex with respect to R for any fading order m ≥ 1, and thus the
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coding and modulation gain C(R) is a monotonically decreasing function of the information

transmission rate R.

Proof. Please see Appendix F.

It follows from (33) and Lemma 4 that the asymptotic outage probability is a monotonically

increasing and convex function of the information transmission rate R when m ≥ 1. In order

to achieve a desired performance, the information transmission rate should be properly chosen.

Owing to the simple analytical expression in (33), the optimal rate can be easily found. Taking the

maximization of the long term average throughput (LTAT) given an allowable outage constraint

ǫ as an example, the rate selection problem can be formulated as

max
R∈{R∈R+:pout,K≤ǫ}

T̄ =
R (1− pout,K)
∑K−1

k=0 pout,k
, (39)

where T̄ denotes the LTAT. Clearly, the numerator R (1− pout,K) and the denominator
∑K−1

k=0 pout,k

in (39) are concave and convex with respect to R, respectively, while the feasible region

{R ∈ R+ : pout,K ≤ ǫ} is a convex set, when m ≥ 1. As shown in [39], the optimization problem

in (39) is a concave fractional programming problem and the globally optimal solution can be

easily found using the techniques proposed in [39].

5) Quasi-Static Fading channels: As aforementioned, the probability distribution in Section III

and the asymptotic outage probability in (33) are not applicable to the case of quasi-static fading

channels with λ = 1. Particularly, under quasi-static fading channels, the channel coefficients

are constant among multiple transmissions, i.e., |h1| = · · · = |hK | , |h| ∼ Nakagami(m, σ2).

Assuming constant transmission powers P1 = · · · = PK , P , that is, θ1 = · · · = θK , θ, the

outage probability pout,K under quasi-static fading channels is readily obtained as

pout,K = Pr



log2

(

1 +
P |h|2
N0

)K

< R



 =
1

Γ (m)
Υ

(

m,
mN0

(
2R/K − 1

)

Pσ2

)

. (40)

By applying [31, Eq.8.354.1] into (40), the outage probability can be rewritten as

pout,K =
1

Γ (m)

∞∑

n=0

(−1)n

n! (m+ n)

(

m
(
2R/K − 1

)

γθσ2

)m+n

=
( m

θσ2

)m
(

(Γ (m+ 1))1/m

2R/K − 1
γ

)−m

+ o
(
γ−m

)
. (41)

Then the asymptotic outage probability under this quasi-static fading channels can be written

as pout asy,K = ζ(θ) (C(R) γ)−m, where the power allocation impact factor is given as ζ(θ) =
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(
m
θσ2

)m
, while the coding and modulation gain becomes C(R) = (Γ(m+1))1/m

2R/K−1
and the diversity

order reduces to d = m due to the full correlation of fading channels. It means that no time

diversity can be achieved from multiple transmissions under quasi-static fading channels.

V. NUMERICAL RESULTS AND OPTIMAL DESIGN

The analytical results are now verified and optimal system design is discussed in this section.

For illustration, we take systems with equicorrelated channels (i.e., λeq = (ρ, · · · , ρ)) [40]–[42]

and unit Nakagami spread σ1
2 = · · · = σK

2 = 1 as examples, unless otherwise indicated. In

the following numerical analysis, the exact outage probability is approximated by (21) with

the truncation order set as N = 3 and the involved generalized Fox’s H function is efficiently

calculated by the MATHEMATICA® program in [11] with a properly chosen Mellin-Barnes

contour.

A. Performance Evaluation

In Fig. 2, the outage probability pout,K is plotted against the transmission SNR γ by setting

K = 4 and R = 4bps/Hz. The approximated results based on polynomial fitting technique

[16] and inverse moment matching method [17] are also presented for comparison. Notice that

polynomial fitting technique in [16] is proposed for HARQ-IR under Rayleigh fading channels

and thus its result only for Rayleigh fading (i.e., m = 1) is shown in Fig. 2. It is clear that the

approximated results (21) coincide with the simulation results, while the asymptotic results (33)

approach to the approximated/simulation results under high SNR regime. However, under the

considered scenarios, neither [16] nor [17] can provide an accurate approximation under high

SNR regime due to the fact that those proposed methods can only guarantee their convergence

in MSE. In addition, the outage probabilities decrease with the increase of the transmission

SNR γ and the decreasing rate becomes larger when the fading order m increases, because the

diversity order is mK and pout asy,K is directly proportional to γ−mK . As expected, channel

time correlation has a detrimental impact on outage probability. For a given fading order m, the

outage probability curves corresponding to different correlations become parallel as γ increases

due to the same diversity order which is irrelevant to the correlation coefficient. These numerical

results thus validate the results in Section IV.

To further investigate the effect of time correlation, Fig. 3 depicts time correlation impact

factors ̺(λ) under two different channel correlation models, i.e., equal correlation and ex-
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Fig. 2. Outage probability pout,K versus transmission SNR γ.

ponential correlation. For exponential correlation model, the correlation coefficients follow as

λexp = (ρ, ρ2, · · · , ρK) [20], [41]. It can be seen that the time correlation impact factor ̺(λ)

increases as ρ increases, thus causing the degradation of the outage performance. The curves

become steeper with the increase of ρ, which means the outage performance degradation would

become more significant when time correlation is high. By comparing the time correlation impact

factors ̺(λeq) and ̺(λexp), we can find that λexp � λeq and ̺(λexp) ≤ ̺(λeq), which is consistent

with Lemma 3. In addition, it is found that the increase of the maximum number of transmissions

K will lead to the increase of the time correlation impact factor ̺(λ) no matter under equal cor-

relation model or under exponential correlation model. This is because that ̺(λK) = ̺((λK , 0))

and (λK , 0) � (λK , λK+1). It follows from Lemma 3 that ̺(λK) ≤ ̺((λK , λK+1)) and the

equality holds if and only if λK+1 = 0. However, when K increases, the increase of the time

correlation impact factor will be offset by the decrease of the term (C(R) γ)−mK and thus would

not cause the degradation of the outage performance.

Finally, Fig. 4 illustrates the impacts of the information transmission rate R and the fading

order m on the coding and modulation gain C(R) under both time-correlated fading channels

and quasi-static fading channels. Clearly, the coding and modulation gain C(R) decreases with

the increase of the rate R, which has already been proved in Lemma 4. Additionally, the coding

and modulation gain over quasi-static fading channels is superior to the gain over time-correlated

fading channels. The reason behind this is that multiple HARQ transmissions under quasi-static

fading channels can be viewed as one single transmission with lower coding rate due to the same

channel realization experienced, thus leading to the improvement of coding and modulation gain.
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Fig. 4. Coding and modulation gain C(R) versus information transmission rate R for systems with K = 4.

However, such coding and modulation gain improvement is achieved in sacrifice of time diversity,

that is, the diversity order of quasi-static fading channels reduces to m. Moreover, Fig. 4 shows

that the coding and modulation gain C(R) could benefit from the increase of fading order m.

B. Optimal System Design

With the simple expression, the asymptotic result in (33) would facilitate optimal system

design for HARQ-IR with low complexity3. Here optimal power allocation in (36) and optimal

rate selection in (39) are particularly investigated as examples.

3Specifically, the asymptotic outage probability (33) can be easily computed by a few arithmetical operations. Its computational

complexity is much lower than the simulation results which require the calculations on a large number of channel realizations.

For example, in order to obtain the outage probability of 10−5, more than 106 channel realizations are required to be simulated,

which definitely causes very high computational complexity.
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The optimal power allocation (OPA) schemes in (36) designed based on approximated outage

probability (21) and asymptotic outage probability (33) are first compared with an optimal

equal power allocation (OEPA) scheme where the outage probability is minimized as (36) with

additional equal power allocation constraint (i.e., P1 = · · · = PK). The achieved optimal outage

probabilities p∗out,K for a system with K = 2, R = 2bps/Hz and ρ = 0.5 are shown in Fig. 5. It

is clear that the OPA solutions found based on approximated outage probability and asymptotic

outage probability agree well and can lead to similar outage probability, which justifies the

adoption of the asymptotic outage probability for system design. Notice that the OPA solution

based on asymptotic outage probability can be easily found in closed-form as shown in [38]

and its computational complexity is significantly reduced compared to the optimization based on

approximated outage probability which requires exhaustive search with a large number of nu-

merical computations. Moreover, OPA scheme performs better than OEPA since the transmission

powers in all HARQ rounds are optimized.

Fig. 6 then illustrates the maximal LTAT T̄ achieved through optimal rate selection in (39) by

setting m = 1 and K = 4. Similarly, the results based on the approximated outage probability

and the asymptotic outage probability match well, further validating our asymptotic results. It

is also observed that the maximal LTAT increases when the outage constraint ǫ increases and/or

the channel time correlation reduces.

VI. CONCLUSIONS

In this paper, asymptotic outage analysis has been conducted to thoroughly investigate the

impacts of channel time correlation, transmit powers and information transmission rate on the
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performance of HARQ-IR over time correlated Nakagami fading channels. Clear insights have

been discovered. Particularly, it has been revealed that the power allocation impact factor is an

inverse power function of the product of power allocation factors, the time correlation impact

factor is an increasing function of the channel time correlation coefficients, while the coding

and modulation gain is a monotonically decreasing function of the information transmission

rate. Therefore, high product of power allocation factors, low channel time correlation and low

information transmission rate are favorable for improving outage performance. The simple form

and special properties of asymptotic outage probability would effectively facilitate the optimal

system design to achieve various objectives, e.g., optimal power allocation to minimize outage

probability and optimal rate selection to maximize the LTAT.

APPENDIX A

THE DERIVATION OF fGK |T (x|t)

The Mellin transform with respect to the conditional PDF of GK given T = t, fGK |T (x|t),
can be written as

{
MfGK |T

}
(s) = E

{
Gs−1

K

∣
∣T = t

}
, φ (s| t) . (42)

Due to the independence of SNRs γ given T = t and with the definition of GK ,
∏K

k=1 (1 + γk),

φ (s| t) can be rewritten as

φ (s| t) =
∏K

k=1
E
{
(1 + γk)

s−1
∣
∣ t
}
. (43)
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Herein, with the conditional PDF fγk |T (xk| t) in (8), E
{
(1 + γk)

s−1
∣
∣ t
}

can be derived as

E
{
(1 + γk)

s−1
∣
∣ t
}
=

e
−

ukλk
2t

Ωk

Γ (m) (Ωk)
m

∫ ∞

0

(1 + xk)
s−1xk

m−1e
−

xk
Ωk 0F1



;m;

(√

ukλk
2t

Ωk

)2

xk



 dxk.

(44)

By using the series expansion of the confluent hypergeometric limit function [29, Eq.16.2.1],

(44) is further derived as

E
{
(1 + γk)

s−1
∣
∣ t
}
=

e
−

ukλk
2t

Ωk

(Ωk)
m

∞∑

ℓk=0

1

ℓk!Γ (m+ ℓk)

(√

ukλk
2t

Ωk

)2ℓk ∫ ∞

0

(1 + xk)
s−1xk

m+ℓk−1e
−

xk
Ωk dxk

=
e
−

ukλk
2t

Ωk

(Ωk)
m

∞∑

ℓk=0

1

ℓk!

(√

ukλk
2t

Ωk

)2ℓk

Ψ

(

m+ ℓk, m+ ℓk + s;
1

Ωk

)

, (45)

where Ψ (·) denotes Tricomi’s confluent hypergeometric function [31, Eq.9.211.4]. Plugging (45)

into (43) together with some algebraic manipulations yields

φ (s| t) =
∞∑

ℓ1,··· ,ℓK=0

t

K
∑

k=1

ℓk
e
−t

K
∑

k=1

λk
2

1−λk
2

K∏

k=1

(
λk

2

1−λk
2

)ℓk

ℓk!(Ωk)
m+ℓk

Ψ

(

m+ ℓk, m+ ℓk + s;
1

Ωk

)

. (46)

Meanwhile, by using inverse Mellin transform, the conditional PDF fGK |T (x|t) can be written

as [30]

fGK |T (x| t) =
{
M−1φ

}
(x| t) = 1

2πi

∫ c+i∞

c−i∞

x−sφ (s| t) ds, (47)

where i =
√
−1. Putting (46) into (47) finally leads to (9).

APPENDIX B

PROOF OF THEOREM 1

Based on (15), the CDF of the product of multiple correlated shifted-Gamma RVs FGK
(x)

directly follows as (17) where the CDF of Aℓ can be written based on (10) as

FAℓ
(x) =

1
∏K

k=1Ωk

∫ x

0

Y K,0
0,K




−

(

0, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

0, 1, 1
ΩK

, m+ ℓK

)

∣
∣
∣
∣
∣
∣

t
∏K

k=1Ωk



 dt.

(48)

Regarding to the generalized Fox’s H function in (48), we have the following properties.
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Property 1.

tρY m,n
p,q




(a1, α1, A1, ϕ1) , · · · , (ap, αp, Ap, ϕp)

(b1, β1, B1, φ1) , · · · , (bq, βq, Bq, φq)

∣
∣
∣
∣
∣
∣

t





= Y m,n
p,q




(a1 + ρα1, α1, A1, ϕ1) , · · · , (ap + ραq, αp, Ap, ϕp)

(b1 + ρβ1, β1, B1, φ1) , · · · , (bq + ρβq, βq, Bq, φq)

∣
∣
∣
∣
∣
∣

t



 . (49)

Property 2.

Y m,n
p,q




(a1, α1, A1, ϕ1) , · · · , (ap, αp, Ap, ϕp)

(b1, β1, B1, φ1) , · · · , (bq, βq, Bq, φq)

∣
∣
∣
∣
∣
∣

t





= Y n,m
q,p




(1− b1, β1, B1, φ1) , · · · , (1− bq, βq, Bq, φq)

(1− a1, α1, A1, ϕ1) , · · · , (1− ap, αp, Ap, ϕp)

∣
∣
∣
∣
∣
∣

t−1



 . (50)

Notice that Property 1 is similar to the property of Meijer-G function in [31, Eq.9.31.5] and the

property of generalized upper incomplete Fox’s H functions in [24, Eq.A.10], while Property 2

is similar to the property of Meijer-G function in [31, Eq.9.31.2] and the property of generalized

upper incomplete Fox’s H functions in [24, Eq.A.9]. They can thus be proved using similar

approaches in [24] and [31].

By using Property 1, (48) can be derived as

FAℓ
(x) =

∫ x

0

t−1Y K,0
0,K




−

(

1, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

1, 1, 1
ΩK

, m+ ℓK

)

∣
∣
∣
∣
∣
∣

t
∏K

k=1Ωk



 dt. (51)

Then applying Property 2 into (51) yields

FAℓ
(x) =

∫ x

0

t−1Y 0,K
K,0





(

0, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

0, 1, 1
ΩK

, m+ ℓK

)

−

∣
∣
∣
∣
∣
∣

∏K
k=1Ωk

t



 dt. (52)

With the definition of generalized Fox’s H function [11], [12], (52) can be further derived as

FAℓ
(x) =

1
∏K

k=1Ωk

1

2πi

∫ c1−i∞

c1−i∞

∫ x

0

(

t
∏K

k=1Ωk

)s−1

M0,K
K,0 (s) dtds

=
1

2πi

∫ c1−i∞

c1−i∞

(

x
∏K

k=1Ωk

)s
Γ (s)

Γ (s+ 1)
M0,K

K,0 (s) ds, (53)
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where M0,K
K,0 (s) =

1
∏K

j=1
Ξ

(

0,1, 1

Ωj
,m+ℓj

) and Ξ (a, α, A, ϕ) = Aϕ+a+αs−1Ψ (ϕ, ϕ+ a+ αs;A). The

function Ξ (a, α, A, ϕ) can be rewritten by using one important property of Tricomi’s confluent

hypergeometric function Ψ (α, γ; z) in [31, Eq.9.210.2] as

Ξ (a, α, A, ϕ) = Aϕ+a+αs−1Γ (1− (ϕ+ a + αs))

Γ (1− a− αs)
1F1 (ϕ, ϕ+ a + αs;A)

+
Γ (ϕ+ a+ αs− 1)

Γ (ϕ)
1F1 (1− a− αs, 2− (ϕ+ a+ αs) ;A) , (54)

where 1F1(·) represents the confluent hypergeometric function [31, Eq.9.210.1]. Thus it follows

that

Ξ (a, 1, 0, 1) = Γ (a + s) = lim
u→0

ua+sΨ (1, 1 + a+ s; u) , a+ s > 0. (55)

By using (55) together with the definition of generalized Fox’s H function, (53) can be further

rewritten as

FAℓ
(x) = lim

u→0

1

2πi

∫ c1+i∞

c1−i∞

(

x
∏K

k=1Ωk

)s
usΨ (1, 1 + s; u)

u1+sΨ (1, 2 + s; u)
∏K

j=1 Ξ
(

0, 1, 1
Ωj
, m+ ℓj

)ds

= Y 1,K
K+1,1





(

0, 1, 1
Ω1
, m+ ℓ1

)

, · · · ,
(

0, 1, 1
ΩK

, m+ ℓK

)

, (1, 1, 0, 1)

(0, 1, 0, 1)

∣
∣
∣
∣
∣
∣

∏K
k=1Ωk

x



 . (56)

Finally, applying Property 2 to (56) yields (18).

APPENDIX C

PROOF OF (23)

Following from (22), the truncation error ∇(N) is upper bounded as

∇(N) =
∑∞

n=N+1

∑

∑K
k=1

ℓk=n
WℓFAℓ

(
2R
)

≤ Fmax
Aℓ,N

(
2R
)∑∞

n=N+1

∑

∑K
k=1

ℓk=n
Wℓ

= Fmax
Aℓ,N

(
2R
)
W0

∑∞

n=N+1

(m)n
n!

∑

∑K
k=1

ℓk=n
n!
∏K

k=1

(wk)
ℓk

ℓk!
, (57)

where Fmax
Aℓ,N

(
2R
)
= max∑K

k=1
ℓk≥N+1

(
FAℓ

(
2R
))

and (·)n denotes Pochhammer symbol. Herein,

it is readily found that max∑K
k=1

ℓk=N1

(
FAℓ

(
2R
))

≥ max∑K
k=1

ℓk=N2

(
FAℓ

(
2R
))

if N1 < N2 by

the physical interpretation of FAℓ

(
2R
)

in Section III. Thus we have Fmax
Aℓ,N

(
2R
)
= max∑K

k=1 ℓk=N+1

(
FAℓ

(
2R
))

.

By means of multinomial theorem [43, Eq.26.4.9], it yields

∇(N) ≤ W0F
max
Aℓ,N

(
2R
)∑∞

n=N+1

(m)n
n!

(∑K

k=1
wk

)n

. (58)
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Reformulating the summation term in the right hand side of (58) in terms of hypergeometric

function 2F1(·) [29,Eq.15.1.1], the truncation error ∇(N) is consequently upper bounded as (23).

APPENDIX D

PROOF OF THEOREM 2

Recalling from Theorem 1 that FAℓ
(x) is the CDF of the product of multiple independent

shifted-Gamma RVs, i.e., Aℓ =
∏K

k=1(1 +Rℓ,k) and Rℓ,k ∼ G(m+ ℓk,Ωk), it can be expressed

as

FAℓ
(x) = Pr

(∏K

k=1
(1 +Rℓ,k) ≤ x

)

=

∫

∏K
k=1 (1+tk)≤x

∏K

k=1

tk
m+ℓk−1e

−
tk
Ωk

(Ωk)
m+ℓkΓ (m+ ℓk)

dt1 · · · dtK−1dtK .

(59)

By using Maclaurin series of exponential function, FAℓ
(x) in (59) can then be derived as

FAℓ
(x) =

∏K

k=1

1

(Ωk)
m+ℓk

Γ (m+ ℓk)

∫

∏K
k=1

(1+tk)≤x

∏K

k=1
tk

m+ℓk−1
∑∞

n1,··· ,nK=0

(

− tk
Ωk

)nk

nk!
dt1 · · · dtK−1dtK

=
∏K

k=1

1

(Ωk)
m+ℓk

∑∞

n1,··· ,nK=0

∏K

k=1

1

Γ (m+ ℓk)nk!

(

− 1

Ωk

)nk

gn+ℓ (x) , (60)

where n = (n1, · · · , nK) and gℓ (x) is given by (26). After putting Ωk =
Pkσk

2(1−λk
2)

mN0
and (24)

into (60), the CDF expression in (25) directly follows.

On the other hand, FAℓ
(x) can also be expressed in the form of Mellin-Barnes integral from

(53) as

FAℓ
(x) =

1

2πi

∫ c1+i∞

c1−i∞

Γ (s)

Γ (s+ 1)

∏K

k=1

Ψ
(

m,m+ ℓk + 1− s; 1
Ωk

)

(Ωk)
m+ℓk

xsds

=
1

2πi

∫ c2+i∞

c2−i∞

Γ (−s)

Γ (−s+ 1)

∏K

k=1

Ψ
(

m,m+ ℓk + 1 + s; 1
Ωk

)

(Ωk)
m+ℓk

︸ ︷︷ ︸

{MFAℓ
}(s)

x−sds. (61)

where c2 = −c1 and the fundamental strip4 of {MFAℓ
} (s) implies c2 ∈ (−∞, 0) because

FAℓ
(x) admits [44, p400]

FAℓ
(x) =







O (x∞) x → 0

O (x0) x → ∞
(62)

4{MFAℓ
} (s) exists for any complex number s in the fundamental strip.
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where O(·) denotes the big O notation and the first equation of (62) holds because of FAℓ
(x) = 0

for x ≤ 1. Thus c1 ∈ (0,∞).

By adopting [31, Eq.9.210.2] into (61), it yields

FAℓ
(x) =

1

2πi

∫ c1+i∞

c1−i∞

Γ (s)

Γ (s+ 1)

×
K∏

k=1

1

(Ωk)
m+ℓk





Γ(−m−ℓk+s)
Γ(s) 1F1

(

m+ ℓk, m+ ℓk + 1− s; 1
Ωk

)

+

Γ(m+ℓk−s)
Γ(m+ℓk)

(
1
Ωk

)s−m−ℓk

1F1

(

s, 1−m− ℓk + s; 1
Ωk

)



 xsds. (63)

where 1F1

(

α, β; 1
Ωk

)

can be expanded as

1F1

(

α, β;
1

Ωk

)

= 1 +
β

α

1

Ωk
+ o

(
1

Ωk

)

. (64)

Clearly, as γ approaches to infinity, the dominant term in (64) is 1.

Herein, we assume c1 > m + max{ℓ} because c1 could be any point in (0,∞). Then by

substituting (64) into (63), we have

FAℓ
(x)=

K∏

k=1

1

(Ωk)
m+ℓk

1

2πi

∫ c1+i∞

c1−i∞

Γ (s)

Γ (s+ 1)

K∏

k=1

Γ (−m− ℓk + s)

Γ (s)
xsds+ o

(
K∏

k=1

1

(Ωk)
m+ℓk

)

=
K∏

k=1

1

(Ωk)
m+ℓk

G0,K+1
K+1,K+1




1, 1 + ℓ1 +m, · · · , 1 + ℓK +m

1, · · · , 1, 0

∣
∣
∣
∣
∣
∣

x



+ o

(
K∏

k=1

1

(Ωk)
m+ℓk

)

. (65)

Putting (24) into (65), FAℓ
(x) can be finally written as

FAℓ
(x)=

K∏

k=1

(

m

θkσk
2
(
1− λk

2
)

)m+ℓk

G0,K+1
K+1,K+1




1, 1 + ℓ1 +m, · · · , 1 + ℓK +m

1, · · · , 1, 0

∣
∣
∣
∣
∣
∣

x



 γ−dA
ℓ

+ o
(
γ−dA

ℓ

)
. (66)

Comparing (66) with (25) and setting the coefficients corresponding to γ−dA
ℓ equal, we finally

have (27).

APPENDIX E

PROOF OF LEMMA 3

Defining λ1 = (λ1, · · · , λK) and given K > 1, we first consider the simplest case where

λ1 � λ2 and λ2 = (λ1 +∆1, · · · , λK) with ∆1 ≥ 0. With (34), ℓ (λ2, K) can be written as

ℓ (λ2, K) =

(

1 +

K∑

k=2

λk
2

1− λk
2 +

(λ1 +∆1)
2

1− (λ1 +∆1)
2

)

(
1− (λ1 +∆1)

2)
K∏

k=2

(
1− λk

2
)
. (67)
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Since ∆1 ≥ 0, we have

ℓ (λ2, K) =

(

1 +
K∑

k=2

λk
2
(
1− (λ1 +∆1)

2)

1− λk
2

)
K∏

k=2

(
1− λk

2
)

≤
(

1 +
K∑

k=2

λk
2
(
1− λ1

2
)

1− λk
2

)
K∏

k=2

(
1− λk

2
)
= ℓ (λ1, K) , (68)

where the equality holds if and only if ∆1 = 0. Now gradually adding non-negative increments

∆i to the other elements λi, i = 2, · · · , K, in λ2 and using the similar approach as (68), we

can finally have ℓ (λ2, K) ≤ ℓ (λ1, K) for general λ2 = (λ1 +∆1, · · · , λi +∆i, · · · , λK +∆K)

with ∆i ≥ 0 where the equality holds if and only if ∆i = 0. Clearly, when K > 1, we have

ℓ (λ1, K) ≤ ℓ (0, K) = 1, where the equality holds if and only if λ1 = 0. Then the proof

completes.

APPENDIX F

PROOF OF LEMMA 4

It is readily found from (26) that gℓ
(
2R
)

is a monotonically increasing function of R.

Therefore the first derivative of gℓ
(
2R
)

with respect to R is greater than 0, i.e., gℓ
′
(
2R
)
> 0.

By applying the property of derivatives of Laplace transform into (27) [30], it follows that

gℓ
′
(
2R
)
= Θ

K∏

k=1

Γ (m+ ℓk)
1

2πi

∫ c1+i∞

c1−i∞

K∏

k=1

Γ (−m− ℓk + s)

Γ (s)
2Rsds > 0. (69)

where Θ = ln 2. Similarly, the second derivative of gℓ
(
2R
)

with respect to R is given by

gℓ
′′
(
2R
)
= Θ2

K∏

k=1

Γ (m+ ℓk)
1

2πi

∫ c1+i∞

c1−i∞

s

K∏

k=1

Γ (−m− ℓk + s)

Γ (s)
2Rsds. (70)

Without loss of generality, we assume that ℓ1 = max{ℓ}. By rewriting s = (s−m−ℓ1)+(m+ℓ1),

the integral in (70) can be derived as

1

2πi

∫ c1+i∞

c1−i∞

s
K∏

k=1

Γ (−m− ℓk + s)

Γ (s)
2Rsds = (m+ ℓ1)

1

2πi

∫ c1+i∞

c1−i∞

K∏

k=1

Γ (−m− ℓk + s)

Γ (s)
2Rsds

+
1

2πi

∫ c1+i∞

c1−i∞

Γ (1−m− ℓ1 + s)

Γ (s)

K∏

k=2

Γ (−m− ℓk + s)

Γ (s)
2Rsds. (71)

Putting (71) into (70) along with (69), it follows that

gℓ
′′ (x) =







Θgℓ/1
′
(
2R
)
+Θgℓ

′
(
2R
)
> 0, ℓ1 +m = 1;

Θ Γ(m+ℓ1)
Γ(m+ℓ1−1)

gℓ̄
′
(
2R
)
+Θ (m+ ℓ1) gℓ

′
(
2R
)
> 0, ℓ1 +m > 1.

(72)

where ℓ/1 = (ℓ2, ℓ3, · · · , ℓK) and ℓ̄ = (ℓ1 − 1, ℓ2, ℓ3, · · · , ℓK). Thus it proves that gℓ
(
2R
)

is a

convex function of R if max{ℓ}+m ≥ 1. Then the proof directly follows.
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