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A Generic Simulation Approach for the Fast and
Accurate Estimation of the Outage Probability of
Single Hop and Multihop FSO Links Subject to

Generalized Pointing Errors
Chaouki Ben Issaid, Ki-Hong Park, and Mohamed-Slim Alouini

Abstract—When assessing the performance of the free space
optical (FSO) communication systems, the outage probability
encountered is generally very small, and thereby the use of
nave Monte Carlo simulations becomes prohibitively expensive.
To estimate these rare event probabilities, we propose in this
work an importance sampling approach which is based on the
exponential twisting technique to offer fast and accurate results.
In fact, we consider a variety of turbulence regimes, and we
investigate the outage probability of FSO communication systems,
under a generalized pointing error model based on the Beckmann
distribution, for both single and multihop scenarios. Selected
numerical simulations are presented to show the accuracy and
the efficiency of our approach compared to naive Monte Carlo.

Index Terms—Free-space optical communication, pointing er-
rors, atmospheric turbulence, importance sampling, exponential
twisting, multihop.

I. INTRODUCTION

FREE-space optical (FSO) communication presents an
interesting alternative to radio wave and optical cables to

meet the growing needs of telecommunication regarding high
data rates. However, the design of the FSO links needs to take
into consideration two main challenges: (i) the atmospheric
turbulences and (ii) the pointing errors. These factors cause
random fluctuations of the received signal and thereby disrupt
the performance of the link.

Pointing errors have two major components: (i) a determin-
istic error related to the boresight which is a fixed displacement
between the detector and beam centers and (ii) a random error
jitter which represents the offset from the beam center at the
detector plane. Many works investigated the effect of the point-
ing errors on the performance of FSO systems. In [2], Arnon
determined the optimal divergence angle as a function of the
bit error probability taking into consideration the jitter caused
by the building sway. A novel statistical model for pointing
errors was presented in [3] by Farid and Hranilovic taking into
account the jitter variance, the beam width, and the detector
size. The authors derived expressions for the outage probability
for both weak and strong turbulence regimes assuming zero
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boresights. In [4], Gappmair et al. generalized the Rayleigh
model for misalignments by using the Hoyt distribution. In
their letter, an approximate expression for the average bit error
rate (BER) of an FSO link under Gamma-Gamma turbulence is
obtained. Later on, a more general model assuming non-zero
boresights but same jitter effects was proposed and studied
by Yang et al. in [5]. The authors studied the BER as well
as the outage probability for FSO system under different
atmospheric conditions. In [6], Al-Quwaiee et al. derived
an asymptotic expression for the ergodic capacity under a
generalized pointing error model when the radial displacement
follows a Beckmann distribution allowing both boresight and
different jitter intensities in horizontal and vertical directions.
Since the ergodic capacity is not always the most suitable
performance metrics for FSO systems, we consider, in this
paper, a general pointing error model, similar to the one
studied in [6], and propose a fast simulation approach to
accurately estimate the outage probability (or equivalently the
outage capacity) of FSO systems under these conditions.

Atmospheric turbulence happens as a result of the random
changes in the refractive index of the air. This leads to changes
in the path that the light takes in its propagation through
the air, and thus causes fluctuations of the received signal.
Some papers, including [2], [7] as examples, investigated the
consequences of atmospheric turbulence on the error rates of
FSO links. Scintillations have been described using various
statistical models [8]-[9]. In weak turbulence regime, the
most appropriate model is the lognormal, while the Gamma-
Gamma is widely used to model signal fluctuations in the
strong turbulence regime. Recently, the performance of FSO
links under new turbulence models has been studied. In [10],
the authors derived approximate and closed-form expressions
for the ergodic capacities of FSO systems under nonzero
boresight errors where the radial displacement r is assumed
to follow a Rician distribution. The atmospheric turbulence is
modeled using three probability density functions (PDFs): the
lognormal, the Rician-lognormal and the Málaga distribution.
The analysis is carried out for both intensity modulation/direct
detection (IM/DD) and heterodyne detection. More attention
has been paid to the Málaga turbulence channel in [11]
where unified expressions for the PDF, the cumulative density
function (CDF), the moment generating function (MGF), and
the moments of the average SNR of an FSO link were
presented. Using these results, closed-form and asymptotic
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expressions are derived for performance metrics, such as the
outage probability, the average BER and the ergodic capacity.
The analysis is done assuming zero boresight errors and under
the IM/DD and heterodyne detection.

An efficient technique to enhance the reliability of FSO
links is to resort to multihop relaying where the signal is
transmitted from the source to the destination by means of
intermediate terminals. In [12], Kazemlou et al. investigated
the BER performance of an all-optical FSO system for both
amplify-and-forward (AF) and decode-and-forward (DF) using
Monte Carlo simulations. The system performance was studied
under weak turbulence regime and the authors assumed either
fixed-gain optical amplifiers or optical regenerators. They
showed that the total communicating distance of a two-hops
system has increased by 0.9 km for the AF case and by 1.9 km
in the regenerate-and-forward scenario compared to the direct
transmission at a BER of 10−5. Both serial and parallel relay-
assisted transmission FSO communication systems have been
investigated in [13]. The authors derived the outage probability
of both systems for DF and AF modes in the presence of
lognormal turbulence. They showed that adding a single relay
at an outage probability of 10−6 results in a performance
improvement of 18.5 dB. In [14], the authors presented novel
experimental results for an all-optical AF relay-assisted 10
Gbps FSO link over Gamma-Gamma turbulence channel.
Mohd Nor et al. derived expressions for the end-to-end SNR
as well as the BER and showed that a good agreement between
the experimental results and the mathematical derivations
exists especially at high SNR. In [15], the authors studied
the performance of dual-hop RF/FSO system in the presence
of pointing errors. In this work, the FSO link is assumed to
operate over Gamma-Gamma fading and Rayleigh model for
misalignments is considered. The performance of multihop
FSO links operating over Gamma-Gamma turbulence in the
presence of pointing errors and path-loss effects is investigated
in [16]. The mutihop system in this case uses channel-state-
information-assisted and fixed-gain relays. Tang et al. derived
closed-form expressions for the MGF, PDF, as well as the
CDF of this system. In [17], Zedini et al. studied the end-
to-end performance of multihop FSO system operating over
Gamma-Gamma turbulence fading in the presence of pointing
error impairments. Two types of relays were considered: (i)
amplify-and-forward channel state-information-assisted, or (ii)
fixed-gain relays. The authors provided closed-form bounds
for the outage probability, the average BER, as well as the
ergodic capacity of on-off keying modulation scheme.

Finding a closed-form expression for the outage probability
is not always feasible. To the best of our knowledge, no
closed-form results for the outage probability of FSO links
over generalized pointing errors were derived in the literature.
In this case, one can use a numerical approximation based for
instance on the Monte Carlo (MC) method. However, since
FSO systems are often used for high-speed backhaul links,
the outage probability requirements are typically very low, i.e.
of the order of 10−8, thereby a very large number of samples is
required to guarantee a good quality estimator. An alternative
method to reduce the number of samples is the importance
sample (IS) technique [18]. The interest of this method lies

in the possibility of exhibiting a change of law, i.e. instead
of using samples from a PDF f(·), samples from a new PDF
f∗(·) are used to guarantee that a certain event takes place
more frequently, which reduces the variance of the standard
MC estimator. While IS method has been widely used for the
performance evaluation of digital communication systems, in
particular to study the performance of avalanche photodiodes
[19], fiber repeaters [20], and generic digital communication
systems [21], they have not been applied for the evaluation of
the performance of FSO systems. A concise review of the use
of IS in communication systems can be found in [22].

In [1], we used an efficient IS approach based on the expo-
nential twisting technique to study the outage probability of
FSO system under a generalized pointing error model with dif-
ferent vertical and horizontal jitter effects and a nonzero bore-
sight for the specified lognormal and Gamma-Gamma models.
In this paper, we extend the work to more general types of
turbulence, more specifically Rician-lognormal, Málaga, and
Double Generalized Gamma models while including detailed
proofs of the derivations. We also show how our approach can
be extended to estimate bounds on the outage probability for
the multihop systems. The reminder of this paper is organized
as follows. We start by describing the structure of the FSO
system in Section II, as well as the pointing errors and the
atmospheric turbulence statistical models. We then provide in
Section III a brief description of the fundamental concepts of
IS method as well as the tools required to estimate the outage
probability in our particular set-up. Then, we briefly explain
in section IV how to generalize our proposed approach to
estimate bounds on the outage probability in the multihop case.
In Section V, we show some selected numerical results related
to the outage probability under different turbulence regimes. In
this section, we first establish the efficiency of the IS method
compared to MC method. In fact, we show that IS provides
a significant reduction in the number of samples, especially
for low outage probability values. We then study, using IS,
the impact of the difference in the horizontal and vertical
jitter effects on the outage probability, as well as the effect
of the severity and type of turbulence for the same pointing
error conditions. Before concluding, we provide numerical
simulations for the estimation of the outage probability bounds
for the multihop case.

II. SYSTEM MODEL

In this work, we study the performance of standard FSO
systems with IM/DD in which the received signal y can be
modeled as

y = hx+ n, (1)

where h is the channel fading, x is the transmitted signal, and
n is a zero mean Gaussian noise with variance σ2

n. The signal
x is assumed to have an average transmitted optical power Pt.
Let hl denote the path loss, hp the pointing error loss factor,
and ha the atmospheric turbulence loss factor. We consider a
composite fading channel, where h = hlhahp. Here, unlike
the random variables (RVs) hp and ha, hl is considered to be
a constant. Following [3], [5], we assume that hp and ha are
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independent RVs. In this setting, the received signal-to-noise
ratio (SNR) is defined as

γ = γ0h
2, (2)

where γ0 , 2P 2
t

σ2
n

and the outage probability is defined as

Pout(γth) = P(γ < γth) = P(h < hth), (3)

where γth is a given threshold and hth ,
√

γth
γ0

.
Although the work presented in this paper deals with the

outage probability, our approach is easily applicable for the
evaluation of the outage capacity1. In fact, given the very high
data rates achieved by FSO over atmospheric turbulent chan-
nels, these channels are typically viewed as slowly varying
channels and with a coherence time greater than the latency
requirement. Hence, in this case, ergodic/average capacity is
not always considered as the most suitable performance metric.
Rather outage capacity is considered to be a more realistic
metric of channel capacity for FSO systems [3] [26, Chap. 4].

A. Pointing Errors

Let z denote the distance between the transmitter and the
detector, and r the radial displacement between the detector
center, assumed to be circular with aperture radius a and a
Gaussian beam center. The beam spot at the detector plane is
considered to be symmetrical with respect to its origin and the
turbulence is assumed to be isotropic. In this work, the point-
ing errors represent the misalignment between the transmitter
and the receiver which results from the displacement of the
laser beam in either the horizontal or the vertical direction,
i.e. we are considering a 2D configuration. We assume that
the transmitter and the receiver plans are parallel and that the
laser beam is perpendicular to the receiver area. Under these
assumptions, the expression of the pointing error loss factor
is approximated by [3] as

hp(r, z) ≈ A0 exp

(
− 2r2

w2
zeq

)
, (4)

where wzeq is the equivalent beam width and A0 is the fraction
of the collected power at r = 0. In [3], the authors show that
(4) is a good approximation as long as wz

a > 6, where wz is
the beamwidth.

Let rx and ry denote, respectively, the horizontal and
vertical displacement of the beam in the detector plane. If
rx ∼ N (µx, σ

2
x) and ry ∼ N (µy, σ

2
y) are independent then

the radial displacement r =
√
r2
x + r2

y follows the Beckmann
distribution [27]

fr(r) =
r

2πσxσy
×∫ 2π

0

exp

(
− (r cosφ− µx)

2

2σ2
x

− (r sinφ− µy)
2

2σ2
y

)
dφ U(r),

(5)

1The outage capacity is defined as the transmission rate R0 which satisfies
P(C(γ) < R0) = P(γ < γth = C−1(R0)) = Pout(C−1(R0)) = p0

where p0 is a given value and C(·) is the instantaneous capacity. In FSO,
a tight lower bound of C(γ) is given by log2(1 + dγ) where d = 1 for
heterodyne detection and d = e

2π
for IM/DD [11] [23] [24, Eq. (7.43)] [25,

Eq. (26)]. Thus γth = C−1(R0) = 2R0−1
d

.

where U(·) is the unit step function.
The Beckmann distribution is a PDF that generalizes other
PDFs, e.g. Rayleigh when µx = µy = 0, σx = σy , Hoyt
(Nakagami-q) when µx = µy = 0, σx 6= σy , and Rician
(Nakagami-n) when

√
µ2
x + µ2

y 6= 0, σx = σy .

B. Atmospheric Turbulence
1) Lognormal Turbulence: For weak turbulence regime, we

consider the lognormal model to describe the atmospheric
fading. The PDF of ha is thus given by

fha(ha) =
1

ha
√

2πσ2
R

exp

(
−

(log(ha) +
σ2
R

2 )2

2σ2
R

)
U(ha),

(6)
where σ2

R is the Rytov variance for a plane wave. The
distinction between the two turbulence regimes is made based
on the magnitude of the Rytov variance. According to [28], a
Rytov variance less than 0.3 corresponds to a weak turbulence,
while moderate to strong turbulence is characterized by a value
greater than 0.3.

2) Rician-Lognormal Turbulence: In general, atmospheric
turbulence can be modeled as the product of two independent
RVs: (i) a Rice RV that represents the small-scale turbulence
and (ii) a lognormal RV for the large-scale turbulence. In this
case, the PDF of the atmospheric turbulence is given by [9,
Eq. (5)]

fha(ha) =
(1 + k2) exp(−k2)

Ω
√

2πσR
×∫ ∞

0

exp

(
− (1 + k2)ha

zΩ
−

(log(z) +
σ2
R

2 )2

2σ2
R

)
×

I0

(
2k

√
1 + k2

zΩ
ha

)
dz

z2
,

(7)

where Ω is the average fading power, k > 0 is the Rician
turbulence parameter, and I0(·) is the zeroth-order modified
Bessel function of the first kind [29, Sec. 8.431].

3) Málaga Turbulence: A more general turbulence model
is known as the Málaga turbulence [30]. In this case, the
atmospheric fading can be seen as the product of two RVs: (i)
Y , |R|2 for small-scale turbulence and (ii) X for large-scale
turbulence, where

R =
√
G
(√

Ω exp(jφA) +
√

2b0ρ exp(jφB)
)

+
√

1− ρ U.
(8)

The large-scale fluctuations, X , follows a Gamma PDF

fX(x) =
αα

Γ(α)
xα−1 exp(−αx), (9)

while G has a Gamma distribution such that E[G] = 1
and Var[G] = 1

β and U is circular Gaussian complex RV.
Here, Ω denote the average power of the line-of-sight (LOS)
component, 2b0 represents the average power of the total
scatter and ρ ∈ [0, 1] measures the fraction of the scattering
power to the LOS component. The PDF of Málaga turbulence
is given by [30, Eq. (24)]

fha(ha) = A

β∑
m=1

amh
α+m

2 −1
a Kα−m

(
2

√
αβha
gβ + Ω0

)
(10)
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where g = 2b0(1− ρ), and

A ,
2α

α
2

g1+α
2 Γ(α)

(
gβ

gβ + Ω0

)α
2 +β

,

am ,

(
β − 1

m− 1

)
(gβ + Ω0)

1−m2

(m− 1)!

(
Ω0

g

)m−1(
α

β

)m
2

,

Ω0 = Ω + 2b0ρ+ 2
√

2b0ρΩ cos(φA − φB).

(11)

The Málaga distribution is a PDF that generalizes other PDFs,
lognormal when ρ = 0, and g → 0, K-distribution when β = 1
or (ρ = 0 and Ω = 0), and Gamma-Gamma distribution when
ρ→ 1 and Ω0 = 1.

4) Double Generalized Gamma Turbulence: Under the
assumption that both large and small scale turbulences follow
a Generalized Gamma distribution [31, Eq. (1)], each with its
specific shaping parameters, the product ha follows a Double
Generalized Gamma distribution whose PDF is given by [32]

fha(ha) =
α2λσ

β1− 1
2λβ2− 1

2 (2π)1−σ+λ
2

Γ(β1)Γ(β2)ha

G0,λ+σ
λ+σ,0

[(
Ω2

hα2
a

)λ
λλσσΩσ1
βσ1 β

λ
2

∣∣∣∣ 1− κ0

−

]
, (12)

where λ and σ are two positive integers such that λ
σ =

α1

α2
. For instance, given a certain value of λ, σ = dλα2

α1
e.

Here, κ0 = ∆(σ : β1),∆(λ : β2) where ∆(x : y) =
y
x ,

y+1
x , . . . , y+x−1

x and Gm,np,q [·] is the Meijers G-function
defined in [29, Eq.(9.301)].
For a certain set of shaping parameters, the Double General-
ized Gamma PDF can specify to other PDFs. When βi = 1, it
reduces to the Double-Weibull PDF. For αi = 1 and Ωi = 1, it
coincides with the Gamma-Gamma distribution. When αi → 0
and βi → +∞, the Double Generalized Gamma distribution
approximates very well the lognormal PDF, while if αi = 1,
Ωi = 1, and β2 = 1, it becomes the K-distribution.

III. IMPORTANCE SAMPLING

In this section, we explain briefly the idea behind IS, and
how to apply it for our purpose of estimating the outage prob-
ability. IS is a well-known method to evaluate the probability
of rare events [18]. In fact, the advantage of this method lies
in its simplicity and ease of implementation. It aims to reduce
the variance of the MC estimator by introducing an auxiliary
PDF. For a thorough explanation of the approach, the reader
is directed to [18].

A. Key Idea

The interest of this work is to estimate the outage probabil-
ity, (3), using fast simulation based on IS. First, we re-write
the outage probability expression as

Pout(γth) = P(h < hth) = P(ya + yp < ε), (13)

where ya and yp denote respectively the logarithm of ha and
hp, and ε , log

(
hth
hl

)
.

First, we recall the standard MC estimator for Pout as

I =
1

N

N∑
n=1

1(ya,n+ya,n<ε), (14)

where N is the sample size for the MC estimator and ya,n
and yp,n are sampled from the original PDFs fya(·) and
fyp(·), respectively. The MC estimator (14) is an unbiased
and consistent estimator of Pout.
Table I summarizes the PDF of ya for the different atmospheric
turbulence models.

The PDF of the pointing error, fyp(·), is given by (15) where
ξx =

wzeq
2σx

and ξy =
wzeq
2σy

.
The IS idea is based on the fact that the representation of

Pout as an expected value is not unique. In fact, we can write

Pout =

∫ ∫
1(ya+yp<ε)fya(ya)fyp(yp)dyadyp

=

∫ ∫
1(ya+yp<ε)ωya(ya)ωyp(yp)f

∗
ya(ya)f∗yp(yp)dyadyp

= E∗[1(ya+yp<ε)ωya(ya)ωyp(yp)],
(16)

where E∗ denotes the expected value with respect to (w.r.t) the
biased PDFs f∗ya(·) and f∗yp(·) and the likelihood/weighting
functions ωya(·) and ωyp(·) are given by

ωyk(·) =
fyk(·)
f∗yk(·)

, k ∈ {a, p}. (17)

As such, the outage probability estimator using IS is given by

I∗ =
1

N∗

N∗∑
n=1

1(y∗a,n+y∗p,n<ε)
ωya(y∗a,n)ωyp(y∗p,n), (18)

where N∗ is the sample size for the IS estimator, y∗a,n and
y∗p,n are here sampled from the biased PDFs f∗ya(·) and
f∗yp(·), respectively. The IS estimator is also an unbiased and
consistent estimator of Pout. Note that we use ∗ to denote the
parameters and the densities that arise from the use of IS, to
make the distinction with standard MC.

For comparison sake, we assume that the number of samples
used to evaluate the IS and MC estimators is the same, N . The
variance of the MC estimator is [18]

Var[I] =
1

N
(Pout − P 2

out), (19)

while the variance of IS is given by [18]

Var∗[I∗] =
1

N
(E∗[12

(ya+yp<ε)
ω2
ya(ya)ω2

yp(yp)]− P 2
out). (20)

The IS method aims to find a proper biased PDFs f∗ya(·) and
f∗yp(·) in order to minimize E∗[12

(ya+yp<ε)
ω2
ya(ya)ω2

yp(yp)]. In
the literature, different kind of techniques exist to accomplish
this purpose. In this work, we use, as explained in Section
III-B, the exponential twisting technique to fulfill this objec-
tive.

To show the efficiency of IS compared to MC, we introduce
two notions: (i) the relative error and (ii) the gain indicator.
The relative error of both methods, MC and IS, are defined as
[33]

εMC =
α

Pout

√
Pout(1− Pout)

N
,

εIS =
α

Pout

√
Var∗[1(ya+yp<ε)ωya(ya)ωyp(yp)]

N∗
,

(21)
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TABLE I: PDF of ya for different turbulence regimes.

Turbulence model PDF of ya : fya (x)

Lognormal 1√
2πσR

exp

(
− 1

2σ2
R

(
x+

σ2
R
2

)2
)

Rician-Lognormal (1+k2) exp(x)

Ω
√

2πσR

∫+∞
0 exp

(
−k2 − 1+k2

zΩ
exp(x)

)
I0

(
2k
√

1+k2

zΩ
exp(x)

)
exp

(
− 1

2σ2
R

(
log(z) +

σ2
R
2

)2
)
dz
z2

Málaga A
β∑

m=1
am exp

(
α+m

2
x
)
Kα−m

(
2
√
αβ exp(x)
gβ+Ω0

)
Double Generalized Gamma α2λσ

β1−
1
2 λ

β2−
1
2 (2π)

1−σ+λ
2

Γ(β1)Γ(β2)
G0,λ+σ
λ+σ,0

[
(Ω2λ)λ(σΩ1)σ

βσ1 β
λ
2 exp(α2λx)

∣∣∣∣ 1− κ0

−

]

fyp(x) =
w2
zeq

8πσxσy

∫ 2π

0

exp

−(ξx cos(φ)
√

log(A0)− x− µx√
2σx

)2

−

(
ξy sin(φ)

√
log(A0)− x− µy√

2σy

)2
 dφ. (15)

where α = 1.96. The efficiency indicator of IS method
compared to MC is defined as [33]

G =
N

N∗
=

Pout(1− Pout)

Var∗[1(ya+yp<ε)ωya(ya)ωyp(yp)]
. (22)

B. Exponential Twisting

Exponential twisting technique, also known as exponential
tilting or change in exponential measure [34]-[35], is well
known in IS and is particularly used for its properties on
the sums of random variables. The method is based on the
theory of large deviations [36]. The main idea is to define the
auxiliary density f∗(·) as

f∗yk(y) =
eθy

Myk(θ)
fyk(y), k ∈ {a, p}, (23)

where Myk(θ) = E[eθyk ] is the MGF of yk. In this case, the
weighting function is given by

ωyk(y, θ) = e−θyMyk(θ). (24)

Note that the biased PDF depends on the parameter θ. In
order to minimize the variance of IS estimator, the quan-
tity E∗[12

(ya+yp<ε)
ω2
a(ya, θ)ω

2
yp(yp, θ)] needs to be minimized

w.r.t the parameter θ as discussed in the next subsection. Since
we are interested in estimating a left tail probability, the value
of θ needs to be negative.
The MGFs of ya for the different turbulence regimes is
given in Table II, where 1F1(·, ·, ·) represents the confluent
hypergeometric F function [29, Eq. (9.210.1)]. For the pointing
errors, it can be shown, after some manipulations, that the
MGF of yp is given by

Myp(θ) = E[hθp] =
ξxξyA

θ
0 exp

(
− 2θ
w2
zeq

[
µ2
xξ

2
x

ξ2
x+θ +

µ2
yξ

2
y

ξ2
y+θ

])
√

(ξ2
x + θ)(ξ2

y + θ)
.

(25)
For the lognormal case, the MGF is derived using the fact
that ya is a Gaussian RV with mean −σ

2
R

2 and variance σ2
R.

The derivation of the MGF of ya in the Rician-lognormal,
Málaga, and Double Generalized Gamma turbulence cases can
be found in Appendix A. For the pointing errors, substituting

yp = log(A0)− 2r2

w2
zeq

, and using the MGF of r2 given in [37,
Eq. (2.38)], we get (25).

C. Optimization Algorithm

To determine the optimal θ∗, we need to solve the following
minimization problem

min
θ∈R

J(θ) = E∗[1(ya+yp<ε)ω
2
ya(ya, θ)ω

2
yp(yp, θ)]. (26)

Not only that this problem can be seen as a random optimiza-
tion problem, but it also is usually not feasible analytically
to solve, except for a few simple cases. In [18], the author
derives an upper bound for the second moment, using ideas
similar to the Chernoff bound derivation. By optimizing this
bound, a sub-optimal solution can be found that guarantees a
gain slightly less than the one using the optimal value. The
advantage of using this approach lies in the fact that it just
requires solving the deterministic problem

µ′(θ) = ε, (27)

where µ′(·) is the derivative of the cumulant generating func-
tion (CGF) of the RV (ya+yp), i.e. µ(θ) = log(E[eθ(ya+yp)]).
To find this sub-optimal θ, we show in Appendix B, that we
need to solve (41)-(44) for Lognonormal, Rician-Lognormal,
Málaga, and Double Generalized Gamma turbulence models,
respectively, where ψ(x) = Γ′(x)

Γ(x) is the digamma function and

1F1
(1,0,0)[a; b; z] =

z

b
F 1×1×2

2×0×1

(
a+ 1; 1; 1, a;
2, b+ 1; ; a+ 1;

z, z

)
,

(28)
where F 1×1×2

2×0×1 (·) is the Kampé de Fériet-like function [38].
Solving these equations results in a set of solutions. We choose
a real solution, such that the MGFs are well defined, to be the
sub-optimal solution.

Remark 1. Eq. (27) needs to be solved in the domain of
definition of the CGF of the turbulence PDF assumed. In the
case a solution does not exist in this domain, we can either
• consider the solution θ that gives the minimum value for

the absolute difference |µ′(θ)− ε| or,
• use another method to characterize θ. For instance, we

can use the cross-entropy method [39, Sec. 9.7.3] or the
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TABLE II: MGF of ya for different turbulence regimes.

Turbulence model MGF of ya : Mya (θ) = E[hθa] Conditions on θ

Lognormal exp
(

1
2
θ(θ − 1)σ2

R

)
Rician-Lognormal

(
Ω

1+k2

)θ
Γ(1 + θ) exp

(
1
2
θ(θ − 1)σ2

R

)
1F1(−θ, 1,−k2) θ > −1

Málaga A
2

Γ(θ + α)
β∑

m=1
am
(
gβ+Ω0
αβ

)α+m
2

+θ
Γ(θ +m) θ > −min(1, α)

Double Generalized Gamma
(

Ω1
β1

) θ
α1
(

Ω2
β2

) θ
α2

Γ
(
β1+ θ

α1

)
Γ
(
β2+ θ

α2

)
Γ(β1)Γ(β2)

θ > −min(α1β1, α2β2)

stochastic counterpart method [39, Sec. 12.2] to find θ
that minimizes the second moment of the IS estimator.

D. Sampling Method

To sample from the biased PDF f∗(·) may not be very
trivial, especially when the new PDF does not resemble a
known parametric PDF. In this case, we can use standard
techniques such as the inverse transformation method or the
acceptance-rejection technique [40, Sec. 2.2, 2.3].

For the sampling from the biased PDF in the case of
lognormal turbulence, we show in Appendix C that we can
use the inverse CDF method. In fact, in our particular case,
it can be shown, after some mathematical manipulations, that
the inverse CDF, is given by

[F ∗ya ]−1(u) = σR

(√
2 erf−1(2u− 1)− (

1

2
− θ)σR

)
, (29)

where the error function is defined as erf(x) = 2√
π

∫ x
0
e−t

2

dt.
The inverse error function erf−1(·) can be called in MATLAB
for instance, using the function erfinv.

For the sampling from the twisted PDFs of the other tur-
bulence models as well as the pointing errors, it is difficult to
find an explicit expression for the inverse CDF. An interesting
alternative is to approximate the inverse CDF, instead of
finding its expression analytically. In [41], an efficient method
for sampling from one-dimensional PDFs is developed. The
method is based on approximating the inverse CDF using
Chebyshev polynomials. The authors show the robustness of
the method against other techniques, such as slice sampling
and rejection sampling. A MATLAB implementation of this
method is available in [42]. For readability purpose, we have
included the sampling algorithm from [41] in Appendix D.

E. Correlated Sways

So far in this paper, we assume that the horizontal and
vertical displacement of the beam, rx and ry , are independent.
However, this assumption can be relaxed and our approach is
still valid for this kind of problem. In fact, let rx ∼ N (µx, σ

2
x)

and ry ∼ N (µy, σ
2
y) be two correlated Gaussian RVs with a

Pearson correlation coefficient ρ ∈ [−1, 1]. Inspired by the
whitening approach proposed recently in [43], we can find
r′x ∼ N (µ′x, σ

′
x

2
) and r′y ∼ N (µ′y, σ

′
y

2
) two independent

Gaussian RVs such that r2 = r′x
2

+ r′y
2. The latter equation

presents the case treated in this work. In [43], the authors ap-
proximated the Beckmann distribution by a modified Rayleigh
distribution. Based on this approximation, they studied the
outage performance over Gamma-Gamma fading channels.

The novelty of our work compared to [43] is that we are
considering a general distribution for the pointing error based
on Beckmann distribution.
The parameters of the distribution of r′x and r′y can be
expressed as [43]

µ′x = µx cosφ0 + µy sinφ0

µ′y = µy cosφ0 − µx sinφ0

σ′x
2

= σ2
x cos2 φ0 + σ2

y sin2 φ0 + 2ρσxσy sinφ0 cosφ0

σ′y
2

= σ2
y cos2 φ0 + σ2

x sin2 φ0 − 2ρσxσy sinφ0 cosφ0

(30)

where the expression of φ0 is given by [43]

φ0 =

{
π
4 , if σx = σy
1
2 arctan

(
2ρσxσy
σ2
x−σxy2

)
, otherwise

(31)

IV. MULTIHOP SYSTEMS

After explaining the basic ideas behind our approach in the
single hop case, we show in this section how to extend these
ideas to estimate bounds for the outage probability in the case
of multihop systems. First, we recall briefly the system model
and then we show the flexibility of the proposed approach to
tackle the multihop scenario. The end-to-end SNR of N -hop
systems can be written as [17]

γend ,

(
N∑
i=1

1

γi

)−1

. (32)

In this work, we assume that the hops undergo independent
turbulence influence. In the case FSO systems with CSI-
assisted relays, γend can be upper bounded by [44]

γend ≤ γsub =
1

N

N∏
i=1

γ
1
N
i . (33)

Since we have γend ≤ γsub, then we can write Fγsub(γth) =
P(γsub ≤ γth) ≤ Pout. Using the definition of γsub, we have

Fγsub(γth) = P

(
1

N

N∏
i=1

γ
1
N
i ≤ γth

)
,

= P

(
N∏
i=1

γi ≤ (Nγth)
N

)
. (34)

Since we have γi = γ0h
2
i , the expression of the CDF of γsub

becomes

Fγsub(γth) = P

(
N∏
i=1

hi ≤
(
Nγth
γ0

)N
2

)
. (35)
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Assuming each fading channel hi can be written as hi =
hlha,ihp,i, we obtain

Fγsub(γth) = P

(
N∏
i=1

ha,ihp,i ≤
(
Nγth
h2
l γ0

)N
2

)
, (36)

= P

(
N∑
i=1

(ya,i + yp,i) ≤ ε

)
, (37)

where ya,i = log(ha,i), yp,i = log(hp,i), 1 ≤ i ≤ N and
ε = N

2 log
(
Nγth
h2
l γ0

)
. Here, ya,i follows one of the PDFs of

Table I while yp,i follows the PDF (15).
Now, we explain briefly how to extend the approach developed
in the single hop case for the estimation of Fγsub(γth). The
naive MC estimator is given by

I =
1

N

N∑
n=1

1(SN,n<ε), (38)

where SN =
N∑
i=1

(yai + ypi) and yai,n and ypi,n from the

original PDFs fyai (·) and fypi (·), respectively. Inspired by
the single hop scenario, the IS estimator is thereby

I∗ =
1

N∗

N∗∑
n=1

1(S∗N,n<ε)

N∏
i=1

ωyai (y
∗
ai,n)ωypi (y

∗
pi,n), (39)

where y∗ai,n and y∗pi,n are here sampled from the biased PDFs
f∗yai

(·) and f∗ypi
(·), respectively and the likelihood functions

are given by

ωyki (y) =
fyki (y)

f∗yki
(y)

, k ∈ {a, p},

= e−θyMyki
(θ), k ∈ {a, p}, (40)

where Myki
(θ) = E[eθyki ] is the MGF of yki .

To find the suboptimal θ, we solve the problem µ′N (θ) = ε,
where µN (θ) = log(E[eθSN ]). Let nL, nRL, nM , and nD,
such that nL + nRL + nM + nD = N , denote the number
of hops where ha follows Lognormal, Rician-Lognormal,
Málaga, and Double Generalized Gamma turbulence model,
respectively. Then, the optimization problem reduces to finding
the solution of the equation (45) where µyai,L(·), µyai,RL(·),
µyai,M (·), µyai,D (·), and µypi (·) denote the CGF of Lognor-
mal, Rician-Lognormal, Málaga, Double Generalized Gamma
and pointing error models, respectively.

Remark 2. In our work, we are considering a non regener-
ative AF system. In this case, the end-to-end SNR of N -hop
systems can be written as

γend ,

(
N∑
i=1

1

γi

)−1

, (46)

whereas for regenerative system, the expression of the end-to-
end SNR is given by

γend , min
1≤i≤N

γi. (47)

In this case, the analysis becomes different and the derivation
done in this work are no longer valid. For the repositioning, we

consider the analysis for a fixed multihop configuration. If the
configuration is modified, the analysis is still valid, however
we need to take into account that the parameters of simulations
are no longer the same.

V. NUMERICAL SIMULATIONS

Table III summarizes the system settings used in this
section. Table IV details the system parameters under different
turbulence conditions. These parameters have been used in the
study of many FSO systems, for instance [5], [10], [45], and
[32].

TABLE III: System parameters.

Parameters Value
Receiver radius (a) 10 cm
Noise standard deviation (σn) 10−7 A/Hz
Beam radius (ωz) 100 cm
Horizontal jitter standard deviation (σx) 10 cm
Vertical jitter standard deviation (σy) 20 cm
Horizontal jitter mean (µx) 10 cm
Vertical jitter mean (µy) 5 cm

In this section, we dedicate the first part to show the
efficiency of IS compared to standard MC in the single hop
case. The second part deals with the study of the difference
of horizontal and vertical jitter effects (i.e. the building may
sway differently in the horizontal plane than in the vertical
plane) on the outage probability. Finally, we show simulation
results for the case of multihop systems.

A. Validation of our Approach

The behavior of the outage probability, as a function of the
average transmitted optical power Pt is depicted in Fig. 1a for
the lognormal turbulence, in Fig. 1b for the Rician-Lognormal
scenario, in Fig. 1d for the Málaga case, and Fig. 1c for the
Double Generalized Gamma. These figures are plotted using
105 samples for IS and 108 samples for MC. For relatively
high values of probabilities, the standard MC matches the
IS method and provides a very accurate approximation for
the outage probability. However, for small probabilities, our
approach can accurately estimate the outage probability with
N∗ = 105 while the standard MC fails and can give an
erroneous estimation in spite of using N = 108 samples. To
achieve the same accuracy, the number of samples of MC
needs to be increased. For each type of turbulence, we provide
simulations for two set of parameters to validate our approach
for different degrees of turbulence severity.

To have a clear look at the efficiency of IS, we turn our
attention to Table V where we examine the efficiency indicator
defined in (22). This table presents the IS gain for different
turbulence models and different parameters. This metric mea-
sures the reduction in terms of number of samples needed and
is based on the ratio of the variances of the two estimators.
We note that the efficiency indicator grows as the outage
probability becomes smaller, which means that the method
becomes more efficient in the low outage probability region.
For instance, in the lognormal turbulence when σ2

R = 0.05,
for Pout of the order of 10−6, the gain in number of samples
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log(A0) +
σ2
R

2
(2θ − 1)−

ξ2
x + ξ2

y + 2θ

2(ξ2
x + θ)(ξ2

y + θ)
− 2

w2
zeq

[
µ2
xξ

4
x

(ξ2
x + θ)2

+
µ2
yξ

4
y

(ξ2
y + θ)2

]
= ε, (41)

log

(
A0Ω

1 + k2

)
−

ξ2
x + ξ2

y + 2θ

2(ξ2
x + θ)(ξ2

y + θ)
− 2

w2
zeq

[
µ2
xξ

4
x

(ξ2
x + θ)2

+
µ2
yξ

4
y

(ξ2
y + θ)2

]
+
σ2
R

2
(2θ − 1) + ψ(θ + 1)

− 1F
(1,0,0)
1 (−θ, 1,−k2)

1F1(−θ, 1,−k2)
= ε,

(42)

log(A0)−
ξ2
x + ξ2

y + 2θ

2(ξ2
x + θ)(ξ2

y + θ)
− 2

w2
zeq

[
µ2
xξ

4
x

(ξ2
x + θ)2

+
µ2
yξ

4
y

(ξ2
y + θ)2

]
+ ψ(θ + α) + log

(
gβ + Ω0

αβ

)

+

β∑
m=1

am

(
gβ+Ω0

αβ

)α+m
2 +θ

Γ(θ +m) ψ(θ +m)

β∑
m=1

am

(
gβ+Ω0

αβ

)α+m
2 +θ

Γ(θ +m)

= ε,

(43)

log(A0)−
ξ2
x + ξ2

y + 2θ

2(ξ2
x + θ)(ξ2

y + θ)
− 2

w2
zeq

[
µ2
xξ

4
x

(ξ2
x + θ)2

+
µ2
yξ

4
y

(ξ2
y + θ)2

]
+

log
(

Ω1

β1

)
+ ψ

(
β1 + θ

α1

)
α1

+
log
(

Ω2

β2

)
+ ψ

(
β2 + θ

α2

)
α2

= ε.

(44)

nL∑
i=1

µ′yai,L
(θ) +

nRL∑
i=1

µ′yai,RL
(θ) +

nM∑
i=1

µ′yai,M
(θ) +

nD∑
i=1

µ′yai,D
(θ) +

N∑
i=1

µ′ypi
(θ) = ε, (45)

TABLE IV: System characteristics under different weather conditions.

Turbulence Severity Path loss (hl) Fading Model Parameters

Weak turbulence 0.008
Lognormal σ2

R = 0.05
σ2
R = 0.2

Rician-Lognormal k = 2
k = 3

Moderate to strong turbulence 0.9

Malaga α = 2.296, β = 2
α = 4.2, β = 3

Double Generalized Gamma Case 1: β1 = 0.5, β2 = 1.8, α1 =
1.8621, α2 = 1, Ω1 = 1.5074, Ω2 = 1
Case 2: β1 = 0.55, β2 = 2.35, α1 =
2.169, α2 = 1, Ω1 = 1.5793, Ω2 = 1

is of the order of 104. The second metric used to compare
the two methods, in this paper, is the relative error defined in
(21). It gives us an idea regarding the confidence interval of
the estimated parameter. In fact, the relative error is defined
as the ratio of half of the confidence interval width over the
value estimated. This comparison is reported in Fig. 2, when
N∗ = 104 and N = 106, for the lognormal, Rician-lognormal,
Málaga, and Double Generalized Gamma turbulence scenarios,
respectively. We consider the case when σ2

R = 0.05 for
the lognormal turbulence, k = 3 for the Rician-lognormal,
(α = 2.296, β = 2) for the Málaga scenario, and (β1 = 0.55,
β2 = 2.35, α1 = 2.169, α2 = 1, Ω1 = 1.5793, Ω2 = 1)
for the Double Generalized Gamma case. It is clear that the
variation of the relative error of the IS is much slower than that
of standard MC. We note also, that for low outage probability,
the relative error of IS is smaller than standard MC, although
the number of samples used for MC is 100 times greater than
the one used for IS simulation.

B. Impact of the Difference of Jitter Effects on Outage Prob-
ability

One of the aims of the paper is to be able to study the impact
of the difference of jitter effects on the outage probability.
To this end, we use the IS method developed in section
III. The difference of jitter effects can take place in real
life when the intensity of the motion of the building in the
vertical direction is different from the horizontal direction.
To quantify this effect, we can, for instance, compare the
outage probability for the FSO system when we have the
same jitter standard deviation, to the case when the horizontal
jitter standard deviation is different from the vertical one.
Fig. 3a reports the results under lognormal turbulence while
the outage probability under Rician-lognormal turbulence is
depicted by Fig. 3b. The impact of the difference of jitter
effects on the outage probability for Málaga, and Double
Generalized Gamma turbulence is presented in Figs. 3d-3c. In
these plots, we choose to change the jitter standard deviation
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TABLE V: Efficiency indicator under different turbulence models.

Turbulence Model Parameters IS Gain (×103)

Lognormal
Pt (dBm) 3 5 7 9
σ2
R = 0.05 0.2 3.4 62.8 106.9
σ2
R = 0.2 0.02 0.06 0.22 0.83

Rician-Lognomal
Pt (dBm) 41 43 45 47
k = 2 9.9 14.9 25.5 38.3
k = 3 34.5 57.1 93.1 125

Málaga
Pt (dBm) 31 33 35 37

α = 2.296, β = 2 45.5 70.1 103.5 167.4
α = 4.2, β = 3 99.5 118.4 285.9 414.6

Double Generalized Gamma
Pt (dBm) 31 33 35 37

Case 1 4.9 7.7 11.2 16.5
Case 2 29.1 47.9 67.6 98.4
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(a) Lognormal turbulence.
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(b) Rician-Lognormal turbulence.
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(c) Double Generalized Gamma turbulence.
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(d) Málaga turbulence.

Fig. 1: Outage probability with N∗ = 105 and N = 108 with general pointing errors.

in the vertical direction while maintaining the jitter standard
deviation in the horizontal direction fixed. Note that as the
vertical jitter standard deviation σy increases, i.e. the vibration
of the building is more intense in the vertical direction, the
outage probability tends to increase significantly.

C. Effect of the Severity and Type of Turbulence

In this section, we investigate the effect of the severity of the
turbulence on the outage probability of FSO links under the
same pointing error conditions. In Fig. 4, we plot the outage
probability under three different turbulence regimes: weak
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(a) Lognormal turbulence with σ2
R = 0.05.
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(b) Rician-Lognormal turbulence with k = 3.
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(c) Double Generalized Gamma turbulence (case 2 parameters).
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(d) Málaga turbulence with α = 2.296 and β = 2.

Fig. 2: Relative error with N∗ = 104 and N = 106.

turbulence modeled by lognormal distribution as a special
case of the Málaga turbulence model, moderate turbulence
when the atmospheric turbulence is modeled by the Double
Generalized Gamma, and the strong turbulence when the
Málaga turbulence model is assumed. We can clearly see that
as the turbulence becomes stronger, the outage probability
becomes greater and thus the performance of the system
deteriorates. A comparison between the lognormal and Rician-
lognormal turbulence models is reported in Fig. 5. In this plot,
we see that as k becomes bigger the Rician-lognormal model
approaches the lognormal one. As k → +∞, the Rician effect
becomes negligible and the Rician-lognormal case reduces the
lognormal scenario.

D. Multihop System

In this section, we present some selected simulation results
illustrating how our approach works to the multihop case. In
Fig. 6, we plot the bounds of the outage probability for three
scenarios

(i) The top plot is for the case when the number of hops is
N = 10. For each hop, we consider the same model
where we assume that the fading model follows the
Double Generalized Gamma with parameters of the case
2 detailed in Table IV,

(ii) The middle plot is for the same case as (i) but with a
number of hops N = 3,

(iii) The bottom plot represents the scenario when we have
N = 3 hops with different fading models (Lognormal,
Málaga, and Double Generalized Gamma).

In all the three cases, we assume that the pointing error has
the parameters of Table III in each hop. We also assume that
the length of each hop is the same for the three scenarios, thus
the total distance between the transmitter and the receiver is
not the same. As can be seen from the plot, both naive MC
and IS matches. However, IS provide a significant reduction
in term of number of samples especially when the probability
to be estimated is very small. For instance, in the bottom
plot (case (iii)), the gain factor, when the probability is of
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(c) Double Generalized Gamma turbulence using case 2 parameters.
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(d) Málaga turbulence with α = 4.2 and β = 3.

Fig. 3: Impact of the difference of jitter effects on outage probability under different turbulence conditions.

the order of 10−5, is of the order of 103 while it becomes
of the order of 105 when the probability reaches 10−7. In
addition to that, we can see that while naive MC matches
IS for high values of outage probabilities, its accuracy when
using N = 108 samples worsen as the outage probability
becomes smaller. Unless more samples are taken in this region,
naive MC remains unable to accurately estimate the outage
probability.

In Fig. 7, we plot the bounds of the outage probabilities of
multihop systems under Gamma-Gamma turbulence fading for
three different numbers of hops N ∈ {1, 2, 4}. The distance
between the transmitter and the receiver is fixed in this case
z = 5km and we assume that the pointing error conditions
are the same for the three scenarios. We notice that when
the number of hops increases, the performance of the system
becomes better. For instance, for Pt = −15 dBm, the outage
probability when using a single hop is 0.098 whereas it is
of the order of 2 × 10−7 when using N = 4 hops. For the

comparison between standard MC and IS, we can draw similar
conclusions as in Fig. 6. In fact, MC is sufficient for the
estimation of relatively high probabilities (greater than 10−5),
however it fails completely when these probabilities become
in the rare event region, unless more samples are considered.
IS with only N∗ = 105 is able to estimate probabilities of the
order of 10−15 (case when N = 4) unlike standard MC with
N = 108. The efficiency of IS compared to MC can be seen
by examining the gain factor G. The latter is of the order of
5× 103 for N = 2 when Pt = −11 dBm, and of the order of
109 when N = 4 for Pt = −13 dBm. Thereby, we can see
that the proposed approach results in a significant reduction
in terms of the number of samples especially when the outage
probability is very small.

VI. CONCLUSION

In this work, we have introduced an exponential twisting-
based IS approach to estimate the outage probability of single
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hop as well as multihop FSO systems under generalized
pointing errors in the presence of different turbulence regimes.
The comparison of the performance of the IS approach to
standard MC shows a significant reduction in the number of
simulation runs for the same level of accuracy especially in the
region of very small outage probability. We also investigated
the impact of the severity of the turbulence as well as the
difference of jitter effects on the outage probability. Based on
selected simulation results, we have notice that as the jitter
effect increases in a particular direction or the atmospheric
turbulence becomes stronger, the outage probability tends to
increase significantly.
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Fig. 4: Outage probability under different turbulence models.
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Gamma-Gamma turbulence.

APPENDIX A
MGF OF ya FOR DIFFERENT TURBULENCE MODELS

A. Rician-lognormal Turbulence

In this scenario, the MGF of ya is given by

E[eθya ] = E[hθa] = E[hθa,LN ]E[hθa,RL], (A.1)

where ha,LN is a lognormal RV, ha,RL a Rician RV, and both
RVs are independent.
We know, from the lognormal case, that ya,LN = log(ha,LN )

is a Gaussian RV with mean −σ
2
R

2 and variance σ2
R, and thus

E[hθa,LN ] = E[eθya,LN ] = exp

(
1

2
θ(θ − 1)σ2

R

)
. (A.2)

The PDF of ha,RL is
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fha,RL(x) =
1 + k2

Ω
exp

(
−k2 − 1 + k2

Ω
x

)
I0

(
2k

√
1 + k2

Ω
x

)
.

(A.3)
E[hθa,LN ] is given by

E[hθa,LN ] =
(1 + k2) exp(−k2)

Ω
×∫ +∞

0

xθ exp

(
−1 + k2

Ω
x

)
I0

(
2k

√
1 + k2

Ω
x

)
dx (A.4)

Using [29, Eq. (6.643.2)], we can write, for θ > −1∫ +∞

0

xθ exp

(
−1 + k2

Ω
x

)
I0

(
2k

√
1 + k2

Ω
x

)
dx

=
Γ(θ + 1)

k

(
Ω

1 + k2

)θ+1

exp

(
k2

2

)
M−θ− 1

2 ,0
(k2), (A.5)

where Mκ,µ(·) is the M-Whittaker function defined in [29,
Sec. 9.220].
Using [46, Eq. (16.4.2a)], we have

M−θ− 1
2 ,0

(k2) = k exp

(
−k

2

2

)
1F1(1 + θ, 1, k2). (A.6)

Using the property of the confluent hypergeometric F function
given in [46, Eq. (16.1.6a)], we get

M−θ− 1
2 ,0

(k2) = k exp

(
k2

2

)
1F1(−θ, 1,−k2). (A.7)

Replacing (A.7) in (A.5) and using this expression in (A.4),
we get

E[hθa,LN ] =

(
Ω

1 + k2

)θ
Γ(θ + 1) 1F1(−θ, 1,−k2). (A.8)

Replacing (A.2) and (A.8) in (A.1), we get the desired result.

B. Málaga Turbulence

In the Málaga turbulence case, the MGF of ya is

E[hθa] = A

β∑
m=1

am

∫ +∞

0

xθ+
α+m

2 −1Kα−m

(
2

√
αβx

gβ + Ω0

)
dx

(A.9)
Using the change of variable y =

√
x, we can write∫ +∞

0

xθ+
α+m

2 −1Kα−m

(
2

√
αβx

gβ + Ω0

)
dx

= 2

∫ +∞

0

y2θ+α+m−1Kα−m

(
2

√
αβ

gβ + Ω0
y

)
dy (A.10)

Using [29, Eq. (5.561.16)], we get, for m = 1, . . . , β∫ +∞

0

xθ+
α+m

2 −1Kα−m

(
2

√
αβx

gβ + Ω0

)
dx

=
1

2

(
gβ + Ω0

αβ

)θ+α+m
2

Γ(θ + α)Γ(θ +m), (A.11)

provided that θ > −min(m,α). Finally, we plug (A.11)
in (A.9) to get the result, where θ need to satisfy θ >
−min(1, α).

C. Double Generalized Gamma Turbulence

The MGF of ya, in this setting, is given by

E[eθya ] = E[hθa] = E[hθa,1]E[hθa,2], (A.12)

where here ha,1 and ha,2 are two independent Generalized
Gamma RVs with parameters (α1, β1,Ω1) and (α2, β2,Ω2),
respectively. We start by computing E[hθa,1]

E[hθa,1] =
α1β

β1

1

Ωβ1

1 Γ(β1)

∫ +∞

0

xθ+α1β1−1e−
β1
Ω1
xα1

dx (A.13)

Using [29, Eq. (3.326.2)], we get, for θ > −α1β1

E[hθa,1] =

(
Ω1

β1

) θ
α1 Γ(β1 + θ

α1
)

Γ(β1)
, (A.14)

In a similar way, we have

E[hθa,2] =

(
Ω2

β2

) θ
α2 Γ(β2 + θ

α2
)

Γ(β2)
, (A.15)

with θ > −α2β2. Replacing (A.14) and (A.15) in (A.12), we
get

E[eθya ] =

(
Ω1

β1

) θ
α1
(

Ω2

β2

) θ
α2 Γ

(
β1 + θ

α1

)
Γ
(
β2 + θ

α2

)
Γ(β1)Γ(β2)

,

(A.16)
with the condition θ > −min(α1β1, α2β2).

APPENDIX B
SUB-OPTIMAL θ IN WEAK AND STRONG TURBULENCE

REGIME

The MGF of the RV ya + yp is given by

M(θ) = E[e(ya+yp)θ] = E[eθyaeθyp ] = E[eθya ]E[eθyp ],
(B.1)

where the last equality comes from the independence of ya,
and yp. The CGF is then given by

µ(θ) = log(Mya(θ)) + log(Myp(θ)). (B.2)

A. Lognormal Turbulence

For the lognormal turbulence, replacing Mya(θ) by its
expression and (25) in (B.2) , we get

µ(θ) = log(ξxξy) + θ log(A0)− 1

2
log((ξ2

x + θ)(ξ2
y + θ))

− 2θ

w2
zeq

[
µ2
xξ

2
x

ξ2
x + θ

+
µ2
yξ

2
y

ξ2
y + θ

]
+

1

2
θ(θ − 1)σ2

R.

(B.3)
Replacing the derivative of (B.3) w.r.t θ in (27), we finally get
the desired result in (41).
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B. Rician-Lognormal Turbulence

In this case, the CGF is given by

µ(θ) = log(ξxξy) + θ log

(
A0Ω

1 + k2

)
− 1

2
log((ξ2

x + θ)(ξ2
y + θ))

− 2θ

w2
zeq

[
µ2
xξ

2
x

ξ2
x + θ

+
µ2
yξ

2
y

ξ2
y + θ

]
+

1

2
θ(θ − 1)σ2

R

+ log(Γ(1 + θ)) + log(1F1(−θ, 1,−k2)).
(B.4)

Differentiating this equation w.r.t θ and replacing it in (27),
we get (42).

C. Málaga Turbulence

The CGF in the Málaga turbulence is

µ(θ) = log(ξxξy) + θ log(A0)− 1

2
log((ξ2

x + θ)(ξ2
y + θ))

− 2θ

w2
zeq

[
µ2
xξ

2
x

ξ2
x + θ

+
µ2
yξ

2
y

ξ2
y + θ

]
+ log

(
A

2

)
log(Γ(α+ θ))

+ log

(
β∑

m=1

am

(
gβ + Ω0

αβ

)α+m
2 +θ

Γ(θ +m)

)
.

(B.5)
Eq. (43) is then obtained by differentiating this equation w.r.t
θ and setting it equal to ε, as per (27).

D. Double Generalized Gamma Turbulence

For the Double Generalized Gamma scenario, replacing
Mya(θ) by its expression and (25) in (B.2) , we get

µ(θ) = log(ξxξy) + θ log(A0)− 1

2
log((ξ2

x + θ)(ξ2
y + θ))

− 2θ

w2
zeq

[
µ2
xξ

2
x

ξ2
x + θ

+
µ2
yξ

2
y

ξ2
y + θ

]
+

θ

α1
log

(
Ω1

β1

)
+

θ

α2
×

log

(
Ω2

β2

)
+ log

(
Γ

(
β1 +

θ

α1

))
+ log

(
Γ

(
β2 +

θ

α2

))
− log (Γ(β1)Γ(β2)) .

(B.6)
Taking the derivative of this equation w.r.t θ and replacing it
in (27), we get (44).

APPENDIX C
SAMPLING FROM f∗ya IN LOGNORMAL TURBULENCE

REGIME

In weak turbulence, based on (6) and (23), the CDF is given
by

F ∗ya(t) =
1

Mya(θ)

∫ t

−∞

eθx√
2πσR

exp

(
−

(x+
σ2
R

2 )2

2σ2
R

)
dx

=
1

Mya(θ)

1√
2πσR

∫ t

−∞
exp

(
−(αx2 + 2βx+ η)

)
dx,

(C.1)

where α = 1
2σ2
R

, β = 1
4 −

θ
2 , and η =

σ2
R

8 . Using [29, Eq.
(2.331)], we get

F ∗ya(t) =
1

2

[
erf
(

1− 2θ

2
√

2
σR +

x√
2σR

)]t
−∞

=
1

2

(
1 + erf

(
1− 2θ

2
√

2
σR +

t√
2σR

))
.

(C.2)

Finding u, such that F ∗ya(t) = u, yields the inverse CDF given
in (29).

APPENDIX D
SAMPLING FROM f∗ya USING [41]

In this appendix, we provide the algorithm for sampling
from the biased PDFs based on [41]

Algorithm 1 Inverse transform sampling with Chebyshev
approximation [41]

Input: PDF f(x), finite interval [a, b], number of samples N .
1: Construct an approximation f̃ of f on [a, b]

f̃(x) =
n∑
k=0

αkTk

(
2(x− a)

b− a
− 1

)
, αk ∈ R,

2: Compute F̃ (x) =
∫ a
x
f̃(s)ds using Chebyshev polynomi-

als integration properties.
3: Scale to a CDF if necessary, F̃X(x) = F̃ (x)/F̃ (b).
4: Generate random samples {Ui}Ni=1 from the uniform dis-

tribution on [0, 1].
5: for k = 1 to N do
6: Solve F̃X(Xk) = Uk for Xk.
7: end for

Output: Samples {Xi}Ni=1 drawn from the CDF F̃X .
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