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Rate-Splitting for Max-Min Fair Multigroup

Multicast Beamforming in Overloaded Systems
Hamdi Joudeh and Bruno Clerckx

Abstract—In this paper, we consider the problem of achieving
max-min fairness amongst multiple co-channel multicast groups
through transmit beamforming. We explicitly focus on overloaded
scenarios in which the number of transmitting antennas is insuf-
ficient to neutralize all inter-group interference. Such scenarios
are becoming increasingly relevant in the light of growing low-
latency content delivery demands, and also commonly appear
in multibeam satellite systems. We derive performance limits of
classical beamforming strategies using DoF analysis unveiling
their limitations; for example, rates saturate in overloaded
scenarios due to inter-group interference. To tackle interference,
we propose a strategy based on degraded beamforming and
successive interference cancellation. While the degraded strategy
resolves the rate-saturation issue, this comes at a price of
sacrificing all spatial multiplexing gains. This motivates the
development of a unifying strategy that combines the benefits of
the two previous strategies. We propose a beamforming strategy
based on rate-splitting (RS) which divides the messages intended
to each group into a degraded part and a designated part,
and transmits a superposition of both degraded and designated
beamformed streams. The superiority of the proposed strategy
is demonstrated through DoF analysis. Finally, we solve the
RS beamforming design problem and demonstrate significant
performance gains through simulations.

I. INTRODUCTION

Physical layer multicasting in wireless networks has re-

ceived considerable research attention in recent years. In the

simplest multicasting scenario, a transmitter communicates a

common message to a group of receivers [1]. More complex

scenarios involve the simultaneous transmission of distinct

messages to multiple multicast groups, known as multigroup

multicasting [2]. Such scenarios are likely to occur in future

wireless networks due to the emergence of content-oriented

services and wireless caching. Indeed, multicast groups are

naturally (or artificially!) formed by users requesting similar

content (or coded content), opening the door for an increased

role of physical layer multicasting solutions [3], [4]. Multicas-

ting scenarios also appear in multibeam satellite systems due

to standardized framing structures, where each data stream

accommodates the requests of multiple users [5]–[8].

Despite the fact that simple isotropic transmission is suf-

ficient in the single-group multicasting case, the employment

of multiantenna signal processing techniques was shown to

achieve nontrivial performance gains [1], [9]. Amongst the
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various multiantenna signalling solutions, the most popular

ones are those with unity-rank input covariance matrices

(beamforming). Such solutions allow the use of the well-

established scalar codes, originally designed for single-antenna

systems, hence greatly simplifying the channel coding problem

[10], [11]. Although the single-group multicasting setup may

be considered relatively simple, the problem of finding the

optimum beamforming direction was in fact shown to be NP-

hard [1]. The authors of [1] proposed an approximate method

using Semidefinite Relaxation (SDR) and randomization.

Moving towards multigroup multicasting, beamforming be-

comes more crucial as such scenarios are fundamentally lim-

ited by inter-group interference. In general, multigroup mul-

ticast beamforming design problems inherit the difficulty of

single-group problems, while posing the additional challenge

of managing inter-group interference. Different beamforming

designs yield different tradeoffs between the rates that can

be simultaneously supported for different multicast groups.

In [2], the SDR-randomization approach of [1] is extended

to solve two multigroup multicast beamforming problems:

the Quality of Service (QoS) constrained power minimization

problem and the power constrained Max-Min Fair (MMF)

problem. Alternative solutions based on convex approximation

methods were later proposed, exhibiting marginally improved

performances in certain scenarios, yet lower complexities [12],

[13]. Moreover, multigroup multicast beamforming problems

were also extended to many other scenarios including per-

antenna power constrained transmission [14], large-scale an-

tenna arrays [15], multi-cell coordination [16], relay networks

[17] and cache aided networks [3], just to name a few.

Motivation: All aforementioned works adopt a classical

beamforming framework in which one designated data stream

is beamed to each group, and receivers decode their corre-

sponding messages while treating all other data streams as

noise. While this strategy can neutralize inter-group interfer-

ence under a sufficient number of transmitting antennas, it

fails to do so in overloaded scenarios with a relatively high

number of co-scheduled groups/users [18]. This can be roughly

attributed to the number of data streams exceeding the number

of spatial Degrees of Freedom (DoF) created through classical

beamforming. Overloaded scenarios are becoming more and

more relevant in the light of the growing demands for ultra-

low latency and ultra-high connectivity [19], [20]. Moreover,

such scenarios commonly arise in multibeam satellite systems

where messages intended to different users are embedded in

each data stream. Users decoding the same stream (or frame)

form a multicast group, and multiple of such groups are

usually co-scheduled in an overloaded manner [5]–[8].

In the existing literature on multigroup multicast beamform-
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ing, overloaded transmissions have been implicitly considered

through simulations with system parameters that correspond to

such scenarios [2], [6], [12], [13]. However, a comprehensive

analysis and explicit treatment of interference in overloaded

scenarios is absent. In this work, we focus on the MMF

problem in overloaded multigroup multicasting scenarios and

explore the potentials of applying alternative beamforming

strategies. Next, we give an overview of the main contributions

of this paper.

Contributions: Considerable attention has been given to

solving various multigroup multicast beamforming problems;

however, little has been done on the derivation of performance

limits which have been mainly analysed through extensive sim-

ulations. First, we make progress towards understanding the

performance limits of the classical beamforming framework by

characterizing the MMF-DoF performance. The MMF-DoF is

a first-order approximation of the MMF-rate in the high SNR

regime, which is roughly interpreted as the maximum fraction

of an interference-free message that can be simultaneously

communicated to all multicast groups. The tractability of the

DoF metric stems from its independence of varying system

parameters such as the transmitting power and channel real-

ization. Alternatively, it captures the interference-management

capabilities as a function of the fixed system parameters, i.e.

the number of transmitting antennas, multicast groups and

users in each group. From the MMF-DoF, we identify the

conditions under which the system is deemed overloaded, and

gain insights into the MMF-rate performance. For example,

it reflects the performance saturation at high SNRs in fully-

overloaded scenarios.

Second, we depart from the classical beamforming paradigm

of treating inter-group interference as noise, and propose

a beamforming strategy that incorporates Successive Inter-

ference Cancellation (SIC). Multicast groups are ordered

such that receivers decode messages (and cancel interfer-

ence) in a successive manner; a reminiscence of the Non-

Orthogonal Multiple Access (NOMA) scheme proposed for

multi-user beamforming in [21]. The relevance of non-

orthogonal schemes in overloaded scenarios follows from the

fact that the number of messages communicated in the same

resource block (time/frequency) exceeds the number of spatial

DoF. This non-orthogonal strategy degrades the channel, as

at least one receiver ends up decoding all messages, limiting

the sum-DoF to unity. An important implication is that while

saturating MMF-rate performances are avoided, all spatial

multiplexing gains are in fact annihilated. Hence, this strategy

can be approximated (in a DoF sense) by a degraded single-

beam strategy.

Third, we propose a generalized strategy that bridges the

gap between the designated (classical) and degraded beam-

forming strategies. The proposed strategy is formulated in

terms of Rate-Splitting (RS), where each message is divided

into a degraded part and a designated part. The transmitted

signal is therefore a superposition of degraded and designated

beamformed data streams. RS has been recently applied in

a variety of multiuser beamforming scenarios with uncertain

channel state information at the transmitter [22]1. We show

that the RS beamforming strategy brings significant gains to

overloaded multigroup multicasting scenarios by deriving its

MMF-DoF performance, and unveiling its strict superiority

to the two preceding strategies. RS exploits partial gains

achieved through spatial multiplexing while maintaining a

non-saturating performance through the degraded part, and

goes beyond simply switching between both.

Fourth, we solve the RS MMF beamforming design prob-

lem by invoking the Weighted Minimum-Mean Square Error

(WMMSE) approach [23], [24], which is particularly suitable

for the problem due to the sum-rate expressions arising from

rate-splitting. Moreover, the performance gains achieved by

employing the proposed beamforming strategy in overloaded

scenarios are illustrated through simulation result.

The employment of RS in multigroup multicast beamform-

ing was first proposed in a preliminary version of this paper,

which can be found in [18]. To simplify the DoF analysis,

equally sized multicasting groups are assumed in [18]. More-

over, [18] only provides a trivial lowerbound for the MMF-

DoF of the RS strategy, which is shown to be loose through

simulations. In this paper, we pose no restrictions on the sizes

of multicasting groups and derive an exact characterization of

the MMF-DoF performance achieved through the RS strategy.

Organization: Section II describes the general multigroup

multicasting system model. Classical beamforming is dis-

cussed in Section III, in which we also define the DoF metric

and derive the MMF-DoF performance of the classical strat-

egy. In Section IV, the NOMA inspired degraded beamforming

strategy is proposed and its MMF-DoF is characterized. The

RS strategy is proposed in Section V, where its MMF-DoF

performance is also derived alongside some insights into how

the MMF-DoFs of different strategies compare. In Section

VI, a WMMSE algorithm is developed to optimize the RS

MMF beamforming strategy. Simulation results are presented

in Section VII and Section VIII concludes the paper.

Notation: The following notations are used in the paper.

a,A are scalars, a is a column vector, A is a matrix and A
is a set. (a1, . . . , aK) denotes a K-tuple of scalars, which

is also represented by a column vector a. The superscrips

(·)T and (·)H denote the transpose and conjugate-transpose

respectively. tr(·), ‖ ·‖ and E{·} are the trace, Euclidian norm

and expectation operators respectively. dim(·) and null(·) refer

to the dimension and the null space respectively.

II. SYSTEM MODEL

We consider a wireless system comprising a single transmit-

ter equipped with N antennas and K single-antenna receivers

indexed by the set K , {1, . . . ,K}. Receivers are grouped

into the M (1 ≤ M ≤ K) multicast groups G1, . . . ,GM ,

where Gm is the set of receivers belonging to the mth group,

m ∈ M, and M , {1, . . . ,M} is the index set of all groups.

Such grouping is carried out based on content, i.e. receivers be-

longing to the same group are interested in the same message.

1Contrary to the multigroup multicasting scenario considered in this paper,
[22] (and references therein) is mainly focused on conventional multiuser
scenarios with unicast transmissions.
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It is assumed that each receiver belongs to exactly one group.

Thus
⋃

m∈M Gm = K and Gm ∩ Gj = ∅, ∀m, j ∈ M and

m 6= j. Denoting the size of the mth group by Gm = |Gm|, it

is assumed without loss of generality that group sizes are in

an ascending order, i.e.

G1 ≤ G2 ≤ . . . ≤ GM . (1)

To map users to their respective groups, we define µ : K → M
such that µ(k) = m for all k ∈ Gm.

Let x ∈ CN denote the signal vector transmitted in a given

channel use. This transmitted signal is subject to an average

power constraint E
{
xHx

}
≤ P , where P > 0. Denoting the

corresponding signal received by the kth user as yk, the input-

output relationship is given as

yk = hH

kx+ nk (2)

where hk ∈ C
N is the channel vector between the transmitter

and the kth user, and nk ∈ CN (0, σ2
n,k) is the receiver

Additive White Gaussian Noise (AWGN). The channel matrix

composed of K channel vectors is given by H , [h1 · · · hK ].
It is assumed without loss of generality that σ2

n,1, . . . , σ
2
n,K =

σ2
n, from which the transmit SNR is given by P/σ2

n. Moreover,

it is further assumed that the transmitter perfectly knows H

and each receiver knows its own channel.

In multigroup multicasting, the transmitter wishes to com-

municate the distinct messages W1, . . . ,WM to users in

G1, . . . ,GM respectively. Messages are mapped to the trans-

mitted signal as W1, . . . ,WM 7→ x using some encoding func-

tion. On the other end of the channel, messages are decoded

from the received signals as yk 7→ Ŵ k
µ(k), where Ŵ k

µ(k) is the

kth user’s estimate of Wµ(k). For a given strategy, the group-

rates denoted by r1, . . . , rM correspond to the maximum rates

of communicating W1, . . . ,WM respectively, while guaran-

teeing successfully decoding (with high probability) by all

corresponding users. Transmission strategies can be designed

to optimize various objective functions subject to different

constraints. Here we are interested in MMF designs which

aim to maximize the symmetric rate that can be simultaneously

achieved by all groups subject to a power constraint. Moreover,

channel coding is abstracted by assuming Gaussian codes and

the focus is on designing and analysing the beamforming

schemes.

In this context, it is worth mentioning that from an infor-

mation theoretic point of view, the setup at hand is modeled

by a compound MISO broadcast channel [25], [26]. For a

class of overloaded scenarios, it was shown that the optimum

sum-DoF is achieved through interference alignment over

rational dimensions by exploiting the signal level (or power)

domain. While the employment of the power domain features

in this work, we focus on a class of strategies based on

beamforming. This is more inline with current deployments

of multiuser MIMO systems [27]. Moreover, we consider

one-shot transmission schemes with no time-sharing between

strategies. This is suitable for systems with rigid scheduling

and/or tight latency constraints, for example as in multibeam

satellite systems [5]–[8], and also allows for simpler designs.

III. DESIGNATED (CLASSICAL) BEAMFORMING

In classical beamforming, the M messages are first

mapped into independent designated symbol streams as

W1, . . . ,WM 7→ s1, . . . , sM , which are then beamformed as

x =

M∑

m=1

pmsm (3)

where pm ∈ CN denotes the mth group’s designated beam-

forming vector. Defining s , [s1 · · · sM ]T and assuming that

E{ssH} = I, the transmit power constraint under beamforming

reduces to
∑M

m=1 ‖pm‖2 ≤ P . In some analysis, it helps to

emphasize the structure of the beamformers. Hence, we write

pm =
√
qmwm, where qm = ‖pm‖2 is the power allocated

to the mth beam and wm is a unit vector that denotes the

beamforming direction.

The Signal to Interference plus Noise Ratio (SINR) experi-

enced by the kth user is given by

γk =
|hH

kpµ(k)|2∑
m 6=µ(k) |hH

kpm|2 + σ2
n

. (4)

The achievable rate from the kth user’s point of view under

Gaussian signalling is given by Rk = log2(1 + γk). Since

the mth data stream carries a message that should be decoded

by all users in Gm, the corresponding code-rate should not

exceed the rate achievable by the weakest receiver in the group.

Hence, the group-rate is given by

rm = min
i∈Gm

Ri. (5)

A. Achieving Max-Min Fairness

The objective of the MMF design is to achieve fairness

among groups subject to a transmit power constraint. The

classical beamforming MMF problem is formulated as

R(P ) :





max
P

min
m∈M

min
i∈Gm

Ri

s.t.

M∑

m=1

‖pm‖2 ≤ P
(6)

where P , [p1 · · · pM ] is the beamforming (or precoding)

matrix. The inner minimization in (6) accounts for the multi-

cast nature within each group as shown in (5). On the other

hand, the outer minimization accounts for the fairness across

groups. It is common practice to formulate the beamforming

problem in terms of the SINRs which is equivalent to (6) due

to the one-to-one monotonic relationship between Ri and γi.
Problems are formulated in terms of the achievable rates in

this work to facilitate the DoF performance analysis.

In this section we characterize the performance of classical

beamforming through DoF analysis. The relevance of such

analysis follows from the fact that achieving max-min fairness

requires a simultaneous increase in powers allocated to all

streams as P increases. In scenarios where N is sufficient

to place each beam in the null space of all its unintended

groups, each multicast group receives an interference free

stream. However, if such condition is violated, the transmis-

sion becomes interference limited and DoF analysis can help

us gain insight into the performance.



4

B. Degrees of Freedom

To facilitate the definition of the DoF metric, we start

by defining a beamforming scheme as a family of feasible

beamforming matrices, with one for each SNR (or power)

level. This is denoted by {P(P )}P , where P(P ) is asso-

ciated with the P th level and adheres to the power con-

straint. A beamforming scheme is associated with a set of

achievable user-rate tuples given by {(R1(P ), . . . , RK(P ))}P ,

where (R1(P ), . . . , RK(P )) is the user-rate tuple achieved

by employing the beamforming matrix P(P ). Similarly, we

have the set of group-rate tuples {(r1(P ), . . . , rM (P ))}P ,

where (r1(P ), . . . , rM (P )) is associated with P(P ) and

(R1(P ), . . . , RK(P )). A beamforming scheme is also asso-

ciated with user and group DoF tuples. The user-DoF tuple is

denoted by (D1, . . . , DK), where the kth user-DoF is given

as

Dk , lim
P→∞

Rk(P )

log2(P )
. (7)

The corresponding group-DoF tuple is denoted by

(d1, . . . , dM ), where dm is given as2

dm , lim
P→∞

rm(P )

log2(P )

(a)
= min

i∈Gm

Di. (8)

It can be seen from (7) and (8) that the DoF metric is inde-

pendent of the actual power level P . Alternatively, it captures

the asymptotic rate growth with respect to the capacity of

an interference-free single-stream transmission approximated

by log2(P ). Hence, the tuple (d1, . . . , dM ) can be interpreted

as the fractions of interference-free transmissions that can be

simultaneously achieved by the M groups at high SNR where

inter-group interference is the main limiting factor.

A number of meaningful scalar performance measures can

be derived from DoF tuples. This work is concerned with the

symmetric performance, and hence we focus on the MMF-

DoF (symmetric-DoF) defined as d , minm∈M dm. For a

given beamforming scheme, d corresponds to the maximum

group-DoF that can be simultaneously achieved by all groups.

C. MMF-DoF Performance

For a given system, we denote the optimum MMF beam-

forming scheme by {P⋆(P )}P . This is obtained by solving

(6) for every power level P , i.e. P⋆(P ) = argR(P ). The

optimum MMF beamforming scheme comes with a corre-

sponding MMF-DoF given by d⋆ , limP→∞
R(P )

log2(P ) , which

we characterize in this part. The fact that each user is equipped

with a single antenna sets a trivial upperbound on the MMF-

DoF. In particular, we have

d ≤ dm ≤ Di ≤ 1, ∀i ∈ Gm,m ∈ M. (9)

Hence, if d = 1 is achievable, then d⋆ = 1. In this case, it is

possible to beam an interference-free stream to each group

simultaneously. For DoF analysis, we make the following

assumption.

2In (8), (a) follows from continuity by passing the limit in (7) inside the
min function in (5).

Assumption 1. The channel vectors h1, . . . ,hK are indepen-

dently drawn from continuous distributions. Hence, for any

N ×Ksub matrix in which the Ksub columns constitute any

subset of the K channel vectors, it holds with probability one

that the rank is min{N,Ksub}.

Now let us define Hm as the matrix with columns consti-

tuting channel vectors of all users in Gm. On the other hand,

H̄m , [H1 · · ·Hm−1 Hm+1 · · ·HM ] is the matrix composed

of the complementary set of channel vectors. More generally,

let L = {m1, . . . ,mL} ⊆ M be a subset of L groups, and

L̄ = M\L be the subset of complementary groups. We define

HL , [Hm1 · · · HmL
] as the channel matrix for all users in

groups Gm1 . . . ,GmL
, and H̄L , HL̄ as the complementary

channel matrix. From Assumption 1, the number of spatial

signalling dimensions orthogonal to the subspace occupied by

receivers in Gm1 . . . ,GmL
is given by

dim
(
null

(
HH

L

))
= max

{
N −

L∑

l=1

Gml
, 0

}
. (10)

It follows that dim
(
null

(
H̄H

m

))
≥ 1 if and only if

N ≥ 1 +K −Gm. (11)

This allows nulling all interference cause by the mth

beamformer, i.e. pm ∈ null
(
H̄H

m

)
. From (1), we have

dim
(
null

(
H̄H

m1

))
≤ dim

(
null

(
H̄H

m2

))
for all m1,m2 ∈ M

and m1 ≤ m2. This reflects the fact that nulling interference

caused to larger groups is more demanding in terms of

spatial dimensions. Hence, satisfying (11) for all m ∈ M
is equivalent to

N ≥ 1 +K −G1. (12)

Note that in the extreme case of single-group multicasting

(M = 1), the condition in (12) becomes N ≥ 1. In this case,

a transmitting antenna array provides beamforming gain but

no DoF gain as a single antenna achieves the single-stream’s

DoF upperbound in (9). On the other hand, the condition in

(12) becomes N ≥ K for the opposite extreme of multiuser

beamforming (M = K), under which one spatial dimension

per user is necessary to guarantee perfect interference nulling.

By fixing the number of groups and increasing the number

of users per group beyond 1, the dimension of the subspace

occupied by each group increases. Hence, interference nulling

requires more spatial dimensions. A question that comes to

mind at this point is: what happens to the MMF-DoF when

condition (12) is violated? Before proceeding, we define

NL , 1 +

L∑

m=2

Gm = 1+K −G1 −
M∑

j=L+1

Gj (13)

for all L ∈ M, where N1 = 1. NL is interpreted as

the minimum number of transmitting antennas required to

serve the subset of groups {1, . . . , L} using interference-free

beamforming while disregarding all remaining groups.
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Proposition 1. The MMF-DoF achieved by classical beam-

forming is given by

d⋆ , lim
P→∞

R(P )

log2(P )
=





1, N ≥ NM

0.5, NM−1 +G1 ≤ N < NM

0, N < NM−1 +G1.

(14)

Results as the one above are commonly shown through two

steps: 1) achievability and 2) converse. In the achievability, it

is shown that there exists at least one feasible beamforming

scheme that achieves the DoF in (14). In the converse, it is

shown that no feasible beamforming scheme can achieve a

higher DoF by deriving a tight upperbound. The achievability

of Proposition 1 is discussed in the following, while the

converse is relegated to Appendix A.

1) Achievability of Proposition 1: Showing that d = 1
under N ≥ NM follows from the discussion that precedes

Proposition 1, and achieving d = 0 is trivial. Hence, we

focus on achieving d = 0.5. It is sufficient to show this

under N = NM−1 + G1 as further increasing the number

of transmitting antennas cannot decrease the DoF. Next, we

observe the following:

• By excluding the largest group, interference free trans-

mission amongst the remaining M−1 groups is possible.

This follows by removing the M th group from the system

and rewriting the condition in (12) as N ≥ NM−1.

• Interference from the M th beam to all other groups can

be nulled. This follows from (11).

Now consider a beamforming scheme in which a beamforming

matrix takes the form

P(P ) =
[√

q1(P )w1 · · ·
√
qM (P )wM

]
(15)

where the power allocation depends on P while the beam-

forming directions do not. The beamforming directions are

designed according to the two observations above such that

wm ∈
{
null

(
H̄H

{m,M}

)
, ∀m ∈ M \M

null
(
H̄H

M

)
, m = M.

(16)

The kth user’s SINR at power level P is given by

γk(P ) =





qµ(k)(P )|hH

kwµ(k)|
2

σ2
n

, ∀k ∈ K \ GM

qM (P )|hH

kwM |2∑
j 6=M qj(P )|hH

k
wj |2+σ2

n
, ∀k ∈ GM .

(17)

It can be seen that users in groups 1, . . . ,M − 1 see no

interference at all, while users in group M see interference

from all other groups. Next, power allocation is carried out

such that all user SINRs achieve the same power scaling. This

is achieved by power allocations scaling as3

qm(P ) =

{
O
(
P 0.5

)
, ∀m ∈ M \M

O
(
P
)
, m = M.

(18)

3We use the standard Landau notation O(·) to describe power scaling.
Specifically, for real-valued functions f(P ), g(P ), the statement f(P ) =

O (g(P )) means that limP→∞
|f(P )|
|g(P )|

< ∞.

For example, one power allocation that satisfies (18) while

adhering to the power constraint is

qm(P ) =

{
P 0.5

M−1 , ∀m ∈ M \M
P − P 0.5, m = M.

(19)

Since |hH

kwm|2 = O(1) for all k ∈ K and m ∈ M, we

have γk = O
(
P 0.5

)
and Rk = 0.5 log2(P ) + O(1) for all

k ∈ K. Hence, the proposed scheme achieves Dk = 0.5 for

all k ∈ K, from which the group-DoF tuple (d1, . . . , dM ) =
(0.5, . . . , 0.5) is achieved, and hence d = 0.5.

Note that for the DoF achievability, it is sufficient to use

simple zero-forcing precoders which are generally suboptimal

from a rate perspective. This is a widely observed phenomenon

in the MIMO literature, and is due to the fact that the DoF

capture the number of interference free dimensions and, unlike

achievable rates, are not influenced by O(1) power gains.

2) Insight: It is evident that nulling all interference seen

by receivers in GM is most expensive in terms of spatial

dimensions. Alternatively, the scheme reserves the spatial

dimensions to achieve interference free transmission amongst

the remaining M − 1 groups. This comes at the expense of

sacrificing part of the M th group’s received signal subspace,

now occupied by interference from the other M − 1 beams.

Interference is made to scale as O
(
P 0.5

)
through power

control, which in turn limits the MMF-DoF to 0.5. This

is shown to be the optimum classical beamforming strategy

in the DoF sense in Appendix A. Since multiplexing gains

are partially achieved in such scenarios, they are labeled as

partially-overloaded.

When N drops below NM−1 + G1, the interference from

the M th group cannot be eliminated anymore, creating mutual

interference between at least two groups from which one

group’s gain becomes the other’s loss. As a result, the MMF-

DoF collapses to zero as shown in Appendix A. Such scenarios

are identified as fully-overloaded4.

D. The Role of DoF Analysis

While a beamforming scheme obtained from (6) is guar-

anteed to achieve the MMF-DoF in (14), the converse is not

always true, i.e. a scheme that achieves (14) is not necessarily

optimum from the MMF-rate perspective. For example, while

all beamforming schemes that satisfy (16) and (18) achieve the

same MMF-DoF, the actual beamforming directions and power

allocation may have a significant influence on the achievable

rate performance. Moreover, having fixed beamforming di-

rections for all SNR levels is suboptimal in general as there

is more to designing an optimum beamforming scheme than

simply nulling interference, which may not be the primary

limiting factor in medium and low SNR regimes. This indeed

may raise some questions regarding the role and effectiveness

of DoF analysis in the design and optimization process.

To highlight the potential role of DoF analysis in guiding the

design of new beamforming strategies, we present a numerical

example in Fig. 1. Despite the fact that DoF analysis is carried

4For equal size groups, NM = NM−1 +G1 and the MMF-DoF collapses
to 0 as soon as the condition in (12) is violated.
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Fig. 1. MMF rate performance obtained by solving (6) using the method
in [2] for K = 6 users, M = 3 groups, G1, G2 and G3 equal to 1, 2
and 3 users respectively, and N = 2, 4 and 6 antennas. The MMF rates
presented correspond to the SDR upperbound (no randomization), and results
are obtained by averaging over 100 i.i.d Rayleigh fading channels.

out as SNR goes to infinity, its results are highly influential

and visible at finite SNRs. For example, the three MMF-

DoF regimes characterized in Proposition 1 can be clearly

identified from Fig. 1. This is due to the dominating effect

of intergroup-interference compared to the effect of additive

noise. Moreover, the detrimental implications of d = 0 can be

clearly observed in Fig. 1, i.e. the MMF-rate stops growing as

SNR increases, reaching a saturated performance. Such fully-

overloaded scenarios are characterized through the MMF-DoF

as seen in (14). Hence, although the specific finite-SNR rates

cannot be precisely predicted from DoF analysis, insights

into the interference-dominated MMF-rate performance can

be drawn, guiding the development of more efficient beam-

forming strategies as we see in the following sections.

IV. DEGRADED BEAMFORMING

As we observed in the previous section, the antenna regime

in which a system becomes overloaded was identified through

DoF analysis. In this section, we propose a scheme that im-

proves the MMF-DoF in Proposition 1 when N < NM−1+G1.

This is achieved through degraded beamforming, where data

streams are decoded and cancelled in a successive manner.

The terminology follows from the fact that such (enforced)

ordering and successive decoding degrade the channel, hence

annihilated all spatial multiplexing gains.

First, to define a decoding order, we use the premutation

function π : M → M which permutes the set M such

that π(m) 6= π(j) for all m 6= j. An arbitrary user in the

π(m)th group starts by decoding the π(1)th stream, which

is then removed from the received signal using interference

cancellation. This is followed by decoding and removing the

π(2)th stream and so on until the π(m)th stream is decoded.

Hence, the π(m)th stream sees interference from the π(j)th
stream only if j > m. Since users may decode streams not

intended to them, it is necessary to define the SINR of the

π(m)th stream from the kth receiver’s perspective as

γ̃
π(m)
k =

|hH

k p̃π(m)|2∑M
j=m+1 |hH

k p̃π(j)|2 + σ2
n

(20)

where k is not necessarily in Gπ(m). In particular, this is

relevant for k ∈ {Gπ(m), . . . ,Gπ(M)}, as the remaining users

would not reach the π(m)th stream in the successive decoding

chain. The notation ·̃ in (20) is used to define quantities

associated with the degraded transmission.

The rate at which the π(m)th stream should be transmitted

such that the kth user is able to successfully decode it is given

by R̃
π(m)
k = log2(1+ γ̃

π(m)
k ). Since the π(m)th stream should

be successfully decoded by all receivers in Gπ(m), . . . ,Gπ(M),

the π(m)th group-rate is restricted to

rπ(m) = min
i∈{Gπ(m),...,Gπ(M)}

R̃
π(m)
i . (21)

The corresponding MMF optimization problem is given by

R̃(P ) :





max
π,P̃

min
π(m)∈M

min
i∈{Gπ(m),...,Gπ(M)}

R̃
π(m)
i

s.t.

M∑

m=1

‖p̃π(m)‖2 ≤ P
(22)

where P̃ , [p̃1 · · · p̃M ] is the degraded beamforming matrix.

Note that the permutation function is an optimization variable

as the achievable rates are influenced by the decoding order.

A. DoF Analysis

It is evident that each receiver in Gπ(M) ends up decoding all

M data streams. This degrades the channel and limits the sum

group-DoF to one, which can be further split equally amongst

groups. This is formally shown in the following result.

Proposition 2. The MMF-DoF achieved by the degraded

beamforming strategy is given by

d̃⋆ , lim
P→∞

R̃(P )

log2(P )
=

1

M
. (23)

1) Proof of Proposition 2: Consider a permutation function

given by π(m) = m. Next, consider a beamforming scheme

where all directions w̃1, . . . , w̃M are randomly chosen from

the space spanned by H and fixed, while the power allo-

cation is set such that it satisfies the following scaling law

qm(P ) = O
(
P (1+M−m)/M

)
for all m ∈ M. The interference

seen by the mth stream is dominated by the m+ 1th stream,

which has the next highest power level amongst the remaining

interferers. By substituting the beamforming scheme into (20),

it follows that γ̃m
k (P ) = O

(
P 1/M

)
. Combining this with (21),

the MMF-DoF of 1/M is achieved.

For the upperbound, consider one user in the π(M)th group.

Such user decodes all M streams, and the model reduces

to a Multiple Access Channel (MAC) with a single-antenna

receiver, which has a sum-DoF of 1. In particular, for any

feasible solution and k ∈ Gπ(M), we observe that

min
π(m)∈M

rπ(m) ≤
1

M

M∑

m=1

rπ(m) (24a)
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≤ 1

M

M∑

m=1

R̃
π(m)
k (24b)

=
1

M
log2

(
1 +

∑M
m=1 |hH

k p̃π(m)|2
σ2
n

)
(24c)

≤ 1

M
log2

(
1 +

P‖hk‖2
σ2
n

)
(24d)

where (24a) follows from the fact that the minimum is

upperbounded by the average, (24b) follows from k ∈ Gπ(M)

and (21), (24c) is obtained by substituting (20) into (24b), and

(24d) follows by applying the Cauchy-Schwarz inequality. The

upperbound in (24d) scales as 1
M log2(P ) +O(1).

2) Insight: By forcing a group of users to decode all

messages, the achievable DoF performance is similar to that of

a degraded channel with only one transmitting antenna5. Such

transmission is able to split the single DoF amongst groups

in fully-overloaded scenarios, hence avoiding the collapsing

MMF-DoF of classical beamforming. However, all spatial

multiplexing gains achieved by classical beamforming when

N ≥ NM−1 +G1 are sacrificed. As we see in the following

section, a better strategy is one that combines the benefits of

both beamforming strategies. Before we proceed, we propose

a simplified degraded beamforming strategy.

B. Single-Stream Degraded Beamforming

The optimization problem in (22) can be solved by finding

the optimum beamformers for each possible decoding order,

from which the optimum ordering and beamforming can be

obtained. However, finding the optimum multicasting beam-

formers (even for fixed ordering) is known to be a very difficult

task, making the problem highly complicated. Alternatively,

the problem is made easier by imposing a level of subopti-

mality. In particular, by restricting all degraded beamforming

directions to a common direction wc, the transmitted signal is

expressed by

x = wc

M∑

m=1

√
qmsm = pc

M∑

m=1

√
qm
P

sm (25)

where pc =
√
Pwc. We further assume that each of the K

receivers decodes all M streams. This imposes the MAC up-

perbound in (24) on all receivers, from which the upperbound

on the MMF group-rate is tightened such that

min
π(m)∈M

rπ(m) ≤
1

M
min
k∈K

log2

(
1 +

P |hH

kwc|2
σ2
n

)
. (26)

It can be shown that the upperbound in (26) is attainable

as the superposition of the M streams
∑M

m=1

√
qm
P sm can

be equivalently replaced by one super symbol stream which

carries all M messages, i.e. W1, . . . ,WM 7→ sc. This is trans-

mitted along the beamformer pc in a single-group multicasting

manner such that all K receivers are able to decode it. The

upperbound in (26) corresponds to the equal splitting of the

single-stream’s rate amongst the M groups.

5Note that beamforming gain is achieved by exploiting the multiple
antennas. This may improve the achievable rate performance compared to
a single-antenna transmitter, but no DoF gain is achieved.

From the above discussion, it follows that optimizing the

simplified degraded beamforming scheme is equivalent to

packing all K users in one group and solving the single-group

multicast beamforming problem. This single-stream problem

is expressed by

Rc(P ) :




max
pc

1
Mmin

k∈K
log2

(
1 +

|hH

kpc|
2

σ2
n

)

s.t. ‖pc‖2 ≤ P
(27)

which can be solved using existing methods. The next ques-

tion that comes to mind is, what is the performance loss

from adopting the single-stream strategy in (27)? It can

be seen that the single-stream strategy does not concede a

DoF loss compared to the degraded beamforming strategy as

limP→∞
Rc(P )
log2(P ) = 1

M . Both strategies translate to the equal

splitting of a single DoF amongst the M groups. However,

the single DoF is accessed in a non-orthogonal manner in

(22), while (27) is equivalent to Orthogonal Multiple Access

(OMA). This yields a rate gap at finite SNRs. The analysis of

such gap is outside the scope of this work. In the remainder

of the paper, we restrict ourselves to the simplified degraded

scheme.

V. RATE-SPLITTED BEAMFORMING

As we saw in the previous sections, both the classical and

the degraded strategies have their benefits and limitations.

The former exploits the multiplexing gains offered by the

antenna array yet fails in the overloaded regime, while the

latter guarantees a non-saturating MMF performance yet fails

to utilize the DoF gains achieved through spatial multiplexing.

Here, we propose a RS beamforming strategy that is able to

reap the fruits of both strategies.

In the RS strategy, each message is split into two parts:

degraded and designated. For example, Wm 7→ Wm0,Wm1

where Wm0 and Wm1 denote the degraded and designated

parts respectively. Degraded parts are encoded into degraded

signals in the manner described in Section IV, while desig-

nated parts are encoded into designated signals as described

in Section III. All signals are superposed and transmitted

simultaneously. To simplify the analysis, design and optimiza-

tion, single-stream beamforming is employed to construct one

degraded signal. In particular, degraded parts are encoded into

one super degraded symbol stream as W10, . . . ,WM0 7→ sc.
On the other hand, designated parts are encoded into indepen-

dent symbols streams as W11, . . . ,WM1 7→ s1, . . . , sM . The

transmitted signal is then constructed as

x = pcsc +

M∑

m=1

pmsm. (28)

Since the information intended to the mth group is contained

partially in sc and partially in sm, both streams should be

decoded by all receivers in Gm. Hence, at the kth receiver,

the degraded stream is first decoded by treating all designated

streams as noise. This is followed by removing the degraded

part from the received signal using interference cancellation,

before decoding the designated stream while treating all

remaining streams as noise. The kth receiver retrieves its

message given that sc and sµ(k) are successfully decoded.
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A. Problem Formulation

The degraded stream’s SINR at the kth user is given by

γc
k =

|hH

kpc|2∑M
j=1 |hH

kpj |2 + σ2
n

. (29)

The corresponding achievable rate from the kth user’s point of

view is given by Rc
k = log2(1+γc

k). For all users to be able to

successfully decode the degraded stream, its transmission rate

should be restricted to Rc = mink∈K Rc
k. After cancelling

the degraded signal, the SINRs and achievable rates of the

designated schemes are as defined in Section III.

By performing RS, each group-rate is composed of a sum

of two portions corresponding to the degraded and designated

parts of the message. The degraded portion of the mth group-

rate, contributed by the degraded stream, is given by

Cm =
|Wm0|∑M
j=1 |Wj0|

Rc (30)

where |W | is the length of a message W . It naturally follows

that
∑M

m=1 Cm = Rc. Note that Cm corresponds to the rate

at which Wm0 is communicated. On the other hand, Wm1 is

communicated at the designated rate given by mini∈Gm
Ri.

Hence, the mth group-rate is given by

rm = Cm + min
i∈Gm

Ri. (31)

This allows us to formulate the RS problem as

RRS(P ) :





max
c,PRS

min
m∈M

(
Cm + min

i∈Gm

Ri

)

s.t. Rc
k ≥∑M

m=1 Cm, ∀k ∈ K
Cm ≥ 0, ∀m ∈ M

‖pc‖2 +
M∑

m=1

‖pm‖2 ≤ P

(32)

where c , (C1, . . . , CM ) and PRS , [pc p1 · · · pM ].
The constraint Rc

k ≥∑M
m=1 Cm guarantees that the degraded

stream is decoded by the kth user. A solution to (32) consists

of the rates, the splitting ratios which can be deduced from

the rates, and the beamforming vectors.

By inspecting the problem formulations in (6), (27) and

(32), we obtain the relationship

max
{
R(P ),Rc(P )

}
≤ RRS(P ). (33)

This follows by observing that optimum solutions of problems

(6) and (27) correspond to feasible solutions of problem (32)

with ‖pc‖2 = 0 and ‖p1‖2, . . . , ‖pM‖2 = 0 respectively.

While the inequality (33) confirms that the RS beamform-

ing strategy cannot perform worse than the two preceding

strategies, it does not quantify the performance improvement.

This can be partially settled by characterizing the MMF-DoF

performance achieved by RS. To facilitate such derivation, we

introduce the following special case.

B. A Special Case: Partitioned Beamforming

Consider a strategy where groups are partitioned into two

subsets, namely MD ⊆ M which are served using classical

designated beamforming, and Mc = M̄D = M\MD served

through degraded beamforming. It is clear that this is a special

case of the RS strategy achieved by splitting the messages

such that |Wm0| = 0 for all m ∈ MD, and |Wm1| = 0 for all

m ∈ Mc. This yields a design with Cm = 0 for all m ∈ MD,

and ‖pm‖2 = 0 for all m ∈ Mc.

The degraded stream’s SINR at the kth user is now given

by

γc
k =

|hH

kpc|2∑
j∈MD

|hH

kpj |2 + σ2
n

(34)

where the corresponding rate writes as Rc
k = log2(1 + γc

k).
While sc only carries messages intended to groups in Mc, it

is still decoded by receivers in all groups as in the RS strategy

to improve the decodability of designated streams. Hence, the

rate of the degraded stream is given by Rc = mink∈K Rc
k. For

the kth receiver where k ∈ {Gm | m ∈ MD}, the SINR of the

designated stream is given by

γk =
|hH

kpµ(k)|2∑
j∈MD\µ(k) |hH

kpj |2 + σ2
n

(35)

and the corresponding rate is given by Rk = log2(1 + γk).
Achieving fairness in this case requires sharing Rc equally

amongst groups in Mc. It follows that the group-rates are

given by

rm =

{
1

|Mc|
min
k∈K

Rc
k, ∀m ∈ Mc

mini∈Gm
Ri, ∀m ∈ MD.

(36)

It is evident from (36) that the manner in which groups are par-

titioned has an influence on the achievable rate performance.

This is exploited in the DoF analysis presented next.

C. DoF Analysis

Now we are ready to derive the following result.

Proposition 3. The MMF-DoF achieved by the RS beam-

forming strategy is given by

d⋆RS , lim
P→∞

RRS(P )

log2(P )
=

1

1 +M −M⋆
D

. (37)

where

M⋆
D=

{
M, N ≥ NM

L, NL≤N<NL+1, ∀L∈{1, . . . ,M − 1} (38)

and NL is expressed in (13).

The achievability of Proposition 3 is based on partitioned

beamforming as shown in what follows. The converse on

the other hand is relegated to Appendix B. Before we pro-

ceed, we highlight that M⋆
D in (38) is in fact the maximum

number of groups that can be served through interference-

free designated beamforming (i.e. achieving a group-DoF

of 1 each) while silencing all the remaining groups. This

is shown as follows. Assume that we wish to serve the

subset of groups L = {m1, . . . ,mL} using interference-free
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designated beamforming and disregard the remaining groups.

We further assume, without loss of generality, that L has an

ascending order. It follows from the discussion in Section

III-C that the minimum number of antennas required to do

so is Nmin(L) = 1 +
∑L

l=2 Gml
. It can be easily seen that

NL ≤ Nmin(L) for all L ⊆ M and |L| = L. Hence for a fixed

L ∈ M, the subset of groups that requires the least number of

transmitting antennas is {1, . . . , L}, i.e. the L smallest groups.

Conversely, for a given number of antennas N , the maximum

number of groups that can be served through interference-free

designated beamforming is given by M⋆
D. This follows from

NM⋆
D

≤ N < NM⋆
D+1 for all M⋆

D ∈ {1, . . . ,M − 1} and

applying a contradiction argument.

1) Achievability of Proposition 3: Consider a partitioned

beamforming scheme where the subset MD = {1, . . . ,M⋆
D}

is served using designated beamforming while the remaining

groups are served through degraded beamforming. We observe

that by disregarding groups in Mc, it is possible to carry out

interference-free designated beamforming amongst all groups

in MD which follows from N ≥ NM⋆
D

. Hence, the designated

beamforming directions are designed as

wm ∈ null
(
H̄H

{m,Mc}

)
, ∀m ∈ MD. (39)

On the other hand, wc is chosen randomly. The power allo-

cation is made to scale as

qm(P ) = O
(
Pα
)
, ∀m ∈ MD (40)

qc(P ) = O(P ) (41)

where α ∈ [0, 1] is some power partitioning factor. By

decoding the degraded stream while treating all other streams

as noise, we have γc
k(P ) = O(P 1−α) for all k ∈ K, which

follows from (34). Hence, the degraded super symbol achieves

a DoF of 1 − α. This DoF is divided equally amongst the

degraded groups, from which the group-DoF is given by

dm =
1− α

M −M⋆
D

, ∀m ∈ Mc. (42)

after removing the degraded stream from the received signal,

it can be seen from (35) that γk(P ) = O(Pα) for all k ∈
{Gm | m ∈ MD}. Hence, we have dm = α for all m ∈ MD.

By setting α = 1
1+M−M⋆

D
, the MMF-DoF in (37) is achieved.

The fact that the proposed partitioned scheme can be realized

by a corresponding RS scheme completes the achievability.

The above scheme can be viewed as a signal-space parti-

tioning scheme [28]. In particular, the signal-space is divided

such that the bottom power levels (up to α) are reserved for

interference-free designated beamforming, while the remain-

ing top power levels (from α to 1) are used for degraded

beamforming. The degraded beam carries a total DoF of 1−α
as it sees interference from the bottom α power levels, while

each designated beam carries a DoF of α. Since the degraded

DoF (1− α) gets divided by |Mc| while the designated DoF

(α) is multiplied by |MD|, it is natural to divide groups such

that |MD| is maximized, which in turn minimizes |Mc|. This

is achieved by the proposed group partitioning.

2) Insight: To gain insight into the MMF-DoF in Proposi-

tion 3, the result is described as

d⋆RS =





1, N ≥ NM

1
2 , NM−1 ≤ N < NM

1
3 , NM−2 ≤ N < NM−1

...
...

1
M−1 , N2 ≤ N < N3

1
M , 1 ≤ N < N2

(43)

which is obtained by substituting (38) into (37). By comparing

(43) to (14) and (23), we see that in addition to combining

the advantages of the designated and degraded strategies,

the RS strategy surpasses both in some cases. For example,

consider N = NM−1. The first observation in Section III-C1

holds, whilst the second does not. Hence, the interference

caused by the M th stream cannot be nulled through designated

beamforming which limits the MMF-DoF to d⋆ = 0. However,

d⋆RS = 0.5 is achieved by transmitting the M th stream in a

degraded manner and removing it from the received signals

through interference cancellation. This is also strictly greater

than d̃⋆ = 1
M for M > 2, due to the multiplexing gain of

designated beams.

As we saw from the achievability of Proposition 3, the RS

strategy’s optimum MMF-DoF is achieved through partitioned

beamforming where no splitting is necessary. While this holds

in the DoF sense, it is not necessarily the case when consid-

ering the achievable rates at finite SNRs. This is confirmed

in the simulation results, where it is shown that message

splitting is in fact beneficial at finite SNRs. From a problem-

solving perspective, we observe that the RS formulation in (32)

avoids the joint optimization of the beamforming matrix and

group assignment in partitioned beamforming. Alternatively,

the beamforming matrix and rate allocations are obtained by

solving the problem in (32) as we see in the following section.

VI. OPTIMIZATION

While (6) and (27) can be formulated in terms of the

SINRs and solved using existing methods, e.g. [1], [2], [13],

this cannot be applied to the RS problem in (32) as the

performance of each user cannot be represented by a single

SINR expression. As seen from (32), each achievable user-rate

(and ultimately group-rate) is in fact expressed as a sum-rate.

For this reason, we resort to the WMMSE approach [23], [24],

which is particularly effective in dealing with problems incor-

porating non-convex coupled sum-rate expressions, including

RS problems [29], [30].

A. Rate-WMMSE Relationship

We start by establishing the Rate-WMMSE relationship,

around which the WMMSE algorithm is based. First, let us

express the kth user’s average received power as

Tc,k = |hH

kpc|2 + |hH

kpµ(k)|2 +

Ik︷ ︸︸ ︷∑

m 6=µ(k)

|hH

kpm|2 + σ2
n

︸ ︷︷ ︸
Tk=Ic,k

. (44)
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Next, we define the MSEs. The kth user’s estimate of sc,
denoted by ŝc,k, is obtained by applying the equalizer gc,k
to the receive signal such that ŝc,k = gc,kyk. After removing

the common stream from the received signal, the equalizer

gk is applied to the remaining signal to obtain an estimate

of sk given by ŝk = gk(yk − hH

kpcsc). The common and

private MSEs at the output of the kth receiver, defined as

εc,k , E{|ŝc,k − sc|2} and εk , E{|ŝk − sk|2} respectively,

are given by

εc,k = |gc,k|2Tc,k − 2ℜ
{
gc,kh

H

kpc

}
+ 1 and

εk = |gk|2Tk − 2ℜ
{
gkh

H

kpµ

}
+ 1.

(45)

By optimizing the MSEs, the MMSEs are obtained as

εMMSE
c,k , mingc,k εc,k = T−1

c,k Ic,k and εMMSE
k , mingk εk =

T−1
k Ik where the corresponding optimum equalizers are the

well-known MMSE weights given by gMMSE
c,k = pH

c hkT
−1
c,k

and gMMSE
k = pH

khkT
−1
k . The MMSEs are related to

the SINRs such that γc
k =

(
1/εMMSE

c,k

)
− 1 and γk =(

1/εMMSE
k

)
− 1, from which the achievable rates write as

Rc
k = − log2(ε

MMSE
c,k ) and Rk = − log2(ε

MMSE
k ). Next

we introduce the main building blocks of the solution, the

augmented WMSEs defined for the kth user as:

ξc,k , uc,kεc,k−log2(uc,k) and ξk , ukεk−log2(uk) (46)

where uc,k, uk > 0 are the corresponding weights. In the

following, ξc,k and ξk are referred to as the WMSEs for

brevity. The Rate-WMMSE relationship is established by

optimizing (46) over the equalizers and weights such that:

ξMMSE
c,k , min

uc,k,gc,k
ξc,k = 1−Rc

k and

ξMMSE
k , min

uk,gk
ξk = 1−Rk

(47)

where the optimum equalizers are given by: g⋆c,k = gMMSE
c,k and

g⋆k = gMMSE
k , and the optimum weights are given by: u⋆

c,k =

uMMSE
c,k ,

(
εMMSE
c,k

)−1
and u⋆

k = uMMSE
k ,

(
εMMSE
k

)−1
. This

is obtained by checking the first order optimality conditions.

By closely examining each WMSE, it can be seen that it is

convex in each variable while fixing the other two.

B. WMSE Reformulation and Algorithm

Motivated by (47), an equivalent WMSE reformulation of

problem (32) writes as

R̂RS(P ) :





max
rg,r,c,PRS,g,u

rg

s.t. Cm + rm ≥ rg, ∀m ∈ M
1− ξi ≥ rm, ∀i ∈ Gm, ∀m ∈ M
1− ξc,k ≥∑M

m=1 Cm, ∀k ∈ K
Cm ≥ 0, ∀m ∈ M

‖pc‖2 +
M∑

m=1

‖pm‖2 ≤ P

(48)

where rg and r , (r1, . . . , rM ) are auxiliary variables,

u , (uc,k, uk | k ∈ K) is is the set of weights, and g ,

(gc,k, gk | k ∈ K) is the set of equalizers. The WMSE problem

in (48) is solved using an Alternating Optimization (AO)

algorithm. In a given iteration of the algorithm, g and u

are firstly updated using the optimum MMSE solution of

(47). Next, PRS alongside all auxiliary variables in (48) are

updated by solving (48) for fixed g and u. This is a convex

optimization problem which can be solved using interior-point

methods [31].

Each iteration of the algorithm increases the objective

function, which is bounded above for a given power constraint,

until convergence. The global optimality of the limit point

cannot be guaranteed due to non-convexity. However, the sta-

tionarity (KKT optimality) of the solution can be established

using the arguments in [32].

VII. NUMERICAL RESULTS AND ANALYSIS

In this section, we compare the performances of the different

beamforming strategies. We consider i.i.d channels with en-

tries drawn from CN (0, 1) and all performances are obtained

by averaging over 100 realizations. We start by comparing

the MMF rates achieved from 1) designated beamforming

obtained by solving (6), 2) single-stream degraded beam-

forming obtained by solving (27), and 3) RS beamforming

obtained by solving (32). Note that for problems (6) and (27),

we plot the SDR upper-bounds (no randomization), hence

presenting optimistic performances for the designated and

degraded beamforming strategies. On the other hand, the RS

results are obtained by solving (48), hence representing actual

achievable rates. All convex optimization problems are solved

using the CVX toolbox [33].

In Fig. 2, we consider the same system presented in Fig.

1 with K = 6 users divided over M = 3 groups such that

G1 = 1, G2 = 2 and G3 = 3. The number of antennas

is varied as N = 2, 4 and 6. For N = 6, it follows from

Proposition 1 and Proposition 3 that full DoF is achieved

by both the designated and RS beamforming schemes. This

is clear in Fig. 2 where the two performances are almost

identical, while degraded beamforming exhibits a DoF loss.

For N = 4, the system goes into the partially-overloaded

regime and both schemes (designated and RS) achieve a MMF-

DoF of 0.5. However, RS achieves a marginally improved

MMF-rate performance. This is due to the fact that the RS

strategy offers more flexibility through the degraded stream,

particularly when dealing with the interference caused by the

largest group as explained in Section V-C2. When N drops to

2, the system becomes fully-overloaded causing the MMF-rate

of designated beamforming to saturate. On the other hand, both

the degraded and RS schemes achieve the same MMF-DoF of

1/3, with RS exhibiting gains in terms of the MMF-rate. This

is due to the designated streams in RS which provide a flavour

of the scheme in (22), hence achieving an asymptotically

constant gap with the scheme in (27).

In Fig. 3 we focus on fully-overloaded scenarios. We

consider a fixed number of antennas N = 4 and a varied

number of groups, i.e. M = 3 and 4 groups with 2 users per

group. It follows from the three propositions that the MMF-

DoFs of the designated, degraded and RS schemes are 0,

1/3 and 1/2 respectively for M = 3, and 0, 1/4 and 1/3
respectively for M = 4. Such performances are exhibited
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Fig. 2. MMF rate performances. K = 6 users, M = 3 groups,
G1, G2, G3 = 1, 2, 3 users, and N = 2, 4, 6 antennas.
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Fig. 3. MMF rate performances. N = 4 antennas and M = 3 and 4 groups
of 2 users each.

in Fig. 3, where the pronounced gains achieved by the RS

strategy in such overloaded scenarios are evident. Next, we

look at the contributions of the designated and degraded parts

in RS. We consider the scenario in Fig. 2 with N = 4,

and show the different contributions in Fig. 4. As all groups

achieve symmetric rates, the two contributions are inversely

proportional for any given group. According to the achiev-

ability scheme in Section V-C1, it is sufficient from a DoF

perspective to perform partitioned beamforming where groups

1 and 2 are served through designated beamforming, and

group 3 is served through degraded beamforming. However,

suppressing the designated part of group 3 is not necessarily

optimum from a rate perspective. In particular, Fig. 4 shows

that while the degraded parts of groups 1 and 2 have relatively

small contributions, the designated part of group 3 contributes

significantly. This follows by observing that designated beam

of group 3 can be useful by placing it in the null space of the

two other groups.
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Fig. 4. RS rate contributions. K = 6 users, M = 3 groups, G1, G2, G3 =
1, 2, 3 users, and N = 4 antennas.

VIII. CONCLUSION AND FUTURE WORK

This paper considered the problem of MMF transmit beam-

forming in overloaded multigroup multicasting scenarios. The

limitations of the classical beamforming strategy in such sce-

narios were identified through DoF analysis. Two alternative

strategies have been proposed, namely the degraded strategy

and the RS strategy. From a DoF perspective, the RS strategy

was shown to combine the benefits of the other two strategies,

and surpass them both in some scenarios. Simulation results

showed that RS exhibits strictly higher MMF-rates in partially

and fully overloaded scenarios.

This work focused more on proposing the strategies and

analysing their DoF performances, and less on the design and

optimization. Indeed, the RS scheme can be further improved

by incorporating the SIC structure in (22) for the degraded

part. This poses extra optimization challenges due to the

increased number of beamformers and the group ordering

problem. However, certain structures may be useful in ordering

the groups such as the different group sizes for example.

Another interesting extension is the incorporation of imperfect

Channel State Information at the Transmitter (CSIT) in the

design and analysis. This brings non-trivial challenges in

terms of characterizing the DoF performance and also the

robust optimization problem, as seen in [29], [30] for unicast

beamforming. However under imperfect CSIT, RS is expected

to bring gains even when the system is not overloaded.

APPENDIX

A. Converse of Proposition 1

Recall that a beamforming scheme is given by {P(P )}P
with one beamforming matrix for each power level. For the

P th level, the beamforming matrix is expressed by

P(P ) =
[
q1(P )w1(P ) · · · qM (P )wM (P )

]
. (49)

In contrast to (15), the definition in (49) is more general as

it allows the beamforming directions to change with P . We

define the mth power exponent as am(P ) =
log
(
qm(P )

)
log(P ) ,
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where it is clear that am(P ) ∈ (−∞, 1]. For the sake of

analysis, the exponent is restricted to [0, 1] with no influence

on the DoF result. Moreover, we assume that the following

limits are well-defined

lim
P→∞

am(P ) = am and lim
P→∞

wm(P ) = wm, ∀m ∈ M

for all beamforming schemes6. Note that am = 0 corresponds

to qm(P ) = O(1). The maximum scaling factor amongst

groups is denoted by ā , maxm∈M am.

Next we derive an upperbound for the achievable group-

DoF. We observe that for any k ∈ K, j ∈ M and P , we have

0 ≤ |hH

kwj(P )|2 ≤ ‖hH

k‖2. Such inner products characterize

the inter-group interference nulling capabilities of different

schemes. For a given scheme {P(P )}P , we say that the jth

beamformer interferes with the mth group (asymptotically) if

|hH

i wj |2 > 0 for some i ∈ Gm. Let Im be the subset of groups

with beamformers interfering with the mth group, and let

ām , maxj∈Im
aj be the exponent of the dominant interferer.

Note that ām = 0 for Im = ∅. Moreover, there exist at least

one i ∈ Gm with SINR scaling as γi(P ) = O
(
P am−ām

)
.

Recalling the DoF definition in (8), we can write

dm ≤
(
am − ām

)+
(50)

where (·)+ follows from the fact that the DoF is non-negative.

We recall that for a given beamforming scheme, the achievable

MMF-DoF satisfies d ≤ dm for all m ∈ M.

Now we argue that d ≤ d⋆ for any feasible beamforming

scheme. d ≤ 1 follows from (9). Hence, we focus on the two

other cases. For d⋆ = 0.5, it is sufficient to show that d ≤ 0.5
for N = NM − 1, as further decreasing N cannot increase

the DoF. Since N < NM , at least one group sees interference

from p1 for any scheme. Let Gm1 be a group that sees such

interference, i.e. 1 ∈ Im1 . We may assume that am1 > ām1 ,

as the contrary will limit the MMF-DoF to 0 as seen from

(50). Next, we write the following set of inequalities

d ≤ d1 + dm1

2
(51)

≤ a1 + am1 − ām1

2
(52)

≤ a1 + am1 − a1
2

≤ 0.5. (53)

(51) follows by taking the average of two group-DoF as an

upperbound for the minimum. (52) follows from (50), while

(53) follows from 1 ∈ Im1 and am1 ≤ 1.

Next we show that d ≤ 0 for N = NM−1 +G1 − 1. Note

that N < 1 + K − Gm for all m ∈ M. Hence, each beam-

former causes interference to at least one group. Equivalently,

we have
⋃

m∈M Im = M. For any power allocation with

exponents a1, . . . , aM , there exists at least one group that sees

interference from pm1 , where am1 = ā. Let the index of such

group be m2. We have d ≤ dm2 ≤
(
am2 − ā

)+
= 0, which

completes the proof.

6If such limits do not exist, then the limits in (7) and (8) may not exist. This
is avoided by defining the DoF in (7) using the lim sup which is guaranteed
to exist due to (9). In turn, am and wm are taken as the values that achieve
this limit superior, which are also guaranteed to exists as the sets of am(P )
and wm(P ) are compact, and from the extreme value theorem.

B. Converse of Proposition 3

For the RS strategy, we recall that a beamforming scheme

is given by
{
PRS(P )

}
P

, where

PRS(P ) =
[
qc(P )wc(P ) P(P )

]
(54)

where P(P ) is as described in the previous subsection. On

the other hand, we have qc(P ) = O
(
P ac
t

)
, with ac ∈ [0, 1]

as the corresponding power scaling factor. The DoF achieved

by the degraded stream is defined as dc , limP→∞
Rc(P )
log2(P ) .

As the degraded stream is decoded by all receivers while

treating designated streams as noise, the degraded DoF is

upperbounded by

dc ≤
(
ac − ā

)+ ≤ 1− ā (55)

which is limited by the maximum power scaling across all

designated beams. The fraction of dc allocated to the mth

group is denoted by cm, where
∑M

m=1 cm = dc. Hence, the

mth group-DoF is given by cm+dm, consisting of a common

part and a designated part. The MMF-DoF achieved by a given

scheme satisfies dRS ≤ cm + dm for all m ∈ M.

We recall that the maximum number of groups that can be

served with interference-free beamforming is denoted by M⋆
D,

which is expressed in (38). Hence, for any feasible precoding

scheme, at least M⋆
c = M − M⋆

D groups receive non-zero

interference from the designated beams. In this proof, we

show that dRS ≤ 1
1+M⋆

c
. Before we proceed, we present the

following result which plays an important role in the proof.

Lemma 1. For any designated beamforming matrix P,

p1 interferes with at least M⋆
c groups. Moreover, each of

p2, . . . ,pM interfere with at least M⋆
c − 1 groups.

Proof. From the discussion in Section III-C, it follows that

placing pm in the null space of all groups in the subset Lm ⊆
M\m requires that

N ≥ 1 +
∑

j∈Lm

Gj . (56)

Hence, finding the minimum number of groups pm interferes

with is equivalent to finding Lm with the maximum |Lm| such

that (56) is satisfied. First, we observe that for fixed |Lm| = L,

the subset of groups requiring the least number of antennas to

satisfy (56) is given by

L⋆
m(L) =

{
{1, . . . ,m− 1,m+ 1, . . . , L+ 1},m ≤ L

{1, . . . , L},m > L

(57)

which follows from (1) and (56). Hence, having N < 1 +∑
j∈L⋆

m(L) Gj implies that pm cannot be placed in the null

space of any subset of L groups, Equivalently, pm interferes

with at least M − L − 1 groups (by excluding m). To

characterize this condition for all m ∈ M, we write

N = NM⋆
D
+ N̄ = 1 +

M⋆
D∑

j=2

Gj + N̄ (58)

where 0 ≤ N̄ < GM⋆
D+1. This follows directly from (38).
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Now looking at m = 1, the corresponding beamformer can

be placed in the null space of at most M⋆
D − 1 groups, i.e.

groups {2, . . . ,M⋆
D}. This follows by observing that

1 +

M⋆
D∑

j=2

Gj ≤ N < 1 +

M⋆
D+1∑

j=2

Gj . (59)

From the right-most term in (59), we can see that p1 causes

interference to at least M⋆
c groups. Next, we consider the

groups m ∈ {2, . . . ,M⋆
D}. We can write

N = 1+

M⋆
D∑

j=1,j 6=m

Gj+(Gm−G1)+N̄ < 1+

M⋆
D+2∑

j=1,j 6=m

Gj (60)

where (60) follows from N̄ < GM⋆
D+1 and Gm − G1 <

GM⋆
D+2. Hence, in the best case scenario, pm is placed in

the null space of groups {1, . . . ,m− 1,m+ 1, . . . ,M⋆
D +1},

and causes interference to the remaining M⋆
c − 1. Finally,

we consider m ∈ {M⋆
D + 1, . . . ,M}. Here, the best scenario

occurs when N̄ ≥ G1, from which we can write

1 +

M⋆
D∑

j=1

Gj ≤ N < 1 +

M⋆
D+1∑

j=2

Gj . (61)

It can be seen that in this case also, pm causes interference

to at least M⋆
c − 1 groups.

Since the minimum group-DoF is upper-bounded by the

average of any subset of group-DoFs, by taking the subset

S ⊆ M, we can write

dRS ≤
∑

m∈S cm + dm

|S| ≤ dc +
∑

m∈S dm

|S| . (62)

where the right-hand side inequality follows from the fact that∑
m∈S cm ≤ ∑

m∈M cm = dc. Now, we need to find the

right subset S which gives us a meaningful upper-bound in

closed-form, that applies to any feasible precoding scheme.

Let m̄ ∈ M be the index of the group with the largest power

scaling, i.e. am̄ = ā. Moreover, let Sm̄ ⊆ M \ m̄ be the set

of groups that see interference from pm̄. From Lemma 1, we

know that |Sm̄| ≥ M⋆
c − 1. For the upper-bound, we assume

that |Sm̄| = M⋆
c − 1, as increasing the number of groups that

see interference does not increase the DoF. We also assume

that m̄ 6= 1, as the contrary does not influence the result as we

see later. Since p1 interferes with at least M⋆
c groups (from

Lemma 1), we have at least one group that sees interference

from p1 and is not in Sm̄. Let the index of such group be m1.

From (50), note that a1 ≥ am1 implies d1 + dm1 ≤ a1, while

a1 ≤ am1 implies d1 + dm1 ≤ am1 . We assume, without loss

of generality, that a1 ≥ am1 , as the contrary does not affect

the result. The set of groups for the upper-bound is taken as

S = {1,m1,Sm̄} with |S| = M⋆
c + 1. Now, we can write

dRS ≤
dc + d1 + dm1 +

∑
m∈Sm̄

dm

M⋆
c + 1

(63)

≤ 1− ā+ a1
M⋆

c + 1
≤ 1

M⋆
c + 1

(64)

where the left-hand side inequality in (64) follows from the
fact that dm = 0 for all m ∈ Sm̄ and (55), and the right-hand
side inequality follows from ā ≥ a1. Note that if we assume

that m̄ = 1, then we can also assume that |Sm̄| = M⋆
c . As a

result, the same upper-bound holds by adding m1 to Sm̄ and
setting dm1 = 0. This completes the proof.

REFERENCES

[1] N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, “Transmit beamforming
for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 2239–2251, Jun. 2006.

[2] E. Karipidis, N. Sidiropoulos, and Z.-Q. Luo, “Quality of Service and
Max-Min Fair Transmit Beamforming to Multiple Cochannel Multicast
Groups,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1268–1279,
Mar. 2008.

[3] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast
beamforming for cache-enabled cloud RAN,” IEEE Trans. Wireless

Commun., vol. 15, no. 9, pp. 6118–6131, Sep. 2016.

[4] M. A. Maddah-Ali and U. Niesen, “Coding for caching: fundamental
limits and practical challenges,” IEEE Commun. Magazine, vol. 54,
no. 8, pp. 23–29, Aug. 2016.

[5] D. Christopoulos, P.-D. Arapoglou, S. Chatzinotas, and B. Ottersten,
“Linear precoding in multibeam satcoms: Practical constraints,” in Proc.

31st AIAA Intl. Commun. Sat. Sys. Conf., 2013, p. 5716.

[6] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multi-
group precoding and user scheduling for frame-based satellite communi-
cations,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 4695–4707,
Sep. 2015.

[7] M. A. Vazquez, A. Perez-Neira, D. Christopoulos, S. Chatzinotas,
B. Ottersten, P. D. Arapoglou, A. Ginesi, and G. Tarocco, “Precoding
in multibeam satellite communications: Present and future challenges,”
IEEE Wireless Commun., vol. 23, no. 6, pp. 88–95, Dec. 2016.

[8] V. Joroughi, M. A. Vazquez, and A. Perez-Neira, “Generalized multi-
cast multibeam precoding for satellite communications,” IEEE Trans.

Wireless Commun., vol. 16, no. 2, pp. 952–966, Feb. 2017.

[9] N. Jindal and Z.-Q. Luo, “Capacity limits of multiple antenna multicast,”
in Proc. IEEE ISIT, 2006, pp. 1841–1845.

[10] S. A. Jafar and A. Goldsmith, “Transmitter optimization and optimality
of beamforming for multiple antenna systems,” IEEE Trans. Wireless

Commun., vol. 3, no. 4, pp. 1165–1175, Jul. 2004.

[11] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[12] N. Bornhorst and M. Pesavento, “An iterative convex approximation
approach for transmit beamforming in multi-group multicasting,” in
Proc. IEEE SPAWC, Jun. 2011, pp. 426–430.

[13] A. Schad and M. Pesavento, “Max-min fair transmit beamforming for
multi-group multicasting,” in Proc. Int. ITG WSA, Mar. 2012, pp. 115–
118.

[14] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Weighted fair mul-
ticast multigroup beamforming under per-antenna power constraints,”
IEEE Trans. Signal Process., vol. 62, no. 19, pp. 5132–5142, Oct. 2014.

[15] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast Multi-
group Beamforming for Per-antenna Power Constrained Large-scale
Arrays,” in Proc. IEEE SPAWC, Jun. 2015, pp. 271–275.

[16] Y. W. P. Hong, W. C. Li, T. H. Chang, and C. H. Lee, “Coordinated
multicasting with opportunistic user selection in multicell wireless
systems,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3506–3521,
Jul. 2015.

[17] N. Bornhorst, M. Pesavento, and A. B. Gershman, “Distributed beam-
forming for multi-group multicasting relay networks,” IEEE Trans.

Signal Process., vol. 60, no. 1, pp. 221–232, Jan. 2012.

[18] H. Joudeh and B. Clerckx, “A rate-splitting strategy for max-min fair
multigroup multicasting,” in Proc. IEEE SPAWC, Jul. 2016.

[19] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal
multiple access for 5G: Solutions, challenges, opportunities, and future
research trends,” IEEE Commun. Magazine, vol. 53, no. 9, pp. 74–81,
Sep. 2015.

[20] E. Piovano, H. Joudeh, and B. Clerckx, “Overloaded multiuser MISO
transmission with imperfect CSIT,” in Proc. Asilomar Conf. Signals,

Syst. Comput., Nov. 2016, pp. 34–38.

[21] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems,” IEEE Trans. Signal

Process., vol. 64, no. 1, pp. 76–88, Jan. 2016.

[22] B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, “Rate splitting
for MIMO wireless networks: a promising PHY-layer strategy for LTE
evolution,” IEEE Commun. Magazine, vol. 54, no. 5, pp. 98–105, May
2016.



14

[23] S. Christensen, R. Agarwal, E. Carvalho, and J. Cioffi, “Weighted sum-
rate maximization using weighted MMSE for MIMO-BC beamforming
design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799,
Dec. 2008.

[24] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59,
no. 9, pp. 4331–4340, Sep. 2011.

[25] M. A. Maddah-Ali, “On the degrees of freedom of the compound MISO
broadcast channels with finite states,” in Proc. IEEE ISIT, Jun. 2010,
pp. 2273–2277.

[26] T. Gou, S. A. Jafar, and C. Wang, “On the degrees of freedom of finite
state compound wireless networks,” IEEE Trans. Inf. Theory, vol. 57,
no. 6, pp. 3286–3308, Jun. 2011.

[27] E. Castaneda, A. Silva, A. Gameiro, and M. Kountouris, “An overview
on resource allocation techniques for multi-user MIMO systems,” IEEE

Commun. Surveys Tutorials, vol. 19, no. 1, pp. 239–284, First Quarter
2017.

[28] B. Yuan and S. A. Jafar, “Elevated multiplexing and signal space
partitioning in the 2 user MIMO IC with partial CSIT,” in Proc. IEEE

SPAWC, Jul. 2016.
[29] H. Joudeh and B. Clerckx, “Sum-rate maximization for linearly precoded

downlink multiuser MISO systems with partial CSIT: A rate-splitting
approach,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4847–4861, Nov.
2016.

[30] H. Joudeh and B. Clerckx, “Robust transmission in downlink multiuser
MISO systems: A rate-splitting approach,” IEEE Trans. Signal Process.,
vol. 64, no. 23, pp. 6227–6242, Dec. 2016.

[31] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[32] M. Razaviyayn, “Successive convex approximation: Analysis and appli-
cations,” Ph.D. dissertation, UNIVERSITY OF MINNESOTA, 2014.

[33] M. Grant, S. Boyd, and Y. Ye, “CVX: MATLAB software
for disciplined convex programming [online],” Available:

http://www.stanford.edu/ boyd/cvx, 2008.


	I Introduction
	II System Model
	III Designated (Classical) Beamforming
	III-A Achieving Max-Min Fairness
	III-B Degrees of Freedom
	III-C MMF-DoF Performance
	III-C1 Achievability of Proposition ??
	III-C2 Insight

	III-D The Role of DoF Analysis

	IV Degraded Beamforming
	IV-A DoF Analysis
	IV-A1 Proof of Proposition ??
	IV-A2 Insight

	IV-B Single-Stream Degraded Beamforming

	V Rate-Splitted Beamforming
	V-A Problem Formulation
	V-B A Special Case: Partitioned Beamforming
	V-C DoF Analysis
	V-C1 Achievability of Proposition ??
	V-C2 Insight


	VI Optimization
	VI-A Rate-WMMSE Relationship
	VI-B WMSE Reformulation and Algorithm

	VII Numerical Results and Analysis
	VIII Conclusion and Future Work
	Appendix
	A Converse of Proposition ??
	B Converse of Proposition ??

	References

