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Buffer-Aided Relaying For The Two-Hop

Full-Duplex Relay Channel With

Self-Interference

Mohsen Mohammadkhani Razlighi and Nikola Zlatanov

Abstract

In this paper, we investigate the fading two-hop full-duplex (FD) relay channel with self-interference,

which is comprised of a source, an FD relay impaired by self-interference, and a destination, where a

direct source-destination link does not exist. For this channel, we propose three buffer-aided relaying

schemes with adaptive reception-transmission at the FD relay for the cases when the source and the

relay both perform adaptive-rate transmission with adaptive-power allocation, adaptive-rate transmission

with fixed-power allocation, and fixed-rate transmission, respectively. The proposed buffer-aided relaying

schemes enable the FD relay to adaptively select to either receive, transmit, or simultaneously receive and

transmit in a given time slot based on the qualities of the receiving, transmitting, and self-interference

channels; a degree-of-freedom unavailable without buffer-aided relaying. Our numerical results show that

significant performance gains are achieved using the proposed buffer-aided relaying schemes compared

to conventional FD relaying, where the FD relay is forced to always simultaneously receive and transmit,

and to buffer-aided half-duplex relaying, where the half-duplex relay cannot simultaneously receive and

transmit. The main implication of this work is that FD relaying systems without buffer-aided relaying

miss-out on significant performance gains.

I. INTRODUCTION

Relays play an important role in wireless communications for increasing the data rate between

a source and a destination [1]. In general, the relay can operate in two different modes, namely,

full-duplex (FD) mode and half-duplex (HD) mode. In the FD mode, transmission and reception
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at the FD relay can occur simultaneously and in the same frequency band. However, due to the

in-band simultaneous reception and transmission, FD relays are impaired by self-interference

(SI), which occurs due to leakage of energy from the transmitter-end into the receiver-end of the

FD relay. Currently, there are advanced hardware designs which can suppress the SI by about

110 dB in certain scenarios, see [2]. Because of this, FD relaying with SI is gaining considerable

research interest [2], [3]. On the other hand, in the HD mode, transmission and reception take

place in the same frequency band but in different time slots, or in the same time slot but in

different frequency bands. As a result, HD relays avoid the creation of SI. However, since an

FD relay uses twice the resources compared to an HD relay, the achievable data rates of an FD

relaying system may be significantly higher than that of an HD relaying system.

One of the first immediate applications of FD relaying is expected to be in providing support

to HD base stations. In particular, the idea is to deploy FD relays around HD base stations,

which will relay information from the HD base stations to users that are at significant distances

from the base stations. The system model resulting from such a scenario is the two-hop FD

relay channel, which is comprised of a source, an FD relay, and a destination, where a direct

source-destination link does not exist due to the assumed large distance between the source

and the destination. In this paper, we will investigate new achievable rates/throughputs for this

system model, i.e, for the two-hop FD relay channel with SI and links impaired by fading.

The two-hop relay channel with and without fading has been extensively investigated in the

literature both for HD relaying as well as FD relaying with and without SI. In particular, the

capacity of the two-hop HD relay channel without fading was derived in [4]. On the other hand,

only achievable rates are known for the two-hop HD relay channel with fading. Specifically, [5]

proposed a conventional decode-and-forward (DF) relaying scheme, where the HD relay switches

between reception and transmission in a prefixed manner. On the other hand, [6] proposed a

buffer-aided relaying scheme where, in each time slot, the HD relay selects to either receive or

transmit based on the qualities of the receiving and transmitting channels. As a result, the rate

achieved by the scheme in [6] is larger than the rate achieved by the scheme in [5], showing that

buffers improve the performance of HD relays. The capacity of the two-hop FD relay channel

with an idealized FD relay without SI was derived in [1] and [5] for the cases with and without

fading, respectively. Recently, the capacity of the Gaussian two-hop FD relay channel with SI

and without fading was derived in [7]. However, for the two-hop FD relay channel with SI and
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fading only achievable rates are known for certain special cases, such as an SI channel without

fading, see [8].

Motivated by the lack of advanced schemes for the general two-hop FD relay channel with SI

and fading, in this paper, we investigate this channel and propose novel achievable rates/throughputs.

The novel rates/throughputs are achieved using buffer-aided relaying. Thereby, similar to HD

relays, we show that buffers also improve the performance of FD relays with SI. This means

that buffer-aided relaying should become an integral part of FD relaying systems, i.e., that FD

relaying systems without buffer-aided relaying miss-out on significant performance gains.

The proposed novel buffer-aided relaying schemes for the two-hop FD relay channel with SI

and fading enable the FD relay to select adaptively either to receive, transmit, or simultaneously

receive and transmit in a given time slot based on the qualities of the receiving, transmitting, and

SI channels such that the achievable data rate/throughput is maximized. Note that such a degree

of freedom is not available if a buffer is not employed. Specifically, we propose three buffer-

aided relaying schemes with adaptive reception-transmission at the FD relay, for the cases when

both the source and the relay perform adaptive-rate transmission with adaptive-power allocation,

adaptive-rate transmission with fixed-power allocation, and fixed-rate transmission, respectively.

The proposed buffer-aided schemes significantly improve the achievable rate/throughput of the

considered relay channel compared to existing schemes. In particular, our numerical results show

that significant performance gains are achieved using the proposed buffer-aided relaying schemes

compared to conventional FD relaying, where the FD relay is forced to always simultaneously

receive and transmit, and to buffer-aided HD relaying, where the HD relay cannot simultaneously

receive and transmit.

We note that buffer-aided relaying schemes were also proposed in [8]–[27] and references

therein. Most of these works investigate HD buffer-aided relaying systems. FD buffer-aided

systems were investigated in [9] and [10]. However, these works differ from our work since [9]

assumes that the SI at the FD relay is negligeable, which may not be a realistic model for all

scenarios in practice. On the other hand, [10] assumes that the SI channel is fixed and does not

vary with time, which also may not be an accurate model of the SI channel. In particular, in

practical wireless communications, due to the movement of objects/reflections, the SI channel

also varies with time. Hence, contrary to [10], in this paper, the SI channel is assumed to vary

with time. In addition, we investigate the case when both the source and the relay transmit with
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Fig. 1. Relaying system, comprised of a source, S, an FD relay impaired by SI, R, and a destination, D, where a direct S-D

link is not available.

a fixed rate in all time slots; a scenario not investigated in [10].

This paper is organized as follows. In Section II, we present the system and channel models.

In Section III, we formulate a general FD buffer-aided relaying scheme with adaptive reception-

transmission at the FD relay. In Section IV, we propose specific schemes for the cases when

both the source and the relay adapt their transmission rates with adaptive- and fixed-power

allocation, and derive the corresponding optimal buffer-aided relaying schemes. The throughput

of the considered relay channel with fixed-rate transmission is derived in Section V. Simulation

and numerical results are provided in Section VI, and the conclusions are drawn in Section VII.

II. SYSTEM AND CHANNEL MODELS

We consider the two-hop FD relay channel, which is comprised of a source, S, an FD relay

impaired by SI, R, and a destination, D, where a direct S-D link does not exist, cf. Fig. 1. In

addition, we assume that the FD relay is a DF relay equipped with a sufficiently large buffer

in which it can store incoming data and from which it can extract data for transmission to the

destination.

A. Channel Model

We assume that the S-R and R-D links are complex-valued additive white Gaussian noise

(AWGN) channels impaired by slow fading. Furthermore, similar to the majority of related

papers [28], [29], we also assume that the SI channel is impaired by slow fading. Thereby, the

SI channel also varies with time. We assume that the transmission time is divided into N → ∞

time slots. Furthermore, we assume that the fading is constant during one time slot and changes

from one time slot to the next. Let hSR(i) and hRD(i) denote the complex-valued fading gains of

the S-R and R-D channels in time slot i, respectively, and let hRR(i) denote the complex-valued
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fading gain of the SI channel in time slot i. Moreover, let σ2
nR

and σ2
nD

denote the variances

of the complex-valued AWGNs at the relay and the destination, respectively. For convenience,

and without loss of generality, we define normalized squared fading gains for the S-R, R-D, and

SI channels as γSR(i) = |hSR(i)|
2/σ2

nR
, γRD(i) = |hRD(i)|

2/σ2
nD

, and γRR(i) = |hRR(i)|
2/σ2

nR
,

respectively. Let PS(i) and PR(i) denote the transmit powers of the source and the relay in

time slot i, respectively. We assume that the SI, which is received via the SI channel in any

symbol interval of time slot i, is independent and identically distributed (i.i.d.) according to

the zero-mean Gaussian distribution with variance PR(i)|hRR(i)|
2, an assumption similar to the

majority of related works [28]–[31]. This assumption is realistic due to the combined effect of

various sources of imperfections in the SI cancellation process, and can also be considered as the

worst-case scenario for SI [32]. As a result, in time slot i, the S-R channel is a complex-valued

AWGN channel with channel gain hSR(i) and noise variance PR(i)|hRR(i)|
2+σ2

nR
. Hence, the

capacity of this channel in time slot i is obtained as

CSR(i) = log2

(

1 +
PS(i)γSR(i)

PR(i)γRR(i) + 1

)

. (1)

On the other hand, in time slot i, the R-D channel is also a complex-valued AWGN channel

with channel gain hRD(i) and noise variance σ2
nD

. Hence, the capacity of this channel in time

slot i is obtained as

CRD(i) = log2 (1 + PR(i)γRD(i)) . (2)

In time slot i, we assume that the source and the relay transmit codewords encoded with a

capacity achieving code, i.e., codewords comprised of n → ∞ symbols that are generated

independently from complex-valued zero-mean Gaussian distributions with variances PS(i) and

PR(i), respectively. The data rates of the codewords transmitted from the source and the relay

in time slot i are denoted by RSR(i) and RRD(i), respectively. The value of RSR(i) and RRD(i)

will be defined later on.

III. GENERAL FD BUFFER-AIDED RELYING

In this section, we formulate a general FD buffer-aided relaying scheme with adaptive reception-

transmission at the FD relay.
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A. Problem Formulation

Depending on whether the source and/or the relay are silent, we have four different states for

the considered two-hop FD relay channel with SI in each time slot:

• State 0: S and R are both silent.

• State 1: S transmits and R receives without transmitting.

• State 2: R transmits and S is silent.

• State 3: S transmits and R simultaneously receives and transmits.

To model these four states, we define three binary variables for time slot i, q1(i), q2(i), and q3(i),

as

q1(i) =







1 if S transmits and R receives without transmitting in time slot i

0 otherwise,
(3)

q2(i) =







1 if R transmits and S is silent in time slot i

0 otherwise,
(4)

q3(i) =







1 if S transmits and R simultaneously receives and transmits in time slot i

0 otherwise.
(5)

Since the two-hop FD relay channel can be in one and only one of the four states in time slot

i, the following has to hold

q1(i) + q2(i) + q3(i) ∈ {0, 1}, (6)

where if q1(i) + q2(i) + q3(i) = 0 occurs, it means that the system is in State 0, i.e., both S and

R are silent in time slot i.

To generalize the FD buffer-aided relaying scheme even further, we assume different transmit

powers at the source and the relay during the different states. In particular, let P
(1)
S (i) and P

(3)
S (i)

denote the powers of the source when q1(i) = 1 and q3(i) = 1, respectively, and let P
(2)
R (i) and

P
(3)
R (i) denote the powers of the relay when q2(i) = 1 and q3(i) = 1, respectively. Obviously,

P
(1)
S (i) = 0, P

(2)
R (i) = 0, and P

(3)
S (i) = P

(3)
R (i) = 0 when q1(i) = 0, q2(i) = 0, and q3(i) = 0

hold, respectively.

In the following sections, we provide the optimal values for the state selection variables qk(i),

∀k, which maximize the achievable rate and the throughput of the considered relay channel. To
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this end, we define the following auxiliary optimal state selection scheme

Optimal Scheme =



















































q1(i) = 1 if Λ1(i) > Λ3(i)

and Λ1 ≥ Λ2(i)

q2(i) = 1 if Λ2(i) > Λ3(i)

and Λ2 > Λ1(i)

q3(i) = 1 if Λ3(i) ≥ Λ1(i)

and Λ3 ≥ Λ2(i),

(7)

where Λ1(i), Λ2(i), and Λ3(i) will be defined later on, cf. Theorems 1 - 3.

IV. BUFFER-AIDED RELAYING WITH ADAPTIVE-RATE TRANSMISSION

In this section, we provide buffer-aided relaying schemes for the case when both the source and

the relay adapt their transmission rates to the underlaying channels in each time slot. Thereby,

we provide two buffer-aided relaying schemes with adaptive-rate transmission; one in which

both the source and the relay also adapt their transmit powers to the underlying channels in each

time slot, and the other one in which both the source and the relay transmit with fixed-powers

in each time slot.

A. Problem Formulation for Buffer-Aided Relaying with Adaptive-Rate Transmission

Using the state selection variables qk(i), ∀k, and the transmit powers of the source and the

relay for each possible state, we can write the capacities of the S-R and R-D channels in time

slot i, CSR(i) and CRD(i), as

CSR(i) =q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

+ q3(i)log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)

, (8)

CRD(i) =q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)

. (9)

Now, since the source is assumed to be backlogged, we can set the transmission rate at the

source in time slot i, RSR(i), to RSR(i) = CSR(i), where CSR(i) is given by (8). As a result,

the achievable rate on the S-R channel during N → ∞ time slots, denoted by R̄SR, is obtained
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as

R̄SR = lim
N→∞

1

N

N
∑

i=1

RSR(i) (10)

= lim
N→∞

1

N

N
∑

i=1

[

q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

+ q3(i)log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)]

.

On the other hand, the relay can transmit only if it has information stored in its buffer. Let Q(i),

denote the amount of (normalized) information in bits/symbol in the buffer of the relay at the

end (beginning) of time slot i (time slot i + 1). Then, we can set the transmission rate at the

relay in time slot i, RRD(i), to RRD(i) = min{Q(i − 1), CRD(i)}, where CRD(i) is given by

(9). As a result, the achievable rate on the R-D channel during N → ∞ time slots, denoted by

R̄RD, is obtained as

R̄RD = lim
N→∞

1

N

N
∑

i=1

RRD(i)

= lim
N→∞

1

N

N
∑

i=1

[

min
{

Q(i− 1), q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)}]

, (11)

where Q(i) is obtained recursively as

Q(i) = Q(i− 1) +RSR(i)− RRD(i). (12)

Our task in this section is to maximize the achievable rate of the considered relay channel

given by (11). To this end, we use the following Lemma from [6, Theorem 1].

Lemma 1: The data rate extracted from the buffer of the relay and transmitted to the desti-

nation during N → ∞ time slots, R̄RD, is maximized when the following condition holds

lim
N→∞

1

N

N
∑

i=1

[

q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

+ q3(i)log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)]

= lim
N→∞

1

N

N
∑

i=1

[

q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)]

. (13)
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Moreover, when condition (13) holds, the rate, R̄RD, given by (11), simplifies to

(14)R̄RD = lim
N→∞

1

N

N
∑

i=1

[

q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)]

.

Proof: See [6, Theorem 1] for the proof.

Lemma 1 is very convenient since it provides an expression for the maximum data rate, R̄RD,

which is independent of the state of the buffer Q(i). This is because, when condition (13) holds,

the number of time slots for which RRD(i) = min{Q(i − 1), CRD(i)} = Q(i − 1) occurs is

negligible compared to the number of time slots for which RRD(i) = min{Q(i− 1), CRD(i)} =

CRD(i) occurs when N → ∞, see [6]. In other words, when condition (13) holds, we can

consider that the buffer at the relay has enough information almost always.

B. Buffer-Aided Relaying with Adaptive-Rate Transmission and Adaptive-Power Allocation

In this subsection, we assume that the source and the relay can also adapt their transmit powers

in each time slot such that a long-term average power constraint P is satisfied. More precisely,

P
(1)
S (i), P

(3)
S (i), P

(2)
R (i), and P

(3)
R (i) have to satisfy the following constraint

lim
N→∞

1

N

N
∑

i=1

[

q1(i)P
(1)
S (i) + q2(i)P

(3)
S (i)

]

+ lim
N→∞

1

N

N
∑

i=1

[

q2(i)P
(2)
R (i) + q3(i)P

(3)
R (i)

]

≤ P. (15)

Now, employing Lemma 1, we devise the following optimization problem for maximizing the

rate, R̄RD, when N → ∞
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Maximize:
qk(i),P

(k)
S

(i),P
(k)
R

(i),∀i,k

1

N

N
∑

i=1

[

q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)]

Subject to :

C1 :
1

N

N
∑

i=1

[

q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

+ q3(i)log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)]

=
1

N

N
∑

i=1

[

q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

+ q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)]

C2 :qk(i) ∈ {0, 1}, for k = 1, 2, 3

C3 :q1(i) + q2(i) + q3(i) ∈ {0, 1}

C4 :
1

N

N
∑

i=1

[

q1(i)P
(1)
S (i) + q2(i)P

(3)
S (i)

]

+
1

N

N
∑

i=1

[

q2(i)P
(2)
R (i) + q3(i)P

(3)
R (i)

]

≤ P

C5 :P
(k)
S (i) ≥ 0, P

(k)
R (i) ≥ 0, ∀k, (16)

where constraint C1 ensures that (13) holds, C2 constrains the values that qk(i), ∀k, i, can

assume, C3 ensures no more than one state is active at a given time slot i, C4 ensures the joint

source-relay power constraint in (15) holds, and constraint C5 ensure that the transmit powers

are non-negative.

In the following theorem, we provide the solution of problem (16), which maximizes the

achievable rate of the considered buffer-aided FD relay channel with SI for adaptive-rate trans-

mission with adaptive-power allocation.

Theorem 1: The optimal state selection variables qk(i), ∀k, i, found as the solution of (16),

are given in (7), where Λ1(i), Λ2(i), and Λ3(i) are defined as

Λ1(i) = µ log2

(

1 + P
(1)
S (i)γSR(i)

)

− ζP
(1)
S (i), (17)

Λ2(i) = (1− µ) log2

(

1 + P
(2)
R (i)γRD(i)

)

− ζP
(2)
R (i), (18)

Λ3(i) = µ log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)

− ζP
(3)
S (i)

+ (1− µ) log2

(

1 + P
(3)
R (i)γRD(i)

)

− ζP
(3)
R (i). (19)

Moreover, the optimal P
(1)
S (i) and P

(2)
R (i), found as the solution of (16), are given by
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P
(1)
S (i) =







ρ

η
− 1

γSR(i)

0

if γSR(i) > η/ρ

otherwise,
(20)

P
(2)
R (i) =







1
η
− 1

ηRD(i)

0

if γRD(i) > η

otherwise,
(21)

where η ,
ζ ln(2)
1−µ

and ρ ,
µ

1−µ
. Whereas, the optimal P

(3)
S (i) and P

(3)
R (i) are obtained as the

solution of the following system of two equations

−µγRR(i)γSR(i)P
(3)
S (i)

(1 + P
(3)
R (i)γRR(i))(1 + P

(3)
R (i)γRR(i) + P

(3)
S (i)γSR(i))

+
(1− µ)γRD(i)

(1 + P
(3)
R (i)γRD(i))

− ln(2)ζ = 0, (22)

µγSR(i)

(1 + P
(3)
R (i)γRR(i) + P

(3)
S (i)γSR(i))

− ln(2)ζ = 0. (23)

In (22)-(23), µ and ζ are constants found such that C1 and C4 in (16) are satisfied, respectively.

Proof: Please refer to Appendix A for the proof.

C. Buffer-Aided Relaying with Adaptive-Rate Transmission and Fixed-Power Allocation

In this subsection, we assume that the powers at the source and the relay cannot be adapted

to the underlaying channels in each time slot. As a result P
(1)
S (i) = P

(1)
S , P

(2)
R (i) = P

(2)
R ,

P
(3)
S (i) = P

(3)
S , and P

(3)
R (i) = P

(3)
R hold ∀i.

The maximum achievable rate for this case can be found from (16) by setting P
(1)
S (i) = P

(1)
S ,

P
(2)
R (i) = P

(2)
R , P

(3)
S (i) = P

(3)
S , and P

(3)
R (i) = P

(3)
R , ∀i, in (16). As a result, we do not need to

optimize in (16) with respect to these powers. Consequently, the constraints C4 and C5 in (16)

can be removed. Thereby, we get a new optimization problem for fixed-power allocation whose

solutions are provided in the following theorem.

Theorem 2: The state selection variables qk(i), ∀k, i, maximizing the achievable rate of the

considered buffer-aided FD relay channel with SI for adaptive-rate transmission with fixed-power

allocation (i.e., found as the solution of (16) with P
(1)
S (i) = P

(1)
S , P

(2)
R (i) = P

(2)
R , P

(3)
S (i) = P

(3)
S ,

and P
(3)
R (i) = P

(3)
R , ∀i, and constraints C4-C5 removed) are given in (7), where Λ1(i), Λ2(i),

and Λ3(i) are defined as
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Λ1(i) = µ log2

(

1 + P
(1)
S γSR(i)

)

, (24)

Λ2(i) = (1− µ)log2

(

1 + P
(2)
R γRD(i)

)

, (25)

Λ3(i) = µ log2

(

1 +
P

(3)
S γSR(i)

P
(3)
R γRR(i) + 1

)

+ (1− µ)log2

(

1 + P
(3)
R γRD(i)

)

. (26)

In (24)-(26), µ is a constant found such that constraint C1 in (16) holds.

Proof: Since the fixed-power allocation problem is a special case of (16), when P
(1)
S (i) =

P
(1)
S , P

(2)
R (i) = P

(2)
R , P

(3)
S (i) = P

(3)
S , and P

(3)
R (i) = P

(3)
R , ∀i, and when C4 and C5 are removed,

we get the same solution as in (17)-(19), but with ζ set to ζ = 0. This completes the proof.

Remark 1: We note that in the extreme cases when γRR(i) → ∞ and γRR(i) → 0 hold,

i.e., the communication schemes provided in Theorems 1 and 2 converge to the corresponding

schemes in [6] and [5], respectively. In other words, in the extreme cases when we have infinite

and zero SI, the proposed buffer-aided schemes work as buffer-aided HD relaying and ideal FD

relaying, respectively.

D. Practical Estimation of the Necessary Parameters

The proposed state selection scheme, given in (7), requires the computation of Λ1(i), Λ2(i),

and Λ3(i) in each time slot. For the two proposed buffer-aided schemes, these parameters can be

computed at the FD relay with minimum possible channel state-information (CSI) acquisition

overhead. Using Λ1(i), Λ2(i), and Λ3(i), the relay can compute the optimal state selection

variables q1(i), q2(i), and q3(i) using (7), and then feedback the optimal state to the source and

the destination using two bits of feedback information. On the other hand, the computation of

Λ1(i), Λ2(i), and Λ3(i) at the relay requires full CSI of the S-R, R-D, and SI channels, as well

as acquisition of the constant µ. Since µ is actually a Lagrange multiplier, in the following, we

describe a method for estimating this constant in real-time using only current instantaneous CSI

by employing the gradient descent method [33].

In time slot i, we can recursively compute an estimate of the constant µ, denoted by µe(i),

as

µe(i) = µe(i− 1) + δ(i)
[

R̄e
RD(i)− R̄e

SR(i)
]

, (27)

where R̄e
RD(i) and R̄e

SR(i) are real time estimates of R̄RD and R̄SR, respectively, which can be

calculated as
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R̄e
SR(i) =

i− 1

i
R̄e

SR(i− 1) +
1

i
CSR(i), (28)

R̄e
RD(i) =

i− 1

i
R̄e

RD(i− 1) +
1

i
CRD(i). (29)

The values of R̄e
SR(0) and R̄e

RD(0) are initialized to zero. Moreover, δ(i) is an adaptive step

size which controls the speed of convergence of µe(i) to µ, which can be some properly chosen

monotonically decaying function of i with δ(1) < 1.

For the buffer-aided relaying scheme with adaptive-power allocation, proposed in Theorem 1,

in addition to µ, the constant ζ found in (17)-(19) has to be acquired as well. This can be

conducted in a similar manner as the real-time estimation of µ. In particular, in time slot i, we

can recursively compute an estimate of the constant ζ , denoted by ζe(i), as

ζe(i) = ζe(i− 1) + δ(i)
[

P̄e(i)− P
]

, (30)

where

P̄e(i) =
i− 1

i
P̄e(i− 1) +

1

i

[

q1(i)P
(1)
S (i) + q2(i)P

(2)
R (i) + q3(i)

(

P
(3)
R (i) + P

(3)
S (i)

)]

, (31)

where P
(1)
S (i), P

(3)
S (i), P

(2)
R (i), and P

(3)
R (i) are given in Theorem 1.

V. BUFFER-AIDED RELAYING WITH FIXED-RATE TRANSMISSION

In this section, we assume that the transmitting nodes, source and relay, do not have full CSI

of their transmit links and/or have some other constraints that limit their ability to vary their

transmission rates. As a result, we assume that when the source and the relay are selected to

transmit in a given time slot, they transmit with a fixed-rate R0. Moreover, we assume P
(1)
S (i) =

P
(1)
S , P

(2)
R (i) = P

(2)
R , P

(3)
S (i) = P

(3)
S , and P

(3)
R (i) = P

(3)
R , ∀i.

A. Derivation of the Proposed Buffer-Aided Relaying Scheme with Fixed-Rate Transmission

Due to the fixed-rate transmission, outages may occur, i.e., in some time slots the data rate

of the transmitted codeword, R0, might be larger than the underlying AWGN channel capacity

thereby leading to a received codeword which is undecodable at the corresponding receiver. To

model the outages on the S-R link, we define the following auxiliary binary variables

O
(1)
SR(i) =







1 if log2

(

1 + P
(1)
S γSR(i)

)

≥ R0

0 if log2

(

1 + P
(1)
S γSR(i)

)

< R0,
(32)
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O
(3)
SR(i) =















1 if log2

(

1 +
P

(3)
S

γSR(i)

P
(3)
R

γRR(i)+1

)

≥ R0

0 if log2

(

1 +
P

(3)
S

γSR(i)

P
(3)
R

γRR(i)+1

)

< R0.
(33)

Similarly, to model the outages on the R-D link, we define the following auxiliary binary variables

O
(2)
RD(i) =







1 if log2

(

1 + P
(2)
R γRD(i)

)

≥ R0

0 if log2

(

1 + P
(2)
R γRD(i)

)

< R0,
(34)

O
(3)
RD(i) =







1 if log2

(

1 + P
(3)
R γRD(i)

)

≥ R0

0 if log2

(

1 + P
(3)
R γRD(i)

)

< R0.
(35)

Hence, a codeword transmitted by the source in time slot i can be decoded correctly at the

relay if and only if (iff) q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i) > 0 holds. Using O

(1)
SR(i) and O

(3)
SR(i), and

the state selection variables qk(i), ∀k, we can define the data rate of the source in time slot i,

RSR(i), as

RSR(i) =R0

[

q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i)

]

. (36)

In addition, we can obtain that a codeword transmitted by the relay in time slot i can be decoded

correctly at the destination iff q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i) > 0 holds. Similarly, using O

(2)
RD(i)

and O
(3)
RD(i), and the state selection variables qk(i), ∀k, we can define the data rate of the relay

in time slot i, RRD(i), as

RRD(i) =min
{

Q(i− 1), R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]}

, (37)

where

Q(i) = Q(i− 1) +RSR(i)− RRD(i). (38)

The min {} in (37) is because the delay cannot transmit more information than the amount of

information in its buffer Q(i−1). Thereby, the throughputs of the S-R and R-D channels during
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N → ∞ time slots, again denoted by R̄SR and R̄RD, can be obtained as

R̄SR = lim
N→∞

1

N

N
∑

i=1

R0

[

q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i)

]

, (39)

R̄RD = lim
N→∞

1

N

N
∑

i=1

min
{

Q(i− 1), R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]}

. (40)

Our task in this section is to maximize the throughput of the considered relay channel with

fixed-rate transmission given by (40). To this end, we use the following Lemma from [34,

Theorem 1].

Lemma 2: The throughput R̄RD, given by (40), is maximized when the following condition

holds

lim
N→∞

1

N

N
∑

i=1

R0

[

q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i)

]

= lim
N→∞

N
∑

i=1

R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]

. (41)

Moreover, when condition (41) holds, the throughput, R̄RD, given by (40), simplifies to

R̄RD = lim
N→∞

N
∑

i=1

R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]

. (42)

Proof: See [34, Theorem 1] for the proof.

Using Lemma 2, we devise the following throughput maximization problem for the considered

two-hop FD relay channel with SI and fixed-rate transmission

Maximize:
qk(i),∀i,k

1
N

∑N

i=1R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]

Subject to :

C1 : 1
N

∑N

i=1R0

[

q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i)

]

=
∑N

i=1R0

[

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

]

C2 : qk(i) ∈ {0, 1}, for k = 1, 2, 3

C3 : q1(i) + q2(i) + q3(i) ∈ {0, 1}. (43)

In (43), we maximize the throughput R̄RD, given by (42), with respect to the state selection

variables qk(i), ∀k, when conditions (6) and (41) hold, and when qk(i), ∀k, are binary. The

solution of problem (43) leads to the following theorem.
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Theorem 3: The state selection variables qk(i), ∀k, maximizing the throughput of the con-

sidered two-hop FD relay channel with SI and fixed-rate transmission, found as the solution of

(43), are given in (7), where Λ1(i), Λ2(i), and Λ3(i) are defined as

Λ1(i) = µO
(1)
SR(i), (44)

Λ2(i) = (1− µ)O
(2)
RD(i), (45)

Λ3(i) = µO
(3)
SR(i) + (1− µ)O

(3)
RD(i). (46)

In (44)-(46), µ is a constant found such that constraint C1 in (43) holds.

Proof: Please refer to Appendix B for the proof.

B. Practical Estimation of the Necessary Parameters

The fixed-rate transmission scheme, proposed in Theorem 3, requires the calculation of the

parameter µ. This parameter can be obtained theoretically by representing constraint C1 in (43)

as

E
{

q1(i)O
(1)
SR(i) + q3(i)O

(3)
SR(i)

}

= E
{

q2(i)O
(2)
RD(i) + q3(i)O

(3)
RD(i)

}

, (47)

where E {.} denotes statistical expectation. Then, using the probability distribution functions

(PDFs) of the S-R, R-D, and SI channels, the parameter µ can be found as the solution of (47).

Note that solving (47) requires knowledge of the PDFs of the channels. However, the scheme

proposed in Theorem 3 can still operate without any statistical knowledge in the following

manner. We apply (27) to obtain an estimate of µ for time slot i, denoted by µe(i), where

CSR(i) and CRD(i) in (28) and (29) are replaced by q1(i)O
(1)
SR(i)+q3(i)O

(3)
SR(i) and q2(i)O

(2)
RD(i)+

q3(i)O
(3)
RD(i), respectively. We now let µe(i) to take any value in the range [0, 1]. Then, when two

state selection variables both assume the value one, according to (7), we select one at random

with equal probability to assume the value one and set the other state selection variable to zero.

For this scheme, we choose δ(i) to vary with i only during the first several time slots, and then

we set it to a constant for the remaining time slots.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed buffer-aided schemes with

adaptive reception-transmission at the FD relay for the two-hop FD relay channel with SI, and
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compare it to the performance of several benchmark schemes. To this end, we first define the

system parameters, then introduce the benchmark schemes and a delay-constrained buffer-aided

relaying scheme, and finally present the numerical results.

A. System Parameters

For the presented numerical results, the mean of the channel gains of the S-R and R-D links

are calculated using the standard path loss model as

E{|hL(i)|
2} =

(

c

4πfc

)2

d−α
L , for L ∈ {S-R,R-D}, (48)

where c is the speed of light, fc is the carrier frequency, dL is the distance between the transmitter

and the receiver of link L, and α is the path loss exponent. In this section, we set α = 3, fc = 2.4

GHz, and dL = 500 m for L ∈ {S-R,R-D}. Moreover, we assume that the transmit bandwidth

is 200 kHz, and the noise power per Hz is −170 dBm. Hence, the total noise power for 200

kHz is obtained as −117 dBm. On the other hand, the value of E{|hRR(i)|
2} is set to range

between −100 dB to −140 dB. Note that E{|hRR(i)|
2} can be considered as the SI suppression

factor of the corresponding SI suppression scheme.

B. Benchmark Schemes

In the following, we introduce three benchmark schemes which will be used for benchmarking

the proposed buffer-aided relaying schemes. For the benchmark schemes PS(i) = PS and PR(i) =

PR, ∀i, is assumed.

Benchmark Scheme 1 (Buffer-aided HD relaying with adaptive reception-transmission): The

achievable rate of employing an HD relay and using the buffer-aided HD relaying scheme with

adaptive reception-transmission proposed in [6], is given in [6, Section III-D].

Benchmark Scheme 2 (Conventional FD relaying with a buffer): In the conventional FD

relaying scheme, the FD relay simultaneously transmits and receives during all time slots with

PS = tP and PR = (1− t)P . Because there is a buffer at the FD relay, the received information

can be stored and transmitted in future time slots. As a result the achieved data rate during
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N → ∞ time slots is given by

RFD,2 =min

{

lim
N→∞

1

N

N
∑

i=1

log2

(

1 +
tPγSR(i)

(1− t)PγRR(i) + 1

)

,

lim
N→∞

1

N

N
∑

i=1

log2 (1 + (1− t)PγRD(i))

}

. (49)

We note that the conventional FD relaying scheme without a buffer achieves a worse performance

than the conventional FD relaying scheme with a buffer. As a result, this scheme is not used as

a benchmark.

Benchmark Scheme 3 (FD relaying with an ideal FD relay without SI): This is identical to

the Benchmark Scheme 2, except that γRR(i) is set to zero, i.e, to −∞ dB.

C. Buffer-Aided Relaying Schemes for Delay-Constrained Transmission

The proposed scheme in (7) gives the maximum achievable rate and the maximum throughput,

however, it cannot fix the delay to a desired level. In the following, similar to [35], we propose

a scheme for the state selection variables qk(i), ∀k, which holds the delay at a desired level.

The average delay of the considered network is given by Little’s Law, as

E{T (i)} = lim
N→∞

∑N

i=1Q(i)
∑N

i=1RSR(i)
, (50)

where RSR(i) and Q(i) are the transmission rate of the source and the queue length in time slot

i, respectively. The rate RSR(i) is defined in (8) for adaptive-rate transmission and in (36) for

fixed-rate transmission. Moreover, Q(i) is defined in (12) for adaptive-rate transmission and in

(38) for fixed-rate transmission.

For the proposed delay-constrained scheme, we continue to use the general state selection

scheme in (7), where Λ1(i), Λ2(i), and Λ3(i), are calculated using (17)-(19) for adaptive-rate

transmission with adaptive-power allocation, using (24)-(26) for adaptive-rate transmission with

fixed-power allocation, and using (44)-(46) for fixed-rate transmission. Note that Λ1(i), Λ2(i),

and Λ3(i) in (17)-(19), (24)-(26), and (44)-(46) are all function of the parameter µ. In contrary

to the proposed buffer-aided schemes in Theorems 1-3, where µ is found to satisfy the constant

C1 in (16) and (43), in the buffer-aided relaying scheme for delay-constrained transmission, we

use µ to ensure that the system achieves a desired average delay. To this end, µ is calculated as
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follows. Let us define T0 as the desired average delay constraint of the considered relay network.

Then, in time slot i, we can recursively compute an estimate of the constant µ, denoted by µe(i),

as

µe(i) = µe(i− 1) + δ(i)

[

T0 −
Q(i)

R̄e
SR(i)

]

, (51)

where Q(i) is the queue length, defined in (12) and (38) for adaptive-rate transmission with

fixed- and adaptive-power allocation schemes and fixed-rate transmission scheme, respectively.

Furthermore, R̄e
SR(i) is a real time estimate of R̄SR, calculated using (28), and initialized to zero

for i = 0, i.e., R̄e
SR(0) = 0. Moreover, δ(i) is an adaptive step function, which can be chosen to

be a properly monotonically decaying function of i with δ(1) < 1.

D. Numerical Results

All of the presented results in this section are generated for Rayleigh fading by numerical

evaluation of the derived results and are confirmed by Monte Carlo simulations.

In Fig. 2, the rates achieved using the proposed FD buffer-aided scheme for adaptive-rate

transmission with adaptive-power allocation, adaptive-rate transmission with fixed-power alloca-

tion, and fixed-rate transmission are compared with the benchmark schemes, defined in Section

VI-B, as a function of the average consumed power, P . The average gain of the SI channel in

this numerical example is set to |hRR(i)|
2 = −133 dB. For the proposed scheme with adaptive-

rate transmission with fixed-power allocation and fixed-rate transmission we set P
(1)
S (i) = P ,

P
(2)
R (i) = P , P

(3)
S (i) = tP and P

(3)
R (i) = (1 − t)P , where t = 0.5, ∀i. Moreover, for the

proposed scheme with fixed-rate transmission the value of R0 is optimized numerically, for a

given average power P , such that the throughput is maximized. As can be seen clearly from

Fig. 2, the proposed buffer-aided schemes with and without power allocation achieve substantial

gains compared to the benchmark schemes. For example, the proposed adaptive-rate transmission

with adaptive-power allocation scheme has a power gain of about 2 dB, 6 dB and 9 dB compared

to buffer-aided HD relaying for rates of 2, 5, and 7 bits per symbol, respectively. Moreover, as can

be seen from Fig. 2, the performance of the conventional FD relaying scheme, i.e, Benchmark

Scheme 2, is very poor. In fact, even the proposed fixed-rate transmission scheme outperforms

the conventional FD scheme for P > 35 dBm. This numerical result clearly shows the significant

gains that can be achieved with the proposed buffer-aided schemes compared to previous schemes
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Fig. 2. Data rate vs. average consumed power of the proposed schemes and the benchmark schemes.

available in the literature.

In Fig. 3, we compare the achievable rates of the proposed buffer-aided scheme for adaptive-

rate transmission with fixed-power allocation, with the capacity of the ideal two-hop FD relay

channel without SI and with the rate achieved by buffer-aided HD relaying as a function of the

average transmit power at the source node, where P
(1)
S = P

(3)
S = PS is adopted, for different

values of the SI. In this example, the power of the relay, P
(2)
R = P

(3)
R = PR, is set to 25 dBm.

This example models an HD base-station which can vary its average power PS, that is helped

by an FD relay with fixed average power PR = 25 dBm to transmit information to a destination.

Since the transmitted power at the relay node is fixed, the maximum possible data rate on the

R-D channel is around 6.2 bits per symbol. As can be observed from Fig. 3, the performance of

the proposed FD buffer-aided scheme is considerably larger than the performance of buffer-aided

HD relaying when the transmit power at the source is larger than 25 dBm. For example, for 5

bits per symbol, the power gains are approximately 30 dB, 25 dB, 20 dB, and 15 dB compared

to HD relaying for SI values of -140 dB, -130 dB, -120 dB, and -110 dB, respectively. We

can see that the proposed scheme works much better (i.e., 15 dB gain) than the best known
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Fig. 3. Data rate vs. the average consumed power at the source node of the proposed buffer-aided scheme for adaptive-rate

transmission with fixed-power allocation and the benchmark schemes when the average power at the relay is set to 25 dBm.

HD buffer-aided relaying scheme for a fair SI level of −110 dB, which shows that indeed it

is beneficial for FD relays to be employed around HD base stations in order to increase their

performance significantly.

In Fig. 4, we demonstrate the achievable rate of the proposed delay-constrained buffer-aided

scheme as a function of the average desired delay, T0, and compare it with the maximum

achievable rate obtained with the scheme in Theorem 2, which does not fix the delay. For

this numerical example, we set P
(1)
S (i) = 24 dBm, P

(2)
R (i) = 24 dBm, P

(3)
S (i) = 21 dBm and

P
(3)
R (i) = 21 dBm, ∀i. We can see from Fig. 4 that by increasing the average delay, T0, both

data rates converge fast. In fact, for a delay of 3 time slots, there is only 7% loss compared to

the maximum rate. This shows that the proposed delay-constrained buffer-aided scheme achieves

rate close to the maximum possible rate for a very small delay.

In Fig. 5, we plot the average delay of the proposed delay-constrained scheme until time slot

i, for the case when T0 = 5 time slots, as a function of time slot i. Fig. 5 reveals that the average

delay until time slot i converges very fast to T0 by increasing i. Moreover, when the average

delay converges to its desired level, it has relatively small fluctuations around it. This shows that
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the proposed delay-constrained scheme is very effective in reaching the desired level of delay.

VII. CONCLUSION

In this paper, we proposed three buffer-aided relaying schemes with adaptive reception-

transmission at the FD relay for the two-hop FD relay channel with SI for the cases of adaptive-

rate transmission with adaptive-power allocation, adaptive-rate transmission with fixed-power

allocation, and fixed-rate transmission, respectively. The proposed schemes significantly improve

the over-all performance by optimally selecting the FD relay to either receive, transmit, or

simultaneously receive and transmit in a given time slot based on the qualities of the receiving,

transmitting, and SI channels. Also, we proposed a relatively fast and practical buffer-aided

scheme that holds the delay around a desirable value. Our numerical results have shown that

significant performance gains are achieved using the proposed buffer-aided relaying schemes

compared to conventional FD relaying, where the FD relay is forced to always simultaneously

receive and transmit, and to buffer-aided HD relaying, where the HD relay cannot simultaneously

receive and transmit. This means that buffer-aided relaying should become an integral part of



23

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

10

Time slot i

A
v
er
a
g
e
d
el
a
y
u
n
ti
ll
ti
m
e
sl
o
t
i

 

 
Proposed delay constrained scheme

T0 = 5 time slots

Fig. 5. Average delay until time slot i vs. time slot i, for proposed scheme with delay-constrained transmission compared to

fixed desired value, T0.

future FD relaying systems, i.e., i.e., that FD relaying systems without buffer-aided relaying

miss-out on significant performance gains.

APPENDIX

A. Proof of Theorem 1

We relax constraints C2 and C3 such that 0 ≤ qk(i) ≤ 1, ∀k, and 0 ≤ q1(i)+q2(i)+q3(i) ≤ 1,

and ignore constraint C5. Then, we use the Lagrangian method for solving this optimization
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problem. Thereby, with some simplification, we can obtain the Lagrangian function, L, as

L = −q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

− q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)

−µ

[

− q2(i)log2

(

1 + P
(2)
R (i)γRD(i)

)

− q3(i)log2

(

1 + P
(3)
R (i)γRD(i)

)

+q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

+ q3(i)log2

(

1 +
P

(3)
S

(i)γSR(i)

P
(3)
R

(i)γRR(i)+1

)]

ζ
(

q1(i)P
(1)
S (i) + q3(i)P

(3)
S (i) + q2(i)P

(2)
R (i) + q3(i)P

(3)
R (i)

)

−λ1(i)q1(i)− λ2(i)(1− q1(i))− λ3(i)q2(i)

−λ4(i)(1− q2(i))− λ5(i)q3(i)− λ6(i)(1− q3(i))

− λ7(i)(q1(i) + q2(i) + q3(i))− λ8(i)(1− (q1(i) + q2(i) + q3(i))), (52)

where µ, ζ ≥ 0 and λk(i) ≥ 0, are the Lagrangian multipliers. By differentiating L with respect

to P
(k)
S (i) and P

(k)
R (i), ∀k, and then setting the result to zero, we obtain

dL

dP
(1)
S (i)

=
µq1(i)γSR(i)

ln(2)(1 + P
(1)
S (i)γSR(i))

− ζq1(i) = 0, (53)

dL

dP
(2)
R (i)

=
(1− µ)q2(i)γRD(i)

ln(2)(1 + P
(2)
R (i)γRD(i))

− ζq2(i) = 0, (54)

dL

dP
(3)
S (i)

=
µq3(i)γSR(i)

ln(2)(1 + P
(3)
R (i)γRR(i) + P

(3)
S (i)γSR(i))

− ζq3(i) = 0, (55)

dL

dP
(3)
R (i)

=
(1− µ)q3(i)γRD(i)

ln(2)(1 + P
(3)
R (i)γRD(i))

− ζq3(i)

−
µq3(i)γRR(i)γSR(i)P

(3)
S (i)

ln(2)(1 + P
(3)
R (i)γRR(i))(1 + P

(3)
R (i)γRR(i) + P

(3)
S (i)γSR(i))

= 0. (56)

Now, we calculate P
(k)
S (i) and P

(k)
R (i), ∀k, based on equation (53)-(56), and the following

three different available states.

q1(i) = 1: Since q1(i) = 1, we set q2(i) = 0 and q3(i) = 0. As a result (53) becomes

dL

dP
(1)
S (i)

=
µγSR(i)

ln(2)(1 + P
(1)
S (i)γSR(i))

− ζ = 0. (57)

Solving (57), we can obtain P
(1)
S (i) as in (20).

q2(i) = 1: Since q2(i) = 1, we set q1(i) = 0 and q3(i) = 0. As a result, (54) becomes

dL

dP
(2)
R (i)

=
(1− µ)γRD(i)

ln(2)(1 + P
(2)
R (i)γRD(i))

− ζ = 0. (58)
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Solving (58), we can obtain P
(2)
R (i), as in (21).

q3(i) = 1: Since q3(i) = 1, we set q1(i) = 0 and q2(i) = 0. As a result, (55) and (56) simplify

to (22) and (23), respectively. By solving (22) and (23), we can obtain P
(3)
S (i) and P

(3)
R (i). We

note that, although in this case there is a closed form solution for P
(3)
S (i) and P

(3)
R (i), since the

solution is very long, we have decided not to show it in this paper.

The Lagrangian function, L, given by (52) is bounded below if and only if

− µ log2

(

1 + P
(1)
S (i)γSR(i)

)

+ ζP
(1)
S (i)− λ1(i) + λ2(i)− λ7(i) + λ8(i) = 0, (59)

− (1− µ) log2

(

1 + P
(2)
R (i)γRD(i)

)

+ ζP
(2)
R (i)− λ3(i) + λ4(i)− λ7(i) + λ8(i) = 0, (60)

− (1− µ) log2

(

1 + P
(3)
R (i)γRD(i)

)

− µ log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)

+ ζP
(3)
S (i) + ζP

(3)
R (i)− λ5(i) + λ6(i)− λ7(i) + λ8(i) = 0. (61)

We define −λ7(i) + λ8(i) , β(i), and find the system selection schemes for the three different

available cases as follows:

q1(i) = 1: Since q1(i) = 1, we set q2(i) = 0 and q3(i) = 0. As a result, we have λ1(i) = 0,

λ4(i) = 0 and λ6(i) = 0 (by complementary slackness in KKT condition), which using them

we can rewrite (59), (60), and (61), as

µ log2

(

1 + P
(1)
S (i)γSR(i)

)

− ζP
(1)
S (i)− β(i) > 0, (62)

(1− µ) log2

(

1 + P
(2)
R (i)γRD(i)

)

− ζP
(2)
R (i)− β(i) < 0,

And (1− µ) log2

(

1 + P
(3)
R (i)γRD(i)

)

+ µ log2

(

1 +
P

(3)
S

(i)γSR(i)

P
(3)
R

(i)γRR(i)+1

)

−ζP
(3)
S (i)− ζP

(3)
R (i)− β(i) < 0,

respectively.

q2(i) = 1: Since q2(i) = 1, we set q1(i) = 0 and q3(i) = 0. As a result, we have λ2(i) = 0,
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λ3(i) = 0 and λ6(i) = 0, which using them we can rewrite (59), (60), and (61), as

µ log2

(

1 + P
(1)
S (i)γSR(i)

)

− ζP
(1)
S (i)− β(i) < 0, (63)

(1− µ) log2

(

1 + P
(2)
R (i)γRD(i)

)

− ζP
(2)
R (i)− β(i) > 0,

And (1− µ) log2

(

1 + P
(3)
R (i)γRD(i)

)

+ µ log2

(

1 +
P

(3)
S

(i)γSR(i)

P
(3)
R

(i)γRR(i)+1

)

−ζP
(3)
S (i)− ζP

(3)
R (i)− β(i) < 0,

respectively.

q3(i) = 1: Since q3(i) = 1, we set q1(i) = 0 and q2(i) = 0. As a result, we have λ2(i) = 0,

λ4(i) = 0 and λ5(i) = 0, which using them we can rewrite (59), (60), and (61), as

µ log2

(

1 + P
(1)
S (i)γSR(i)

)

− ζP
(1)
S (i)− β(i) < 0, (64)

(1− µ) log2

(

1 + P
(2)
R (i)γRD(i)

)

− ζP
(2)
R (i)− β(i) < 0,

And (1− µ) log2

(

1 + P
(3)
R (i)γRD(i)

)

+ µ log2

(

1 +
P

(3)
S

(i)γSR(i)

P
(3)
R

(i)γRR(i)+1

)

−ζP
(3)
S (i)− ζP

(3)
R (i)− β(i) > 0,

respectively.

By substituting the corresponding terms in (62), (63), and (64) by (17), (18), and (19), we

can derive the optimal state selection scheme in Theorem 1. This completes the proof.

B. Proof of Theorem 3

We use the Lagrangian method for solving (43). With some simplification, we can obtain the

Lagrangian function as

L =− q1(i)µR0O
(1)
SR(i)− q2(i)(1− µ)R0O

(2)
RD(i)− q3(i)

[

µR0O
(3)
SR(i) + (1− µ)R0O

(3)
RD(i)

]

− q1(i)log2

(

1 + P
(1)
S (i)γSR(i)

)

− q3(i)log2

(

1 +
P

(3)
S (i)γSR(i)

P
(3)
R (i)γRR(i) + 1

)

]

− λ1(i)q1(i)− λ2(i)(1− q1(i))− λ3(i)q2(i)

− λ4(i)(1− q2(i))− λ5(i)q3(i)− λ6(i)(1− q3(i))

− λ7(i)(q1(i) + q2(i) + q3(i))− λ8(i)(1− (q1(i) + q2(i) + q3(i))), (65)
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where µ ≥ 0 and λk(i) ≥ 0 are the Lagrangian multipliers. Similar to Appendix A, we can find

qk(i), ∀k, which maximize (65) as follows. To this end, in the Lagrangian function, L, given

by (65), we define −λ7(i) + λ8(i) , β(i), and find the system selection schemes for the three

different available cases as follows:

q1(i) = 1: Since q1(i) = 1, we set q2(i) = 0 and q3(i) = 0. As a result, the conditions which

maximize (65) in this case are

µR0O
(1)
SR(i)− β(i) > 0,

And (1− µ)R0O
(2)
RD(i)− β(i) < 0,

And
[

µR0O
(3)
SR(i) + (1− µ)R0O

(3)
RD(i)

]

− β(i) < 0. (66)

q2(i) = 1: Since q2(i) = 1, we set q1(i) = 0 and q3(i) = 0. For maximizing (65), the following

conditions must be held

µR0O
(1)
SR(i)− β(i) < 0,

And (1− µ)R0O
(2)
RD(i)− β(i) > 0,

And
[

µR0O
(3)
SR(i) + (1− µ)R0O

(3)
RD(i)

]

− β(i) < 0. (67)

q3(i) = 1: Since q3(i) = 1, we set q1(i) = 0 and q2(i) = 0. Finally, the conditions which

maximize (65), in this case are

µR0O
(1)
SR(i)− β(i) < 0,

And (1− µ)R0O
(2)
RD(i)− β(i) < 0,

And
[

µR0O
(3)
SR(i) + (1− µ)R0O

(3)
RD(i)

]

− β(i) > 0. (68)

By substituting the corresponding terms in (66), (67), and (68) by (44), (45), and (46), and

dividing by the common term R0, we obtain the optimal state selection scheme in Theorem 3.

This completes the proof.
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