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Abstract—We consider the content delivery problem in a
fading multi-input single-output channel with cache-aided users.
We are interested in the scalability of the equivalent content
delivery rate when the number of users, K, is large. Analytical
results show that, using coded caching and wireless multicasting,
without channel state information at the transmitter (CSIT),
linear scaling of the content delivery rate with respect to K

can be achieved in some different ways. First, if the multicast
transmission spans over L independent sub-channels, e.g., in
quasi-static fading if L = 1, and in block fading or multi-carrier
systems if L > 1, linear scaling can be obtained when the product
of the number of transmit antennas and the number of sub-
channels scales logarithmically with K. Second, even with a fixed
number of antennas, we can achieve the linear scaling with a
threshold-based user selection requiring only one-bit feedbacks
from the users. When CSIT is available, we propose a mixed
strategy that combines spatial multiplexing and multicasting.
Numerical results show that, by optimizing the power split
between spatial multiplexing and multicasting, we can achieve
a significant gain of the content delivery rate with moderate
cache size.

Index Terms—content delivery, coded caching, massive MIMO,
broadcast channels.

I. INTRODUCTION

One critical issue in future wireless network is the expansion

of wireless and mobile data traffic, which is predicted to

account for two-thirds of total data traffic by 2020 [4]. Massive

MIMO, exploiting a huge number of antennas at the base

station has been considered as a promising candidate to

deal with the traffic expansion (see, e.g., [5] and references

therein). By creating parallel interference-free streams via

spatial precoding (e.g. zero-forcing), multiple users can be

simultaneously served. If the number of transmit antennas can

scale with the number of users K , the total transmission time

to serve K users shall not increase with K and the throughput

of the system increases linearly with K . Another emerging

solution, motivated by the ever-growing cheap on-board stor-

age memory as well as the skewness of the video traffic, is

edge caching [6], [7], [8], [9]. Namely, the traffic during peak

hours can be substantially offloaded if we prefetch popular

contents at the edge of the network. Recently, it has been

shown by Maddah-Ali and Niesen that coded caching enables
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to achieve a constant number of total multicast transmissions

to satisfy the demand of K users when K is large [6]. In

contrast to parallel streams in massive MIMO, a careful design

of cache placement enables to create a single stream which is

simultaneously useful to multiple users.

A common perception is that either massive MIMO or coded

caching is potentially a scalable solution alone with respect

to (w.r.t.) the number of users. However, the scalability of

these solutions actually relies on some ideal assumptions that

may not hold in real systems. On one hand, the scalability of

massive MIMO hinges on: 1) the linearly increasing number

of the transmit antennas w.r.t. the number of users, and

2) the accuracy of CSIT. On the other hand, the scalability

of coded caching relies on a non-vanishing multicast rate

of the underlying channel. It should be remarked that the

pioneering work [6] and many follow-up extensions, e.g., [10],

[11], [12], [13], ideally assumed an error-free shared link,

which obviously fulfills the latter condition. Therefore, it is

of practical and theoretical interest to address the following

question from the engineering perspective: is it beneficial to

use both technologies?

In this paper, we investigate the scalability of the two

solutions in the following simple setting. We consider the

content delivery network where a nt-antenna base station

serves K single-antenna users over an independent and iden-

tically distributed (i.i.d.) Rayleigh fading downlink channel.

We consider L-parallel channel, where the transmission of a

codeword spans over L ≥ 1 interference-free sub-channels,

such that in each sub-channel, the signal is perturbed by

independent fading coefficients and independent noise. The

case L = 1, i.e., quasi-static fading channel, corresponds to

low-mobility scenario or the latency constrained applications

such as the video streaming with independently coded/decoded

chunks. The case L > 1 corresponds to higher mobility

scenario or delay-tolerant applications where a codeword spans

over a number of fading blocks, or multi-carrier systems where

a codeword spans over a number of sub-carriers. Under this

setting, we wish to study the complementary roles of massive

MIMO (with spatial multiplexing) and coded caching (with

multicasting). To this end, we define the equivalent content

delivery rate as a unified metric of the throughput performance.

Our main focus is the scalability, i.e., the linear scaling of

equivalent content delivery rate of two solutions in the large

K regime. The main findings of the current work are three-fold

and summarized below:

1) We reveal two different ways that can guarantee the scal-

ability of the content delivery system without CSIT while

http://arxiv.org/abs/1703.06538v3
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building on multicasting and coded caching (Theorem 1):

a) using a large number nt of transmit antennas and/or

spanning the transmission over a large number L
of independent sub-channels: we show that Lnt ≥
ln(K) +O(1) is sufficient;

b) user selection scheduling with an arbitrary number of

transmit antennas in quasi-static fading channel: we

show that one-bit feedback is enough;

2) We show that massive MIMO with zero-forcing precod-

ing using asymptotically more transmit antennas than

users can also achieve linear delivery rate scaling as long

as the CSIT error variance is bounded (Proposition 4).

3) In order to further improve the overall content delivery

rate, we propose to combine multicasting and spatial

multiplexing with the optimal power split. The analysis

together with numerical examples reveals that the pro-

posed mixed scheme coincides with multicasting if the

memory size is large enough or the total power is small

(Proposition 5, Remark VI.1).

We remark that some results (Propositions 1, 2, 4, 5) in the

paper can be used for rate scaling analysis of communica-

tion systems with multicasting and/or spatial multiplexing in

general, i.e., even outside the scope of cache-aided content

delivery.

The interplay between spatial multiplexing gain and coded

caching gain in MIMO channels has been studied in recent

works, including our earlier works [3], [2], [1], as well

as [14], [15], [16]. The work [14], following the ideas of

[17], proposed to deliver multiple coded multicast packets

simultaneously by multiplexing them assuming full CSIT. The

works [15], [16] proposed to deliver one part of the requested

file by multiplexing and the other part by multicasting in

parallel using rate splitting. It is remarked that these works are

different from ours in their underlying assumptions, designs,

and objectives. First, when combining multicasting and spatial

multiplexing, we focus mainly on the regime of massive

MIMO where the number of transmit antennas grows with

the number of users, while [14], [15], [16] study the case of

nt ≤ K . Second, our performance measure is the scaling of

the long-term equivalent content delivery rate in the large K
regime. In [14], the similar content delivery rate is studied but

focusing rather on the large SNR regime to see the degree-

of-freedom gain, while the total transmission time is used in

[15], [16]. Finally, we restrict here to the off-the-shell place-

ment strategies and assume that two independent information

flows can be delivered by multicasting and multiplexing. On

the other hand, [14] and [15], [16] propose some designs

reflecting the network structure and CSIT quality, respectively,

and let both multicasting and multiplexing contribute to one

information flow.

The remainder of the paper is organized as follows. The

system model and performance metric is presented in Sec-

tion II. Some mathematical preliminaries are provided in

Section III. The scalability of the content delivery system

with multicasting and with spatial multiplexing is discussed

in Section IV and Section V, respectively. In Section VI, we

propose the mixed delivery with simultaneous multicasting and

spatial multiplexing to improve the content delivery rate, and

derive the optimal power split. Relevant numerical results are

inserted in Section IV and Section VI. The paper is concluded

in Section VII. Some of the proofs are presented in the main

text whereas the more technical details are deferred to the

appendix.

Notations: For random variables, we use upper case non-

italic letters, e.g., X, for scalars, upper case non-italic bold

letters, e.g., VVV, for vectors, and upper case letter with bold and

sans serif fonts, e.g., MMM, for matrices. Deterministic quantities

are denoted with italic letters, e.g., a scalar x, a vector vvv,

and a matrix MMM . The Euclidean norm of a vector is denoted

by ‖vvv‖. The transpose, conjugate, and conjugate transpose of

MMM are denoted MMM T

, MMM∗
, and MMMH

, respectively. We let x+ :=
max {x, 0}. The indicator 1{A} takes value 1 if A is true and 0
otherwise. We use [K] to denote the set of integers {1, . . . ,K}.

The convergence in distribution, in probability, and almost

sure convergence are denoted
d
−→,

p
−→, and

a.s.
−−→, respectively.

Gamma(k, θ) denotes the Gamma distribution with shape

k and scale θ, while Exp(λ) the exponential distribution

with rate parameter λ. The Gamma function is denoted by

Γ(x) =
∫∞

0 zx−1e−zdz, while Γ(x, t) =
∫∞

t zx−1e−zdz and

γ(x, t) =
∫ t

0
zx−1e−zdz are the upper and lower incomplete

Gamma functions, respectively.

The asymptotic notations O, o,Ω,Θ,∼ are w.r.t. K , unless

stated otherwise. Specifically, given two functions f and g, we

say: 1) f(K) = O(g(K)) if there exists a positive constant

c and an integer K0 such that |f(K)| ≤ c|g(K)|, ∀K ≥ K0;

2) f(K) = o(g(K)) if lim
K→∞

f(K)
g(K) = 0; 3) f(K) = Ω(g(K))

if g(K) = O(f(K)); 4) f(K) = Θ(g(K)) if both f(K) =
O(g(K)) and g(K) = O(f(K)); and 5) f(K) ∼ g(K) if

lim
K→∞

f(K)
g(K) = 1.

II. SYSTEM MODEL

A. Content delivery model

We consider a content delivery system where a content

server is connected to K users through a wireless downlink

channel. This server has access to a library of N files, assumed

to be equally popular and with equal size F bits for simplicity.

Each user k is equipped with a cache of size MF bits,

where M ≥ 1 denotes the cache size measured in files.

Prior to the actual request, each user can pre-fill their cache

during off-peak hours, with supposedly negligible cost. We

assume that each user k ∈ [K] has a sequence of demands

d
(1)
k , d

(2)
k , . . . , and one demand from each user is served at a

time. Upon the reception of a collection of K requests from

the users, and based on the cached contents available to each

user, the server encodes and sends the requested files through

the delivery channel. In [6], [10], Maddah-Ali and Niesen

proposed a caching/delivery scheme for error-free multicast

delivery channels. With such a scheme, known as coded

caching, the number of multicast transmissions, normalized
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by the file size, needed to satisfy the demands of K users is

T (m,K) :=
{

(1−m) 1
1/K+m , for centralized caching,

(1−m) 1−(1−m)K

m , for decentralized caching,
(1)

where m := M
N is the normalized cache memory. The striking

result is that the number of required transmissions converges

to a constant as K grows, i.e., T (m,K)
K→∞
−−−−→ 1−m

m , for both

centralized and decentralized caching. In other words, coded

caching is scalable in a system when the delivery channel is

an error-free multicast channel.

B. Delivery channel model

In this work, we consider a multi-antenna downlink channel,

in which the content server is placed in a base station with

nt transmit antennas, and each of the K users is equipped

with a single antenna. We consider L-parallel channel in which

the transmission spans over L independent coherence resource

blocks (so-called sub-channels), with an emphasis on the case

L = 1.When L = 1, the channel is quasi-static fading such

that the channel coefficients remain unchanged during the

transmission of a whole coded block. In this case, receiver k
at time t has the observation

Yk[t] = HHHT

k xxx[t] + Zk[t], t = 1, 2, . . . , n,

where xxx[t] ∈ Cnt×1 is the input vector at time t, with the

average power constraint 1
n

∑n
t=1 ‖xxx[t]‖

2 ≤ P ; the additive

noise process {Zk[t]} is assumed to be spatially and tempo-

rally white with normalized variance, i.e., Zk[t] ∼ CN (0, 1),
k ∈ [K]. Since the additive noise power is normalized, the

transmit power P is identified with the total signal-to-noise

ratio (SNR) throughout the paper. Hereafter, we omit the

time index for simplicity. For tractability, we assume that

the channel is independent and symmetric across users with

Rayleigh fading, i.e., HHHk ∼ CN (0, IIInt
), k ∈ [K]. The whole

channel matrix is denoted by HHH := [HHH1 · · · HHHK ]T. Then, in the

general case L ≥ 1, a codeword can span over L sub-channels,

such that both the fading coefficients and additive noise are

independent but have the same statistics across sub-channels.

In practice, the channel state information (CSI) is not

perfectly known at the transmitter, typically due to limited

resource for uplink channel training in TDD (time division

duplex) or limited channel feedback bandwidth in FDD (fre-

quency division duplex). A common model for imperfect CSIT,

modeling the minimum-mean-square-error (MMSE) channel

estimation, is

HHH = ĤHH+ H̃HH, (2)

where ĤHH and H̃HH are the mutually uncorrelated estimate and

estimation error, with each entry of variance 1 − σ2 and

σ2, respectively. Since we assume Rayleigh fading, ĤHH and H̃HH

are independent and circularly symmetric Gaussian distributed.

We assume that CSI is perfect at the receivers.

C. Equivalent content delivery rate and scalability

In practice, we are interested in how fast the requested

content can be available to the users. To that end, we formally

define the long-term performance metric:

Definition 1. The equivalent content delivery rate (or, simply,

content delivery rate or sum rate) is the number of total

demanded information bits, including those already in the

cache, that can be delivered per unit of time in average.

For example, when M = N , the equivalent content delivery

rate is ∞, since each user can have any content instantly.

Let R̄0 be the average multicast rate of the delivery channel

in bits/second/Hz. To satisfy the demands of K users, i.e.,

to complete in total KF demanded bits, we need to send

T (m,K)F bits, which takes T (m,K)F/R̄0 units of time. It

means that the equivalent content delivery rate of the system

with coded caching is

Rmul =
K

T (m,K)
R̄0(K,P ) bits/second/Hz. (3)

Since the natural logarithm is more convenient for our pur-

poses, we shall use “nats” instead of “bits” in the rest of the

paper, unless otherwise specified. Note that the formula (3),

however, remains the same with a simple change of unit.

The system is scalable with the number K of users if the

equivalent content delivery rate scales at least linearly with K
when K grows. With coded caching, it is enough to have a

non-vanishing average multicast rate R̄0(K,P ).

III. SOME MATHEMATICAL PRELIMINARIES

In this section, we provide some mathematical preliminaries

that will be useful to prove the main results. Sketches of proof

will be provided in Appendix A.

Lemma 1 (The Chernoff bound). For N independent random

variables Xn, n = 1, . . . , N ,

P

(

N
∑

n=1

Xn ≤ x

)

≤ eνx
N
∏

n=1

E
[

e−νXn
]

, (4)

P

(

N
∑

n=1

Xn ≥ x

)

≤ e−νx
N
∏

n=1

E
[

eνXn
]

, ∀ ν > 0. (5)

Lemma 2. Let FX(x) be the cumulative distribution func-

tion (CDF) of random variable X ∼ Gamma(nt,
1
nt
),1 then

FX(η) ≤ e−nt , with η ≈ 0.1586. (6)

Lemma 3. For K i.i.d. non-negative random variables

Xk, k = 1, . . . ,K , with the common CDF FX(x),

E

[

min
k∈[K]

Xk

]

≥ x0[1− FX(x0)]
K , ∀x0 ≥ 0. (7)

If FX(x) is strictly increasing, then for any c > 0,

E
[

mink∈[K] Xk

]

F−1
X ( c

K )
≥ e−c + o(1), when K → ∞. (8)

1We recall that if X ∼ Gamma(n, a), then X is equivalent to the sum of

n i.i.d. exponential random variables Exp( 1
a
).
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Lemma 4. For a sequence of nonnegative random variables

{XK}, when K → ∞

1) if E [XK ] = Θ(1), then E [ln(1 + XK)] = Θ(1);
2) if E [XK ] = o(1) and E

[

X2
K

]

= o(E [XK ]), then

E [ln(1 + XK)] ∼ E [XK ];
3) if E [XK ] = Θ(g(K)) with g(K) → ∞ and

Pr (XK ≥ g(K)) ≥ ρ for some constant ρ > 0, then

E [ln(1 + XK)] = Θ(ln(1 + g(K))).

The set of random variables
‖HHHk‖

2

nt
, k ∈ [K] are

i.i.d. Gamma(nt,
1
nt

) with mean 1. The following lemmas

describe the asymptotic behavior of the minimum value when

K is large.2

Lemma 5. When nt is fixed, as K → ∞, the random variable

aK min
k∈[K]

‖HHHk‖
2

nt
with aK := nt

(

K
nt!

)1/nt

converges of mean3

to a random variable Y with CDF FY(y) = 1− e−ynt

, i.e.,

lim
K→∞

E

[

aK min
k∈[K]

‖HHHk‖2

nt

]

= E [Y] = Γ

(

1 +
1

nt

)

, (9)

lim
K→∞

E

[

(

aK min
k∈[K]

‖HHHk‖2

nt

)2
]

= E
[

Y2
]

= Γ

(

1 +
2

nt

)

.(10)

Lemma 6. When nt grows at least logarithmically with K
such that nt ≥ ln(K) +O(1), we have

E

[

min
k∈[K]

‖HHHk‖2

nt

]

= Θ(1), (11)

E

[

(

min
k∈[K]

‖HHHk‖2

nt

)2
]

= Θ(1). (12)

Further, if nt grows faster than ln(K) such that ln(K) = o(nt),
we have

min
k∈[K]

‖HHHk‖2

nt

p
−→ 1. (13)

IV. SCALABLE CONTENT DELIVERY WITH WIRELESS

MULTICASTING

In this section, we focus on content delivery via wireless

multicasting. Unlike in the original works [6], [10] on coded

caching where the multicast link is perfect and has constant

rate, here the multicasting is performed over a multi-antenna

wireless channel. Therefore, the multicast rate depends on the

system parameters such as the number of users and the number

of transmit antennas. We summarize the main results of this

section with a fixed transmit power in the following theorem.

2Explicitly, E

[

min
k∈[K]

‖HHHk‖
2

nt

]

= 1
nt

∑K(nt−1)
i=0 cii!K−i−1

where ci is defined recursively: c0 = 1 and ci =
1
i

∑min{i,nt−1}
j=1

(K+1)j−i
j!

cj−i,∀i ≥ 1. This close-form expression,

however, does not bring further insights on the asymptotic behavior of

E

[

min
k∈[K]

‖HHHk‖
2

nt

]

.

3The convergence of mean of a sequence of random variables {YK}K to
a given random variable Y is defined as lim

K→∞
E [YK ] = E [Y]. It implies

the convergence in distribution but is weaker than the convergence in mean

lim
K→∞

E [|YK −Y|r ] = 0, r ≥ 1.

Theorem 1. Let us consider a content delivery system with

a nt-antenna base station and K single-antenna users. We

assume no CSIT and coded caching is used with wireless

multicasting. Then, linear scaling of the content delivery rate

w.r.t. K can be achieved with a fixed transmit power in the

following cases:

1) with a large array of transmit antennas and/or when the

multicast transmission can span over L ≥ 1 independent

sub-channels such that Lnt ≥ ln(K) +O(1);
2) with a threshold-based user selection using one-bit feed-

backs in a quasi-static fading channel, for an arbitrary

number of transmit antennas.

In the rest of the section, we shall show the scalability of

each case. For Case 1, we first investigate the extreme case

L = 1 and provide some extra results for different setting of

transmit power, then we extend to the general case L ≥ 1 and

prove the scalability with a fixed power.

A. MISO multicasting in quasi-static channels (L = 1)

We first consider the case where all the K users are served

with MISO multicasting in a quasi-static Rayleigh fading

channel (L = 1). For simplicity, we assume that Gaussian

signaling is used to send the multicast message (also called

the common message), i.e., XXX = XXX0 ∼ CN (0,QQQ0) where

QQQ0 is the input covariance matrix. In this case, it follows

that the maximum instantaneous multicast rate for a channel

realization HHH =HHH = [hhh1 · · · hhhK ]T is

R0(HHH) = max
QQQ0:tr(QQQ0)≤P

min
k∈[K]

ln(1 + hhhT

kQQQ0hhh
∗
k). (14)

The input covariance matrixQQQ0 can be regarded as a precoding

and spatial power allocation strategy. The inner minimization

in (14) is the achievable rate of the worst user for a given

strategy QQQ0, and is thus the maximum multicast rate so that

every user can decode the common message.4 The outer

maximization means that the transmitter can choose a strategy

that maximizes the multicast rate. Since we assume that the

channel is not known at the transmitter and the channel

is isotropic with i.i.d. Rayleigh fading, it is reasonable to

use isotropic signaling XXX0 ∼ CN (0, P
nt
IIInt

), then R0(HHH) =

ln
(

1+ P
nt
mink∈[K] ‖hhhk‖2

)

. Let us define the SNR at user k as

SNRk(HHH) :=
P
nt
‖HHHk‖

2. Then, the long-term average multicast

rate is

R̄0 := E [R0] = E

[

ln

(

1 + min
k∈[K]

SNRk

)]

, (15)

From (3) and (15), the equivalent content delivery rate is

Rmul =
K

T (m,K)
E

[

ln

(

1 + min
k∈[K]

SNRk

)]

.

4Alternatively, we can multicast at the rate of the worst user among those
interested in decoding the message. For example, in centralized coded caching
with Km =: t ∈ N+, each coded packet is useful for a set S of t+1 users.
Therefore, the packet can be transmitted at the rate of the worst user in S ,
as considered in [14]. This improves the transmission rate when S does not
contain the globally worst user. The occurrence rate of this event out of all

possible sets of t+1 users is 1− t+1
K

K→∞
−−−−→ 1−m. Thus, in the large K

regime, this improvement is less significant when the user cache size grows.
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Proposition 1. In the large K regime, the asymptotic behavior

of the long-term average multicast rate depends on the size of

the transmit antenna array, as described in Table I.

Before proving the proposition, some comments on the

asymptotic results are in place. In the small antenna array

regime where the nt does not scale up with K , the multicast

rate vanishes when K → ∞ if the total transmit power scales

with the number of users slower than K
1
nt , i.e., P = o(K

1
nt ).

If P increases with K as fast as K
1
nt , a fixed multicast rate can

be maintained. Further, if P increases with K faster than K
1
nt ,

the multicast rate can also grow with K . Intuitively, for a fixed

number of transmit antennas, the channel quality of the worst

user degrades with the total number of users. A remedy for this

is to increase the transmit power with K , which is however

not desirable (if not impossible) in many practical situations.

Another solution is to increase the number of transmit antennas

with K . According to the right-hand side of Table I, in the

large antenna array regime where nt is asymptotically larger

than ln(K), a constant amount of transmit power suffices to

maintain the non-vanishing multicast rate. The interpretation

behind this is the channel hardening effect that decreases the

variance of the individual SNR with K so that the worst user

can still have a constant rate.5

Remark IV.1. Interestingly, to see the sufficiency of the

logarithmic scaling of nt, a heuristic way is to let P grow in

the small array regime to maintain the multicast rate, i.e., let

P = K
1
nt as suggested above. Now we see that if nt = lnK ,

then P = K
1

lnK → e which is bounded. In general, it is

enough to have that the product PK− 1
nt is non-vanishing.

We provide a formal proof of Proposition 1 in the following.

Proof. Essentially, the proof relies on Lemma 4, according to

the asymptotic behavior of E

[

min
k∈[K]

SNRk

]

. For convenience,

let us define SK := min
k∈[K]

SNRk = P min
k∈[K]

‖HHHk‖
2

nt
.

First, we consider the case of small antenna array with nt =
Θ(1). From (9), we have

SNR
−1

E [SK ] → 1,

where SNR := P
aK

Γ
(

1 + 1
nt

)

= Θ
(

PK− 1
nt

)

, since aK =

Θ
(

K
1
nt

)

. When P = Θ(K
1
nt ), E [SK ] = Θ(1), and

from case 1 of Lemma 4, we have R̄0 = Θ(1). When

P = o(K
1
nt ), we have E [SK ] = o(1). Since E

[

S2K
]

=

P 2

a2
K
E

[

(

aK min
k∈[K]

{

‖HHHk‖2

nt

})2
]

which is Θ(P 2K− 2
nt ) ac-

cording to (10), we obtain E
[

S2K
]

= o(E [SK ]), and, from

5Note that the rate scaling in Table I agrees with the capacity scaling derived
in [18] for the case of a fixed total power. While [18] proves that the multicast
capacity is non-vanishing when the number of antennas scales linearly with
the number of users, we relax this condition by showing that a logarithmic

scaling is sufficient.

case 2 of Lemma 4, we have R̄0 ∼ E [SK ] ∼ SNR. When

PK− 1
nt → ∞, we have

Pr
(

SK ≥ SNR
)

= Pr

(

aK min
k∈[K]

‖HHHk‖2

nt
≥ Γ

(

1 +
1

nt

))

= exp

(

−

[

Γ

(

1 +
1

nt

)]nt
)

+ o(1),

which is bounded away from zero since nt is fixed, where

the last equality is due to Lemma 5. We just verified that the

condition required in case 3 of Lemma 4 is also met (with

g(K) = SNR), thus R̄0 = Θ
(

ln
(

1 + SNR
))

.

Next, let us consider the case of large antenna array with

nt ≥ ln(K)+O(1). From (11), we have E [SK ] = Θ(P ). The

case P = Θ(1) follows readily from case 1 of Lemma 4. When

P = o(1), we have E [SK ] = o(1). We also have E
[

S2K
]

=
Θ(P 2) according to (12), and thus E

[

S2K
]

= o(E [SK ]). From

case 2 of Lemma 4, we have R̄0 ∼ E [SK ] = Θ(P ). When

P → ∞, we use Lemma 2 to have:

Pr (SK ≥ ηP ) =

[

Pr

(

‖HHHk‖2

nt
≥ η

)]K

≥ (1− e−nt)K

≥ (1− e− ln(K)−c)K

= e−e−c

+ o(1),

for some c > −∞. We just verified that the condition required

in case 3 of Lemma 4 is also met (with g(K) = ηP ), thus

R̄0 = Θ(ln (1 + ηP )) = Θ (ln (1 + P )).

B. Multicasting over L-parallel channel

In this subsection, we consider the general L-parallel chan-

nel model when a codeword can span over L ≥ 1 interference-

free sub-channels, such that in each sub-channel, the signal is

perturbed by independent fading coefficients and independent

noise. It includes the block fading and multi-carrier systems,

such as OFDM, as special cases, where the sub-channels cor-

respond to coherence intervals and sub-carriers, respectively.

With isotropic signaling, the instantaneous multicast rate for

a given realization (HHH1, . . . ,HHHL) of L sub-channels is

R0(HHH1, . . . ,HHHL) = min
k∈[K]

1

L

L
∑

l=1

ln

(

1 +
P

nt

‖hhhk,l‖
2

)

,

where hhhk,l is the channel realization of user k in sub-channel

l. The SNR at user k is now defined for each sub-channel l
as SNRk,l(HHHl) :=

P
nt
‖HHHk,l‖2 and the average multicast rate is

R̄0 = E

[

min
k∈[K]

1

L

L
∑

l=1

ln

(

1 + SNRk,l

)

]

. (16)

The equivalent content delivery rate is given by plugging this

multicast rate into (3). Intuitively, when the number of sub-

channels L grows to infinity fast enough w.r.t. the number

of users K , each user should have a constant rate and the

multicast rate is non-vanishing with K . Our goal is to find

out the sufficient scaling of L to guarantee a non-vanishing

multicast rate. In the following, we focus on the case with a

constant power P , i.e., P = Θ(1) when K → ∞. Since the
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TABLE I
ASYMPTOTIC BEHAVIOR OF THE AVERAGE MULTICAST RATE WHEN K → ∞

small antenna array∗: nt = Θ(1) large antenna array: nt ≥ ln(K) + O(1)

P = o(K
1
nt ) R̄0 ∼ P

aK
Γ(1 + 1

nt
) = o(1) P = o(1) R̄0 = Θ(P ) = o(1)

P = Θ(K
1
nt ) R̄0 = Θ(1) P = Θ(1) R̄0 = Θ(1)

PK
− 1

nt → ∞ R̄0 = Θ
(

ln
(

1 + P
aK

Γ(1 + 1
nt
)
))

P → ∞ R̄0 = Θ(ln(1 + P ))

∗Recall that aK := nt

(

K
nt!

)1/nt
.

direct analysis of the rate (16) is non-trivial, we resort to the

analysis of upper and lower bounds of this rate. Let us define

SNRj,k,l := P |Hj,k,l|2 where Hj,k,l is the channel coefficient

from the j-th transmit antenna to the k-th user in the l-th
sub-channel. Then, we can write SNRk,l =

1
nt

∑nt

j=1 SNRj,k,l,

∀ k, l. From the concavity of the logarithm function, we have

the following upper and lower bounds:

R̄0 ≤ E



ln



1 + min
k∈[K]

1

Lnt

L
∑

l=1

nt
∑

j=1

SNRj,k,l







 , (17)

R̄0 ≥ E



min
k∈[K]

1

Lnt

L
∑

l=1

nt
∑

j=1

ln (1 + SNRj,k,l)



 . (18)

It turns out that the above bounds are enough to establish the

sufficient scaling of both L and nt needed to maintain a non-

vanishing multicast rate.

Proposition 2. If Lnt ≥ ln(K) + O(1) and P is fixed, then

R̄0 = Θ(1) when K → ∞.

The above result demonstrates an interesting trade-off be-

tween the number of transmit antennas and the number of

independent sub-channels for a scalable multicast rate. A

large number of sub-channels can compensate for the limited

number of transmit antennas, and vice versa.

Remark IV.2. Since nt and L are respectively the spatial and

temporal/frequency diversity per user, the product Lnt can be

interpreted as the total diversity that can be exploited by each

user. Proposition 2 says that as long as the total diversity

is asymptotically larger than ln(K), the multicast rate is not

vanishing. As shown in subsection IV-A, an extreme case is

L = 1, in which a large array of antennas should be exploited

to obtain scalability. The other extreme case is nt = 1, in

which the server uses single antenna, as assumed in [6], [10],

but spans the multicast transmission over L independent sub-

channels with L asymptotically larger than ln(K).

Proof of Proposition 2. Following Proposition 1, we can read-

ily show that the upper bound (17) is Θ(1) when Lnt ≥
ln(K)+O(1). This is because, due to the i.i.d. property across

both blocks and antennas, the upper bound is exactly the same

as (15) if we replace nt by Lnt. We can therefore focus on

the lower bound (18). Let us consider the following CDF

F (r) := Pr





1

Lnt

L
∑

l=1

nt
∑

j=1

ln (1 + SNRj,k,l) ≤ r



 .

Using the Chernoff bound (4), we have, for any ν > 0,

F (r) ≤ eLntνrE
[

(1 + SNRj,k,l)
−ν
]Lnt

=

(

e−νr

E [(1 + SNRj,k,l)−ν ]

)−Lnt

≤ g(ν, r)− lnK−cK , (19)

where we define g(ν, r) := e−νr

E[(1+SNRj,k,l)−ν ] =
exp(−νr− 1

P )
Γ(1−ν, 1

P )
;

in the last inequality cK = O(1) from the assumption that

Lnt ≥ ln(K) +O(1). It can be verified that there exist ν0 =
Θ(1) and r0 = Θ(1) such that g(ν0, r0) = e. Therefore, from

(19) we obtain F (r0) ≤
e−cK

K . Now, by applying (7) on (18),

R̄0 ≥ r0(1− F (r0))
K

≥ r0

(

1−
e−cK

K

)K

= r0(e
−e−cK

+ o(1)), when K is large,

which is Θ(1) since cK = O(1).

C. Multicasting with user selection

Since the bottleneck of multicast transmission is the chan-

nel quality of the worst users, the transmission rate can

be improved if we only serve users with better quality. In

other words, we eliminate users with “unacceptable” channel

qualities. For instance, if we transmit at the average (median)

rate over the channel gain, then the number of users being

able to decode is roughly K/2, and we can guarantee a linear

sum rate scaling. The trade-off between the multicast rate and

number of users served should be balanced so as to maximize

the sum rate. In order to achieve linear scaling with the total

number of users, a non-negligible fraction of the K users

should be selected. In this work, we propose a threshold-based

user selection scheme.

Here is how the scheme works. Let us first focus on

the single transmit antenna and quasi-static fading case, i.e.,

nt = L = 1. We assume that the base station fixes a

SNR threshold s and reveals it to all the users prior to the

actual data transmission. Then, each user sends back an one-

bit feedback indicating whether the instantaneous received

SNR is above the threshold. Let the random variable K∗(s)
be the number of users with SNR above the threshold, i.e.,

K∗(s) := |{k : SNRk ≥ s}|. Recall that SNR1, . . . , SNRK

are K i.i.d. exponential random variables Exp( 1
P ), then

E [K∗(s)] = K Pr(SNR ≥ s) = Ke−s/P . The base station
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then starts the multicast transmission at rate ln(1 + s) so that

every selected user is able to decode the common message.

Since the set of active users changes frequently under user

selection, it is more reasonable to assume that decentralized

placement [10] is used. From (1) and (3), we have the

equivalent content delivery rate

Rmul = E

[ m
1−mK∗(s)

1− (1−m)K∗(s)
ln(1 + s)

]

.

From the strong law of large numbers, we know that
K∗(s)
K

a.s.
−−→

Pr(SNR ≥ s) = e−s/P , which means that

m
1−m

K∗(s)
K

1− (1−m)K∗(s)
ln(1 + s)

a.s.
−−→

m

1−m
e−s/P ln(1 + s).

Therefore, using the dominated convergence theorem, we

obtain

Rmul

K
∼

m

1−m
e−s/P ln(1 + s),

which shows that for any non-zero threshold s, linear scaling

can be achieved. In practice, however, it is desirable to find

a threshold that maximizes the scaling factor e−s/P ln(1 + s).
Since this factor is zero when s = 0 and s = ∞, due to the

continuity, e−s/P ln(1+s) is maximized by some 0 < s∗ < ∞

that satisfies
d(e−s/P ln(1+s))

ds

∣

∣

∣

s=s∗
= 0. It follows that

ln(1 + s∗) = W (P ) ,

where W (·) is the Lambert-W function such that

W (x)eW (x) = x. Therefore, when K is large, we should

choose a SNR threshold

s∗ = eW (P ) − 1 =
P

W (P )
− 1. (20)

The corresponding optimal content delivery rate is

Rmul ∼
m

1−m
Ke

1
P − 1

W (P )W (P ), (21)

scaling linearly with K . The expected number of selected

users is K∗(s∗) = Ke
1
P − 1

W (P ) . In [19], it is shown that

the rate (21) is indeed the optimal rate of any scheme that

transmits opportunistically to the group of users with the

highest sum content delivery rate at each channel realization.

The above result can be readily extended to any i.i.d. SNR

distribution with differentiable CDF FSNR(s), e.g., the

case with multiple transmit antennas. Specifically, the op-

timal SNR threshold 0 < s∗ < ∞ should satisfy
d((1−FSNR(s)) ln(1+s))

ds

∣

∣

∣

s=s∗
= 0. We readily obtain the follow-

ing result.

Proposition 3. Let us consider a multicast channel with

i.i.d. SNR distribution with differentiable CDF FSNR(s). De-

fine f(s) := 1−FSNR(s)
F ′

SNR(s) for s > 0, then the optimal SNR

threshold s∗ for user selection is such that

ln(1 + s∗) = W (f(s∗)) .

The corresponding optimal content delivery rate is

Rmul ∼
m

1−m
K(1− FSNR(s

∗))W (f(s∗)).

In general, an explicit expression of the optimal threshold

is hard to derive. Nevertheless, such value can be obtained

numerically.

D. Numerical results

To validate Theorem 1, we calculate numerically the equiva-

lent content delivery rate Rmul and observe its behavior when

K increases. In Fig. 1, we plot the rate achieved with the

scalable schemes listed in Theorem 1 as a function of the

number of users K for normalized cache size m = 5% and a

fixed total power. Specifically, we consider multicasting with

1) nt = ⌊ln(K)⌋ antennas, 2) single antenna and transmission

spanning over L = ⌊ln(K)⌋ sub-channels, and 3) single

antenna and threshold-based user selection scheduling (Case

1 and Case 2 are the extreme cases of Lnt = ⌊ln(K)⌋). It

can be seen clearly that the sum rate scales linearly with K
in these cases. For a baseline, we also plot the rate achieved

with single-antenna and without user selection in quasi-static

fading channel. In this case, the sum rate saturates when K is

large and hence the system is not scalable.

Another observation from Fig. 1 is that higher total power

yields higher content delivery rate. This gain due to power

is more pronounced in the baseline case nt = L = 1, no

scheduling. In this case, from Table I, the multicast rate scales

as R̄0 ∼ P
K , and hence the content delivery rate scales as

Rmul = K
T (m,K)R̄0 ∼ mP

1−m , linearly in P , but constantly

w.r.t. K .

In Fig. 2, we plot the asymptotically optimal SNR threshold

s∗ given in (20) for user selection and the exact optimal solu-

tion from simulation. We observe that the analytical solution

converges to the exact optimal one when K is large. Since the

analytical optimal SNR threshold (20) only depends on the

total power, it can be predefined easily by the base station.

V. SCALABLE CONTENT DELIVERY WITH SPATIAL

MULTIPLEXING WITH CSIT

Instead of using wireless multicasting and coded caching,

a more conventional content delivery scheme is spatial multi-

plexing. Specifically, simultaneous unicast transmissions can

be realized with spatial precoding based on the available CSIT.

With spatial multiplexing, the required content is delivered

directly to the user. In this section, we study the content

delivery rate of this scheme. For simplicity, we consider the

quasi-static fading channels (L = 1) in the rest of the paper.

With linear precoding, the transmitted signal is

XXX =
K
∑

k=1

WWWkXk,

where for user k ∈ [K], Xk is the private signal and WWWk is

the precoder of unit norm that depends only on the estimated

channel matrix ĤHH as defined in (2). In this work, we assume

that nt ≥ K and focus on zero-forcing (ZF) precoder. The

precoding vector {WWWk} for user k is

WWWk = αkUUUkUUU
H

kĤHH
∗

k,

where the columns of UUUk form an orthonormal basis of the null

space of span({ĤHH
∗

l }l 6=k) and UUUk is assumed to be independent
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Fig. 1. The equivalent content delivery rate achieved with different multicas-
ting schemes, namely, 1) nt = 1 without scheduling in quasi-static fading, 2)
nt = 1 with scheduling in quasi-static fading, 3) nt = ⌊ln(K)⌋ in quasi-static
fading, 4) nt = 1 and transmit over L = ⌊ln(K)⌋ independent sub-channels,
as a function of K for m = 5% and P = 30, 40 dB.

of ĤHHk; αk := 1

‖ĤHH
T

kUUUk‖
is the normalization factor such that

‖WWWk‖ = 1. Intuitively, we project the signal of user k onto

the null space of all other users’ channels to eliminate the

interference and then align with its own channel to maximize

the received signal power. Note that each precoding vector here

is normalized so that each stream can have the same power.

We use i.i.d. Gaussian signaling for tractability, i.e., {Xk} are

i.i.d. CN (0, Pk) with sum power constraint
∑K

k=1 Pk = P .

User k receives the signal

Yk = GkXk +
∑

l 6=k

G̃k,lXl + Zk, (22)

where Gk := HHHT

kWWWk and G̃k,l := H̃HH
T

kWWWl ∼ CN (0, σ2).
It is worth mentioning that the above equivalent channel

coefficients are not independent between each other. Let us
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Fig. 2. The optimal SNR threshold for user selection scheduling with m =
5%, P = 30, 40, 50 dB and single antenna: asymptotic approximation vs.
simulation.

define the signal-to-interference-plus-noise ratio (SINR) at

receiver k ∈ [K] as

SINRk(HHH) :=
|Gk|

2Pk

1 +
∑

l 6=k |G̃k,l|2Pl

. (23)

For any realization HHH = HHH , we obtain the instantaneous rate

Rk(HHH) = ln (1 + SINRk(HHH)) for user k ∈ [K]. The long-

term average unicast rate of user k is

R̄k := E [ln (1 + SINRk(HHH))] .

For simplicity, we consider uniform power allocation, i.e.,

Pk = P
K =: p, ∀ k ∈ [K]. Then SINRk = |Gk|

2

p−1+
∑

l 6=k |G̃k,l|2
.

Due to the symmetry of the problem, the marginal distribution

of SINRk does not depend on k, and can be described as

follows.

Lemma 7. With uniform power allocation (p = P/K), SINRk

can be written, in distribution, as

SINRk
d
= SINRsym :=

∣

∣

∣σAK +
√

(nt −K + 1)(1− σ2)BK

∣

∣

∣

2

p−1 + (K − 1)σ2CK
,

(24)

for some joint distribution of (AK ,BK ,CK) such that AK ∼
CN (0, 1) and BK ∼ Gamma(nt −K + 1, 1

nt−K+1 ) are inde-

pendent, and E [CK ] = 1. In addition, when lim inf
K→∞

nt

K > 1,

we have

BK
a.s.
−−→ 1 and CK

a.s.
−−→ 1. (25)

Proof. The proof is provided in Appendix B.

In this work, we focus exclusively on the case with

lim inf
K→∞

nt

K > 1 to gain some insight on the behavior of ZF

precoding. The case with nt = K is too involved6 for our

6When nt = K , the almost sure convergence of the sum
1

K−1

∑

l 6=k |G̃k,l|
2 does not hold. We need to establish upper and lower

bounds to derive the scaling of R̄sym.
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purposes here and is not considered. With uniform power

allocation, the long-term unicast rate is also symmetric, i.e.,

R̄k = R̄sym, ∀ k ∈ [K]. Using Lemma 7, we can derive the

asymptotic behavior of R̄sym in the large K regime.

Proposition 4. With uniform power allocation (p = P/K)

and lim inf
K→∞

nt

K > 1, we have

R̄sym ∼























1+(nt−K+1)(1−σ2)
p−1+K−1 ,

when (nt −K + 1)(1− σ
2) = O(1),

ln
(

1 + (nt−K+1)(1−σ2)
p−1+(K−1)σ2

)

,

when (nt −K + 1)(1− σ
2) → ∞.

(26)

Before proving the proposition, we provide some obser-

vations. The asymptotic behavior of R̄sym depends on the

channel estimation error σ2. If the channel estimation fails

when K → ∞ in such a way7 that (nt−K+1)(1−σ2) = O(1),
we see from (26) that the symmetric rate decays with K as

1/K for given total power P . Otherwise, the symmetric rate

depends on (nt,K, p, σ2) in a non-trivial way. The case of

particular interest is when the estimation error variance σ2 is

fixed and strictly smaller than 1, in this case the symmetric

rate does not vanish with K for fixed total power P . Indeed,

according to (26), R̄sym can even grow unboundedly with
nt

K thanks to the beamforming gain. We shall have more

discussion on this assumption at the end of this section.

Proof of Proposition 4. When (nt −K + 1)(1− σ2) = O(1),
we have 1−σ2 → 0 since nt−K+1 → ∞. From (24), we no-

tice that SINRsym
a.s.
−−→ 0. Thus, ln(1+SINRsym) ∼ SINRsym

when K is large, and R̄sym = E [ln(1 + SINRsym)] ∼
E [SINRsym] becomes

R̄sym ∼
σ2 + (nt −K + 1)(1− σ2)

p−1 + (K − 1)σ2

∼
1 + (nt −K + 1)(1− σ2)

p−1 +K − 1
.

When (nt − K + 1)(1 − σ2) → ∞, from (24) and (25), it

follows that

SINRsym
p−1 + (K − 1)σ2

(nt −K + 1)(1− σ2)

a.s.
−−→ 1

and thus R̄sym ∼ ln
(

1 + (nt−K+1)(1−σ2)
p−1+(K−1)σ2

)

.

For content delivery, since we assume that each user already

caches in average a fraction m of the requested file, to

complete the file of F bits, the base station needs to send

(1 − m)F bits. With spatial multiplexing, this transmission

takes (1−m)F/R̄sym units of time in average. It follows that

the equivalent content delivery rate of the system is simply

Runi =
K

1−m
R̄sym.

7This can happen when the resources for channel estimation saturate with
a large number of users.

Example 1. Let us consider a commonly used, albeit simpli-

fied, MMSE channel estimation model with σ2 = 1
1+p . Then,

it follows that










σ2 = Θ(p−1), when p → ∞,

1− σ2 = Θ(p), when p → 0,

σ2 = Θ(1), 1− σ2 = Θ(1), when p is fixed.

Further, we assume that lim
K→∞

nt

K = β > 1. From (26), on

one hand, we see that if the per-user power p → 0 when

K → ∞, the symmetric transmission rate vanishes as R̄sym =
(β − 1)Θ(p), thus Runi = (β − 1)Θ(Kp). On the other hand,

if the per-user power is not vanishing with K , i.e., p = Ω(1),
then R̄sym = Ω(1) and thus Runi = Ω(K).

Remark V.1. The above example shows that, when CSIT error

is inversely proportional to the per-user power p, content

delivery with spatial multiplexing requires at least a linearly

increasing total transmit power (P = Ω(K)) and linearly

increasing number of transmit antennas to achieve scalability.

In contrast, all the scalable multicast-based schemes listed in

Theorem 1 require only a fixed total power and a reduced

number of transmit antennas.

VI. FURTHER IMPROVEMENT WITH SIMULTANEOUS

MULTICASTING AND MULTIPLEXING

In previous sections, we have investigated two extreme

uses of multiple antennas: (coded) multicasting and spatial

multiplexing. The gains of these two techniques are pro-

nounced in different regimes. Spatial multiplexing achieves

good performance with precise CSIT and at high power.

Whereas, at a fixed total power and without CSIT, multicasting

can still achieve the scalability of the system. Therefore, it

is favorable to perform simultaneous spatial multiplexing and

multicasting to further benefit from both multiplexing gain and

global caching gain. The synergy of multicasting and spatial

multiplexing in coded caching was observed in [20], [15] for

minimizing the transmission time at high SNR regime. It was

shown that when CSIT is perfectly known, ZF with uncoded

caching is optimal for that purpose, since ZF can eliminate

inter-user interference and create parallel links using perfect

channel knowledge. When the CSIT is imperfect, however,

the interference is inevitable, and coded caching is needed

to retrieve the minimal transmission time. In our setting, the

simultaneous multicasting and multiplexing can be done with

rate splitting8 as follows.

A. Simultaneous multicasting and multiplexing

We consider the transmission of signal carrying both the

common information coded in XXX0 interested by all the users,

and a set of private information coded in {Xk} where Xk is

intended exclusively for user k, k ∈ [K]. We still consider

quasi-static fading channels. The transmitted signal is

XXX = XXX0 +
K
∑

k=1

WWWkXk,

8The combination of multicast and spatial multiplexing in the presence of
CSIT error was first proposed in [21] and then investigated in [22] (and the
references therein). This technique was first applied to coded caching in [20].
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where X0,Xk,WWWk, k ∈ [K] are defined as before, except for

the new total power constraint
∑K

k=0 Pk ≤ P . Obviously, this

general setting includes the two extreme cases P0 = 0 for

spatial multiplexing and P0 = P for multicasting. We use

the same assumption nt ≥ K as in the previous section. The

received signal at user k is

Yk = HHHT

kXXX0 +GkXk +
∑

l 6=k

G̃k,lXl + Zk,

where Gk and G̃k,l are defined as for (22). Each receiver is

interested in decoding the common message and its own pri-

vate message. For simplicity, we consider successive decoding

so that each user decodes the common message first and then

the private message. Therefore, the private signals are seen as

interference while decoding the common message. The SINR

of the common signal at receiver k is

SINR
(0)
k (HHH) :=

P0

nt
‖HHHk‖2

1 + |Gk|
2
Pk +

∑

l 6=k |G̃k,l|2Pl

, (27)

and the long-term average common (multicast) rate is

R̄mix
0 = E

[

ln

(

1 + min
k∈[K]

SINR
(0)
k

)]

.

Then, the private messages are decoded as before after re-

moving the decoded common signal, with the same SINRk

as defined in (23), except that the power is reduced from P
to P − P0. Let us consider uniform private power allocation

Pk = P−P0

K , ∀k ∈ [K], then average symmetric private

rate R̄mix
sym is defined similarly to R̄sym accordingly. While

the asymptotic behavior of R̄mix
sym is easy to characterize by

following the same steps as in the spatial multiplexing case,

the analysis of R̄mix
0 is not trivial due to the interference terms

in (27).

Proposition 5. Let us consider uniform private power alloca-

tion Pk = P−P0

K , ∀ k ∈ [K] and assume that lim inf
K→∞

nt

K > 1.

When (nt − K + 1)(1 − σ2) → ∞, the common rate R̄mix
0

and symmetric private rate R̄mix
sym scale as (28) and (29),

respectively.

Since the proof of this proposition does not provide addi-

tional insight in the problem, it is deferred to Appendix C.

B. Delivery scheme and equivalent content delivery rate

The delivery scheme exploiting simultaneous multicasting

and multiplexing operates as follows. For placement phase,

we use the same centralized or decentralized placement as in

[6] and [10], respectively. We still assume that each user k

has a sequence of demands d
(1)
k , d

(2)
k , . . . , k ∈ [K], which are

revealed to the server whenever a user requests a file. Next,

each demand sequence is split into two subsequences to be

delivered simultaneously in the delivery phase. Assume that at

the beginning, the server receives two different demands from

each user k: d
(1)
k in subsequence 1 and d

(2)
k in subsequence 2.

To deliver {d
(1)
k }, the server forms a multicast codeword con-

taining T (m,K)F bits following the centralized/decentralized

coded caching scheme, and encodes it in the common signal

XXX0. Meanwhile, it encodes the uncached fraction of d
(2)
k

containing (1−m)F bits in the private signal Xk, k ∈ [K].9

The server then transmits XXX = XXX0 +
∑K

k=1WWWkXk. Each

user k can get d
(1)
k using its cache content and the multicast

codeword decoded from the common signal, following the

centralized/decentralized coded caching scheme. Next, since

user k already cache mF bits of the file d
(2)
k , it can also

get d
(2)
k from its cache content and the message decoded

from the private signal. The succeeding demands in the two

subsequences of each user are served similarly.

Thus, each user can receive two independent flows. In

the first flow carried in the common message, to deliver

a file to each user with coded caching, we need to send

T (m,K)F bits, which takes T (m,K)F/R̄mix
0 units of time,

so the equivalent content delivery rate is 1
T (m,K) R̄

mix
0 . In the

second flow carried in the private message, to deliver another

file to each user, we need to send (1 − m)F bits, which

takes (1−m)F/R̄mix
sym units of time, so the equivalent content

delivery rate is 1
1−m R̄mix

sym. Since the two flows are indepen-

dent, requested files can be delivered in parallel between two

flows and consecutively within each flow. Thus, the aggregated

content delivery rate with the proposed scheme is simply the

sum of the rates achieved with two flows

Rmix =
K

T (m,K)
R̄mix

0 +
K

1−m
R̄mix

sym.

The asymptotic behavior of Rmix depends on that of R̄mix
0 and

R̄mix
sym, which was provided in Proposition 5. A practically rele-

vant question is to find out the optimal power split (P0, P−P0)
that maximizes the content delivery rate Rmix. This problem

is not trivial to solve, even in the large K regime, due to the

expectation in (28). Let us relax this problem in the following

example to understand the behavior of the optimal power split.

Example 2. Let us assume that lim
K→∞

nt

K = β > 1, (nt −K +

1)(1−σ2) → ∞, and, for simplicity, remove the maximization

in (28). In this case, we can write the content delivery rate as

Rmix ∼ G(P, P0) with

G(P, P0) :=
K

T (m,K)
ln

(

1 +
P0

1 + (P − P0)Ic

)

+
K

1−m
ln

(

1 +
Ic − Ip

(P − P0)−1 + Ip

)

,

where Ic = (nt−K+1)(1−σ2)+(K−1)σ2

K = Θ(1) and Ip =
(K−1)σ2

K = Θ(σ2). It follows that the optimal power split

should satisfy

P − P0 ∼

(

− 1−m
T (m,K) (1 + IcP ) + (Ic − Ip)(1 + P )

1−m
T (m,K)Ip(1 + IcP )− Ic(Ic − Ip)

)+

. (30)

Remark VI.1. Some properties of the optimal power split

can be observed from (30). First, the optimal private power

fraction P−P0

P is decreasing with total power P . That is, when

the total power is low, spending more power to multicast is

beneficial, and on the other hand, when the total power is

high, spatial multiplexing should be favored. Second, P−P0

P is

9The encoding is across time, but we omitted the time index for simplicity.
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R̄mix
0 ∼ E



ln



1 +
P0

1 + P−P0

K

[

(nt −K + 1)(1− σ2) + maxk∈[K]

{

∑

l 6=k |G̃k,l|2
}]







 , (28)

R̄mix
sym ∼ ln

(

1 +
(nt −K + 1)(1− σ2)

K
P−P0

+ (K − 1)σ2

)

. (29)

decreasing with m. That is, more power should be allocated

to multicast when the users’ cache memory grows. This is

reasonable since the global caching gain, which comes with

multicasting and not with spatial multiplexing, scales up with

user cache size.

When (nt−K+1)(1−σ2) = O(1), the CSIT error σ2 → 1.

Under this extremely low quality of channel estimate, it is

rather clear that multicasting should be even more favored w.r.t.

spatial multiplexing than in the case (nt−K+1)(1−σ2) → ∞.

C. Numerical results

In the rest of the section, we show some numerical results

to illustrate the equivalent content delivery rate of the mixed

delivery and the optimal power split. We consider the system

having as many antennas as users, i.e., nt = K . Note that,

although we assumed asymptotically more antennas than users

in Proposition 5 and Example 2, the behavior of optimal power

split when nt = K follows the same line of these analytical

analysis, as can be observed shortly. Moreover, we consider a

fixed per-user power P
K , and fixed CSIT error σ2 =

(

P
K

)−1
.

First, in Fig. 3, we compare the content delivery rate of

mixed transmission with optimal power split, spatial multi-

plexing alone, and coded multicasting (coded caching with

multicasting) alone. We observe that optimal mixed transmis-

sion is always better than either scheme alone. For example,

about 50% gain is achieved by mixed transmission w.r.t. either

scheme when m ≈ 6.5% and P/K = 20 dB. When m is very

small, spatial multiplexing is better than coded multicasting.

On the other hand, when m is moderate or large, coded

multicasting is better. Further, when m is larger than a certain

ratio of the library, coded multicasting becomes optimal.

Next, in Fig. 4, we plot the optimal common power fraction

P0/P as a function of normalized cache size m for different

values of per-user power P/K . As m increases, the figure

suggests to allocate more power to multicasting, and even give

all power to multicasting when m is larger than a certain ratio

of the library, namely, 3.5% for P/K = 10 dB, 25% for

P/K = 20 dB, and 48% for P/K = 30 dB.

From the Fig. 3 and Fig. 4, we have observed that, for

a given per-user power P/K , when the cache memory is

sufficiently large, the optimal mixed transmission coincides

with coded multicasting and there is no need for spatial

multiplexing. This is further illustrated in Fig. 5. For every

pair (P/K,m) in the shaded region (above the solid line)

of the power-memory plane, coded multicasting is optimal,

i.e., the optimal power split is P0/P = 1. Besides, we also

plot the values of normalized cache size m over which coded
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Fig. 3. The equivalent content delivery rate of optimal mixed transmission,
spatial multiplexing and coded multicasting as a function of normalized cache

size m for nt = K = 100, P/K = 10, 20 dB, σ2 =
(

P
K

)−1
.

multicasting outperforms spatial multiplexing and hence is

preferable (the dashed line).

VII. CONCLUSION

How to exploit multi-antenna downlink channels to achieve

a scalable content delivery rate when the number of users goes

to infinity? This is the main question that we have addressed

in this work. Under various assumptions on the system config-

urations such as the number of transmit antennas, the number

of coherence resource blocks, and the CSIT accuracy, we have

investigated the multicast-based coded caching schemes as
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(
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.
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Fig. 5. The preferable and optimal region (the set of pairs (P/K,m)) of

coded multicasting for nt = K = 100, σ2 =
(

P
K

)−1
: above the dashed

line, coded multicasting is better than spatial multiplexing; above the solid
line, coded multicasting is optimal.

well as the more conventional spatial multiplexing scheme.

A general conclusion from the study is that multicast-based

coded caching is a more attractive option since linear rate

scaling can be achieved without CSIT and with only sub-linear

number of transmit antennas with respect to the number of

users. Based on rate splitting, we have also proposed to com-

bine both multicast and spatial multiplexing to further improve

the performance. The effectiveness of such a combination has

been confirmed with the numerical results. It is remarked that

when the per-user power is small or the user cache memory is

large enough, coded caching with multicasting is optimal and

there is no need for spatial multiplexing.

Due to the symmetry of the setting, we have obtained

some simple analytical results in this work. Nevertheless, it

would be interesting, in the future, to consider the more

general systems with different path loss, spatial correlation,

and fairness constraints across users.

APPENDIX

A. Proofs of the lemmas in Section III

1) Proof of Lemma 2: Since X ∼ Gamma
(

nt,
1
nt

)

, X is

equivalent to a sum of nt i.i.d. exponential random variables

Exp(nt). Thus, we can apply the Chernoff bound (4) and

obtain

P (X ≤ x) ≤ eνx
(

E
[

e−νZ
])nt

=
eνx

(1 + ν/nt)nt
, ∀ ν > 0, (31)

where Z ∼ Exp(nt). It can be shown that for any x < 1,

ν∗ = nt(x
−1 − 1) > 0 minimizes the right hand side of (31)

which becomes P (X ≤ x) ≤ e−nt(x−1−lnx). Let x = η with

η ≈ 0.1586, we obtain (6).

2) Proof of Lemma 3: Let us define Y := mink∈[K] Xk. It

follows that the CDF of Y is FY(y) = 1 − (1 − FX(y))
K .

With Markov’s inequality, we have for any x0 > 0, E [Y] ≥
x0(1 − FY(x0)) from which inequality (7) follows. If FX(x)
is strictly increasing, the inverse function F−1

X (x) exists. For

any given c > 0 and K large enough, we have c
K < 1 and let

x0 = F−1
X ( c

K ). Then, applying (7), we can prove (8) since

E
[

mink∈[K] Xk

]

x0
≥
(

1−
c

K

)K

= e−c + o(1),

when K → ∞.

3) Proof of Lemma 4: Case 1: if E [XK ] = Θ(1), then there

exists some c > 0 and 1 ≥ ρ > 0 such that P (XK ≥ c) ≥ ρ
when K → ∞. Otherwise, we would have E [XK ] = o(1).
Thus, with probability of at least ρ, we have ln(1 + XK) ≥
ln(1 + c), from which E [ln(1 + XK)] ≥ ρ ln(1 + c) = Θ(1).
This and the obvious upper bound E [ln(1 + XK)] ≤ ln(1 +
E [XK ]) = Θ(1) confirm E [ln(1 + XK)] = Θ(1).

Case 2: if E [XK ] = o(1) and E
[

X2
K

]

= o(E [XK ]),

then using ln(1 + x) ≥ x − x2

2 we can easily show that

E [ln(1 + XK)] ≥ E [XK ] + o(E [XK ]). Using Jensen’s in-

equality, we also have E [ln(1 + XK)] ≤ ln(1 + E [XK ]) ≤
E [XK ]. Then E [ln(1 + XK)] ∼ E [XK ].

Case 3: E [XK ] = Θ(g(K)) with g(K) → ∞ and

Pr (XK ≥ g(K)) ≥ ρ for some ρ > 0. From these

conditions and Markov’s inequality, it readily follows

that E [ln(1 + XK)] ≥ ln(1 + g(K)) Pr (XK ≥ g(K)) ≥
ρ ln(1 + g(K)). From Jensen’s inequality, we also have

E [ln(1 + XK)] ≤ ln(1 + E [XK ]) = Θ(ln(1 + g(K))), which

completes the proof.

4) Proof of Lemma 5: To prove the convergence of mean,

it is enough to show the convergence in distribution and the

uniform integrability [23, Theorem 3.5]. Let us define aK :=

nt

(

K
nt!

)1/nt

.

First, we shall show that the sequences
{

aK mink∈[K]
‖HHHk‖

2

nt

}

K
and

{

(

aK mink∈[K]
‖HHHk‖

2

nt

)2
}

K
converge in distribution to the random variables Y and

Y2, respectively, where the random variable Y has

CDF FY(y) = 1 − e−ynt
. To that end, we focus on

the convergence of aK mink∈[K]
‖HHHk‖

2

nt
, from which the

convergence of
(

aK mink∈[K]
‖HHHk‖

2

nt

)2

can be shown
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with the continuous mapping theorem. The proof follows

essentially the footsteps of [24, Theorem 1] and is provided

here to be self-contained. Denote Xk := ‖HHHk‖
2

nt
, then Xk

is i.i.d. Gamma
(

nt,
1
nt

)

across k with CDF FX(x) =

γ(nt,ntx)
Γ(nt)

= 1− e−ntx
∑nt−1

i=0
(ntx)

i

i! and Xmin := mink∈[K] Xk

has the CDF Fmin(x) = 1− (1−FX(x))
K . Expanding FX(x)

in Taylor series yields FX(x) =
∑∞

i=0 F
(i)
X (0)x

i

i! , where

F
(i)
X (0) = (−1)i−ntnt

i
(

i−1
nt−1

)

if i ≥ nt and 0 otherwise. Then

Fmin(x) = 1−

[

1−
F

(nt)
X (0)

nt!
xnt −

∑

i>nt

F
(i)
X (0)

i!
xi

]K

.

Replacing x by

(

nt!

KF
(nt)
X (0)

)
1
nt

x = 1
nt

(

nt!
K

)
1
nt x = x

aK
, we

obtain

Fmin

(

x

aK

)

= 1−

[

1−
xnt

K
−
∑

i>nt

(−1)i−nt

(

i− 1

nt − 1

)

1

i!

(

nt!

K

)i/nt

xi

]K

= 1− e−xnt

+ o(1),

since
∑

i>nt
(−1)i−nt

(

i−1
nt−1

)

1
i!

(

nt!
K

)i/nt
xi = Θ

(

K−1− 1
nt

)

vanishes faster than xnt

K = Θ(K−1) and
(

1− xnt

K

)K
= e−xnt

+
o(1). From this, a simple change of variable YK = aKXmin

gives FYK(y)
K→∞
−−−−→ 1− e−ynt

.

Then, we shall show both sequences

{

aK min
k∈[K]

‖HHHk‖
2

nt

}

K

and

{

(

aK min
k∈[K]

‖HHHk‖
2

nt

)2
}

K

are uniformly integrable. Let

UK := aK mink∈[K]
‖HHHk‖

2

nt
. It is enough to show that {UK}K

satisfies lim
ω→∞

supK E
[

UK1{UK≥ω}

]

= 0. Indeed,

E
[

UK1{UK≥ω}

]

=

∫ ∞

ω

udFUK (u)

= ω[1− FUK (ω)] +

∫ ∞

ω

[1− FUK (u)]du.

which cannot increase with K since 1 − FUK (x) = 1 −

F
mink∈[K]

‖HHHk‖2

nt

( x
aK

) =

[

Γ(nt,
ntx
aK

)

Γ(nt)

]K

is non-increasing with

K . Therefore,

sup
K

E
[

UK1{UK≥ω}

]

= E
[

U11{U1≥ω}

]

= a1
Γ (nt + 1, ntω/a1)

Γ(nt + 1)

ω→∞
−−−−→ 0,

which means that {UK} is uniformly integrable. Similarly,

lim
ω→∞

supK E
[

U2
K1{UK≥ω}

]

= 0, since

sup
K

E
[

U2
K1{UK≥ω}

]

= E
[

U2
11{U1≥ω}

]

= a21
Γ (nt + 2, ntω/a1)

ntΓ(nt + 1)

ω→∞
−−−−→ 0.

Thus {U2
K} is also uniformly integrable.

Explicit calculation of E [Y] and E
[

Y2
]

completes the proof

of Lemma 5.

5) Proof of Lemma 6: We begin by proving the first

part of the lemma. Since both E

[

min
k∈[K]

‖HHHk‖2

nt

]

and

E

[

(

min
k∈[K]

‖HHHk‖2

nt

)2
]

are upper bounded, which can be seen

by removing the “min” inside the expectation, it is enough

the show that they are also lower bounded. Let us define

Xk := ‖HHHk‖
2

nt
∼ Gamma(nt,

1
nt
), k ∈ [K], with common

CDF FX(x). From Lemma 2, we have FX(η) ≤ e−nt with

η ≃ 0.1586. When nt ≥ ln(K) + O(1), we have nt ≥
ln(K) + c0 for some c0 > −∞ when K is large enough. It

follows that FX(η) ≤ e− ln(K)−c0 = e−c0

K , and consequently

F−1
X ( e

−c0

K ) ≥ η due to the monotonicity of FX(x). Then,

E
[

mink∈[K] Xk

]

η
≥

E
[

mink∈[K] Xk

]

F−1
X ( c

K )
≥ e−c + o(1), (32)

when K → ∞, where the second inequality is from (8) for

c := e−c0 . This completes the proof of (11). To prove (12), it

suffices to apply E
[

X2
]

≥ E [X]
2

and (32), and we have

E

[

(

mink∈[K] Xk

)2
]

η2
≥

E
[

mink∈[K] Xk

]2

(

F−1
X ( c

K )
)2 ≥ (e−c + o(1))2,

when K → ∞.

For the second part, it suffices to show that, when ln(K) =

o(nt), for any given ǫ > 0, both P

(

mink∈[K]
‖HHHk‖

2

nt
≥ 1 + ǫ

)

and P

(

mink∈[K]
‖HHHk‖

2

nt
≤ 1− ǫ

)

go to 0 when K → ∞.

To that end, we first bound P

(

mink∈[K]
‖HHHk‖

2

nt
≥ 1 + ǫ

)

≤

P

(

‖HHHk‖
2

nt
≥ 1 + ǫ

)

which is then upper bounded by

e−ν(1+ǫ)(1 − ν
nt
)−nt for any 0 < ν < nt from the Chernoff

bound (5). Letting v = nt(1− (1+ ǫ)−1), the upper bound be-

comes e−nt(ǫ−ln(1+ǫ)) which goes to 0 for any ǫ > 0. Now, let

us consider P
(

mink∈[K]
‖HHHk‖

2

nt
≤ 1− ǫ

)

which can be rewrit-

ten as 1 −
(

1− P

(

‖HHHk‖
2

nt
≤ 1− ǫ

))K

. From the Chernoff

bound (4), we have P

(

‖HHHk‖
2

nt
≤ 1− ǫ

)

≤ eν(1−ǫ)(1 + ν
nt
)−nt

for any ν > 0. Letting v = nt((1 − ǫ)−1 − 1) which

minimizes the upper bound, we obtain P

(

‖HHHk‖
2

nt
≤ 1− ǫ

)

≤

e−nt(− ln(1−ǫ)−ǫ) = e−ntδǫ with δǫ := − ln(1− ǫ)− ǫ > 0 for

ǫ > 0. Therefore, we have

P

(

min
k∈[K]

‖HHHk‖2

nt
≤ 1− ǫ

)

≤ 1− (1− e−ntδǫ)K

= 1− eK ln(1−e−ntδǫ )

= 1− e−Ke−ntδǫ+Ko(e−ntδǫ ). (33)

Since ln(K) = o(nt), Ke−ntδǫ = eln(K)−ntδǫ → 0 for any

δǫ. We have just proved that the upper bound (33) goes to 0,

which completes the proof.
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B. Proof of Lemma 7

We recall the definition of the precoding vector for user

k, WWWk = αkUUUkUUU
H

kĤHH
∗

k, where the columns of UUUk form an

orthonormal basis of the null space of span({ĤHH
∗

l }l 6=k) and UUUk

is independent of ĤHHk; αk := 1/‖ĤHH
T

kUUUk‖. With uniform power

allocation, SINRk(HHH) := |Gk|
2

p−1+
∑

l 6=k |G̃k,l|2
, where Gk :=

HHHT

kWWWk = ĤHH
T

kWWWk + H̃HH
T

kWWWk and G̃k,l := H̃HH
T

kWWWl ∼ CN (0, σ2).

First, consider Gk. Note that ĤHH
T

kWWWk = ‖ĤHH
T

kUUUk‖ and

H̃HH
T

kWWWk =
(

H̃HH
T

kUUUk

)(

ĤHH
T

kUUUk/‖ĤHH
T

kUUUk‖
)

H

. Since ĤHH
T

k and H̃HH
T

k

are independent and both contain i.i.d. circularly symmetric

Gaussian variables, ĤHH
T

kUUUk and H̃HH
T

kUUUk are also independent

and have the same property. Further, the norm ‖ĤHH
T

kUUUk‖ and

the direction ĤHH
T

kUUUk/‖ĤHH
T

kUUUk‖ are independent for a vector

of i.i.d. circularly symmetric Gaussian variables. It readily

follows that ĤHH
T

kWWWk and H̃HH
T

kWWWk are indeed independent with

AK := H̃HH
T

kWWWk ∼ CN (0, σ2),

BK :=
|ĤHH

T

kWWWk|
2

(nt −K + 1)(1− σ2)

∼ Gamma
(

nt −K + 1,
1

nt −K + 1

)

, (34)

where (34) is because |ĤHH
T

kWWWk|2 ∼ CN (0, (1 − σ2)IIInt−K+1)

since |ĤHH
T

kWWWk|2 = ‖ĤHH
T

kUUUk‖2 and UUUk ∈ Cnt×(nt−K+1) is

independent of ĤHHk ∼ CN (0, (1 − σ2)IIInt
). If lim inf

K→∞

nt

K > 1,

we have BK
a.s.
−−→ 1 by the strong law of large number.

Next, we consider the sum
∑

l 6=k

|G̃k,l|
2 =

H̃HH
T

k

(

∑

l 6=k

WWWlWWW
H

l

)

H̃HH
∗

k. Let CK := 1
(K−1)σ2

∑

l 6=k

|G̃k,l|
2, then

E [CK ] = 1. The matrix QQQk :=
∑

l 6=kWWWlWWW
H

l is independent

of H̃HH
T

k and has at most K − 1 non-zero eigenvalues.

Let QQQk = VVVΛΛΛVVVH be the eigenvalue decomposition with

VVV ∈ C
nt×(K−1) being orthogonal and tr(ΛΛΛ) = K − 1.

Then,
∑

l 6=k |G̃k,l|
2 = H̆HH

T

kΛΛΛH̆HH
∗

k where H̆HHk := VVVH̃HHk contains

K − 1 i.i.d. CN (0, σ2) entries and is independent of ΛΛΛ. With

the assumption that lim inf
K→∞

nt

K > 1, we can show that the

eigenvalues of ΛΛΛ is bounded almost surely. To that end, let us

write the precoding matrix in an alternative form, namely,

WWW := [WWW1 · · · WWWK ] = ĤHH
†
DDD

where ĤHH
†
:= ĤHH

H

(ĤHHĤHH
H

)−1 is the pseudo-inverse of the channel

matrix ĤHH whereasDDD is a diagonal matrix with the k-th diagonal

element, Dk, normalizes the norm of the k-th column of HHH†.

Since the norm of each column of ĤHH
†

is lower bounded by

the minimum eigenvalue λmin((ĤHH
†
)HĤHH

†
) = λmin((ĤHHĤHH

H

)−1) =

λmax(ĤHHĤHH
H

)−1, we have

Dk ≤ λmax(ĤHHĤHH
H

), ∀ k ∈ [K].

Consequently, we have

λmax(WWW
HWWW) ≤ λmax((ĤHH

†
)HĤHH

†
)λmax(DDD

HDDD) ≤
λmax(ĤHHĤHH

H

)

λmin(ĤHHĤHH
H

)

which is upper bounded almost surely when lim inf
K→∞

nt

K > 1

according to [25]. Following the footsteps in [26, Lemma 4],

we can show that

1

(K − 1)σ2
H̆HH

T

kΛΛΛH̆HH
∗

k −
1

K − 1
tr(ΛΛΛ)

a.s.
−−→ 0,

which reads CK = 1
(K−1)σ2

∑

l 6=k |G̃k,l|2
a.s.
−−→ 1.

C. Proof of Proposition 5

Since (29) follows readily from Proposition 4 by replacing

p by P−P0

K , we focus on (28). Due to the space limitation, we

omit some of the technical details and only provide a sketch

of proof.

First, we have (35) and (36). Then, from (13) in

Lemma 6, we have mink∈[K]
‖HHHk‖

2

nt

p
−→ 1. In fact, fol-

lowing the same proof of (13), one can show that

maxk∈[K]
‖HHHk‖

2

nt

p
−→ 1 since nt = Ω(K). For the same

reason, we can show that max
k∈[K]

{ 1
nt−K+1 |Gk|

2}
p
−→ 1−σ2 and

min
k∈[K]

{ 1
nt−K+1 |Gk|

2}
p
−→ 1 − σ2 since |Gk|2 = |HHHT

kWk|2
d
=

|σAK +
√

(nt −K + 1)(1− σ2)BK |2 with AK and BK de-

fined as in Lemma 7. Indeed, we need to apply the assumption

(nt − K + 1)(1 − σ2) → ∞ to get rid of the impact of

AK and the assumption nt − K + 1 = Ω(K) to obtain

the convergence in probability. Therefore, both the upper and

lower bounds (35) and (36) tend to the same random variable

in probability. This leads to the convergence in probability of

ln(1 + mink∈[K] SINR
(0)
k ) by continuous mapping theorem.

Finally, we can prove that ln(1 + mink∈[K] SINR
(0)
k ) is

uniformly integrable to get the convergence of mean, as is

done in Appendix A4.
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