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Abstract—We consider training-based channel estimation for
a cloud radio access network (CRAN), in which a large amount
of remote radio heads (RRHs) and users are randomly scattered
over the service area. In this model, assigning orthogonal training
sequences to all users will incur a substantial overhead to the
overall network, and is even impossible when the number of
users is large. Therefore, in this paper, we introduce the notion
of local orthogonality, under which the training sequence of a user
is orthogonal to those of the other users in its neighborhood. We
model the design of locally orthogonal training sequences as a
graph coloring problem. Then, based on the theory of random
geometric graph, we show that the minimum training length
scales in the order of lnK, where K is the number of users
covered by a CRAN. This indicates that the proposed training
design yields a scalable solution to sustain the need of large-scale
cooperation in CRANs. Numerical results show that the proposed
scheme outperforms other reference schemes.

Index Terms—Cloud radio access networks, channel estima-
tion, graph coloring, local orthogonality, training design, pilot
contamination

I. INTRODUCTION

CLOUD radio access network (CRAN), which exhibits
significant improvement on spectrum efficiency, is one

of the enabling technologies for future 5G wireless communi-
cations [1]. The main idea of CRAN is to split a base station
into a remote radio head (RRH) for radio frequency signaling
and a baseband unit (BBU) for baseband signal processing.
BBUs, centralized in a BBU pool [2], [3], are connected to
RRHs via high-capacity fronthaul links, as illustrated in Fig.
1. The CRAN technology significantly improves the system
throughput via ultra-dense RRH deployment and centralized
control [2]. However, a CRAN involves cooperation among
hundreds and even thousands of RRHs and users. Such a
large-scale cooperation imposes a stringent requirement on
channel state information (CSI). The acquisition, distribution,
and storage of CSI may incur a considerable overhead to the
network. As such, it is highly desirable to design an efficient
channel training scheme for CRANs.

Time-multiplexed training design has been studied in vari-
ous communication models [4]–[20]. In particular, the authors
in [4] derived the optimal time-multiplexed training design
for conventional point-to-point multiple-input multiple-output
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Fig. 1. CRAN architecture.

(MIMO) systems, where the transmit antennas are co-located
and so are the receive antennas. In [5], the authors studied
the optimal time-multiplexed training design for a multiuser
MIMO channel where users are scattered and suffer from
the near-far effect. Orthogonal training sequences were shown
to be optimal or nearly optimal in these scenarios [4], [5].
However, orthogonal training design is very inefficient when
applied to CRAN, for that a CRAN system usually covers
a large number of users and RRHs. Allocating orthogonal
training sequences to users inevitably leads to an unaffordable
overhead to the system.

In this paper, we investigate the design of training sequences
for time-multiplexed channel training in CRANs. A crucial
observation in a CRAN is that both RRHs and users are
scattered over a large area. As such, due to severe propagation
attenuation of electromagnetic waves, the interference from
far-off users can be largely ignored when processing the
received signal of an RRH. Therefore, rather than global
orthogonality, we introduce the notion of local orthogonality,
in which the training sequences of the neighboring users with
distance no greater than a certain threshold (denoted by r) are
required to be orthogonal to each other. The training design
problem is then formulated as to find the minimum training
length that preserves local orthogonality. This problem can
be recast as a vertex-coloring problem, based on which the
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existing vertex-coloring algorithms [21], [22] are applicable.
Further, we analyze the minimum training length as a function
of the network size. Based on the theory of random geometric
graph, we show that the training length is O(lnK) almost
surely, where K is the number of users. This guarantees
a scalable training-based CRAN design, i.e., the proposed
training design can be applied to a large-size CRAN system
satisfying local orthogonality at the cost of a moderate training
length.

In the proposed scheme, the neighborhood of an RRH is
defined as the area centered around it with distance below the
threshold r. For a large r, the neighborhood of an RRH is large
and more multi-user interference from neighboring users can
be eliminated in channel estimation. Then, local orthogonality
achieves a channel-estimation accuracy close to that of global
orthogonality. However, a larger neighborhood area implies
more channel coefficients to be estimated, thereby incurring
a larger overhead to the system. Therefore, there is a balance
to strike between the accuracy and the overhead of channel
estimation. In this paper, we study this tradeoff for throughput
maximization. We show that, with local orthogonality, the
optimal r for throughput maximization can be numerically
determined.

A. Related Work
In the considered training-based CRAN, orthogonal training

sequences do not interfere with each other; the interference
only comes from far-off users with non-orthogonal training
sequences. This is similar to the problem of pilot contami-
nation in multi-cell massive MIMO systems [6], where the
orthogonal training sequences used in each cell are reused
among cells.

There are several existing approaches to tackle the pi-
lot contamination problem [6]–[20]. For example, data-aided
channel estimation with superimposed training design was
proposed in [8]–[10] to reduce the system overhead spent
on channel estimation and to suppress pilot contamination.
In [11], [12], the authors proposed blind channel estimation
based on singular value decomposition (SVD). However, both
superimposed training and blind channel estimation involve
high computational complexity in implementation, especially
when applied to a CRAN with a large network size.

Time-multiplexed training design has also been considered
to address the problem of pilot contamination [13]–[16]. The
key issue is the design of the training-sequence reuse pattern
among cells. In [13] and [14], users within each cell are
classified into cell-edge and cell-center users. The pilots for
cell-center users are reused across all cells, while orthogonal
pilot sub-sets are assigned to the cell-edge users. In [15], the
cells surrounding the home cell by one or more rings are
assigned orthogonal pilot sets. In [16], training sequences are
assigned to users based on the angle of arrival. However, the
notion of cell is no longer adopted in CRAN, as RRHs in a
CRAN are fully connected to enables full-scale cooperation.
Therefore, the cell-based techniques in [13]–[16] are not
applicable to CRAN.

It is also worth mentioning that training-based CRAN has
been previously studied in the literature [17], [18]. In [17],

the authors proposed a coded pilot design where RRHs can be
turned on or off to avoid pilot collisions, which may degrade
the system performance. In [18], in each transmission block,
only a portion of users is allowed to transmit pilots for channel
training, and the channels of the other users are not updated.
This scheme can only accommodate a relatively small number
of users to avoid an unaffordable training overhead. Therefore,
training design for CRAN deserves further endeavor, which is
the main focus of this work.

B. Organization

The remainder of this paper is organized as follows. In
Section II, we describe the system model. The definition of
local orthogonality and the problem formulation are presented
in Section III. In Section IV, we introduce our training se-
quence design algorithm. In Section V, we characterize the
minimum training length as a function of the size of CRAN.
The practical design and numerical results are given in Section
VI. Section VII concludes this paper.

C. Notation

Regular letters, lowercase bold letters, and capital bold
letters represent scalars, vectors, and matrices, respectively.
Throughout this paper, the vectors are row vectors. R and C
represent the real field and the complex field, respectively; the
superscripts H, T, and -1 represent the conjugate transpose, the
transpose, and the inverse, respectively; | · |, ‖ · ‖2, ‖ · ‖∞,
and det(·) represent the absolute value, the `2-norm, the `∞-
norm, and the determinant, respectively; a ⊥ b means that
vector a is orthogonal to vector b; diag{a} represents the
diagonal matrix with the diagonal specified by a;→ represents
“tends to” and a.s. is the abbreviation of almost surely;
lim supK→∞ denotes limit superior as K tends to infinity. For
any functions f(x) and g(x), f(x) = O(g(x)) is equivalent
to limx→∞

∣∣∣ f(x)g(x)

∣∣∣ = c, where c is a constant coefficient.

II. SYSTEM MODEL

Consider a CRAN consisting of N RRHs and K users ran-
domly distributed over a service area. The RRHs are connected
to a BBU pool by the fronthaul. We assume that the capacity
of the fronthaul is unlimited, so that the signals received by
the RRHs are forwarded to the BBU pool without distortion
for centralized signal processing. We also assume that users
and RRHs are uniformly distributed over the service area that
is a square with side length r0. The result in this paper can
be extended to service areas with other shapes. We consider a
multiple-access scenario where users simultaneously transmit
individual data to RRHs. The channel is assumed to be block-
fading, i.e., the channel remains invariant within the coherence
time of duration T .

Suppose that a transmission frame consists of T channel
uses. Then, the received signal of RRH i at time t is given by

yi,t =

K∑
k=1

hi,kγi,kxk,t + zi,t, i = 1, . . . , N, t = 1, . . . , T (1)
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where xk,t denotes the signal transmitted by user k at time t,
zi,t ∼ CN (0, N0) is the white Gaussian noise at RRH i, hi,k
is the small-scale fading factor from user k to RRH i and is
independently drawn from CN (0, 1), and γi,k represents the
large-scale fading factor from user k to RRH i. In this paper,
γi,k is modeled as γi,k = d

− η2
i,k , where di,k denotes the distance

between user k and RRH i, and η is the path loss exponent.
Denote by yi = [yi,1, . . . , yi,T ] ∈ C1×T the received signal at
RRH i in a vector form and xk = [xk,1, . . . , xk,T ] ∈ C1×T the
corresponding transmitted signal vector of user k. The signal
model in (1) can be rewritten as

yi =

K∑
k=1

hi,kγi,kxk + zi, i = 1, . . . , N (2)

where zi = [zi,1, . . . , zi,T ] ∈ C1×T is the noise vector at RRH
i. The power constraint of user k is given by

1

T
‖xk‖22 ≤ P0, k = 1, . . . ,K (3)

where P0 is the power budget of each user.
We note that if γi,k = γ for a certain constant γ for all i and

k, the system in (2) reduces to a conventional MIMO system
where both users and RRHs are co-located. If γi,k = γk for all
i and γk 6= γk′ for k 6= k′, then the system in (2) reduces to a
multiuser system where the RRHs are co-located but the users
are separated. In this paper, we consider a general situation
that γi,k 6= γi′,k′ for i 6= i′ or k 6= k′, i.e., both users and
RRHs are separated from each other.

The large-scale fading coefficients {γi,k} only depend on
user positions and vary relatively slowly. It is usually much
easier to acquire the knowledge of {γi,k} than to acquire the
small-scale fading coefficients {hi,k}. Hence, we assume that
{γi,k} are known at RRHs, while {hi,k} need to be estimated
based on the received data in a frame-by-frame manner.

In this paper, we aim to design an efficient transmission
scheme to jointly estimate the small-scale fading coefficients
{hi,k} and detect the signals {xk}. We adopt a two-phase
based training scheme consisting of a training phase and a data
transmission phase. During the training phase, users transmit
training sequences to RRHs for channel estimation. During
the data transmission phase, users’ data are transmitted and
detected at the BBU pool based on the estimated channel.
More details follow.

A. Training Phase

Without loss of generality, let αT be the number of channel
uses assigned to the training phase, where α ∈ (0, 1) is a time-
spliting factor to be optimized. We refer to αT as the training
length. From (2), the received signal at RRH i for the training
phase is given by

yp
i =

K∑
k=1

hi,kγi,kx
p
k + zp

i , i = 1, . . . , N (4)

where yp
i ∈ C1×αT is the received signal at RRH i,

xp
k = [xk,1, . . . , xk,αT ] ∈ C1×αT is the training sequence

transmitted by user k, and zp
i ∈ C1×αT is the corresponding

additive noise. The power constraint for user k in the training
phase is given by

1

αT
‖xp

k‖
2
2 ≤ βkP0, k = 1, 2, · · · ,K (5)

where βk represents the power coefficient of user k during the
training phase.

B. Data Transmission Phase

In the data transmission phase, the data of users are trans-
mitted to RRHs and then forwarded to the BBU pool through
the fronthaul. The BBU pool performs coherent detection
based on the estimated channel obtained in the training phase.
From (2), the received signal of RRH i in the data transmission
phase is written as

yd
i =

K∑
k=1

hi,kγi,kx
d
k + zd

i , i = 1, . . . , N (6)

where xd
k = [xk,αT+1, . . . , xk,T ] ∈ C1×(1−α)T is the data

signal of user k, yd
i is the corresponding received signal

at RRH i, and zd
i is the corresponding noise. The power

constraint of user k in the data transmission phase is given
by

1

(1− α)T
‖xd

k‖22 ≤ β′kP0 (7)

where the coefficient β′k = 1−αβk
1−α satisfies the power con-

straint in (3).

III. PROBLEM FORMULATION

A. Throughput Optimization

The mutual information throughput is a commonly used
performance measure for training-based systems [4], [5]. The
throughput expression for the proposed training based scheme
is derived in Appendix A. The system design problem can be
formulated as to maximize the throughput over the training
sequence {xp

k}, the training length αT , the number of users
K, and the power allocation coefficients {βk} subject to the
power constraints in (3) and (5). Similar problems have been
previously studied in the literature. For example, when users
are co-located and so are RRHs, the model in (2) reduces
to a conventional point-to-point MIMO system. The optimal
training design for throughput maximization was discussed in
[4]. Specifically, the optimal strategy is to select a portion
of active users while the others keep silent in transmission.
The optimal number of active users is equal to T

2 , and each
active user is assigned with an orthogonal training sequence.1

Moreover, when only RRHs are co-located, the model in (1)
reduces to a multiuser MIMO system. In this case, users are
randomly distributed and suffer from the near-far effect. It
was shown in [5] that the optimal number of active users is in
general less than T

2 , but the orthogonal training design is still
near-optimal. A key technique used in [4], [5] is the rotational

1For the MIMO system in [4], the total transmission power is constrained
by a constant invariant to the number of users. The case that the total power
linearly scales with K was discussed in [5].
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invariance of the channel distribution when users or RRHs or
both are co-located.

This paper is focused on the training design for a general
CRAN setting where neither RRHs nor users are co-located.
The rotational invariance property of the channel in general
does not hold in our setting, and therefore the analysis in [4]
and [5] are no longer applicable. As suggested by the optimal
design in [4] and [5], it is desirable to design orthogonal
training sequences for CRAN. The challenge is that a CRAN
usually serves a large number of active users. Thus, assigning
every user with an orthogonal training sequence leads to an
unaffordable overhead. This inspires us to design the so-called
locally orthogonal training sequences for CRANs, as detailed
below.

B. Local Orthogonality

The main advantage of using orthogonal training sequences
is that the training signal from one user does not interfere with
the training signals from other users. However, the number of
available orthogonal sequences is limited by the training length
αT . This quantity should be kept small so as to reduce the
cost of channel estimation.

A crucial observation in a CRAN is that both RRHs and
users are randomly scattered over a large area. Thus, due to
the severe propagation attenuation of electromagnetic waves
over distance, the interference from far-off users can be largely
ignored when processing the received signal of an RRH. This
fact inspires the introduction of the channel sparsification
approaches in [23]–[25]. These approaches were originally
proposed to reduce the implementational and computational
complexity. In contrast, in this paper, we use channel spar-
sification as a tool to identify the most interfering users in
the received signal of each RRH. We only assign orthogonal
training sequences to the most interfering users and ignore the
rest, hence the name local orthogonality.

We basically follow the channel sparsification approach in
[25]. The only difference is that here the l∞ norm2 is adopted
as a measure of the distance between two nodes. Specifically,
the channel sparsification is to ignore relatively weak channel
links based on the following criteria:

h̃i,k =

{
hi,k, ‖bi − uk‖∞ < r
0, otherwise (8)

where r is a predefined threshold, and uk ∈ R1×2 and bi ∈
R1×2 denote the coordinates of user k and RRH i, respectively.

We now present graphical illustrations of CRANs after
channel sparsification. Denote by

U = {1, · · · ,K} (9)

the set of user indexes and by

B = {1, · · · , N} (10)

2For a vector x = [x1, x2, . . . , xN ], ‖x‖∞ = max{|x1|, . . . , |xN |}.
The reason that we adopt l∞ norm is to ease our analysis on the minimum
training length detailed in Section V, where the random geometric theory
developed in [30] directly applies. Other types of norm can also be used but
the required random geometric theory is different. We refer interested readers
to [34] for details.
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Fig. 2. (a) User association after channel sparsification. (b) The bipartite
graph representation of user association after channel sparsification.

the set of RRH indexes. Define

Bk , the set of RRHs serving user k, for k ∈ U (11)

Ui , the set of users served by RRH i, for i ∈ B (12)

Uci , the complement of Ui, for k ∈ U . (13)

The user associations with RRHs after channel sparsification
are illustrated in Fig. 2(a), where each user is connected to
an RRH by an arrow if the distance between the user and the
RRH is below the threshold r. Alternatively, the system after
channel sparsification can also be represented as a bipartite
graph shown in Fig. 2(b), where each black node represents
an RRH, and each white node represents a user.

With the above channel sparsification, the received signal at
RRH i in (4) can be rewritten as

yp
i =

∑
k∈Ui

hi,kγi,kx
p
k +

∑
k∈Uci

hi,kγi,kx
p
k + zp

i . (14)

We aim to minimize the multiuser interference in the first term
of the right-hand-side of (14), while the interference in the
second term is ignored as it is much weaker than the one in
the first term. To this end, the training sequences {xp

k, k ∈ Ui}
should be mutually orthogonal for any i ∈ B. This gives a
formal definition of local orthogonality.
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Fig. 3. A new graphical representation of the graph in Fig. 2.

C. Problem Statement

The goal of this work is to design training sequences
with the shortest length that preserve local orthogonality. This
problem is formulated as

min
{xp
k}

α (15a)

s.t. xp
k ⊥ xp

k′ ,∀k 6= k′, k and k′ ∈ Ui,∀i ∈ B (15b)

xp
1, · · · ,x

p
K ∈ C1×αT (15c)

where α defined in Section II-A is the time-splitting factor for
the training phase; a ⊥ b means that a is orthogonal to b.

It is not easy to tackle the problem in (15) directly, partly
due to the fact that the dimension of the search space varies
with α. In the following, we will solve (15) by converting it
to a graph coloring problem. In addition, the optimal α is a
random variable depending on the random locations of RRHs
and users. We will characterize the asymptotic behavior of the
optimal α as the network size goes to infinity.

The problem formulation in (15) is for uplink channel
estimation. We emphasize that the training design for the
uplink directly carries over the downlink by swapping the
roles of users and RRHs. That is, in the uplink phase, the
training sequences are transmitted by users and the local
orthogonality is preserved at the RRH side, while in the
downlink, the training sequences are transmitted by RRHs and
the local orthogonality is preserved at the user side. Moreover,
if channel reciprocity is assumed, channel training is only
required once, either at the RRH side or at the user side.
Therefore, we henceforth focus on the training design for the
uplink.

IV. TRAINING SEQUENCE DESIGN

In this section, we solve problem (15) based on graph
coloring. We first formulate a graph coloring problem that is
equivalent to problem (15).

In Fig. 3, we define a new graph G = {U , E} with vertex
set U and edge set E, where two users k and m in U are
connected by an edge ek,m ∈ E if and only if they are served
by a common RRH. Then, the edge set E can be represented
as E = {ek,m|Bk ∩ Bm 6= ∅,∀k 6= m, k,m ∈ U}. Denote by
c : U → C a map from each user k ∈ U to a color c(k) ∈ C.

We then formulate the following vertex coloring problem over
G:

min
c

|C| (16a)

s.t. c(k) 6= c(m), if Bk ∩ Bm 6= ∅,∀k 6= m, k,m ∈ U .
(16b)

Note that the solution to (16), denoted by χ(G), is referred
to as the chromatic number of the graph in Fig. 3. We further
have the following result.

Theorem 1. The vertex coloring problem over G in (16) is
equivalent to the training design problem in (15).

Proof: Each color can be seen as an orthogonal training
sequence. Then, the color set C can be mapped into a set
of orthogonal training sequences {xp

k}. The cardinality of C
equals to the number of orthogonal training sequences, i.e.,
|C| = αT . From (16b), the statement that any two vertices
connected by an edge are colored differently is equivalent to
the statement that any two users served by a common RRH
transmit orthogonal training sequences. Then, as users in Ui
are all served by RRH i, any two users in Ui must be connected
by an edge in the new graph G. This is equivalent to say that
the training sequences assigned to users in Ui are orthogonal
to each other. Therefore, (16b) is equivalent to (15b), which
concludes the proof.

We now discuss solving the vertex coloring problem in (16).
This is a well-known NP-complete problem [26], [27]. Exact
solutions can be found, e.g., using the algorithms proposed in
[28], [29]. However the running time of these algorithms is
acceptable only when the corresponding graph has a relatively
small size. For a large-size graph as in a CRAN, algorithms
in [21], [22] are preferable to yield suboptimal solutions
with much lower complexity. In this paper, we adopt in the
simulations the dsatur algorithm, which is a greedy-based
low-complexity algorithm with near optimal performance [22].
The dsatur algorithm dynamically chooses the vertex with
the maximum saturation degree3 to color at each step, and
prefers to use the existing colors to color the next vertex. For
completeness, we describe the dsatur algorithm in Table I.

We now discuss the construction of training sequences
{xp

k} for problem (15) based on the coloring pattern c and
the chromatic number χ(G) obtained from solving (16). We
first generate χ(G) orthonormal training sequences of length
χ(G), i.e. x̃p

i (x̃
p
i )

H = 1,∀i, and x̃p
i (x̃

p
j)

H = 0,∀i, j ∈
{1, . . . , χ(G)} with i 6= j. Then, the training sequence xp

k

for user k is scaled to meet the power constraint in (5), i.e.
xp
k =

√
χ(G)βkP0x̃

p
c(k), k ∈ U .

V. OPTIMAL TRAINING LENGTH

In the preceding section, we proposed a training design
algorithm for the problem in (15), and obtained that the
minimum training length αT is given by the chromatic number
χ(G). In this section, we focus on the behavior of the training
length as the network size increases. We show that the training

3For a vertex u, the (ordinary) degree is defined as the number of vertices
connected to u; the saturation degree is defined as the number of vertices in
distinct colors connected to u.
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TABLE I
ALGORITHM I: THE DSATUR ALGORITHM FOR GRAPH COLORING.

Initial: A = {k = 1, . . . ,K} and C = ∅.
while A 6= ∅

Step 1: Select k ∈ A with maximum saturation degree.
If two vertexes have the same maximum saturation
degree, choose the one with maximum ordinary
degree.

Step 2: Color k greedily so that
c(k) = min{i ∈ C|c(m) 6= i,∀m ∈ {m|ek,m ∈ E}}
if c(k) = ∅
c(k) = |C|+ 1
C = C ∪ {c(k)}

end if
Step 3: A = A\k

end while

length scales at most at the rate of O(lnK) as the network size
goes to infinity under the assumption of a fixed user density.

A. Graph with Infinite RRHs

Our analysis is based on the theory of random geometric
graph. Recall from (8) that the edge generation of graph G in
Fig. 3 follows the rule below:

E = {ek,m|∃i, ‖uk−bi‖∞ < r and ‖um−bi‖∞ < r}. (17)

This is unfortunately different from the edge-generation rule of
a random geometric graph [30]. To circumvent this obstacle,
we introduce a new graph as follows:

G∞ = {U , E∞} with E∞ = {e∞k,m|‖uk − um‖∞ < 2r}.
(18)

We have the following result.

Lemma 1. The graph G is a subgraph of G∞.

Proof: Since G and G∞ have a common vertex set U ,
we only need to prove E ⊆ E∞. For any ek,m ∈ E, we have
‖uk − um‖∞ = ‖uk − bi + bi − um‖∞ ≤ ‖uk − bi‖∞ +
‖um − bi‖∞ < 2r. Hence, ek,m ∈ E∞.

Graph G∞ can be seen as a supergraph4 of G with infinite
RRHs, i.e., there always exists an RRH located between two
users provided that the distance between these two users does
not exceed 2r. Since G is a subgraph of G∞, the chromatic
number χ(G∞) serves as an upper bound for χ(G).

B. Asymptotic Behavior of the Training Length

We are now ready to characterize the asymptotic behavior
of the training length as K →∞. Denote by δ = K

r20
the user

density in the service area. We have the following theorem.

Theorem 2. As K →∞ and δr2

lnK → ρ, the minimum training
length αT preserving local orthogonality satisfies

lim sup
K→∞

(
αT

δr2

)
≤ 4f−1

(
1

4ρ

)
, a.s., (19)

4A supergraph is a graph formed by adding vertices, edges, or both to a
given graph. If H is a subgraph of G, then G is a supergraph of H .

where ρ ∈ (0,+∞) is a predetermined constant, and f−1 is
the inverse function of f(x) over the domain [1,+∞) with
f(x) defined as below

f(x) = 1− x+ x lnx, x > 1 (20)

and a.s. stands for almost surely.

Proof: From Lemma 1, G is a subgraph of G∞, and χ(G)
is upper bounded by χ(G∞). As the minimum αT is given
by χ(G), it suffices to show

lim sup
K→∞

(
χ(G∞)

δr2

)
≤ 4f−1

(
1

4ρ

)
, a.s. (21)

Denote by ω(G∞) the clique number5 of G∞. From The-
orem 2 in [30], we have6

lim sup
K→∞

(
ω(G∞v )

δr2

)
≤ 4f−1

(
1

4ρ

)
, a.s. (22)

The clique number ω(G∞) serves as a lower bound for χ(G∞)
in general. However, as K → ∞, the clique number almost
surely converges to the chromatic number [31], i.e.

lim
K→∞

χ(G∞)

ω(G∞)
= 1, a.s. (23)

Combining (22) and (23), we obtain

lim sup
K→∞

(
χ(G∞)

δr2

)
≤ 4f−1

(
1

4ρ

)
, a.s. (24)

This completes the proof.
Remark 1: We note that the upper bound of the minimum

training length in Theorem 2 is independent of the number
of RRHs N . For a finite N , the minimum training length
increases with N , and is upper bounded by χ(G∞).

Remark 2: From Theorem 2, with given ρ and r, the mini-
mum training length to preserve local orthogonality scales in
the order of lnK, provided that the user density δ = O(lnK).

From Theorem 2, we also claim the following result.

Corollary 1. As K → ∞ and r20 → ∞ with δ = K
r20

fixed,
the minimum training length to preserve local orthogonality
scales at most in the order of lnK.

Proof: Note that a graph with a fixed user density δ can
be generated by randomly deleting users from a graph with
user density δ = O(lnK). This implies that the minimum
training length for the case of δ fixed is upper bounded by
that of the case of δ = O(lnK). From Theorem 2, when
δ = O(lnK), the minimum training length scales in the order
of lnK. Therefore, the minimum training length for a fixed
δ scales at most in the order of lnK, which completes the
proof.

Remark 3: Corollary 1 indicates that the minimum training
length of our proposed training design scheme is moderate
even for a large-scale CRAN.

5A complete graph is a graph where every pair of distinct vertices are
connected by a unique edge. The clique number is defined as the number of
vertices of the largest complete subgraph of G∞.

6To invoke Theorem 2 in [30], the distance threshold in [30] is set to 2r
r0

.
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C. Further Discussions

In the above discussions, we assume that the chromatic
number of G can be determined accurately. However, the
algorithms proposed in [28], [29] to find the chromatic number
always have high computation complexity and are not suitable
for practical systems. As mention in Section IV, a greedy
algorithm called the dsatur algorithm is applied in this paper,
which cannot be guaranteed to achieve the chromatic number
but with relatively low complexity. However, the problem
arises whether the number of colors used by a suboptimal
coloring algorithm still scales in the order of lnK. For this
problem, we have the following theorem.

Theorem 3. The training length αT determined by the dsatur
algorithm in Table I scales at most in the order of lnK as
K →∞ and δr2

lnK → ρ.

Proof: Revisit the dsatur algorithm in Table I. In each
coloring step, the vertex to be colored prefers to use an
existing color. Then, the number of colors in every step is
upper bounded by ∆(G) + 1, where ∆(G) is the maximum
degree of G. Therefore, the number of colors used by the
dsatur algorithm is upper bounded by ∆(G) + 1. We also see
from Lemma 1 that ∆(G) ≤ ∆(G∞). Therefore, it suffices
to characterize the behavior of ∆(G∞). From Theorem 1 in
[30], we have

lim sup
K→∞

(
∆(G∞)

δr2

)
≤ 16f−1

(
1

16ρ

)
, a.s. (25)

where f−1 is given in (20). Together with δr2 = O(lnK), we
see that ∆(G∞) scales in the order of lnK. Thus, ∆(G) and
the number of colors given by the dsatur algorithm scales at
most in the order of lnK, which completes the proof.

Fig. 4 gives the numerical results to verify our analysis.
Both the chromatic number of G∞ and G with N = 1000
are included for comparision. In simulation, the chromatic
number is found by the dsatur algorithm and averaged over
1000 random realizations. From Fig. 4, the training length αT
is strictly upper bounded by the theoretical result given in (19).
We also note that the output of the dsatur algorithm for G∞

may be slightly greater than the upper bound given in (19).
This is due to the use of the suboptimal coloring algorithm in
simulation. From Fig. 4, we see that the simulated minimum
training length is close to the upper bound given in (19).

VI. PRACTICAL DESIGN

In this section, we evaluate the proposed training-based
scheme using the information throughput as the performance
measure. The throughput expression can be found in Appendix
A.

A. Refined Channel Sparsification

We first show that the channel sparsification criteria in (8)
can be refined to improve the system throughput while keeping
the minimum training length unchanged and still preserving
local orthogonality. Recall the received signal after channel
sparsification shown in (14). Due to local orthogonality, for
each RRH i, the training sequences {xp

k, k ∈ Ui} in the
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Fig. 4. The minimum training length against the number of users K with
N = 1000.
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reference.

first term of (14) are orthogonal and the channel coefficients
{hi,k, k ∈ Ui} can be estimated, while the channel coefficients
{hi,k, k ∈ Uci } in the second term are not estimated. However,
due to the randomness of user locations, a different RRH
usually serves a different number of users, which can be seen
from Fig. 5. For a certain RRH, some training sequences in
the second term may be orthogonal to the training sequences
{xp

k, k ∈ Ui} in the first term. The corresponding channel
coefficients in the second term can also be estimated at RRH
i, so as to mitigate the interference. Recall that adding more
users to {Ui} is equivalent to adding more edges to the
bipartite graph in Fig. 2. Thus, to suppress interference, it
is desirable to add more edges to the bipartite graph without
compromising local orthogonality.

We now show how to add more users to each RRH. Denote
by c and χ(G) the coloring pattern and the chromatic number
obtained by solving (16), respectively. Based on c, the user set
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Fig. 6. An example to illustrate the refined channel sparsification.

U can be partitioned into χ(G) subsets each with a different
color. Then, each RRH i chooses the closest users colored
differently from the users in Ui. An example to this procedure
is illustrated in Fig. 6, where solid lines represent the user
association after channel sparsification following the criteria in
(8), and the dash lines denote the new edges added to RRHs.
The coloring pattern c is obtained by solving problem (16).

Clearly, the refined channel sparsification in Fig. 6 still
preserves local orthogonality. Hence, the analytical results in
Section V are still applicable to the refined channel sparsifi-
cation and the minimum training length still follows O(lnK).
Furthermore, the number of users associated with each RRH
is exactly χ(G), so as to minimize the interference.

B. Numerical Results

Numerical results are presented to demonstrate the perfor-
mance of our proposed scheme. Users and RRHs are uniformly
scattered in a square area with r0 = 100m, i.e., RRHs and
users are uniformly distributed over a 100m × 100m region.
The pathloss exponent is η = 3.5 and the power ratios
β1 = β2 = · · · = βK = 1. The channel coherence time is
fixed at T = 100.

Performance comparison among different schemes is given
in Fig. 7 with ρ = 0.5 (ρ is defined in Theorem 2) and
N = K = 1000, 600, 300 marked on the curves. From
Fig. 7, we see that the refined channel sparsification method
outperforms the channel sparsification in (8) by about 10%.
We also compare the proposed scheme with the random pilot
scheme, where the pilot lengths of the two schemes set to be
equal for a fair comparison. We see that our proposed pilot
design scheme has over 20% performance enhancement over
the random pilot scheme. The scheme in [4] is also included
for comparison. Specifically, it was shown in [4] that, for
a conventional training-based MIMO, the optimal K and α
respectively converge to αT and 1/2 at high SNR. Thus, we
randomly choose T/2 active users from all the K users and
assign an orthogonal pilot sequence to each user. We refer to
this scheme as “globally orthogonal scheme”. We see from
Fig. 7 that our proposed scheme significantly outperforms the
orthogonal scheme. The reason is that the orthogonal scheme

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

SNR (dB)

Th
ro

ug
hp

ut
 (b

it/
ch

an
ne

l u
se

)

 

 

Refined Channel Sparsification
Channel Sparsification in
Proposed Algorithm with Random Pilots
Fully Orthogonal Scheme

3500

(8)

K = 1000

K = 600

K = 300
K = 300, 600, 1000 from bottom to top

Orthogonal Scheme                      

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

10
SNR (dB)

Th
ro

ug
hp

ut
 (b

it/
ch

an
ne

l u
se

)

15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

K = 1000

K = 600

K = 300
K = 300, 600, 1000 from bottom to top

Locally orthogonal scheme with refined channel sparsification
Locally orthogonal scheme with channel sparsification in (8) 
Random training sequences with channel sparsification in (8)
Globally orthogonal scheme in [4]

Fig. 7. Performance comparison between the new and the old channel
sparsification criteria with ρ = 0.5 and N = K = 600, 300. SNR = P0/N0

and r0 = 100m.
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Fig. 8. The system throughput versus the number of users. The number of
RRHs N = 500. The distance threshold for channel sparsification is set to
r = 10m and the side length r0 = 100m.

spend more time resource in channel training.
The system throughput against the number of users is given

in Fig. 8. We see that, for given N , r, and SNR = P0/N0, there
is a tradeoff in maximizing the system throughput over K. On
one hand, the total received power at each RRH increases with
K, and so is the information rate for the data transmission
phase. On the other hand, a larger K implies more channel
coefficients to be estimated, and hence increases the required
training length. Therefore, a balance needs to be stroke in
optimizing K. For example, for SNR = 30dB, the optimal K
occurs at K = 600.

A larger K implies higher received signal power at each
RRH and at the same time, higher interference power at each
RRH (as by channel sparsification the signals from far-off
users are treated as interference). In the low SNR region, the
interference is overwhelmed by the noise. Therefore, the more
users, the higher system throughput, as seen from the curve for
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Fig. 9. The system throughput versus the distance threshold r. The signal
to noise ratio SNR = P0/N0 = 50dB, and the side length r0 = 100m.

SNR = 0dB in Fig. 8. In the high SNR region, the interference
dominates the noise. Then, a larger K does not necessarily
translates to a higher throughput.

Fig. 9 illustrates the system throughput against the distance
threshold r with SNR = 50dB. We see that there is an optimal
distance threshold to maximize the throughput for fixed N and
K. The reason is explained as follows. With a high threshold
r, more interference from neighboring users are eliminated
in channel estimation, and thus better throughput is achieved.
However, at the same time, increasing r implies increasing the
training length, as more training sequences are required to be
orthogonal at each RRH. Therefore, there is an optimal r for
throughput maximization, as illustrated in Fig. 9.

VII. CONCLUSION

In this paper, we considered training-based channel estima-
tion for CRANs with N RRHs and K users. We introduced
the notion of local orthogonality and formulated the training
design problem so as to find the minimum length of training
sequences that preserve local orthogonality. A training design
scheme based on graph coloring was also proposed. We further
showed that the training length is O(lnK) almost surely as
K → ∞. Therefore, the proposed training design can be
applied to a large-size CRAN satisfying local orthogonality
at the cost of an acceptable training length.

In this paper, we mainly focus on minimizing the training
length. The joint optimization of the training sequences and the
data transmission scheme to maximize the system throughput
will be an interesting topic for future research.

APPENDIX A
MUTUAL INFORMATION THROUGPUT

In this appendix, we derive a throughput lower bound for
the training-based CRAN scheme described in Section II. With
channel sparsification, the received signal at RRH i in (4) can

be rewritten as

yp
i =

∑
k∈Ui

hi,kγi,kx
p
k +

∑
k∈Uci

hi,kγi,kx
p
k + zp

i , i ∈ B. (26)

Each RRH estimates the channel {hi,k, k ∈ Ui} based on yp
i

and xp
k. The minimum mean-square error (MMSE) estimator

[32] of RRH i for user k is given by

wi,k = γi,kx
p
k

( ∑
k′∈Ui

γ2i,k′(x
p
k′)

Hxp
k′ +N0I

)−1
, k ∈ Ui.

(27)
where wi,k ∈ C1×αT . Then the estimation of hi,k denoted by
ĥi,k is given by

ĥi,k = yp
iw

H
i,k, k ∈ Ui, i ∈ B (28)

where both yp
i and wi,k are row vectors. For k ∈ Uci , i ∈ B,

the channel estimate of hi,k is set to 0, i.e.,

ĥi,k = 0, k ∈ Uci , i ∈ B. (29)

Denote by MSEi,k the corresponding mean square error (MSE)
of RRH i for user k. Then

MSEi,k = E
[
|hi,k − ĥi,k|2

]
= 1− γi,kxp

kw
H
i,k + wi,k

( ∑
k′∈Uci

γ2i,k′(x
p
k′)

Hxp
k′

)
wH
i,k

for k ∈ Ui, i ∈ B; (30a)
MSEi,k = 1, for k ∈ Uci , i ∈ B. (30b)

For the data transmission phase, the received signal in (6)
can be rewritten as

yd
i =

∑
k∈Ui

hi,kγi,kx
d
k +

∑
k∈Uci

hi,kγi,kx
d
k + zd

i

=
∑
k∈Ui

ĥi,kγi,kx
d
k + vi

=
∑
k∈U

ĥi,kγi,kx
d
k + vi, i ∈ B (31)

where the last step follows from (29), and vi represents the
equivalent interference-plus-noise given as

vi =
∑
k∈U

(hi,k − ĥi,k)γi,kx
d
k + zd

i . (32)

The correlation of {xd
k} is given by

Rxd
k
,

1

(1− αT )
E[xd

k(xd
k)H] = β′kP0, k ∈ U , (33a)

and
1

(1− αT )
E[xd

k(xd
m)H] = 0, ∀k 6= m, k,m ∈ U .

(33b)

By definition, we obtain

σ2
vi =

1

(1− αT )
E[viv

H
i ] =

K∑
k=1

γ2i,kβ
′
kP0 ·MSEi,k +N0, i ∈ B,

(34a)

and
1

(1− αT )
E[viv

H
j ] = 0, ∀i 6= j, i, j ∈ B. (34b)
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We next express (31) in a matrix form. Define Ĥ as
the estimated channel matrix with (i, k)th element given
by Ĥi,k = ĥi,kγi,k, i ∈ B, k ∈ U . Denote by V =
[vT

1 ,v
T
2 , · · · ,vT

N ]T, Yd = [(yd
1)T, (yd

2)T, · · · , (yd
N )T]T, and

Xd = [(xd
1)T, (xd

2)T, · · · , (xd
N )T]T. Then

Yd = ĤXd + V. (35)

Note that the interference-plus-noise term V is in general
correlated with the signal part ĤXd. Therefore, the achievable
rate for (35) is lower bounded by the case with independent
Gaussian noise [33]. Specifically, the throughput lower bound
is given by

I(Xd;Yd|Ĥ) = log det
(
I + R−1V ĤRXdĤH

)
(36)

where RV = diag{σ2
v1 , · · · , σ

2
vN } is a diagonal matrix formed

by {σ2
vn}, RXd = diag{Rxd

1
, · · · , Rxd

K
}, and I(Xd;Yd|Ĥ)

is the conditional mutual information between Xd and Yd

provided that xd
k, the k-th row of Xd, is independently drawn

from CN (0, β′kP0I) for k = 1, · · · ,K, and vi is indepen-
dently drawn from CN (0, σ2

viI) for i = 1, · · · , N . Considering
the two-phase transmission scheme, we obtain the information
throughput of the system:

R = (1− α)E
[
log det

(
I + R−1V ĤRXdĤH

)]
. (37)
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