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Abstract—Pilot contamination, caused by the reuse of pilots
among interfering cells, remains as a significant obstacle that lim-
its the performance of massive multi-input multi-output antenna
systems. To handle this problem, less aggressive reuse of pilots
involving allocation of additional pilots for interfering users is
closely examined in this paper. Hierarchical pilot reuse methods
are proposed, which effectively mitigate pilot contamination and
increase the net throughput of the system. Among the suggested
hierarchical pilot reuse schemes, the optimal way of assigning
pilots to different users is obtained in a closed-form solution
which maximizes the net sum-rate in a given coherence time.
Simulation results confirm that when the ratio of the channel
coherence time to the number of users in each cell is sufficiently
large, less aggressive reuse of pilots yields significant performance
advantage relative to the case where all cells reuse the same pilot
set.

Index Terms—Massive MIMO, Multi-user MIMO, Multi-cell
MIMO, Pilot contamination, Pilot assignment, Pilot reuse, Inter-
ference, Large-scale antenna system, Channel estimation

I. INTRODUCTION

SUPPORTING the stringent requirements of the next gen-
eration wireless communication systems is an ongoing

challenge, especially given the foreseeable scenarios where
massively-deployed devices rely on applications with high-
throughput (e.g. virtual/augmented reality) and/or low latency
(e.g. autonomous vehicles). This unavoidable trend gives rise
to discussions on the technology for next generation com-
munications, collectively referred to as 5G. Regarding the
engineering requirements of high data rate, low latency, and
high energy efficiency, attractive 5G technologies in [2]–[5]
include massive multi-input multi-output (MIMO) [6]–[8],
ultra-densification [9]–[11] and millimeter wave (mm-Wave)
communications among other things.

Massive MIMO, or a large-scale antenna array system, is
the deployment of a very large number of antenna elements
at base stations (BSs), possibly orders of magnitude larger
than the number of user terminals (UTs) served by each BS
[12], [13]. Assuming M , the number of BS antennas, increases
without bound, the asymptotic analysis on capacity and other
fundamental aspects of massive MIMO were presented in [13],
[14]. The work of [13], in particular, has demonstrated that
in time-division duplex (TDD) operation with uplink training
for attaining channel-state-information (CSI), the effects of
uncorrelated noise and fast fading disappear as M grows to
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infinity, with no cooperation necessary among BSs. According
to this “channel-hardening” behavior, [13] concluded that
in a single-cell setting where UTs have orthogonal pilots,
capacity increases linearly with K, the number of UTs, as
M/K increases even without channel knowledge. However,
in multi-cell setting, the channel estimation errors due to pilot
contamination prevent the linear growth of the sum rate with
K. Pilot contamination is caused by the reuse of pilots among
different cells and persists even as the number of BS antennas
increases without limit; it remains as a fundamental issue in
massive MIMO [15].

Various researchers have since investigated systematic meth-
ods to mitigate the pilot contamination effect [1], [16]–[28].
Some researchers exploited the angle-of-arrival (AoA) infor-
mation to combat pilot contamination. A coordinated pilot
assignment strategy was suggested based on AoA information
which can eliminate channel estimation error as the number
of BS antennas increases without bound [16], [17]. However,
favorable AoA distributions are not always guaranteed in real
scenarios. In addition, significant challenges remain on actu-
ally getting AoA information and managing network overload
for cooperation.

Another approaches have focused on precoding to reduce
the pilot contamination effect. The work of [18] suggested
a distributed single-cell linear minimum mean-square-error
(MMSE) precoding, which exploits pilot sequence information
to minimize the error caused by inter-cell and intra-cell
interference. The proposed precoding scheme has improved
performance compared to the conventional single-cell zero-
forcing (ZF) precoder, but cannot completely eliminate pilot
contamination. In [19], outer multi-cellular precoding under
the assumption of cooperating BSs was introduced for miti-
gating the pilot contamination effect. The suggested method
is based on adjusting the precoding vector according to the
contaminated channel estimate via coordinated information.
Backhaul network overload for realizing cooperation remains
as an issue in realizing this precoding scheme.

The impact of pilot transmission protocol is considered in
[20]–[23]. Shifting of pilot frames corresponding to neigh-
boring cells was proposed, which mitigated pilot contam-
ination [20]. Appropriate power allocation to increase the
signal-to-interference ratio (SIR) in shifted pilot frame was
also suggested [21]. Even though the shifted pilot frame
method avoided correlation between identical pilot sequences,
it caused the correlation between pilot sequence and data
sequence in the training phase. Central control is also required
to achieve precise timing among shifted pilot frames, which
needs additional overload. Another pilot transmission protocol
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to eliminate pilot contamination was proposed in [22] based
on imposing a silent phase for each cell over successive
time slots during the training period. A linear combination
of observations taken over the successive training phases
allow simple elimination of inter-cell interferences while fully
reusing pilots across cells, but the method does not offer any
advantage in terms of reducing total training time overhead
compare to the straightforward employment of LK orthogonal
pilot symbols over all LK users across entire cells.

Pilot assignment strategies are also considered as an al-
ternative to mitigate pilot contamination and to increase net
throughput [23]–[25], [29]. According to the strategy sug-
gested in [23], the cell is divided into the center area and
the edge area; the users in the center employ the same pilot
resource non-cooperatively, while cooperative resource allo-
cation is applied to those in the edge. This strategy mitigates
severe pilot contamination for edge users, but still requires
cooperation among BSs. A greedy algorithm (called smart
pilot assignment) is suggested in [24], which assigns pilot with
less inter-cell interference to the user with low channel quality.
This approach improved the minimum signal-to-interference-
plus-noise ratio (SINR) within each cell compared to random
assignment case, but requires cooperation between BSs in
order to exploit slow fading coefficients of entire cells. In
[25], spectral efficiency (SE) was maximized with respect
to pilot assignment, power allocation and the number of
antennas. Considering cell-free massive MIMO systems where
M antennas and K users are dispersed in a region, the
authors of [29] jointly optimized greedy pilot assignment and
power control to increase the achievable rate. However, the
greedy pilot assignment requires backhaul network, involving
cooperation between distributed antennas. According to these
papers, optimal pilot assignment can increase SE compared
to random assignment, while finding the optimal solution
also require BS cooperation. Moreover, [29] considers pilot
assignment and power control for cell-free distributed antenna
systems, whereas the present paper considers pilot allocation
in multi-cellular systems with co-located antenna setting.

As seen above, most of the known effective solutions to
combat pilot contamination tend to rely heavily on cooperation
among BSs, leading to backhaul overload issues. Also, most
of the previous works assume full reuse of the same pilot set
among all cells and rarely discuss the potential associated with
allowing more orthogonal pilots.

Some researchers investigated the effect of employing less
aggressive pilot reuse methods, but to limited extents [26]–
[28]. A scenario of utilizing the number of pilots greater
than K is considered in [26], which suggested a multi-cell
MMSE detector exploiting all pilots in the system. It is shown
that the suggested multi-cell MMSE scheme can significantly
increase spectral efficiency as the pilot reuse factor becomes
less aggressive. An SE-maximizing massive MIMO system is
considered in [27], which optimizes the number of scheduled
users K for given M and pilot reuse factor. The simulation
result shows that the optimal solution selects less aggressive
pilot reuse for some practical scenarios. A pilot reuse factor
of 3 (cell partitioning similar to frequency reuse of 3) is
considered in [28], which is shown to be beneficial to mitigate

pilot contamination. However, only symmetric pilot reuse
patterns (lattice structure) was considered in [28], and no
closed-form solution was found for the optimal pilot reuse
factor; as such, the impact of partial pilot reuse was not made
clear.

In contrast, in [1] the present authors presented a
systematically-constructed pilot reuse method to effectively
reduce pilot contamination. Non-trivial hierarchical pilot
reuse/assignment schemes are proposed, and a closed-form
solution to optimum pilot assignment is presented that max-
imizes the net sum-rate. The present paper further analyzes
the pilot assignment strategy proposed in [1], providing formal
proofs of the previously presented mathematical results and of-
fering key insights into the physical significance of the optimal
pilot assignment rule, along the way. Moreover, the present
paper adds the analysis and finds optimal pilot assignment
associated with a large but finite number of antennas, whereas
[1] only provided an asymptotic result for BS with an infinite
number of antennas. Physical insights on the optimal assign-
ment for infinite M can be similarly observed for the finite
M case, while numerical results show that the net throughput
between optimal assignment and conventional full pilot reuse
still has a substantial gap, even in practical scenarios of
deploying 100 − 1000 BS antennas. The present paper also
investigates the ideal portion of pilot training allocated for the
optimal assignment strategy; this investigation points to the
interesting fact that in the optimal scheme a non-vanishing
portion of the coherence interval is reserved for the pilots as
Ncoh/K grows.

Overall, this paper is about finding the optimal portion
of pilot transmission as well as pilot reuse strategy which
maximize the net sum-throughput, taking into account pilot
contamination due to interfering cells. This problem arises
in some meaningful practical scenarios but has not been
addressed previously. Although the optimal portion of pilot
training was considered by several researchers [12], [30], [31],
none of their works or any other previous related works to our
best knowledge addressed the optimal pilot length and optimal
pilot assignment in massive MIMO, where pilot contamination
limits the performance and no constraint is imposed on the
specific pilot reuse method.

Compared to the ideal asymptotic analysis in [13], several
works attempted to emphasize the practical aspects of applying
massive MIMO in real-world systems. Considering BSs with a
finite M , the achievable rate is obtained [32] when matched-
filter (MF) or MMSE detection is used. Focusing on some
propagation environments where the channel hardening does
not hold, [33] suggested a downlink blind channel estimation
method. The behavior of massive MIMO systems with non-
ideal hardware is observed in [34].

This paper is organized as follows. Section II gives an
overview of the system model for massive MIMO and the pilot
contamination effect. Section III discusses the assumptions
made on cell geometry and basic partitioning steps needed
to utilize longer pilots, and presents the mathematical analysis
for specifying the optimal pilot assignment strategy. The math-
ematical results are first stated in [1], while the formal proofs
and the key insights leading to physical interpretations of the



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 3

obtained results are provided in the present paper. In Section
IV, simulation results on the performance of the optimal
pilot assignment are presented. Section V includes further
comments on finite M analysis, optimal portion of pilots,
cell partitioning in conventional frequency reuse, consideration
of prioritized users and application in ultra-dense networks.
Section VI finally draws conclusions.

II. PILOT CONTAMINATION EFFECT FOR MASSIVE MIMO
MULTI-CELLULAR SYSTEM

A. System Model
We assume that the network consists of L hexagonal cells

with K users per cell who are uniform-randomly located.
Downlink CSIs are estimated at each BS by uplink pilot
training assuming channel reciprocity in TDD operation. This
paper assumes the channel model in [27]; this model is
appropriate for sufficiently large (M > 32) numbers of BS
antennas, as tested in [35]. The singular value spread of the
measured channel is close to that of an i.i.d. Rayleigh channel
model for a large number of antennas [35]. Therefore, we
adopt this model. The complex propagation coefficient g of a
link can be decomposed into a complex fast fading factor h
and a slow fading factor β. Therefore, the channel between the
mth BS antenna of the jth cell and the kth user of the lth cell
is modeled as gmjkl = hmjkl

√
βjkl. The slow fading factor,

which accounts for the geometric attenuation and shadow
fading, is modeled as βjkl = ( 1

rjkl
)γ where rjkl is the distance

between the kth user in the lth cell and the base station in the
jth cell. The parameter γ represents the signal decay exponent.
Let Tcoh be the coherence time interval and Tdel be the channel
delay spread. It is convenient to express the coherence time
interval as a dimensionless quantity, Ncoh = Tcoh/Tdel, via
normalization by channel delay spread.

B. Pilot Contamination Effect
The pilot contamination effect is the most serious issue that

arises in multi-cell TDD systems with very large BS antenna
arrays. For uplink training, each BS collects pilot sequences
sent by its users. Usually, orthogonal pilot sequences are
assigned to users in a cell so that the channel estimate for
each user does not suffer from interferences from other users
in the same cell. However, the use of the same pilot sequences
for users in other cells cause the channel estimates to be
contaminated, and this effect, called pilot contamination, limits
the achievable rate, even as M , the number of BS antennas,
tends to infinity.

According to [13], under the assumption of a single user
per cell, the achievable rate during uplink data transmission
for the user in the jth cell contaminated by users with the
same pilot on other cells is given for a large M by

log2

(
1 +

β2
jj∑

l 6=j β
2
jl

)
(1)

where βjl is the slow fading component of the channel
between the jth BS and the interfering user in the lth cell.
In the limit of large M , the achievable rate depends only on
the ratio of the signal to interference due to the pilot reuse.

(a) 3-way Partitioning

L

L/3 L/3 L/3

L/9 L/9 L/9 L/9 L/9 L/9 L/9 L/9 L/9

Depth = 0

Depth = 1

Depth = 2

(b) Hierarchical set partitinoing

Fig. 1: The Cell Partitioning Method

III. PILOT ASSIGNMENT STRATEGY

In this section, we provide analysis on how much time
should be allocated for channel training given a coherence
time and how the pilot sequences should be assigned to users
on multiple cells. We derive optimal pilot assignment strategy,
which mitigates the pilot contamination effect and maximizes
total bits transmitted in a given Tcoh. Our analysis considers
using pilot sequences possibly longer than the number of users
in each cell, while orthogonality of the pilots within a cell is
guaranteed.

A. Hexagonal-Lattice Based Cell Clustering and Pilot Assign-
ment Rule

Consider L hexagonal cells. Imagine partitioning these cells
into three equi-distance subsets maintaining the same lattice
structure as depicted in Fig. 1a. This partitioning is identical
to the familiar partitioning of contiguous hexagonal cells for
utilizing three frequency bands according to a frequency reuse
factor of three.

It can easily be seen that each coset, having the same
hexagonal lattice structure, can be further partitioned in the
similar way. The partitioning can clearly be applied in a
successive fashion, giving rise to the possibility of hierarchical
set partitioning of the entire cells. In the tree structure of Fig.
1b, the root node (at depth 0) represents the original group of L
contiguous hexagonal cells, and the three child nodes labeled
L/3 correspond to the three colored-cosets of Fig. 1a. Also,
applying a 3-way partitioning to a coset results in additional
three child nodes with labels L/9. Note that a node at depth
i corresponds to a subset of L3−i cells.

This cell clustering method is used to define pilot assign-
ment rule in multi-cell system. Consider when each cell has a
single user (i.e., K = 1). Then, determining pilot sharing cells
specifies the pilot assignment rule. In our approach, cells with
same color are defined to share same pilot, while cells with
different color have orthogonal pilots. In the corresponding
tree structure, the number of leaves with different (non-white)
colors represents the number of different orthogonal pilot sets
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used. A leaf (end node) with a single cell would correspond
to a depth of log3 L, but we do not allow such leaves in our
analysis as this means there would be users with no pilot
contamination, thus driving the average per-cell throughput of
the network to infinity as M grows. This particular situation
would not lend itself to a meaningful mathematical analysis.
Thus, the maximum depth of a leaf in our tree is set to
log3 L− 1.

The pilot assignment rule can be generalized to the case
of having multiple users per cell (i.e., K > 1), by applying
the procedure K times consecutively (K users in each cell
obtain orthogonal pilots by K independent procedures). Note
that K procedures result in K partitioning trees, where each
tree represents pilot assigning rule of L users.

Note that the suggested pilot assignment strategy assumes
uniform power allocation: every user has the same transmit
power for pilot. The suggested assignment focuses on reducing
pilot contamination by placing pilot-sharing users in distant
cells, and the optimal power allocation has not been considered
here. According to the recent research [29] on pilot assignment
and power control within a cell, controlling transmit power for
pilot among different users has a significant role in increasing
spectral efficiency. This could be an interesting subject that
could be pursued in conjunction with the suggested pilot
assignment strategy, but we leave the pilot power control issue
as a future research topic.

B. Pilot Assignment Vector

The pilot assignment method can conveniently be formu-
lated in a vector form. Let p be a vector with element pi,
i = 0, · · · , log3 L − 1, representing the number of leaves at
depth i of the partitioning tree. For example, for the tree of
Fig. 2, we have p = (0, 2, 3, 0), as there are two leaves at
depth 1 and three at depth 2.

Definition: For the given L cells, denote PL,K as the set of
valid pilot assignment vectors based on 3-way partitioning,
which is given by

PL,K = {p = (p0, p1, · · · , plog3 L−1) :

0 ≤ pi ≤ K3i,

log3 L−1∑
i=0

pi3
−i = K} (2)

where it is implied that pi is an integer.

Definition: For the given L cells, Npil(p) is the length of the
valid pilot assignment vector p = (p0, p1, · · · , plog3 L−1) and

is given by Npil(p) =
log3 L−1∑
i=0

pi.

The pilot length Npil(p) represents the number of orthogonal
pilots corresponding to the given pilot assignment vector p.
In the corresponding tree structure, Npil(p) is the number of
leaves. As an example, for the pilot assignment strategy shown
in Fig. 2, we have Npil(p) = 5.

Notice that the users in different cells belonging to a
given leaf experience pilot contamination. The severity of the
contamination depends on the depth of the leaf. Every time the
depth is increased, the distance between interfering cells (cells

L

L/3 L/3 L/3

L/9 L/9 L/9

p 

Fig. 2: Example of coloring, tree structure, and pilot assignment
vector

that reuse the pilot set) increases by a certain factor, as can be
observed from Fig. 2. In fact, the distance grows geometrically
as the depth increases. According to (1), the achievable rate
is determined by the β values of the interfering users, which
in turn depend on the distances of the interferers from the
BS. The distance growth manifests itself as the reduced
pilot contamination effect or an improved SIR, increasing the
throughput. More specifically, the throughput grows roughly
with log2(α2γSIR1) = 2γ log2(α)+log2 SIR1, where SIR1

is the reference SIR corresponding to the pilot reuse factor 1
and α is the parameter that represents the distance growth. It
is clear that a geometric growth of α gives rise to a linear
increase in the throughput. Letting Ci be the rate of a user at
depth i, this is to say that Ci increases linearly with depth i.
With γ = 3.7 and α =

√
3 (based on 3-way partitioning), we

have Ci+1 ' Ci + 6.
The per-cell sum rate for the network can be expressed as

Csum(p) =
1

L

log3 L−1∑
i=0

L3−ipiCi =

log3 L−1∑
i=0

3−ipiCi. (3)

The per-cell net sum rate, accounting for the fact that useful
data gets transmitted only over the portion of the coherence
time not allocated to the pilots, is given by

Cnet(p) =
Ncoh −Npil(p)

Ncoh
Csum(p). (4)

We shall use Cnet as the objective function for finding optimal
pilot assignment strategies.

C. Closed-Form Solution of Optimal Pilot Assignment Strat-
egy

The optimal pilot assignment vector popt for the given
normalized coherence time Ncoh, the number of cells L, and
the number of users per cell K is:

popt = arg max
p∈PL,K

Cnet(p).

We also note that all valid pilot assignments yield pilot lengths
of same parity with K, as formally stated in Lemma 1 (with
proof given in Appendix A).

Lemma 1. For given L and K, {Npil(p) : p ∈ PL,K} =
{K,K + 2,K + 4, · · · , LK3 }.

Before giving the first main theorem, it is useful to define
the pilot assignment vector that maximizes the per-cell sum
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rate Csum with a finite pilot length constraint:

p′opt(Np0) = arg max
p∈Ω(Np0)

Csum(p)

where Ω(Np0) = {p ∈ PL,K |Npil(p) = Np0}.
Also, it is useful to define a transition vector associated with

each valid pilot assignment vector. Given a pilot assignment
vector p, a transition vector t is a vector whose i-th element ti
represents the number of (3-way) partitioning acts taken place
at depth i as the full reuse assignment vector of (1, 0, · · · , 0)
transitions to p. For example, p = (1, 0, 0, 0) turns to
p = (0, 2, 3, 0) via a transition vector t = (1, 1, 0). The first
transition element t0 = 1 triggers a (3-way) partitioning at
depth 0, temporarily creating a pilot vector (0,3,0,0). The next
element t1 = 1 induces a (3-way) partitioning on one of the
3 existing partitions at depth 1, thereby giving rise to a new
pilot vector (0,2,3,0). Since the next transition vector element
is zero, the partitioning stops. The transition elements also
point to the number of white nodes at each depth, as can be
confirmed in Fig. 2. A general definition which relates the pilot
assignment vector p and the corresponding transition vector t
is given as follows.

Definition: For each valid pilot assignment vector p =
(p0, p1, · · · , plog3 L−1) ∈ PL,K , the corresponding transition
vector t = (t0, t1, · · · , tlog3 L−2) is defined as:{

t0 = K − p0

ti = −pi + 3ti−1. 1 ≤ i ≤ log3 L− 2
(5)

The inverse relationship exists:
p0 = K − t0
pi = 3ti−1 − ti 1 ≤ i ≤ log3 L− 2

plog3 L−1 = 3tlog3 L−2.

(6)

The first two equations of (6) come from (5), while the last
equation is from the fact that

∑log3 L−1
i=0 pi3

−i = K as in (2).
A useful Lemma on the property of the transition vector is
stated as follows (with proof given in Appendix A).

Lemma 2. Any transition vector t = (t0, t1, · · · , tlog3 L−2)
originated from p ∈ Ω(Np0) satisfies

0 ≤ ti ≤ K3i 0 ≤ i ≤ log3 L− 2
log3 L−2∑
i=0

ti =
Np0 −K

2
.

(7)

We further define the index function χ(Np0) that identifies
the first non-zero position of p′opt(Np0). Note that for a given
Np0, (Np0 −K)/2 is the total number of partitioning acts to
get from (1, 0, · · · , 0) to an arbitrary p ∈ Ω(Np0), as formally
stated in the second equation of (7). Since the maximum value
of ti is K3i, and as the partitioning steps are applied from the
top down for a given Np0, all nodes through depth k − 1

will have been be partitioned if
∑k−1
i=0 K3i ≤ (Np0 −K)/2.

Continuing to the next depth, however, only a portion of the
nodes will have been partitioned at depth k, in which case∑k
i=0K3i > (Np0 − K)/2. Recall the nodes that have not

been partitioned are leaves, and χ(Np0) is the shortest depth

of any leaf. With the leaf appearing first at depth k, we can
formally write: χ(Np0) = min{k |

∑k
i=0K3i >

Np0−K
2 }.

We will first lay out a closed-form solution for p′opt in
Theorem 1 and then find eventually popt in Theorem 2
by exploring its relationship with the former. The proof of
Theorem 1 is given in the next subsection.

Theorem 1. Given L, K, and Np0, the optimal pilot assign-
ment vector
p′opt(Np0) = (p′0, · · · , p′log3 L−1) with respect to Csum, has
its components as follows:

p′i =



i∑
s=0

K3s − Np0 −K
2

i = χ(Np0)

3

(
Np0 −K

2
−

i−2∑
s=0

K3s

)
i = χ(Np0) + 1

0 otherwise

(8)

For example, given L = 81, K = 1, and Np0 = 7,
χ(Np0) = 1 since 30 < (Np0 − K)/2 = 3 < 30 + 31.
Therefore, p′opt(7) has its components p′0 = p′3 = 0, p′1 =∑1
s=0 3s−(7−1)/2 = 1, and p′2 = 3{(7−1)/2−

∑0
s=0 3s} =

6, which result in p′opt(7) = (0, 1, 6, 0).
For a given Np0, more than one valid pilot assignments

may exist. For example, if L = 81, K = 1, and Np0 = 7,
p = (0, 1, 6, 0) and p = (0, 2, 2, 3) are valid vectors, but The-
orem 1 reveals that p′opt(Np0) = (0, 1, 6, 0). From Theorem
1, a certain trend relating the optimal pilot assignment vectors
p′opt(Np0) and p′opt(Np0 + 2) can be observed as follows.

Corollary 1. For two pilot lengths Np0 and Np0 + 2, the two
corresponding optimal pilot assignment vectors p′opt(Np0) =
(p∗0, · · · , p∗log3 L−1) and p′opt(Np0 +2) = (p∗∗0 , · · · , p∗∗log3 L−1)
exhibit the following relationship:

p∗∗i =


p∗i − 1 i = χ(Np0)

p∗i + 3 i = χ(Np0) + 1

p∗i otherwise

Proof: In the case χ(Np0) = χ(Np0 + 2), Corollary 1 is a
direct consequence of Theorem 1. In other case, i.e., χ(Np0 +

2) = χ(Np0)+1, we can see
∑χ(Np0)
i=0 K3i =

Np0−K
2 +1 from

the definition of the χ function. This coupled with Theorem
1 proves Corollary 1.

For a given Np0, the optimal assignment vectors p′opt(Np0)
and p′opt(Np0+2) show a predictable pattern of tossing 1 from
the left-most non-zero component to increase the adjacent
component by 3. For example, in the case of L = 81 and
K = 1, the optimal assignment p′opt(7) = (0, 1, 6, 0) can
be transformed by reducing the second component by 1 and
increasing the third one by 3, which results in the next optimal
assignment for Np0 = 9: p′opt(9) = (0, 0, 9, 0). It can be seen
that there is a tendency to reduce the left-most non-zero values
which give the most severe pilot contamination.

We now set out to find popt. Theorem 1 and Corollary 1
already identify, given the fairly mild constraints of hexag-
onal cells and equi-distance partitioning, the optimal pilot
assignment strategy maximizing the sum rate for the chosen
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pilot sequence length. The next step is to find the relationship
between the normalized coherence time Ncoh and the optimal
pilot sequence length.

First, write the net sum-rate as Cnet(p
′
opt(Np0)) =

Ncoh−Np0
Ncoh

Csum(p′opt(Np0)), which is an increasing function
of Ncoh and crosses the horizontal axis once at Ncoh = Np0.
Moreover this function saturates to Csum(p′opt(Np0)) for very
large Ncoh. Imagine plotting this function for all possible
values of Np0 = K,K + 2,K + 4, · · · , LK/3. As Np0
increases, the zero-crossing is naturally shifted to the right
while the saturation value moves up. More specifically, the
Cnet curve for Np0 = 2(n−1)+K and that for Np0 = 2n+K
intersect once. On the left side of this intersection point, the
Cnet curve for Np0 = 2(n− 1) +K is above the latter while
on the right side, the latter curve is higher than the former. Let
the horizontal value of this intersection point be Ncoh = ∆n.
It can be shown that (proof given in the next subsection) the
intersection points are given by

∆n = 2

2n− 1−
η(n)−1∑
i=0

K3i +Kξ(n)

+K (9)

for 1 ≤ n ≤ NL,K , where η(n) = χ(2n+K−2) and ξ(n) =
3η(n)Cη(n)/(Cη(n)+1−Cη(n)), with Ci already defined earlier
in this section, and NL,K is the number of all possible pilot
lengths minus one. Since Npil = K,K + 2, · · · , LK/3 from
Lemma 1, we have NL,K = 1

2 (LK3 −K). We now state our
second main theorem.

Theorem 2. For given L, K, and Ncoh, if Ncoh is in between
two adjacent time points ∆n and ∆n+1, i.e., ∆n ≤ Ncoh <
∆n+1, then the optimal assignment vector popt satisfies

Npil (popt) = 2n+K

popt = p′opt(2n+K).

Also, if Ncoh ≥ ∆NL,K , then popt = (0, · · · , 0, LK/3).

D. Proofs of Theorems 1 and 2
1) Proof of Theorem 1: The sum rate in (3) can be

expressed using the transition vector t via (6):

Csum(t) = KC0 +

log3 L−2∑
i=0

ti3
−i(Ci+1 − Ci).

Because Ci is a linear function of i, the difference (Ci+1−Ci)
is a constant. Therefore, all we have to do is to find the optimal
t which maximizes

∑log3 L−2
i=0 ti3

−i.
Write the transition vector for the pilot assignment vector

of (8):

t′i =


K3i i < χ(Np0)

Np0−K
2 −

χ(Np0)−1∑
i=0

K3i i = χ(Np0)

0 i > χ(Np0).

(10)

Then, it can be shown that
∑log3L−2
i=0 t′i· 3−i is always greater

than
∑log3L−2
i=0 ti· 3−i for any other transition vectors t =

(t0, t1, · · · , tlog3L−2) corresponding to p ∈ Ω(Np0):

Cnet

2(n-1)+K Ncoh

Csum(p
(2))

Csum(p
(1))

2n+K

Fig. 3: Graph of Cnet for two adjacent Np0 values

Case 1: if t′χ(Np0) ≥ tχ(Np0),

δ ,
log3L−2∑
i=0

t′i· 3−i −
log3L−2∑
i=0

ti· 3−i

=

χ(Np0)∑
i=0

(t′i − ti)· 3−i +

log3L−2∑
i=χ(Np0)+1

(0− ti)· 3−i

≥

χ(Np0)∑
i=0

(t′i − ti)

 · 3−χ(Np0)

+

 log3L−2∑
i=χ(Np0)+1

(0− ti)

 · 3−(χ(Np0)+1)

=

χ(Np0)∑
i=0

(t′i − ti)

 · (3−χ(Np0) − 3−(χ(Np0)+1)) ≥ 0

where the first inequality holds due to 0 ≤ ti ≤ K3i = t′i
for 0 ≤ i < χ(Np0) (by Lemma 2), the assumption of
t′χ(Np0) ≥ tχ(Np0) , and the fact that ti ≥ 0 for 0 ≤
i ≤ log3L − 2 (by Lemma 2). The last equality holds
because

∑log3 L−2
i=0 ti =

Np0−K
2 for any valid transition vector

t = (t0, t1, · · · , tlog3L−2) by Lemma 2. Similarly,
Case 2: if t′χ(Np0) < tχ(Np0),

δ ,
log3L−2∑
i=0

t′i· 3−i −
log3L−2∑
i=0

ti· 3−i

=

χ(Np0)−1∑
i=0

(t′i − ti)· 3−i +

log3L−2∑
i=χ(Np0)

(t′i − ti)· 3−i

≥

χ(Np0)−1∑
i=0

(t′i − ti)

 · 3−(χ(Np0)−1)

+

 log3L−2∑
i=χ(Np0)

(t′i − ti)

 · 3−χ(Np0)

=

χ(Np0)−1∑
i=0

(t′i − ti)

 · (3−(χ(Np0)−1) − 3−χ(Np0)) ≥ 0.

Thus, we see that δ = 0 iff t = t′, due to the inherent
property of a transition vector (second equation in Lemma 2).
Therefore, (10) gives the maximum Csum value among all
valid transition vectors. Applying the inverse transformation
(6) to (10) proves Theorem 1.
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2) Proof of Theorem 2: To minimize the notational clutter-
ing, denote p(1) = p′opt(2(n− 1) +K), p(2) = p′opt(2n+K)

and p(3) = p′opt(2(n + 1) + K). First, we wish to find the
relationship between Csum(p(1)) and Csum(p(2)) to get the
expression (9) for ∆n.

Csum(p(2)) =

log3 L−1∑
i=0

3−ip
(2)
i Ci

=

 ∑
i6=η(n)
i 6=η(n)+1

3−ip
(1)
i Ci

+ 3−η(n)(p
(1)
η(n) − 1)Cη(n)

+ 3−(η(n)+1)(p
(1)
η(n)+1 + 3)Cη(n)+1

= Csum(p(1)) + 3−η(n)(Cη(n)+1 − Cη(n))

' Csum(p(1)) + 6 · 3−η(n) > Csum(p(1))

where the first equality is from the definition of Csum, the
second equality is from Corollary 1. The last approximation
came from the mathematical analysis for Ci in Section III-B.
It is now clear that the curve for p(2) has a larger saturation
value than the curve for p(1), as illustrated in Fig. 3.

Now, to get to the expression for the intersection point ∆n in
Fig. 3, we start with Cnet(p(1)) = Cnet(p

(2)) for Ncoh = ∆n,
developing a series of equalities:

∆n − (2(n− 1) +K)

∆n
Csum(p(1))

=
∆n − (2n+K)

∆n
Csum(p(2)),

(∆n − 2n−K + 2)Csum(p(1))

=(∆n − 2n−K){Csum(p(1)) + 3−η(n)(Cη(n)+1 − Cη(n))},
2Csum(p(1))

=(∆n − 2n−K)(Cη(n)+1 − Cη(n))3
−η(n) (11)

leading finally to

∆n = 2n+K +

2
log3 L−1∑
i=0

3−ip
(1)
i Ci

3−η(n)(Cη(n)+1 − Cη(n))
. (12)

However, by inserting Np0 = 2n + K − 2 into (8), we can

express
log3 L−1∑
i=0

3−ip
(1)
i Ci as:

log3 L−1∑
i=0

3−ip
(1)
i Ci

= 3−η(n)

n− 1−
η(n)−1∑
s=0

K3s

(Cη(n)+1 − Cη(n)

)
+KCη(n). (13)

Inserting (13) into (12) results in (9).

As the net rate curves for p(1) and p(2) cross at Ncoh =
∆n, the curves for p(2) and p(3) intersect at Ncoh = ∆n+1.
We shall now prove that ∆n is a monotonically increasing
sequence. First, note ∆n+1 −∆n = 4 + 2γ(n) where γ(n) =

Cnet
Cnet (p

(3))

Cnet (p
(2))

Cnet (p
(1))

p(1) = p’opt (2n+K-2)

p(2) = p’opt (2n+K)

p(3) = p’opt (2n+K+2)

K n K n+1

Ncoh

Fig. 4: Graph of Cnet for three adjacent Np0 values

ξ(n + 1) − ξ(n) − (
∑η(n+1)−1
i=0 3i −

∑η(n)−1
i=0 3i). In case of

η(n) = η(n+ 1), we have ξ(n+ 1) = ξ(n), so that ∆n+1 −
∆n = 4 > 0. For other cases, i.e., η(n + 1) = η(n) + 1, we
have ξ(n+ 1) =

3η(n)+1Cη(n)+1

Cη(n)+2−Cη(n)+1
, so that

γ(n) =
3η(n)+1Cη(n)+1

Cη(n)+2 − Cη(n)+1
−

3η(n)Cη(n)

Cη(n)+1 − Cη(n)
− 3η(n)−1

'
3η(n)+1(Cη(n) + 6)

6
−

3η(n)Cη(n)

6
− 3η(n)

= 2 · 3χ(2n−1)

(
1 +

Cχ(2n−1)

6

)
> 0.

The last approximation came from the mathematical analysis
for Ci in Section III-B. Therefore, in both cases, ∆n+1−∆n >
0.

Since ∆n is an increasing sequence, we can complete a
picture as illustrated in Fig. 4. For Ncoh > ∆n+1, Cnet(p(3))
is greater than any net rate curves that will intersect with itself
on the right side of ∆n+1. For Ncoh < ∆n, Cnet(p(1)) is
greater than any net rate curves that will intersect itself on
the left side of ∆n. Therefore, it is clear that in the interval
∆n ≤ Ncoh < ∆n+1, Cnet(p(2)) is the largest of all net rate
curves and p(2) = p

′

opt(2n+K) is optimal among all possible
pilot assignment vectors.

For the boundary case, if Ncoh ≥ ∆NL,K , then popt =

p
′

opt(LK/3). However, p
′

opt(LK/3) = (0, · · · , 0, LK/3)
since Ω(LK/3) = {(0, · · · , 0, LK/3)} (note the analysis
in Step 2 of the proof for Lemma 1). Therefore, popt =
(0 · · · , 0, LK/3) for Ncoh ≥ ∆NL,K . This completes the
proof.

IV. NUMERICAL RESULTS

Simulation is necessary to obtain the Ci values in (3). To get
Ci, the β terms in (1) need to be generated pseudo-randomly
according to the assumed underlying statistical properties. The
simulation is based on the following system parameters, which
are consistent with those in [27]. We assume a signal decay
exponent of γ = 3.7, a cell radius of r meters and a cell-hole
radius of 0.14r. Note that {Ci} does not depend on the r value.
The number of cells are fixed to L = 81, and the user locations
are uniform-random within a cell. To generate each Ci value,
an average is taken over 100,000 pseudo-random trials. Once
the Ci values are obtained, the optimal pilot length and the
pilot assignment vector as well as the net throughput can be
found for various coherence intervals Ncoh. In this section,
simulation results on the optimal pilot assignment rule and
maximum net throughput is presented. We begin with single-
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TABLE I: Optimal pilot assignment for L = 81

(a) K = 1

Ncoh popt Npil(popt)
0 ∼ 4 (1, 0, 0, 0) 1
5 ∼ 17 (0, 3, 0, 0) 3
18 ∼ 21 (0, 2, 3, 0) 5
22 ∼ 25 (0, 1, 6, 0) 7
26 ∼ 68 (0, 0, 9, 0) 9
69 ∼ 72 (0, 0, 8, 3) 11

...
...

...
101 ∼ (0, 0, 0, 27) 27

(b) K = 2

Ncoh popt Npil(popt)
0 ∼ 6 (2, 0, 0, 0) 2
7 ∼ 10 (1, 3, 0, 0) 4
11 ∼ 32 (0, 6, 0, 0) 6
33 ∼ 36 (0, 5, 3, 0) 8
37 ∼ 40 (0, 4, 6, 0) 10

...
...

...
203 ∼ (0, 0, 0, 54) 54

(a) K = 1

(b) K = 14

Fig. 5: Net rates of various pilot assignments for L = 81

user (K = 1) case, and then analyze general multi-user (K >
1) case.

A. Single-user case

Table Ia shows the optimal pilot assignment results for
various values of Ncoh. We confirm that the simulation results
of Table Ia are consistent with the mathematical analysis given
in Theorem 2. As Ncoh increases, the optimal pilot sequence
gradually becomes longer. Moreover, the optimal assignment
vectors show a pattern of tossing 1 from the left most non-
zero component to increase the adjacent component by 3, for
an example (0, 3, 0, 0)→ (0, 2, 3, 0) (consistent with Corollary
1).

Fig. 6: Cnet/Ncoh versus Ncoh/K for different pilot assignment
schemes

Fig. 5a shows the average achievable net rates for various
pilot assignments versus normalized coherence interval. The
random assignment means that a pilot sequence is chosen ran-
domly and independently from Npil(popt) orthogonal pilots,
and assigned to each user. Therefore, the optimal assignment
and the random assignment use the same amount of pilots for
any given Ncoh. It can be seen that a substantial performance
gain is obtained using the optimal method compared to the
full pilot reuse case as Ncoh increases beyond 5. The random
assignment is worse than the full reuse initially but eventually
outperforms the latter as Ncoh grows.

For Ncoh = 10, 20 and 40, for example, the optimal
assignment method has 87%, 121% and 185% higher net rates
Cnet than the full pilot reuse assignment, respectively. As
coherence time increases, the benefit of allocating more time
for pilots is considerable. Also, the non-shrinking performance
gap between the optimal assignment and the random assign-
ment indicate that structured optimal assignment is required
for a given pilot time, in order to maximize the net throughput
of the network.

B. Multi-user case

In Table Ib, the optimal assignment vectors and pilot lengths
for various Ncoh are shown, assuming L = 81 and K = 2.
Like in the case for K = 1, the optimal pilot assignment
vectors have a predictable form (consistent with Corollary 1
and Theorem 2).

Fig. 5b shows the plots of the per-user net rates Cnet/K
versus Ncoh/K. These results are actually found for K = 14,
but very similar numerical results are obtained for the optimal
scheme irrespective of the particular values of K while the
results for the full pilot reuse are identical across all values
of K. As a case in point, it can be seen that the plots in Fig.
5a obtained for K = 1 are nearly identical to those in Fig. 5b
corresponding to K = 14. Using the optimal pilot assignment
scheme, the per-user net rate improves substantially with
increasing Ncoh/K, relative to the full reuse scheme.

Fig. 6 shows Cnet/Ncoh versus Ncoh/K for optimal, full
reuse and random pilot assignment schemes. Again, K = 14
is used to generate these plots, but the plots do not change
noticeably for different values of K. These plots give an



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 9

insight into how the net sum rate changes as K decreases while
Ncoh is held fixed. Notice that the maximum net sum-rate
occurs at Ncoh/K = 2 and at this point the optimal scheme
reduces to full reuse, consistent with the Marzetta’s analysis
[13]. However, the message here is, again, that when we do not
have a control over Ncoh/K = 2, the optimal pilot assignment
strategy may have a substantial net sum-rate advantage over
full pilot reuse.

To appreciate how large Ncoh/K can be in some real-world
scenarios, take an indoor office wireless channel with Tcoh =
50 micro-sec and Tdel = 50 nsec, yielding Ncoh = 1000.
If the user density cannot be allowed to be more than K =
20 users per cell, we would be focusing on Ncoh/K = 50
and at this point, the optimal scheme gives a 300% net sum-
rate improvement over full pilot reuse. As another example,
consider an urban outdoor environment with a fairly high user
mobility giving rise to a 1 msec coherence time interval. With
a 2 micro-sec delay spread, for example, this gives Ncoh =
500, and assuming not more than K = 25 users are to be
served, we are interested in the net sum-rates at Ncoh/K = 20.
From either Fig. 5b or Fig. 6, we see that a net throughput
improvement of 121% is possible via optimal pilot assignment,
relative to full pilot reuse.

V. FURTHER COMMENTS

A. Performance analysis for finite antennas case
The mathematical analysis conducted in this paper focuses

on the scenario of base stations having infinitely many an-
tennas. However, in practical applications of massive MIMO,
finite BS antennas must be considered. For example, 128 BS
antennas have been used in the recent literature [7], [35].
Thus, here we also consider optimal pilot assignment for finite
M cases. For arbitrary M , the uplink spectral efficiency of
massive MIMO systems with pilot reuse factor β and maximal-
ratio-combining (MRC) receiver is obtained in Theorem 1 of
[27]. Our analysis on optimal pilot assignment for finite M
adopts modified versions of several notations defined in [27].
First, ρ denotes the signal-to-noise ratio (SNR) value, and L(i)

j

represents the set of cells which share pilot with cell j by a
reuse factor 3i. Moreover, based on rjkl defined in Section
II-A, the following mathematical definitions are used:

µ
(ω)
jl , E[(

rlkl
rjkl

)γω], ω = 1, 2 (14)

µ0 ,
L∑
l=1

µ
(1)
jl , µ

(i)
1 ,

∑
l∈L(i)

j \{j}

µ
(1)
jl ,

µ
(i)
2 ,

∑
l∈L(i)

j \{j}

(µ
(1)
jl )2, µ

(i)
3 ,

∑
l∈L(i)

j \{j}

µ
(2)
jl . (15)

Given the pilot assignment vector p, the interference term
Ii(M) for a user with pilot reuse factor 3i can be expressed
as

Ii(M) = µ
(i)
3 +

µ
(i)
3 − µ

(i)
2

M

+
(Kµ0 + 1

ρ )(1 + µ
(i)
1 + 1

Npil(p)ρ )

M
.

TABLE II: Optimal pilot assignment for finite antennas (L =
81,M = 128,K = 10)

Ncoh/K popt(M) Npil(popt(M))
0 ∼ 4.5 (10, 0, 0, 0) 10
4.5 ∼ 4.9 (9, 3, 0, 0) 12
4.9 ∼ 5.3 (8, 6, 0, 0) 14
5.3 ∼ 5.7 (7, 9, 0, 0) 16
5.7 ∼ 6.1 (6, 12, 0, 0) 18

...
...

...

Here, µ(i)
3 represents the pilot contamination term remain-

ing even if M increases without bound, while the other
terms are intra- and inter-cell interferences which are con-
sidered only when M is finite. The net throughput of
a user with pilot reuse factor 3i can be obtained as
SE(i) =

(
1− Npil(p)

Ncoh

)
log2

(
1 + 1

Ii(M)

)
, while the per-

cell net throughput for a pilot assignment vector p =
(p0, p1, · · · , plog3 L−1) is

Cnet(p,M) =

(
1− Npil(p)

Ncoh

)
log3 L−1∑
i=0

3−ipi log2

(
1 +

1

Ii(M)

)
, (16)

which reduces to (4) when M tends to infinity. Then, the
optimal pilot assignment vector for finite M can be expressed
as

popt(M) = arg max
p∈PL,K

Cnet(p,M). (17)

Here, we show the behavior of popt(M) for finite M , as
observed by simulation results. Table II shows the optimal
pilot assignment vector for the L = 81,M = 128,K = 10
case. For numerical calculation, the SNR value is set to
ρ = 5dB while the setting for other parameters is speci-
fied in Section IV. As Ncoh/K increases, the optimal pilot
assignment popt(M) chooses less aggressive pilot reuse, by
utilizing a larger number Npil(popt(M)) of pilots. Moreover,
the optimal assignment vector shows a similar pattern to what
was observed when M tended to infinity: tossing 1 from
the left most non-zero component to increase the adjacent
component by 3, for example (9, 3, 0, 0) → (8, 6, 0, 0). This
implies that even in systems with finite BS antennas, where
both pilot contamination and other interference terms are
mixed, the optimal assignment chooses the way of reducing the
number of users suffering the most severe pilot contamination
problem.

Fig. 7 illustrates the per-user net rate for various pilot
assignments as a function of M , under the setting of L =
27,K = 10, Ncoh = 200. Here, the conventional assignment
represents the full pilot reuse case. The solid lines represent the
simulation results for finite M , while the asymptotic values for
M =∞ are illustrated in dashed/dash-dot lines. Here, the per-
formance gap between optimal assignment and conventional
assignment can be observed, at the number of BS antennas
as small as 10. In the case of M = 128 and M = 1024,
the optimal assignment outperforms conventional assignment
by 40% and 84%, respectively. Note that the performance
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Fig. 8: Net rate versus M of the optimal assignment, for various
M/K settings (L = 27, Ncoh = 2000)

of conventional assignment saturates around M = 128, so
that additional BS antennas are redundant, while the optimal
assignment has sufficient margin to increase throughput by
increasing M > 128. Therefore, in mm-Wave operation
which can allow more uncorrelated antennas in a given area
[36], optimal assignment can enjoy a larger performance gain
compared to conventional full pilot reuse.

To provide an insight on the performance of the optimal
assignment, we also plotted the per-user throughput for various
ratios of M/K = 2, 4, 10, 20. As can be seen in Fig. 8, the
throughput keeps increasing as a function of M , as long as
M/K is large enough (greater than 10 in the plots provided).
However, for smaller ratios (M/K < 10) the net throughput
peaks and then starts to decreases as M increases. We observe
that this is because as M increases, the decreasing rate of the
coefficient (1− Npil(p)

Ncoh
) in (16) is higher than the increasing

rate of the main summation term when M/K is not sufficiently
high (i.e., massive MIMO effect is not realized).

We also observed the distribution of the achievable rate
for each user. In Fig. 9, the cumulative distribution function
(CDF) curves of three pilot assignment rules are illustrated:
the optimal assignment, conventional full pilot reuse, and the
random assignment. Both Fig.9a and Fig.9b show that the
proposed optimal assignment helps all users to enjoy high
achievable rates, compared to other pilot assignment rules.
This is because the optimal assignment allocates additional
pilots so as to relieve the most severely affected users first.

(a) K=1

(b) K=40

Fig. 9: Cumulative distribution function of per-user achievable rate
for various pilot assignments (L=27, M=100)

B. Optimal Training Time Portion of the Coherent Time Inter-
val

An interesting remaining question is: what should be the
optimal portion of the time allocated for pilot (and thus for
training) in massive MIMO with interfering cells as Ncoh
increases? Fig. 10 illustrate how much training is used for
optimal assignment in the cases of K = 1 and K = 14.
For a given K, the ratio Npil(popt)

Ncoh
is calculated for various

Ncoh values. As Ncoh/K increases, both plots in Fig. 10 show
a non-vanishing portion of the coherence time used for the
pilots in optimal assignment, while the pilot portion shrinks
in full pilot reuse. For a given K, the curve for optimal
assignment consists of a family of curves corresponding to
p′opt(Np0) for Np0 = K,K + 2,K + 4, · · · , LK/3. Since
the optimal popt changes as Ncoh/K increases, we have a
discontinuous function made up of a family of exponentially
decaying functions.

C. Comparison with Cell Partitioning in Frequency Reuse

The analysis in this paper is based on hierarchical parti-
tioning originated from 3-way partitioning, as described in
section III-A. However, this 3-way partitioning is identical
to the partitioning used in frequency reuse factor of three.
In Appendix of [37], fundamentals of hexagonal cellular
geometry are discussed. In hexagonal cell systems, the number
of cells per cluster for frequency reuse is given by the form
N = i2 + ij+ j2, where i and j are integers which shape the
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(a) K=1

(b) K=14

Fig. 10: Optimal portion of the coherent time dedicated for training
(L = 81)

geometry of the clusters. For example, i = 1, j = 1 result in
N = 3, corresponding to a frequency reuse factor of three.

The hierarchical partitioning considered in this paper can be
described by the geometrical model in [37] to a certain extent.
Consider a tree structure having leaves with same depth. This
tree structure corresponds to pilot assignment vectors with
only one nonzero element like (1, 0, · · · , 0), (0, 3, 0, · · · , 0),
(0, 0, 9, 0, · · · , 0), · · · . Each assignment method is identical
to the cell geometry of frequency reuse factor of 1, 3, 9, · · ·
which can be generated by appropriate i and j (i.e., 1 =
12 + 1 · 0 + 02, 3 = 12 + 1 · 1 + 12, 9 = 32 + 3 · 0 + 02,
· · · ). However, other pilot assignment vectors considered here
cannot be expressed by the form of [37]. For example, pilot
assignment in Fig. 2 is generated by a mixture of frequency
reuse factors of 3 and 9, which yield leaf nodes at depth 1
and 2.

Finally, we note that the suggested pilot assignment strategy
can obviously be utilized in conjunction with the existing
frequency reuse scheme.

D. Optimization problem for maximizing net weighted sum-
rate

In the example discussed towards the end of Section IV-B,
for Ncoh = 500, the maximum net sum-rate is achieved
when there are K = 500/2 = 250 users. Using the plots
in Fig. 6, the corresponding normalized net sum-rate is
Cnet/Ncoh = 3.2, which translates to a per-user net rate of
(3.2 × 500)/250 = 6.4. In comparison, for the case of the
fixed number of K = 25 users, the full-pilot reuse gives

Cnet/Ncoh = 0.6 or a per-user net rate of (0.6×500)/25 = 12
(and using the optimal pilot assignment this rate improves
to 16.2). This argument shows that while keeping the ratio
Ncoh/K to 2 would maximize the net sum-rate, it may
degrade individual user rates to a level that would be highly
undesirable in many real-world scenarios. In practical applica-
tions, maximizing the sum-rate may not be an ideal strategy;
often it would make sense to maximize a weighted sum-
rate (WSR). Finding general pilot assignment solutions that
maximize WSR is an interesting research direction, which we
postpone to next paper.

E. Impact with regards to ultra-densification

According to current literatures [9]–[11], one of the main
directions for 5G is ultra-dense network, where density of BSs
in given area gets higher in order to support data demand
from massive devices. Specifically, heterogeneous network
(HetNet) with both macro-BS and micro-BS are considered
in [38]. Here, a single macro-BS (with massive antennas)
at the center of each cell communicates with high-mobility
UTs throughout the cell, while several micro-BSs (with single
antenna each) spread in the cell supports low-mobility UTs
within a local area. Macro-BS and micro-BSs are connected
by wireless links, by allocating some antennas in macro-BS for
backhaul/fronthauling. In this HetNet scenario with multiple
interfering macro-cells, suggested optimal pilot assignment
can be applied to increase the throughput of high-mobility
users supported by macro-BSs.

VI. CONCLUSION

In a massive MIMO system with interfering cells, allowing
neighboring cells to use different sets of pilot sequences
can effectively mitigate the pilot contamination problem and
increase the achievable net throughput of the system, when
the appropriate pilot assignment strategy is applied. Assuming
hexagonal cells and equi-distance hierarchical partitioning,
an optimal pilot assignment strategy has been identified that
gives substantial throughput advantages relative to random
pilot assignment or full pilot reuse when the given coherence
time interval Ncoh and the number of users K has sufficiently
large ratio. As Ncoh/K increases, the optimal number of pilots
also grows, where the additional pilots are allocated so as to
relieve the most severely affected users first. Finally, we add
that it would be interesting to further explore pilot assignment
strategies when the objective is not about maximizing the sum
rate but rather on guaranteeing some minimal performance
level to all users or maximizing a weighted sum rate to
prioritize the services.

APPENDIX A
PROOFS OF LEMMAS 1 AND 2

A. Lemma 1

Proof: In order to support K users in each cell, valid pilot
assignment starts with full pilot reuse which is illustrated in
left side of Fig. 11. Since Npil(p) is the number of leaves,
this assignment has Npil(p) = K. When 3-way partitioning is
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L L … L

K trees (with root node only) L L L

L/3 L/3 L/3

p = p =

…

Fig. 11: Tree structure for K users

applied to a tree (as on the right side of Fig. 11), the number
of leaf nodes Npil(p) increases by 2 (reducing 1 leaf node
denoted as L, and increasing 3 leaf nodes denoted as L/3).
Similarly, consecutive 3-way partitioning increases Npil(p) by
2, until all K trees reaches the maximum depth, log3L − 1.
Therefore, the maximum value of Npil(p) is LK/3, which
completes the proof.

B. Lemma 2

Proof: Denote I0 , log3L − 1. Consider arbitrary p =
(p0, p1, · · · , pI0) ∈ Ω(Np0) and its corresponding transition
vector t = (t0, t1, · · · , tI0−1) defined by (5). Then, using
the relationship given in (5), we can obtain a closed-form
expression for ti for 1 ≤ i ≤ I0 − 1 as follows:

ti = −pi + 3ti−1 = −pi + 3(−pi−1 + 3ti−2)

= −pi + 3 (−pi−1 + 3(−pi−2 + 3ti−3)) = · · ·

= −
i−1∑
s=0

3spi−s + 3it0 = −
i−1∑
s=0

3spi−s + 3i(K − p0)

= −
i∑

s=0

3spi−s +K3i = 3i(K − p0 −
p1

3
− · · · − pi

3i
).

The upper bound and lower bound for ti (for 1 ≤ i ≤ I0− 1)
can be obtained as:

ti = 3i(K − p0 −
p1

3
− · · · − pi

3i
) ≤ K3i,

since ps ≥ 0 ∀s ∈ {0, 1, · · · , I0} by (2). Here, the equality
holds iff ps = 0 ∀s ∈ {0, 1, · · · , i}. Similarly, using (2),

ti = 3i(K − p0 −
p1

3
− · · · − pi

3i
)

= 3i(

I0∑
s=0

ps3
−s −

i∑
s=0

ps3
−s) = 3i

I0∑
s=i+1

ps3
−s ≥ 0

where equality holds iff ps = 0 ∀s ∈ {i + 1, i + 2, · · · , I0}.
Therefore, for 1 ≤ i ≤ I0 − 1, 0 ≤ ti ≤ K3i holds. However,
0 ≤ t0 = K − p0 ≤ K = K30 since 0 ≤ p0 ≤ K by (2).
Moreover, using the relationship in (5), we can confirm ti are
integers, since pi are integers by (2). The overall result can be
combined as

ti ∈ {0, 1, 2, · · · ,K3i} ∀i ∈ {0, 1, · · · , I0 − 1}. (18)

On the other hand, using (5), (6) and p ∈ Ω(Np0),

I0−1∑
i=0

ti = t0 +

I0−1∑
i=1

ti = (K − p0) +

I0−1∑
i=1

(−pi + 3ti−1)

= K −
I0−1∑
i=0

pi + 3

I0−2∑
i=0

ti

= K −
I0∑
i=0

pi + 3

I0−1∑
i=0

ti = K −Np0 + 3

I0−1∑
i=0

ti,

which is to say
I0−1∑
i=0

ti =
Np0 −K

2
. (19)

(18) and (19) complete the proof.
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