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Nonlinear MIMO Transceivers Improve
Wireless-Powered and Self-Interference-Aided

Relaying
Lei Zhang, Yunlong Cai, Minjian Zhao, Benoit Champagne, and Lajos Hanzo

Abstract—This paper investigates the design of robust non-
linear transceivers conceived for multiple-input multiple-output
(MIMO) full-duplex (FD) wireless-powered relay (WPR) net-
works in the face of realistic imperfect channel state information
(CSI). A novel self-energy recycling aided relaying protocol
is employed, whereby the relay node benefits from energy
harvesting (EH) gleaned from the self-interfering link in addition
to its primary energy. The proposed nonlinear transceiver relies
on a Tomlinson-Harashima (TH) precoder along with an amplify-
and-forward (AF) relaying matrix and a linear receiver, where
the TH precoder is composed of a feedback matrix and a source
precoding matrix. Two different criteria are considered for the
robust design of the nonlinear transceiver in the presence of
channel estimation errors modeled by the Gaussian distribution.
The first one aims for minimizing the mean-squared-error (MSE)
at the destination subject to a transmit power constraint at
the source and an EH constraint at the relay. The resultant
optimization problem is converted to four subproblems and
solved via an alternating optimization (AO) algorithm that
iteratively updates the transceiver coefficients by sequentially
addressing each subproblem, while keeping the other matrix
variables fixed. Specifically, the optimal linear receiver matrix
is derived in closed form; the AF relaying matrix is obtained
via convex optimization; an iterative algorithm based on the
constrained concave convex procedure (CCCP) is developed for
optimizing the source’s precoding matrix; finally, the feedback
matrix of the TH precoder is derived with the aid of the
Lagrangian multiplier method. The second design criterion aims
for minimizing the transmit power at the source under both MSE
and EH constraints. Similarly, an AO-based iterative algorithm is
proposed for solving this problem. Our simulation results show
that the robust design advocated is capable of alleviating the
effects of CSI errors, hence improving the robustness of the
system over that of the corresponding linear designs.

Index Terms—Transceiver design, Tomlinson-Harashima pre-
coding, full-duplex, energy harvesting, MIMO relay

I. INTRODUCTION

At the current state-of-the-art wireless devices are usually
powered by batteries, hence have a limited operating time.
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Hence, energy harvesting (EH) is considered as an attrac-
tive technique of prolonging the recharge period of energy-
constrained wireless devices [1]. However, the traditional EH
techniques rely on natural energy sources (solar, vibration,
wind, etc.), which cannot be controlled and are not always
available. Hence, EH from the ambient radio-frequency (RF)
electromagnetic signals has emerged as a promising techniques
of powering energy-constrained wireless networks. Conse-
quently, RF-EH networks have found their way into wireless
sensor networks, wireless charging systems and wireless body
area networks [2]–[5]. In this emerging EH framework, the
ambient RF signals are exploited as a precious source of
energy for recharging ubiquitous wireless devices. As a result,
the study of wirelessly powered communication networks (W-
PCN), in which wireless devices are powered by the RF energy
harvested from wireless transmissions has drawn considerable
attention [6]–[10]. More specifically, WPCN is a new network-
ing paradigm where the battery of wireless communication
devices can be remotely replenished by means of microwave
wireless power transfer (WPT) technology. Compared to the
conventional battery-powered networks, WPCN offers the po-
tential to eliminate the need of manual recharging the batteries,
which can efficiently reduce the operational cost and enhance
the performance attained.

Furthermore, relay-aided transmissions may be invoked for
enhancing the cell-edge coverage [11]. Motivated by the
aforementioned benefits of WPCNs, the concept of wireless-
powered relay (WPR) networks has emerged [12]–[14]. The
existing contributions on WPR networks tend to use either
time-switching based relaying (TSR) [12], [13] or power-
splitting based relaying (PSR) protocols [13], [14]. As a further
development, full-duplex (FD) transmissions have attracted
substantial attention, since they can potentially double the
spectral efficiency [15]. Inspired by the benefits of FD, the
optimal TSR protocol was invoked in [16] for boosting the
throughput of FD-WPR networks. Furthermore, a novel two-
phase protocol was proposed for FD-WPR networks relying
on self-interference (SI) recycling, in which the relay harvests
energy not only from the source but also from its own SI
link [17]. However, the existing body of research is strictly
focused on WPR networks relying on single data streams,
whilst the scenario of multiple-input multiple-output (MIMO)
WPR networks supporting multiple streams has not as yet been
studied.

When it comes to MIMO relay networks, the transceiver de-
sign has been extensively studied for enhancing the attainable
performance. In particular, nonlinear transceivers based on
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Tomlinson-Harashima precoding (THP) have attracted much
interest as a benefit of their significant performance advantages
over their linear counterparts [20]–[23]. In [24], the authors
focused their attention on the transceiver design of a two-hop
MIMO-aided relay network employing THP at the source.
Given the limited processing capability of the relay node,
THP is only used at the source. In [25], two methods are
proposed for solving the design problem, including a non-
iterative technique of finding closed-form solutions for the
precoders and an iterative method of separately optimizing
the precoders. Robust nonlinear transceiver designs were pro-
posed in [26]–[29] for MIMO-aided relay networks relying
on realistic imperfect channel state information (CSI). To the
best of our knowledge, however, no contributions have studied
robust nonlinear transceiver design of WPR networks.

Motivated by the above considerations, our new con-
tributions are: 1) We propose robust nonlinear transceiver
designs for FD-based MIMO WPR networks. Explicitly, the
nonlinear THP-based transmitter is intrinsically amalgamated
with a linear amplify-and-forward (AF) relaying matrix and
a linear minimum-mean-squared-error (MMSE) receiver at
the destination, where the THP is composed of a feedback
matrix and a source precoding matrix. 2) A novel two-
phase transmission protocol is used for the WPR network, in
which the relay operates in FD mode relying on simultaneous
information transmission and EH [17]. In particular, the relay
consciously invokes energy recycling by harnessing a precious
portion of the SI power in addition to the RF energy received
from its primary source. 3) Within this framework, two com-
pelling practical criteria are considered for the proposed robust
transceiver design. The first criterion aims for minimizing
the mean square error (MSE) at the destination subject to a
realistic transmit power constraint at the source and to an EH
constraint at the relay. The resultant non-convex optimization
problem is decoupled into four subproblems and solved via
a sophisticated alternating optimization (AO) algorithm that
iteratively updates the transceiver coefficients by sequentially
addressing each subproblem, while keeping the other matrix
variables fixed. Specifically, given the THP feedback matrix,
as well as the source precoding matrix and the AF relaying
matrix, we derive the optimum linear receiver in a closed form.
Given the feedback matrix, the source precoding matrix and
the linear receiver, the AF relaying matrix can be found by
convex optimization. We then transform the non-convex design
subproblem of the source precoding matrix into a difference
of convex (DC) functions programming [18] and propose an
iterative solution scheme based on the constrained concave
convex procedure (CCCP) [19]. Finally, by fixing the other
three matrix variables, the feedback matrix is derived with
the aid of the classic Lagrangian multiplier method. 4) The
second criterion aims for minimizing the transmit power at
the source under an MSE constraint at the destination and an
EH constraint at the relay. Similar to the first condition, an AO-
based iterative algorithm is developed for solving this problem
sequentially, where an efficient initial feasibility search scheme
is proposed. Since some of the search variables are not
included in the objective function, we resort to a novel method
to enlarge the feasible region so as to obtain the solution.
5) The convergence speed and computational complexity of

the proposed algorithms are also studied in detail. Simulation
results are presented for demonstrating the efficiency of the
proposed robust nonlinear transceiver designs.

The rest of this paper is organized as follows. Section
II introduces the proposed MIMO WPR system model and
channel error model, followed by a mathematical formulation
of the joint transceiver design problems. In Section III, our
AO-based algorithm is conceived for sequentially solving the
constrained MSE minimization problem, while the transmit
power minimization problem is addressed in Section IV. Sim-
ulation results and comparisons to a range of potent benchmark
schemes are presented in Section V. Finally, conclusions are
offered in Section VI.

Notation: Boldface lowercase and uppercase letters denote
vectors and matrices, respectively. E [·] stands for the statistical
expectation. The operators (·)T , (·)∗, (·)H and tr (·) denote the
matrix transpose, conjugate, Hermitian transpose and trace,
respectively. The Kronecker product of matrices is denoted
by ⊗. vec (·) represents the matrix vectorization operator. ∥·∥
corresponds to the Euclidean norm of the vector. A ≽ 0
indicates that A is positive semi-definite. R (·) denotes the
real part of a complex-valued scalar. ⌊·⌋ represents the floor
function, which returns the largest integer that is smaller
than or equal to the argument. CN (m,C) denotes a multi-
variate complex circular Gaussian distribution with mean m
and covariance matrix C.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a three-node AF MIMO WPR network, con-
sisting of source-, relay- and destination- nodes, as illustrated
in Fig. 1. It is assumed that there is no direct link between the
source and the destination due to physical obstacles, which
is a valid assumption in many real-world communication
scenarios. Hence, an intermediate relay node is needed to
assist in the transmission of the source information to the
destination. The propagation channels between the source and
relay as well as between the relay and destination are assumed
to be frequency flat-fading. More specifically, the channel
coefficients remain constant over a block’s transmission time
duration and vary independently and identically from one
block to the other, with magnitude obeying the Rayleigh distri-
bution. In this work, we concentrate on the study of transceiver
optimization over a block fading channel environment. The
source, relay and destination nodes are equipped with Ns,
Nr and Nd antennas, respectively. Furthermore, a novel two-
phase protocol is adopted for this WPR network [17]. As
illustrated in Fig. 2, the information signal is transmitted
from the source to the relay in the first phase of duration
T/2. In the second phase, also of duration T/2, the relay
operates in its FD mode with simultaneous energy harvesting
and information transmission. It receives energy signals from
the source, while simultaneously transmitting the information
signals to the destination at the same time. The information
transmission and EH aspects are further developed below.

1) Information Transmission: In the first phase, the
source transmits a signal vector s = [s1, ..., sNd

]T , where
the entries are independent and identically distributed
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Fig. 2: The proposed two-phase protocol for MIMO WPR networks

(i.i.d.) random variables of an M -ary quadrature amplitude
modulation (QAM) alphabet A. Specifically, we chose A ={
±1
√

3
2(M−1) ,±3

√
3

2(M−1) , ..., ±
(√

M − 1
)√

3
2(M−1)

}
and let E [s] = 0 and E

[
ssH

]
= INd

, where the real and
imaginary parts of sk all belong to the set A. Furthermore,
to provide sufficient degrees of freedom for signal recovery,
the number of the substreams Nd should satisfy Nd ≤ Ns.
To generate the THP signal, a modulo operator acts
independently over the real and imaginary parts of its input
signal components. This operation is formulated as

MODM (x) = x− 2
√
τ

⌊
x+

√
τ

2
√
τ

⌋
= x+ e, (1)

where τ =
√

3M
2(M−1) and e is the residual error, such that

MODM (x) is constrained to be within the interval [−τ, τ ].
The information signal x = [x1, ..., xNd

]T intended for the
destination is recursively computed with the help of the
modulo operation in (1) as

xk = MODM

(
sk −

k−1∑
n=1

Ck,nxn

)

= sk −
k−1∑
n=1

Ck,nxn + ek, k = 1, 2, . . . , Nd, (2)

where C is a strictly lower triangular matrix with entries Ck,n,
and ek is the residual error for the kth entry.

Upon introducing e = [e1, ..., eNd
]
T , we can rewrite (2) as

x = U−1v, (3)

where U = C + I is a lower triangular matrix with unity
diagonal entries and v = s + e is the effective signal vector.
1 Note that for a high-order M -QAM constellation, x can be

1The proposed nonlinear scheme can be treated as a general processing
framework for precoding. Note that if the matrix U is an identity matrix, the
proposed nonlinear transceiver design can be reduced to the linear one.

assumed to have a covariance of E
[
xxH

]
= INd

[30]. Fol-
lowing THP, the resultant vector x is passed through a linear
precoding matrix Fs ∈ CNs×Nd prior to its transmission.

In the first phase, the signal yr,1 received at the relay is
formulated as

yr,1 = HsrFsx+ nsr,1, (4)

where Hsr ∈ CNr×Ns denotes the flat-fading channel matrix
of the link between the source and the relay, while nsr,1 is
the additive white Gaussian noise (AWGN) vector at the relay,
with a zero-mean and covariance matrix of E

[
nsr,1n

H
sr,1

]
=

σ2
nsr

INr .
During the second phase, the relay amplifies the received

signal by a linear AF matrix Fr ∈ CNr×Nr and forwards it to
the destination. The signal vector received at the destination
is given by

yd = HrdFryr,1 + nrd, (5)

where Hrd ∈ CNd×Nr is the channel matrix of the link
between the relay and the destination, while nrd is the AWGN
vector at the destination, with a zero-mean and covariance
matrix of E

[
nrdn

H
rd

]
= σ2

nrd
INd

.
At the destination, a linear receiver represented by the

matrix W ∈ CNd×Nd is employed for detecting the received
signal. Specifically, the output of the linear receiver is ex-
pressed as

v̂ = WHrdFrHsrFsx+WHrdFrnsr +Wnrd, (6)

while the final output is obtained as

ŝ=MODM (v̂). (7)

In general, transceiver optimization relies on the availability
of accurate CSI. However, in practical systems, encountering
channel estimation errors is inevitable and these should be
taken into account in a robust design. Here, we consider the
popular statistical error model to handle the channel uncer-
tainties. This model has been well justified in the transceiver
design literature [23], [28], [29] and references therein; it is
especially suitable when the CSI errors are dominated by the
channel estimation errors. Using the well-known Kronecker
model [22], the channel matrices are expressed as

Hsr = H̄sr +∆Hsr, (8)
Hrd = H̄rd +∆Hrd, (9)
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where H̄sr and H̄rd are the estimated channel matrices,
while ∆Hsr and ∆Hrd are the corresponding channel es-
timation error matrices. Specifically, ∆Hsr can be written as
∆Hsr = Σ

1/2
sr H1Ψ

T/2
sr , while ∆Hrd can be expressed as

∆Hrd = Σ
1/2
rd H2Ψ

T/2
rd , where the entries of H1 and H2 are

both i.i.d. with zero-mean and unit-variance circular complex
Gaussian distribution [31]. Hence, ∆Hsr and ∆Hrd exhibit
matrix-variate complex Gaussian distributions formulated as

∆Hsr ∼ CN (0Nr,Ns ,Ψsr ⊗Σsr) , (10)
∆Hrd ∼ CN (0Nd,Nr ,Ψrd ⊗Σrd) , (11)

where Ψsr and Σsr denote the normalized covariance matrices
of the source-to-relay channel seen from the transmitter and
receiver, respectively, and so do Ψrd and Σrd for the relay-
to-destination channel. The proposed optimization is imple-
mented at the source node. We assume that the system works
in the time division duplex (TDD) mode [32]. The first-phase
CSI (from the source to the relay) can be obtained at the
source by using channel estimation and channel reciprocity.
The second-phase CSI (from the relay to the destination) can
be obtained by following the same approach at the relay; they
can be conveyed to the source via control channels.

It is assumed that the magnitudes of the CSI errors are much
smaller than those of the channel estimates themselves, hence
both the third and higher order moments of the CSI errors
of ∆Hsr and ∆Hrd can be neglected [33]. The MSE at the
destination of the complete transceiver chain seen in Fig. 1
can be written as

MSE (W,Fs,Fr,U) = E
[
∥Wyd − v∥2

]
= tr

(
WMWH

)
− tr

(
UFH

s H̄H
srF

H
r H̄H

rdW
H
)

+ tr
(
UUH

)
− tr

(
WH̄rdFrH̄srFsU

H
)
, (12)

where we have:

M =H̄rdFr

(
H̄srFsF

H
s H̄H

sr + σ2
nsr

I
)
FH

r H̄H
rd + σ2

nrd
I

+ tr
(
FrH̄srFsF

H
s H̄H

srF
H
r ΨT

rd

)
Σrd

+ tr
(
FsF

H
s ΨT

sr

)
H̄rdFrΣsrF

H
r H̄H

rd

+ σ2
nsr

tr
(
FrF

H
r ΨT

rd

)
Σrd. (13)

Note that the expectation here is taken over all the distributions
of ∆Hsr,∆Hrd,nsr,nrd.

2) Energy Harvesting: Concurrently with the information
transmission of the second phase, wireless energy is conveyed
from the source to the relay for EH. In fact, we only concen-
trate on the energy itself, rather than the format of the energy
signal. The transmit power of the energy signals at the source
can be expressed as E

[
∥Fsxen∥2

]
, where xen is the energy

signal after the nonlinear THP operation. Since the power
loss introduced by THP processing can be neglected [30],
the conclusion reached in above discussion on information
transmission still holds. Specifically, similar to (3), it can
be observed that the covariance matrix of xen can still be
approximated as E

[
xenx

H
en

]
= INd

. By imposing a transmit
power constraint at the source, the transmit power should
satisfy: tr

(
Fsxenx

H
enF

H
s

)
= tr

(
FsF

H
s

)
≤ Ps, where Ps is

the maximum transmit power available at the source.

For the proposed relaying protocol aided by SI-energy
recycling, the relay harvests the dedicated energy emanating
from the source, and additionally recycles a portion of the
energy used for information transmission via a SI-feedback
loop represented by He ∈ CNr×Nr . Accordingly, the signal
received at the relay is given by

yr,2 = HsrFsxen +HeFryr,1 + nsr,2

= HsrFsxen +HeFrHsrFsx+HeFrnsr,1 + nsr,2,
(14)

where nsr,2 is an AWGN vector with zero-mean and co-
variance matrix of E

[
nsr,2n

H
sr,2

]
= σ2

nsr
INr . Thus the total

energy harvested at the relay is expressed as

Er =
T

2
η tr

(
E
[
yr,2y

H
r,2

])
, (15)

where 0 < η < 1 denotes the EH efficiency at the relay.
In practice, the energy harvesting sub-system would have
additional control circuits which consume power; however,
this power consumption has been included in the conversion
efficiency η. To ensure that the energy used for transmission at
the relay does not exceed that being harvested, the constraint
tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
T/2 ≤ Er must be satisfied. The EH

constraint at the relay can therefore be formulated as

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
≤ η tr

(
E
[
yr,2y

H
r,2

])
. (16)

B. Problem Formulation

Given the MSE expression (12) and the EH constraint (16),
we can now formulate the proposed robust transceiver design
in mathematical term. Our general goal is to jointly design the
THP at the source, the linear AF matrix at the relay and the
linear receiver at the destination, in order to minimize well-
accepted performance metrics, such as the MSE and transmit
power. Furthermore, we focus our attention on a robust design
philosophy, where the statistical error model in (8)-(11) is
adopted for describing the CSI mismatch. In light of the above
system model equations, this goal translates into two different
design problem formulations, defined as follows:

• Minimizing the total MSE at the destination, subject to
a transmit power constraint at the source and the EH
constraint at the relay, expressed as:

min
W,Fs,Fr,U

MSE (W,Fs,Fr,U) (17a)

s.t. tr
(
FsF

H
s

)
≤ Ps (17b)

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
≤ η tr

(
E
[
yr,2y

H
r,2

])
, (17c)

• Minimizing the transmit power at the source, subject
to the MSE constraint at the destination and the EH
constraint at the relay, expressed as:

min
W,Fs,Fr,U

tr
(
FsF

H
s

)
(18a)

s.t. MSE (W,Fs,Fr,U) ≤ γ (18b)

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
≤ η tr

(
E
[
yr,2y

H
r,2

])
, (18c)

where γ denotes a common MSE target.
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Both problems (17) and (18) are non-convex with multi-
dimensional variables, making it quite challenging to simulta-
neously find the optimal W, Fs, Fr and U. To overcome this
limitation and obtain tractable solutions, iterative algorithms
inspired by the AO principle are developed for each one of
the above problems in the following two sections.

III. ROBUST TRANSCEIVER DESIGN BASED ON MSE
MINIMIZATION

The MSE is a ubiquitous design criterion routinely used
for evaluating the transmission reliability of communication
systems. In this section, we address the robust transceiver
design problem (17), where our aim is to minimize the MSE,
while meeting both the transmit power and the EH constraints.
An AO-based algorithm is developed for optimizing A) the
source precoding matrix, B) the AF relaying matrix, C) the
receiver matrix and D) the feedback matrix in an iterative
manner by solving the resultant subproblems.

A. Optimization of the Receiver Matrix

Since W is not involved in any constraints, the optimal
linear receiver matrix W of the destination can be derived by
solving the unconstrained convex problem of (17a). Hence,
given Fr, Fs and U, the optimal Wiener filter is derived by
solving ∂

∂W∗MSE (W,Fs,Fr,U) = 0, which results into

W = UFH
srH̄

H
srF

H
r H̄H

rdM
−1. (19)

B. Optimization of the AF Relaying Matrix

We next solve the sub-problem for the AF relaying matrix
Fr, while keeping Fs, U and W fixed. Invoking the following
identities from [34],

tr
(
ATB

)
= (vec (A))

T
vec (B) , (20)

tr
(
ATBAC

)
= (vec (A))

H (
CT ⊗B

)
vec (A) , (21)

vec (ABC) =
(
CT ⊗A

)
vec (B) , (22)

the MSE in (12) can be represented as a function of fr
∆
=

vec (Fr) as follows,

MSE (Fr) = fHr Afr − dHfr − fHr d+ t1, (23)

where we have:

A =
((

H̄srFsF
H
s H̄H

sr

)T
+ tr

(
FsF

H
s ΨT

sr

)
ΣT

sr + σ2
nsr

I
)

⊗
(
H̄H

rdW
HWH̄rd

)
+ tr

(
WΣrdW

H
)

×
((

H̄srFsF
H
s H̄H

sr

)T
+ σ2

nsr
I
)
⊗ΨT

rd, (24)

d = vec
(
H̄H

rdW
HUFH

s H̄
H
sr

)
, (25)

t1 = tr
(
UUH

)
+ σ2

nrd
tr
(
WWH

)
, (26)

and t1 does not depend on fr.
Note that the relay’s EH constraint (17c) can be written as

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
− ηtr

(
HeFrE

[
yr,1y

H
r,1

]
FH

r HH
e

)
≤ ηtr

(
HsrFsF

H
s HH

sr + σ2
nsr

I
)
. (27)

Using the identities in (20)-(22), we have

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
= fHr D1fr, (28)

η tr
(
HeFrE

[
yr,1y

H
r,1

]
FH

r HH
e

)
= fHr D2fr, (29)

where

D1 =
((

H̄srFsF
H
s H̄H

sr

)T
+ σ2

nsr
I

+ tr
(
FsF

H
s ΨT

sr

)
ΣT

sr

)
⊗ I, (30)

D2 =
((

H̄srFsF
H
s H̄H

sr

)T
+ σ2

nsr
I

+ tr
(
FsF

H
s ΨT

sr

)
ΣT

sr

)
⊗
(
ηHH

e He

)
. (31)

Thus (27) can be equivalently rewritten as

fHr D̃fr ≤ P̄r, (32)

where

D̃ = D1 −D2 =
((

H̄srFsF
H
s H̄H

sr

)T
+ σ2

nsr
I

+ tr
(
FsF

H
s ΨT

sr

)
ΣT

sr

)
⊗
(
I− ηHH

e He

)
, (33)

P̄r = ηtr
(
H̄srFsF

H
s H̄H

sr + σ2
nsr

I
)

+ ηtr
(
FsF

H
s ΨT

sr

)
tr (Σsr) . (34)

Since (I− ηHH
e He) ≽ 0 holds in practice 2, we can verify

that D̃ ≽ 0.
From (23) and (32), the AF relaying matrix optimization

problem can be formulated as

min
fr

(
fHr Afr − dHfr − fHr d+ t1

)
(35a)

s.t. fHr D̃fr ≤ P̄r. (35b)

The above is a quadratically constrained quadratic program
(QCQP) [36], which can be equivalently transformed into
standard second-order cone program (SOCP) [37] as follows,

min
p1,λ1,fr

p1 (36a)

s.t.
∥∥∥A1/2fr −A−1/2d

∥∥∥ ≤ λ1, (36b)∥∥∥∥[ 2λ1

p1 + dHA−1d− t1 − 1

]∥∥∥∥
≤ p1 + dHA−1d− t1 + 1, (36c)∥∥∥D̃1/2fr

∥∥∥ ≤
√
P̄r, (36d)

where p1 and λ1 are slack variables. Note that for the SOCP
itself, the objective function (OF) is linear and its constraints
are linear or second-order cones. Hence, the problem can be
efficiently solved by using the convex programming toolbox
CVX [38].

2In this contribution, He represents the normalized SI loop channel matrix,
which under the assumption of low SI power, introduces high attenuation.
Since the source node can acquire accurate estimates of He, the energy
efficiency η (0 < η < 1) can be appropriately set to satisfy the re-
quirement of positive semi-definiteness. The value of η should be less than
max (1, 1/γmax), where γmax denotes max eigenvalue of HH

e He.
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C. Optimization of the Source Precoding Matrix
Given U, W and Fr, we now focus our attention on the

optimization problem (17) with respect to the source precoding
matrix Fs. Introducing H̃ = WH̄rdFrH̄sr, the MSE in (12)
can be rewritten as a function of Fs as follows,

MSE (Fs) = tr
(
H̃FsF

H
s H̃H

)
− tr

(
H̃FsU

H
)

− tr
(
UFH

s H̃H
)
+ t2, (37)

where

t2 =σ2
nsr

tr
((

WH̄rdFr

) (
WH̄rdFr

)H)
+ σ2

nsr
tr
(
FrF

H
r ΨT

rd

)
tr
(
WΣrdW

H
)

+ tr
(
UUH

)
+ σ2

nrd
tr
(
WWH

)
, (38)

and t2 does not depend on Fs. Using the identities in (20)-
(22), the MSE in (37) can be expressed as a function of fs

∆
=

vec (Fs) as follows,

MSE (Fs) = fHs Gfs −QHfs − fHs Q+ t2, (39)

where we have:

G = I⊗
(
H̃HH̃+ tr

(
WΣrdW

H
)
H̄H

srF
H
r ΨT

rdFsH̄sr

+tr
(
WH̄rdFrΣsrF

H
r H̄H

rdW
H
)
ΨT

sr

)
, (40)

Q = vec(H̃HU). (41)

Now considering the EH constraint (17c), we first note that

tr
(
FrHsrFsF

H
s HH

srF
H
r

)
= fHs E1fs, (42)

η tr
(
HeFrHsrFsF

H
s HH

srF
H
r HH

e

)
= fHs E2fs, (43)

η tr
(
HsrFsF

H
s HH

sr

)
= fHs E3fs, (44)

where

E1 = I⊗
(
H̄H

srF
H
r FrH̄sr + tr

(
FH

r FrΣsr

)
ΨT

sr

)
, (45)

E2 = ηI⊗
(
H̄H

srF
H
r HH

e HeFrH̄sr

+tr
(
FH

r HH
e HeFrΣsr

)
ΨT

sr

)
, (46)

E3 = η I⊗
(
H̄H

srH̄sr + tr (Σsr)Ψ
T
sr

)
. (47)

With the help of (42)-(44), the EH constraint can be recast as

fHs E1fs − h (fs) ≤ 0, (48)

where

h (fs) = fHs (E2 +E3) fs + t3, (49)

t3 = ησ2
nsr

tr
(
HeFrF

H
r HH

e

)
+ ηtr

(
σ2
nsr

I
)

− σ2
nsr

tr
(
FrF

H
r

)
. (50)

We note that fHs E1fs and h (fs) in (48) are both convex
functions of fs, which means that the EH constraint in (48)
represents the difference of two convex functions [39]. Thus,
the problem in (17) can be transformed into the following DC
program [19]

min
fs

fHs Gfs −QHfs − fHs Q+ t2, (51a)

s.t. fHs fs ≤ Ps, (51b)

fHs E1fs − h (fs) ≤ 0. (51c)

In the following, we propose to employ the CCCP-based
iterative algorithm of [18] for solving the DC program (51).
The first-order Taylor expansion of h (fs) around the current
point f (i)s in the ith iteration is computed as [40]

ĥ
(
f (i)s , fs

)
=h
(
f (i)s

)
+ 2R

{
∇h
(
f (i)s

)H (
fs − f (i)s

)}
=2R

{(
f (i)s

)H
(E2 +E3) fs

}
−
(
f (i)s

)H
(E2 +E3) f

(i)
s + t3, (52)

where ∇h(f
(i)
s ) denotes the conjugate derivative of the func-

tion h (fs) with respect to the complex vector fs, evaluated at
f
(i)
s .

Then, in the (i + 1)st iteration of the proposed CCCP-
based iterative algorithm, we solve the following convex
optimization problem:

min
fs

(
fHs Gfs −QHfs − fHs Q+ t2

)
, (53a)

s.t. fHs fs ≤ Ps, (53b)

fHs E1fs − ĥ
(
f (i)s , fs

)
≤ 0. (53c)

As shown in Appendix A, problem (53) can be reformulated
as the following SOCP which can be solved by standard
techniques,

min
p2,λ2,fs

p2, (54a)

s.t.
∥∥∥G1/2fs −G−1/2Q

∥∥∥ ≤ λ2, (54b)∥∥∥∥[ 2λ2

p2 +QHG−1Q− t2 − 1

]∥∥∥∥
≤ p2 +QHG−1Q− t2 + 1, (54c)

∥fs∥ ≤
√
Ps, (54d)∥∥∥∥[ 2E

1/2
1 fs

−R
{
gHfs

}
− b− 1

]∥∥∥∥ ≤ −R
{
gHfs

}
− b+ 1.

(54e)

The CCCP-based iterative algorithm proposed for solving
the DC program of (51) is summarized in Table I, where Na

max

denotes the maximum number of iterations.

TABLE I: The CCCP-Based Iterative Algorithm to Solve (51)

1. Initialize the algorithm with a feasible point f (0)s .
Set the iteration number i = 0.

2. Repeat:
– Solve problem (54) with the current feasible point f (i)s .
– Assign the solution to f

(i+1)
s and update i := i+ 1.

3. Until: Convergence or i > Na
max; obtain Fs.

D. Optimization of Feedback Based THP Matrix

Finally, with fixed W, Fr and Fs, we seek the specific THP
feedback matrix U, which minimizes

MSE (U)= tr
(
UUH

)
− tr

(
UFH

s H̄H
srF

H
r H̄H

rdW
H
)

− tr
(
WH̄rdFrH̄srFsU

H
)
+ t4, (55)
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where t4 = tr
(
WMWH

)
does not depend on U.

Note that U must be a lower trigular matrix with unity
diagonal elements. This additional constraint can be expressed
as

Si (U− I) ei = 0, i = 1, 2, . . . , Nd, (56)

where Si =
[
Ii×i,0i×(Nd−i)

]
is the selection matrix, which

extracts the first i elements of a Nd-dimensional vector,
while ei corresponds to the ith column of INd

. By using
the Lagrangian multiplier method, the optimal THP feedback
matrix U is derived as

U =WH̄rdFrH̄srFs

−
Nd∑
i=1

ST
i

(
SiS

T
i

)−1
Si

(
WH̄rdFrH̄srFs − I

)
eie

T
i .

(57)

The detailed derivation is provided in Appendix B.

E. The Complete AO-based Algorithm

To sum up, the original non-convex problem (17) is first
decoupled into four subproblems, where each of them only
involves one subset of the variables, while the others are fixed.
Subsequently, the proposed AO-based nonlinear transceiver
design relies on sequentially updating the four matrices Fr,
Fs, U and W in a cyclic, alternating manner. Specifically,
given the THP feedback matrix U, the source precoding matrix
Fs and the AF relaying matrix Fr, we derive the optimum
linear receiver W in a closed-form. Given U, Fs and W,
Fr can be found by convex optimization. Given U, Fr and
W, we transform the non-convex design subproblem of Fs

into a DC program and propose an iterative scheme based
on the CCCP to solve the problem. Finally, by fixing the
other three matrix variables, U is derived with the aid of
the classic Lagrangian multiplier method. The internal SOCP
optimizations needed to implement this AO algorithm are
performed by applying the readily available CVX software
package. This process is terminated when the desired accuracy
is attained or the affordable number of iterations is reached.
The complete procedure is summarized in Table II, where
N b

max is the maximum number of iterations and ε denotes
the accuracy to be achieved before terminating the algorithm.

TABLE II: Proposed Robust AO Algorithm

1. Initialization: U(0) = I, the value of F(0)
r should satisfy (35b),

the value of F(0)
s should satisfy (51b). Then, calculate W(0) with

fixed U(0), F(0)
s and F

(0)
r , as shown in (19). Set j = 0.

2. Repeat:
2.1 Update F

(j+1)
r by solving (36) for fixed W(j), U(j) and F

(j)
s .

2.2 Update F
(j+1)
s by solving (54) for fixed F

(j+1)
r , W(j)

and U(j), employ the CCCP-based algorithm in Table I.
2.3 Update U(j+1) with fixed F

(j+1)
s , F(j+1)

r and W(j),
as shown in (57).

2.4 Update W(j+1) with fixed U(j+1), F(j+1)
s and F

(j+1)
r ,

as shown in (19).
3. Until: MSE(j)−MSE(j+1) ≤ ε or j > Nb

max.
Otherwise, set j := j + 1 and go to Step 2.

F. Convergence Analysis and Computational Complexity

1) Convergence Analysis: Let us now focus our attention on
the global convergence of the proposed AO-based algorithm.
As shown in Table II, we update Fr, Fs, U as well as W
sequentially and iteratively. Note that (19) and (57) represent
closed-form solutions, while the optimization subproblem (35)
is convex and can be formulated as an SOCP problem. As a
result, we can readily show that the solutions to these three
subproblems are optimal. For the non-convex subproblem (51),
the proposed CCCP-based algorithm iteratively approximates
the original non-convex feasible set around the current point
by a convex set and then solves the resultant convex problem in
each iteration. We next introduce the following lemma, which
will be used in our analysis:

Lemma 1: The iterations of the CCCP-based algorithm in
Table I produce a non-increasing sequence of OF values.

Proof: Please refer to Appendix C.
The importance of the above lemma lies in the fact that,

although we are unable to find the optimal solution to the
subproblem (51), the monotonicity of the CCCP-based algo-
rithm with respect to Fs can always be guaranteed. Hence,
iteratively updating Fr, Fs, U and W as proposed may either
decrease or maintain the OF value of problem (17), but cannot
increase it. Hence, we arrive at a monotonically non-increasing
sequence of OF values, as the number of iterations j increases.
Specifically, we have

MSE
(
F(j+1)

r ,F(j+1)
s ,U(j+1),W(j+1)

)
≤ MSE

(
F(j+1)

r ,F(j+1)
s ,U(j+1),W(j)

)
≤ MSE

(
F(j+1)

r ,F(j+1)
s ,U(j),W(j)

)
≤ MSE

(
F(j+1)

r ,F(j)
s ,U(j),W(j)

)
≤ MSE

(
F(j)

r ,F(j)
s ,U(j),W(j)

)
. (58)

Moreover, the sequence of values of the problem (17) is
lower-bounded by zero, since the MSE is positive. We can
therefore conclude that the proposed AO-based algorithm is
always convergent. It is observed that the proposed AO-
based algorithm converges to a local optimum of the original
problems. The proof is similar to that of Theorem 2 in [42],
and we therefore omit the details.

2) Computational Complexity: Let us now analyze the
computational complexity of the proposed algorithm. Here, we
apply the basic concepts of complexity analysis as used in [43].
The complexity of the proposed algorithm is dominated by
solving the problem (36) N b

max times and solving problem (54)
Na

maxN
b
max times. Problem (36) involves 3 SOC constraints,

including 2 SOCs of dimension
(
N2

r + 1
)

and 1 SOC of
dimension 3. The number of variables is on the order of
m1 = O

(
N2

r

)
. Thus, the complexity of the SOCP prob-

lem can be expressed as N b
maxO

[
m1

(
N4

r +m2
1

)]
. Similarly,

problem (54) involves 4 SOC constraints, including 2 SOCs
of dimension

(
N2

s + 1
)
, 1 SOC of dimension

(
N2

s + 2
)

and
1 SOC of dimension 3. The number of variables is on the
order of m2 = O

(
N2

s

)
. The complexity of the CCCP-

based algorithm invoked for solving problem (54) is given by
Na

maxN
b
maxO

[
m2

(
N4

s +m2
2

)]
. Thus, the overall complexity
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of the proposed algorithm can be written as

N b
maxO

[
m1

(
N4

r +m2
1

)]
+Na

maxN
b
maxO

[
m2

(
N4

s +m2
2

)]
.

(59)

Due to the complex nature of the underlying optimization
problem and the use of sophisticated computational tools for
its solution (i.e., CVX), indeed the proposed algorithm is not
deemed to impose a low complexity. However, we would
like to emphasize that the complexity of our algorithm is
manageable using existing computing technology (see also
Section V). While we focus on the formulation and theoretical
aspect of the optimization in this manuscript, the search of
low-complexity transceiver design algorithm remains an open
avenue for our future work.

IV. ROBUST TRANSCEIVER DESIGN BASED ON TRANSMIT
POWER MINIMIZATION

In this section, we focus on the robust transceiver design
problem (18), where the aim to minimize the transmit power
at the source under the MSE and EH constraints. This power
minimization problem serves as a complement to the MSE
minimization problem.

A. Joint Transceiver Optimization

For fixed Fr, Fs and U, we first optimize the receiver
matrix W. Since W is not included in the objective function
of problem (18) and only involved in the MSE constraint, we
seek to minimize the MSE for ensuring that the constraint is
satisfied with some slack assuming a feasible starting point.
Hence, we can tolerate an increase in MSE for accommodating
change in other matrix variables, when we move on to the next
parameter Fr. We can obtain the same solution as the Wiener
filter in (19).

We then optimize the AF relaying matrix Fr by fixing Fs,
U and W. Similar to the derivation in (23), the MSE constraint
of (18b) can also be represented as a function of fr as follows

fHr Afr − dHfr − fHr d+ t1 ≤ γ. (60)

The EH constraint in (18c) has the same expression as in (32).
Note that the OF of the problem (18) does not include fr.
Hence, directly solving problem (18) with respect to fr is not
applicable. Instead, here we aim for achieving a non-increasing
transmit power at the source in the next iteration. Hence, we
can reformulate the following optimization problem

min
p1,fr

p1, (61a)

s.t.
fHr Afr − dHfr − fHr d+ t1

γ
≤ p1, (61b)

fHr D̃fr
P̄r

≤ p1, (61c)

where p1 is a slack variable. We can observe that once problem
(61) is solved, p1 must be less than 1. This implies that the
feasible region of problem (18) with respect to Fs, U and W
in the next iteration would become larger, which often results
in a reduced transmit power.

Given U, W and Fr, we address the optimization problem
(18) with respect to the source precoding matrix Fs. Similarly,
the optimization problem can be expressed as

min
p2,fs

p2, (62a)

s.t. fHs Gfs −QHfs − fHs Q+ t2 ≤ γ, (62b)

fHs fs ≤ p2, (62c)

fHs E1fs − h (fs) ≤ 0, (62d)

where p2 is a slack variable. Note that the EH constraint in
(62d) is a DC program. To solve this problem, we employ a
CCCP-based iterative algorithm similar to that discussed in
the Subsection III-C. We approximate the convex function
h (fs) in the ith iteration by its first-order Taylor expansion
denoted as ĥ(f

(i)
s , fs). Then, in the (i + 1)st iteration of

the proposed CCCP-based algorithm, we have the following
convex optimization problem

min
p2,fs

p2, (63a)

s.t. fHs Gfs −QHfs − fHs Q+ t2 ≤ γ, (63b)

fHs fs ≤ p2, (63c)

fHs E1fs − ĥ
(
f (i)s , fs

)
≤ 0. (63d)

Similar to Subsection III-C, the problem (63) can be converted
into a standard SOCP. The details of the transformation are
omitted here for space-economy.

Given fixed W, Fr and Fs, the THP feedback matrix U
can be obtained by using a similar approach to that of (57).

B. Initial Feasibility Search Algorithm

If problem (18) is initialized with an infeasible point, the
algorithm may fail at the first iteration. However, the task
of finding a feasible point of a non-convex optimization
problem is non-deterministic polynomial hard (NP-hard) [44]
in general. Thus, the study of an efficient initial feasibility
search algorithm is of substantial importance.

Inspired by the algorithm in [44] and the phase I approach
of [36], we formulate the feasibility problem as the following
convex program

min
W,Fs,Fr,U

τ (64a)

s.t. MSE (W,Fs,Fr,U) ≤ τ, (64b)

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
≤ η tr

(
E
[
yr,2y

H
r,2

])
, (64c)

where τ is a slack parameter, which can be regarded as an
abstract measure for the violation of the constraint (18b).
Instead of minimizing the transmit power at the source as in
problem (18), we minimize the OF value τ . The algorithm
continues until convergence is achieved or until the maximum
number of iterations is reached. If τ (n+1) achieves the MSE
target γ in the (n+ 1)st iteration, the procedure finds a
feasible initial point. If no feasible point can be found using
the procedure, we have to adjust γ to an appropriate value.
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Note that (64) can be reformulated as

min
W,Fs,Fr,U

MSE (W,Fs,Fr,U) (65a)

s.t. tr
(
FsF

H
s

)
≤ P∞

s , (65b)

tr
(
FrE

[
yr,1y

H
r,1

]
FH

r

)
≤ ηtr

(
E
[
yr,2y

H
r,2

])
, (65c)

where P∞
s → ∞, which is equivalent to removing the transmit

power constraint at the source. Using the connection between
the two problems, we summarize the proposed feasibility
search algorithm in Table III.

TABLE III: Initial Feasibility Search Algorithm

1. Set the iteration number n = 0.
2. Repeat:

– Solve one cycle of the problem (64) and compute
the current objective value by τ (n+1).

– Verify if τ (n+1) ≤ γ, and if so, stop the algorithm.
– Update n := n+ 1.

3. Until:
∣∣τ (n) − τ (n−1)

∣∣ ≤ ε.

C. Convergence Analysis and Computational Complexity

Note that the solution of subproblem (61) would enlarge
the feasible region of the problem. Consequently the transmit
power is reduced for problem (18) with respect to Fs in the
next iteration. Similar to the previous analysis in Subsection
III-F, by iteratively updating Fr, Fs, U and W, the proposed
procedure produces a monotonically non-increasing sequence
of transmit power values. Thus, the monotonic convergence of
the proposed algorithm is ensured.

Proceeding as in Subsection III-F, the overall complexity
of the resultant AO-based algorithm for the constrained power
minimization problem can be expressed as

N b
maxO

[
m1

(
N4

r +m2
1

)]
+Na

maxN
b
maxO

[
m2

(
N4

s +m2
2

)]
,

(66)
but the details are omitted owing to lack of space.

V. SIMULATION RESULTS

In this section, we present simulation results for validating
the performance of the proposed nonlinear transceiver designs.
We consider the AF MIMO WPR network illustrated in
Fig. 1 in conjunction with Ns = Nr = Nd = 4. For
each simulation run, the true and estimated source-to-relay
and relay-to-destination channels have Rayleigh flat-fading
distributions obtained according to the model equations of
Section II-A. Specifically, by using the exponential model
[45], the covariance matrices of the channel estimation error
matrices ∆Hsr and ∆Hrd in (10)-(11) can be expressed as

Ψsr = Ψrd =


1 α α2 α3

α 1 α α2

α2 α 1 α
α3 α2 α 1



Σsr = Σrd = σ2
e


1 β β2 β3

β 1 β β2

β2 β 1 β
β3 β2 β 1

 , (67)

where α and β denote correlation coefficients, and σ2
e is the

estimation error variance. The estimated channel matrices, H̄sr

and H̄rd, are generated according to the following distribution-
s,

H̄sr ∼ CN

(
0Nr,Ns ,

(
1− σ2

e

)
σ2
e

Ψsr ⊗Σsr

)
(68)

H̄rd ∼ CN

(
0Nd,Nr ,

(
1− σ2

e

)
σ2
e

Ψrd ⊗Σrd

)
. (69)

It follows from (8) and (9) that the source-to-relay and relay-
to-destination channels obey complex Gaussian distributions.
In the special case of α = β = 0, the entries of these matrices
have unit variance. It is also assumed that the relay’s SI
loop channel matrix He in Fig. 1 has i.i.d. complex Gaussian
entries with zero-mean. In the simulations, we consider data
transmission with 16-QAM modulation. The signal-to-noise
ratio (SNR) for the source-to-relay channel is defined as
SNRsr = Ps

/∣∣Nrσ
2
nsr

∣∣. The maximum transmit power of
the source is set to be Ps = 30 dBm (or 1 W). The EH
efficiency at the relay is assumed to be η=0.4. Regarding the
stopping criteria in Tables II and III, here we set ϵ = 10−4 and
N b

max = 20. All the results are averaged over 103 independent
channel realizations. Based on the algorithms proposed in this
paper, we consider the following benchmark approaches for
comparison:

• Nonlinear Design: The proposed nonlinear transceiver
design consisting of a THP at the source along with an
AF relaying matrix and a linear MMSE receiver at the
destination.

• Linear Design: The corresponding linear transceiver
designs with THP replaced by a linear precoder at the
source.

• Perfect Design: The proposed transceiver designs under
the idealized simplifying assumption of having perfect
CSI.

• Robust Design: The proposed transceiver designs, which
take the CSI estimation errors into consideration.

• Non-robust Design: Simplified versions of the proposed
transceiver designs based on estimated CSI only (that is,
knowledge of CSI errors is not used).

A. Results for the MSE Minimization Problem of Section III

In this subsection, we evaluate the performance of the
proposed robust nonlinear transceiver design algorithm for
MIMO FD-WPR networks, as conceived for the constrained
MSE minimization problem of Section III. First, to illustrate
the convergence behavior of the proposed robust nonlinear
design algorithm, the MSE value of Eq. (12) as a function of
the iteration index is shown in Fig. 3 for SNRsr values of 5,
15 and 25 dB. Here we set α = β = 0 and σ2

e = 0.005. It can
be observed in Fig. 3 that the proposed algorithm converges
within a reasonable number of iterations for all the SNRsr

values considered. Moreover, the convergence rate is faster
for lower SNRsr values.

The BER performance of the proposed transceiver design
(after convergence of the iterative algorithm) versus SNRsr
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Fig. 3: Convergence behavior of the proposed robust transceiv-
er design based on MSE minimization for different SNRsr.
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Fig. 4: BER performance comparison of the proposed
transceiver designs versus SNRsr.

is shown in Fig. 4. For the case of α = β = 0 and
σ2
e = 0.001, we observe that the BER performance of the

nonlinear transceiver design is always superior to that of the
linear one. The proposed nonlinear transceiver design with
perfect CSI can lead to a 5 dB SNR gain compared with
the corresponding linear design at a BER level of 10−2.
Naturally, the proposed algorithm with perfect CSI achieves
the best BER performance. However, the performance of the
proposed robust design, which explicitly take channel errors
into consideration, is much better than that of the non-robust
design based on estimated channels only. This shows the
ability of our proposed design algorithm to take proactive
advantage of the CSI errors.

Next, we compare the MSE performance for the proposed
nonlinear transceiver design under a correlated channel sce-
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Fig. 5: MSE performance comparison of the proposed
transceiver designs versus SNRsr.
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Fig. 6: MSE performance comparison of the proposed
transceiver designs versus channel correlation factor α.

nario associated with α = β = 0.5. As shown in Fig. 5,
smaller estimation errors lead to a better MSE performance
for both the robust and non-robust designs. The performance
of the proposed robust algorithm is always better than that
of the non-robust one. On the other hand, the performance
of the non-robust algorithm degrades in the high-SNR region.
Furthermore, the performance gap between the proposed ro-
bust design and non-robust one becomes larger, as the CSI
estimation error σ2

e increases.
We further study the effects of channel correlation on the

MSE performance of the proposed nonlinear transceiver design
in Fig. 6. Here we let β = 0.45 and SNRsr = 10 dB,
whilst varying α. It can be seen that smaller correlation
coefficients lead to a better performance. When the value of
α increases, the performance of both the robust and non-
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Fig. 7: Convergence behavior of the proposed transceiver
design with different MSE targets γ.

robust algorithms is degraded. Naturally, the performance of
the proposed robust algorithm is always superior to that of
the non-robust one. Furthermore, the performance gain of
the proposed robust design over the non-robust one becomes
smaller, as α increases. This is reasonable, because a higher
channel correlation leads to a reduced spatial multiplexing
gain.

B. Results for the Transmit Power Minimization Problem of
Section IV

Here, we illustrate the performance of the proposed non-
linear transceiver design for the transmit power minimization
problem of Section IV. In Fig. 7, we present the transmit power
versus the number of iterations when the MSE target γ is
set to 0.4, 0.7 and 1, while α = β = 0 and σ2

e = 0.005.
As shown, the proposed robust nonlinear algorithm is capable
of converging within about 25 iterations for different MSE
requirements. Moreover, the convergence rate is faster for
higher MSE target values. When the MSE requirement be-
comes stricter, a higher transmit power is required for meeting
the transmission reliability requirement.

Fig. 8 shows the transmit power at the source versus the
MSE target γ. Here, we set α = β = 0.5, whilst the value of
γ is varied. It can be seen that the minimum transmit power
required for both the nonlinear and linear algorithms decreases
upon increasing γ. Meanwhile, the perfect schemes require a
lower transmit power compared to the robust designs for the
same γ. This is because the source has to allocate extra power
for counteracting the effects of channel uncertainties in order
to satisfy the MSE requirement. Furthermore, when compared
to the corresponding linear scheme, the proposed nonlinear
design requires a reduced transmit power, as expected.

Finally, we present the feasibility rate comparison versus
the MSE target γ in Fig. 9, where we set α = β = 0.5 for
the robust transceiver design. In the simulations, a transceiver
design algorithm is considered infeasible for a given MSE
target if CVX reports an infeasible status, which indicate that
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Fig. 8: Minimum transmit power of proposed transceiver
design versus MSE target γ.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

MSE target  γ

F
ea

si
bi

lit
y 

ra
te

 (
%

)

 

 

nonlinear (perfect)
linear (perfect)

nonlinear (robust, σ
e
2=0.001)

linear (robust, σ
e
2=0.001)

nonlinear (non−robust, σ
e
2=0.001)

linear (non−robust, σ
e
2=0.001)

Fig. 9: Comparison of feasibility rate versus MSE target γ for
the different algorithms.

the underlying constraints cannot be satisfied. The feasibility
rate is formally as the probability of feasibility, but estimated
as a ratio based on the given number of simulation runs. It is
observed that the feasibility rate of the linear algorithm is infe-
rior to that of the nonlinear algorithm. The transceiver design
relying on the idealized simplifying assumption of perfect CSI
achieves the highest feasibility rate. The non-robust algorithms
fail to satisfy both the MSE and EH constraints most of the
time.

VI. CONCLUSIONS

In this paper, we have conceived a robust nonlinear
transceiver design for MIMO FD-WPR networks based on
a novel SI-energy recycling relaying protocol. Two robust
criteria have been considered for the nonlinear transceiver de-
sign, namely, MSE minimization under transmit power and EH
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constraints, and transmit power minimization under MSE and
EH constraints. Since the optimization problems associated
with both design criteria are non-convex, we proposed AO-
based algorithms for successively optimizing the transceiver
coefficients corresponding to the source THP matrix, the AF
relaying matrix, the receiver matrix and the feedback matrix.
Each subproblem can be solved by employing the SOCP
method, the CCCP-based algorithm, the Lagrangian multiplier
method or closed-form solutions. Our simulation results have
demonstrated the improved robustness of the proposed non-
linear transceiver designs against CSI uncertainties.
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APPENDIX A
TRANSFORMATION OF (53) INTO A STANDARD SOCP

We will show that problem (53) can be further transformed
into a standard SOCP. By introducing

g = −2Ẽf
(i)

s , (70)

b =
(
f (i)s

)H
Ẽf

(i)

s + σ2
nsr

tr
(
FrF

H
r

)
− ησ2

nsr
tr
(
HeFrF

H
r HH

e

)
− ηtr

(
σ2
nsr

I
)
, (71)

(53c) can be rewritten as

fHs E1fs +R
{
gHfs

}
+ b ≤ 0, (72)

which can be converted into a second-order cone (SOC)
constraint [44]∥∥∥∥[ 2E

1/2
1 fs

−R
{
gHfs

}
− b− 1

]∥∥∥∥ ≤ −R
{
gHfs

}
− b+ 1. (73)

Similarly, we can convert (53a) into an SOC constraint.
By introducing the slack variables p2 and λ2, (53a) becomes
equivalent to

min
p2,λ2,fs

p2, (74a)

s.t.
∥∥∥G1/2fs −G−1/2Q

∥∥∥ ≤ λ2, (74b)

λ2 −QHG−1Q+ t2 ≤ p2. (74c)

To tackle (74c), we use the following identity,

x2 ≤ yz⇔
∥∥∥∥[ 2x

y − z

]∥∥∥∥ ≤ y + z, (75)

where y ≥ 0, z ≥ 0. Thus, we can apply (75) to transform
(74c) into∥∥∥∥[ 2λ2

p2 +QHG−1Q− t2 − 1

]∥∥∥∥ ≤ p2 +QHG−1Q− t2 + 1.

(76)

Substituting (74c) with (76), we can observe that (53a) is now
in the form of a standard SOCP.

APPENDIX B
DERIVATION OF FEEDBACK MATRIX U

First, by ignoring the transmit power and EH constraints,
the Lagrangian function is established as

L (U) = E
[
∥Wyd − v∥2

]
+

Nd∑
i=1

µiSi (U− I) ei

= tr
(
WMWH

)
− tr

(
UFH

s H̄H
srF

H
r H̄H

rdW
H
)

+ tr
(
UUH

)
− tr

(
WH̄rdFrH̄srFsU

H
)

+

Nd∑
i=1

µiSi (U− I) ei, (77)

where µi is a Lagrange multiplier. By solving ∂L (U)/∂U∗ =
0, we can obtain

U = WH̄rdFrH̄srFs −
Nd∑
i=1

µiS
T
i e

T
i . (78)

Substituting U into the strict lower triangular constraint (55),
we have

µi =
(
SiS

T
i

)−1
Si

(
WH̄rdFrH̄srFs − I

)
ei. (79)

Finally, substituting (79) into (78), we obtain the feedback
matrix shown in (57).

APPENDIX C
THE PROOF OF LEMMA 1

To proceed, we first denote problem (53) by P(f
(i)
s ), and let

S(f (i)s ) and C≤(f
(i)
s ) denote the solution set and constraint set

of problem P(f
(i)
s ), respectively. Let us now define R (fs)

∆
=

fHs E1fs−h (fs) and R̄(fs, f
(i)
s )

∆
= fHs E1fs− h̄(fs, f

(i)
s ), where

we have h (fs) = fHs (E2 +E3) fs + t3, and h̄(fs, f
(i)
s ) =

(f
(i)
s )H (E2 +E3) f

(i)
s + t3 + (f

(i)
s )H (E2 +E3) (fs − f

(i)
s ) +

(fs − f
(i)
s )H (E2 +E3) f

(i)
s . It follows that R̄ (fs, fs) = R (fs).

We then complete the proof in two steps.
In the first step, we show that each f

(i)
s , i = 1, 2, . . . is

feasible to problem (51). It suffices to show that f
(i+1)
s is

a feasible solution of problem (51), provided that f
(i)
s is

feasible. Assuming that f
(i)
s is feasible to problem (51), we

have R̄(f
(i)
s , f

(i)
s ) = R(f

(i)
s ) ≥ 0. It follows that there must

exist an f
(i+1)
s that is feasible to problem P(f

(i)
s ), implying

that f (i+1)
s is such that R̄(f

(i+1)
s , f

(i)
s ) ≥ 0. Furthermore, since

h (fs) is a convex function in fs, we have h (fs) ≥ h̄(fs, f
(i)
s )

for any fs and f
(i)
s . It follows that

R
(
f (i+1)
s

)
≤ R̄

(
f (i+1)
s , f (i)s

)
≤ 0. (80)

This implies that f
(i+1)
s is feasible to problem (51). This

completes the first step.
In the second step, we show that the OF value sequence

{P (f
(i)
s )} monotonically decreases as the iteration index i

increases. According to the first step, f (i)s is a feasible solution
to P(f

(i)
s ). Moreover, in the (i+1)st iteration, f (i+1)

s is the op-
timal solution of P(f

(i)
s ). Thus, we have P (f

(i+1)
s ) ≤ P (f

(i)
s ),

which implies the monotonic convergence of {P (f
(i)
s )}, since

P (fs) is lower-bounded. This completes the proof.
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