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Arena Function: A Framework for Computing
Capacity Bounds in Wireless Networks

Alireza Keshavarz-Haddad, Shiraz Univ. Iran, and Rudolf Riedi, HES-SO Switzerland.

Abstract—Bounds on the capacity of wireless networks often
rely on simplifying assumptions and are given in terms of
coarse network parameters such as the number of nodes. While
useful due to their simplicity such bounds can significantly
overestimate the achievable capacity in real world situations,
ignoring actual network topology and traffic patterns. The results
of this paper improve such analytical results on network capacity
in several ways. At the heart of our methodology lies the concept
of transmission arenas which indicate the presence of active
transmissions near any given location in the network. This novel
space-based approach is well suited to untangle the interactions
of simultaneous transmissions. Avoiding a graph-based model of
the network it opens new avenues of studying capacities. For
homogeneous networks we recover classical bounds. However,
our methodology applies to arbitrary networks and can, thus,
inform placing and activating of nodes also in the presence of
clustering. Our method works with all classical channel models
and dimensions. It provides bounds on the transport capacity
which involve only high level knowledge of node locations, such
as the length of Euclidean Minimum Spanning Tree. As an
additional novelty we establish bounds on wireless unicast and
multicast capacities.

Index Terms—Wireless Network Capacity, Transport Capacity,
Multicast Transport Capacity, Transmission Arena, Euclidean
Minimum Spanning Tree, Euclidean Steiner Tree, Multicast
Capacity.

I. INTRODUCTION

THERE has been a growing interest to understand the
fundamental capacity limits of wireless networks [1]–[6].

Results on network capacity are not only important from a
theoretical point of view, but they also provide guidelines for
system and protocol design in wireless networks. Hitherto,
most research on wireless network capacity has focused on
the capacity of large homogeneous networks with unicast or
multicast information flows b  e  t ween u  n  i formly distributed,
randomly selected nodes [1], [3], [4], [6]–[13].

In this paper, we study arbitrary wireless networks with the
goal of assessing how topology and traffic p atterns i mpact the
network capacity. At the heart of our method lies the concept
of a transmission arena, a domain defined f o r  e a c h transmis-
sion which represents the part of the space which is affected
by the transmission in a simple yet accurate manner. Doing so,
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we avoid a graph-model of the network and its inaccuracies
for modelling wireless channel and interferences as well as
the complex graph theoretical problems it may lead to. With
the concept of the arena we propose a completely different
approach to studying capacities that opens new avenues for
analysis.

As with graph-based approaches, the capacity bounds ob-
tained using the arenas depend on the chosen channel model.
We develop results for several well known wireless chan-
nel models used in [1], [14] in d = 1, 2, 3-dimensional
space.However, the theory developed is valid also for other
channels models and for random or specific traffic patterns.

The effectiveness of the arenas in capturing topological in-
formation becomes apparent through a bound on the transport
capacity in terms of a simple topological quantity, namely the
length of the Euclidean Minimum Spanning Tree (EMST) of
the network. As a special case of this result, one can recover
the classical bound on the transport capacity of Gupta and
Kumar [1], [15] using well known bounds on the length of
the EMST. However, our bound using the EMST applies to
arbitrary networks. In addition, we establish its tightness up to
a logarithmic term in the number of the nodes of the network.
As a consequence, our approach provides insight into design
and operation of wireless networks. Placing or activating nodes
such as to increase the length of the EMST will increase
capacity.

The transport capacity of a wireless network is defined by
considering unicast flows in the network. This quantity can
provide an upper bound on the total throughput of unicast ses-
sions, when the average distance between source-destination
pairs of the unicast sessions are given. In this paper, we
introduce a generalized version of transport capacity, called
multicast transport capacity. We establish an upper bound on
the multicast transport capacity using the length of the EMST
and show how to use this fact to obtain an upper bound on the
total throughput of multicast sessions in a wireless network.
We can show that the existing upper bounds on the multicast
capacity [6], [9], [10] easily using this analytical method.

Arenas prove useful in various forms when studying mul-
ticast. Clearly, the topological constraints are more complex
than for the unicast case, creating the need to introduce a
more advanced tool called diffusion-span which allows us to
derive capacity bounds for multicast flows. This is achieved by
averaging the arena-bound appropriately over space and time.
Note that the broadcast nature of wireless channels renders
the analysis of network capacity for multicast flows much
more involved as compared to the unicast case. Despite this
complexity, our novel framework has the potential to strongly
support future studies on the capacity of wireless networks for
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multicasting.
It should be noted that arenas provide bounds that are also

sensitive to traffic patterns. To compute the throughput of
simultaneous flows, e.g., we average the arena-bound over
time at particular fixed points of the space. We demonstrate
the effectiveness of the method by deriving an upper bound
(cutset bound) for the maximum information flow rate between
two parts of the network. We focus on two practical cases,
one: where there is a space gap between the two parts and
two: when the node density varies between two parts of the
network.

The paper is organized as follows. In Section II we sum-
marize existing works on network capacity. We explain basic
notations and channel models in Section III. In Section IV we
introduce the concept of transmission arenas and establish its
relevant properties. In Section V we compute novel topology-
based bounds for the transport capacity. In Section VI we
address capacity bounds for multicast flows. In Section VII
we provide cutset bounds for given data flows. We conclude
the paper in Section VIII. Some of the more mathematical
proofs are placed in the Appendix.

II. RELATED WORK

Gupta and Kumar [1] study the network capacity for unicast
sessions in static wireless networks consisting of n nodes
distributed in a circle of area A with wireless channel transmis-
sion rate W . They define the “transport capacity” of a wireless
network with units of bit-meters per second as the maximum
sum rate of the packets multiplied by the distance they travel
between the source and the destination. Their main result says
that the transport capacity of unicast sessions is O(W

√
An) in

an arbitrary network and it is Ω(W
√

An/log(n)) in a random
network where the nodes are placed uniformly. Here, we adopt
the standard notation from complexity theory where O(.),
Ω(.), and Θ(.) stand for asymptotic upper, lower, and tight
bounds, respectively. As a result, if the capacity is shared
between random sources and destinations in the network, the
throughput capacity per node decreases as O(W

√
1/n) (in

random networks Ω(W
√

1/n log(n)) ) when n grows. The same
authors also prove that if the nodes are distributed in a sphere
with volume V then the transport capacity is O(W 3√Vn2) [15].
Later, these results were generalized for another channel model
based on Shannon’s logarithmic function in [14].

Since the seminal work of Gupta and Kumar, network
capacity has been studied using different approaches. By
applying results from percolation theory, e.g., [4] introduces a
scheme for random unicast source and destination pairs in a
large random homogeneous network whichachieve Θ(W

√
1/n)

per node capacity. Other authors compute different capacity
bounds for wireless networks with multiple channels [16],
[17], ultra-wide-band channel [18], directional antennas [19],
hybrid wired backbone [20], and social network wireless links
[21].

For wireless mobile networks, Grossglauser and Tse [2]
show that per node capacity can be increased to Θ(W) if
packet delay is left unbounded. They propose a mobility-
based routing method which uses at most two transmissions for

transporting unicast packets. They consider a mobility model
where the nodes move uniformly within a circular area; a
mobile node close to the source receives the packet and moves
in the entire network randomly and later delivers the packet
when it is close enough to the destination. Many other efforts
demonstrate the trade-off between the capacity and the delay
in mobile networks with different mobility patterns and delay
constraints (see [22] for references).

Note that the mentioned papers consider a regular type
network topology (in random networks, the nodes are dis-
tributed homogeneously in the area) with symmetric traffic
pattern (the traffic is distributed among the nodes in a uniform
random fashion) for proving the achievability of the computed
upper bounds on the network capacity. However, for a different
network topology or traffic pattern the network capacity could
become significantly smaller than these upper bounds. Indeed,
in the analysis of [1], [4], [14] the effect of topology and
traffic pattern are ignored and the computed upper bounds
are only in terms of the number of nodes (n) and the area
of the network (A). Also, there are some papers that study
the network capacity for particular large scale heterogenous
networks with non-uniform traffic [23]–[30].

However, the analytical results mentioned above can be
applied only in wireless networks with special topology and
traffic pattern. Introducing a new direction in network capacity
research, the present paper goes well beyond this existing
work, taking network topology and traffic pattern into account.
Notably, this present work completes our previous conference
paper [31] and provides more technical details and some new
network capacity bounds.

It should also be mentioned that there exists work on the
capacity of wireless networks for multicast and broadcast
flows [3], [5], [6], [6], [9]–[11], [32]–[34]. These asymptotic
capacity bounds are usually computed in random homoge-
neous networks with symmetric random traffic. Interestingly,
the framework of the present paper can be generalized and
applied for computing the capacity of arbitrary networks for
multicasting and broadcasting. In fact, our results cover most
of the traditional bounds on unicast, multicast and broadcast
capacity.

Note that all the above mentioned papers as well as the
present paper assume only simple wireless transmission and
coding for the channel. If the nodes are allowed to use cooper-
ative communication techniques and sophisticated multi-user
coding then a per-node capacity of a higher order than that
described above can be achieved [35]–[38]. A full discussion
of these results is beyond the scope of this paper due to space
constraints.

III. WIRELESS CHANNEL MODELS AND BASIC NOTIONS

In this section, we describe the models and notions used
in this paper. We consider a wireless network consisting of
n wireless nodes in d = 1, 2, 3-dimensional space (Rd). We
denote the set of transmitter-receiver pairs of simultaneous
direct transmissions active at time instant τ by

Q := {(S1,D1), (S2,D2), . . . , (Sm,Dm)} (1)
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Also, we denote the set of transmitters by S := {S1, . . . , Sm}.
Note that in multi-hop networks these sets vary over time,
but we usually consider one fixed but arbitrary time instant to
analyze the network throughput. For simplicity of notation, the
node symbols are used also to represent their locations. For
example, |Si−Di | is the Euclidean distance between the nodes
Si and Di in Rd . Notice that the nodes can be transmitting,
receiving, or idle at different time instants. We use different
notations for transmitters and receivers; the only reason for
doing so is to improve clarity of formulas and the formulation
of analytical results. Most existing papers have preferred to
use the same notation for transmitter and receiver nodes.

A. Wireless Channel Models

This paper covers virtually all of the common channel
models found in the literature on wireless network capacity,
namely the following three groups of models. First, the Pro-
tocol Model defines a successful transmission based on the
distance to the closest interfering transmitter [1], [7], [15].
This model is the simplest of the three and the easiest to
analyze. Second, the Physical Model sets a threshold on the
Signal to Interference plus Noise Ratio (SINR) of the received
signal, declaring the transmission to be successful if the SINR
is larger than a given threshold [1], [14], [15]. Third, the
Generalized Physical Model determines the transmission rate
in terms of the SINR [3], [4], [14] by using Shannon’s capacity
formula for a wireless channel with additive Gaussian white
noise.

1) and 2): Protocol and Physical Model: In both, the
Protocol and the Physical Model the assigned transmission
rate from node Si ∈ S to node Di is modelled as

Wi =

{
W if the transmission is successful
0 if the tranmission is unsuccessful (2)

where W is the transmission rate.
What distinguishes the models are the conditions for a

transmission to be modelled as successful. Current literature is
mainly concerned with the following three different versions
of the “Protocol Model” (see [1], [15]). Given the interference
parameter ∆ > 0 a transmission between Si and Di is modelled
as successful if:
• (Protocol Model 1):
|Sk − Di | ≥ (1 + ∆)|Sk − Dk | for all Sk ∈ S\{Si}.

• (Protocol Model 2):
|Sk − Di | ≥ (1 + ∆)|Si − Di | for all Sk ∈ S\{Si}.

• (Protocol Model 3):
|Sk −Di | ≥ (1+∆)r for all Sk ∈ S\{Si}, and |Si −Di | ≤ r
where the transmission range r is an additional parameter.

Under the Physical Model a transmission is modelled as
successful if

SINR =
PiGii

N +
∑

k,i,k∈S PkGki
≥ β (3)

Here, β is the SINR-threshold, N represents the ambient noise,
and Gki denotes the signal loss, meaning that PkGki is the
receiving power at node Di from transmitter Sk . We assume a
power-law decay for the signal loss of the form Gki = |Sk −
Di |
−α, where α > 0.

3) Generalized Physical Model: In this model all node
pairs are able to communicate by direct transmission, however
with a rate Wi that depends on SINR as

Wi = B log2

(
1 +

PiGii

BN0 +
∑

k,i,k∈S PkGki

)
(4)

Here, B is the bandwidth of the wireless channel and N0/2 is
the noise spectral density. While this model assigns a more
realistic transmission rate at large distances than the other
two channel models, it also results in a singularity under the
signal loss model Gii = |Si − Di |

−α: according to (4) the
receiving power and the rate are amplified to unrealistic levels
if transmitter and receiver are placed very close to each other.
The singularity can be easily addressed by upper bounding
the received power at each node. Some papers have pointed
out this issue [39], [40] and suggest a “bounded propagation
model” for the rate. We do not study this version of the
model in this paper, since its analysis can be performed in a
straightforward way by using similar methods as put forward
here for the two Physical Models.

B. Transport Capacity

The transport capacity is useful in order to study a set
of unicast sessions among source-destination pairs U :=
{(U1,V1), ..., (Um,Vm)}. It can be defined as [1]:

CT (U) := max
unicast paths

∑
k

|Uk − Vk |Rk (5)

where Rk is the average throughput of the unicast session from
Uk to Vk . The maximum is taken over all possible multi-
hop routes establishing the required connections between
the sources and destinations. Note that the unit of transport
capacity is “bit-meter per second” which is different from the
unit of throughput capacity (bit per second). Interestingly, by
computing the transport capacity of wireless network one can
estimate the average throughput rate of the unicast sessions if
the average distance of sender and receiver pairs is given.

A simple upper bound which actually does not depend on
the set U is found by noting that for the routes achieving
CT (U) there must be a time instance where the simultaneous
direct transmissions which transport the information of the
unicast sessions reach at least CT (U) [1]. Therefore,

CT (U) ≤ CT = max
Q

∑
(Si,Di )∈Q

|Si − Di |Wi (6)

where the maximum is over all possible sets of simultaneous
successful direct transmissions Q in (1).

C. Multicast Transport Capacity

In this paper, we introduce multicast transport capac-
ity as a generalized version of transport capacity that is
defined for a set of multicast sessions instead of uni-
cast sessions. Assume a given set of multicast sessions
M := {(U1, {V

(1)
1 , . . . ,V (K1)

1 }), . . . , (Um, {V
(1)
m , . . . ,V (Km)

m })},
where Ui and {V (1)i , . . . ,V (Ki )

i } represent the source and des-
tinations of the ith multicast session. We define the multicast
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transport capacity as

CMT (M) := max
multicast trees

∑
k

LkRk (7)

where Lk is the length of the Euclidean Steiner Tree
(EST) that connects the source node Ui to its destinations
{V (1)i , . . . ,V (Ki )

i } and Rk is the average throughput of this
multicast session. The EST is a collection of line segments
with three properties: (i) each line segment joins two nodes
of the network and stands for the one-hop direct transmission
between these nodes. (ii) Any pair of sender Ui and receiver
Vk
i of M can be interconnected by following line segments

of the EST. (iii) the EST has the minimum length among all
collections that satisfy (i) and (ii). It may be shown that the
line segments do not intersect each other.

We will present useful bounds on the multicast transport
capacity which rely on the EST. More concretely, in order to
compute our bounds, one will have to find the length of the
EST first, a task which is known be an NP-hard problem in
general. However, many efficient approximation solutions and
tight bounds exist for the EST (to learn more see [41]). These
bounds can then be translated into bounds on the multicast
transport capacity.

Similar to (6), a simple upper bound on the multicast
transport capacity is found as follows: for the routes achieving
CMT (M) there must be a time instance where the simultaneous
direct transmissions which transport the information of the
multicast sessions, must reach at least CMT (M). Therefore,

CMT (M) ≤ CMT = max
Q

∑
(Si, {D

(1)
i ,...D

(κi )

i })∈Q

LiWi (8)

where the maximum is over all possible sets of simul-
taneous successful direct one-to-many transmissions Q :=
{(S1, {D

(1)
1 , . . . ,D(κ1)

1 }), . . . , (Sm, {D
(1)
m , . . . ,D

(κm)
m })} and where

Li is the length of EST that connects the transmitter Si to its
receivers D(1)i , . . . D(κi )i and Wi is the transmission rate towards
all these receivers.

Note that here we assume one-to-many transmissions with
the same rate toward all receivers. If we allow multi-rate
transmissions that provide higher rates to closer nodes, then
a new weighted EST must be defined for the transmissions
where each point has a weight proportional to its potential
reception rate from the transmitter. A full discussion on the
multi-rate case is, however, beyond the scope of this paper.

Based on the definitions, it is trivial to show that CT ≤ CMT

in any wireless network. In the next section we will show
that these two quantities possess the same upper bound and,
moreover, that CMT /CT = O(log(n)).

IV. ARENAS: A SPATIAL FRAMEWORK FOR
SIMULTANEOUS TRANSMISSIONS

The problem of finding the optimal configuration for si-
multaneous transmissions and therefore the capacity of a
network requires complex and involved computations. In fact,
this problem is NP-hard (see [42]) and there are no closed-
form expressions available for the capacity. Our method, on
the other hand, provides an analytically tractable way to

compute close bounds for the capacity. To untangle the mutual
interference of simultaneous transmissions and to achieve
analytically tractable yet asymptotically tight approximations,
we move from the natural graph-based methodology to a
space-based approach. In other words, rather than studying
mutual restrictions and interference on the graph, we focus on
restrictions regarding the proximity of ongoing transmissions
as seen at any location X of the space occupied by the network.

A. Methodology of Our Space-based Approach at a simple
example

To explain our methodology let us consider a set of simul-
taneous successful transmissions under Protocol Model 3 in
a planar network. It follows immediately from the definitions
and the triangular inequality that the senders need to be at
least at distance ∆r from each other. Much of the work
existing today uses a graph-theoretical approach to deal with
such restrictions. For our space-based approach consider an
arbitrary point X in the plane, not necessarily a sender or
receiver. Consider the senders within distance r from X; as
noted the discs of radius ∆r/2 around these senders must
be disjoint, yet these discs are contained in the disc of
radius r + ∆r/2 around X . Thus, there can be at the most
M := (r + ∆r/2)2/(∆r/2)2 = (1 + 2/∆)2 successful senders
which include X in their radio range.

Intuitively, this tells us that under the Protocol Model 3 the
rate of information which can be transmitted in the vicinity of
any arbitrary point X is bounded by the constant M · W . In
other words, the “local capacity” of the network or “packing
density” of senders is bounded everywhere by M · W . This
packing reminds one of tiling in cellular networks but is
different. Denoting by Ai the radio range of sender Si this
fact can be expressed neatly as∑

i∈Q:X∈Ai

Wi =
∑
i∈Q

Wi · IAi (X) ≤ (1 + 2/∆)2 ·W

Here, IAi (X) is an indicator function that is equal to 1 if X is
located in the set Ai , and 0 otherwise.

B. Unicast Transmission Arena: the Concept in General

To generalize the example section IV-A, set

Wo :=
{

W Protocol and Physical Models,
B Generalized Physical Model. (9)

in units of bit-per-second and introduce the arena-rate function

φi(X) := Wi · IAi (X) (10)

The set Ai is called transmission arena, or arena for short, and
will be chosen for each channel model such as to represent
the transmission of rate Wi (2) resp. (4) over the distance
from sender Si to receiver Di , as well as the effect of this
transmission on others. The arena is allowed to depend on Si
and Di alone. An illustrative example is given in IV-A.
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Fig. 1. The disturbance area AS
i and the protection area AD

i of a transmitter-
receiver pair (Si, Di ) each form arenas for most channel models (see
Lemma 4.1 and Lemma 4.2).

We define1 an arena-bound M to be any positive number
such that for any fixed time instance and any point X ∈ Rd∑

i∈Q

φi(X) =
∑
i∈Q

Wi · IAi (X) ≤ M ·Wo (11)

The arena-bound M is allowed to depend only on the pa-
rameters of the channel model and the number of nodes: in
particular, it may depend on #Q but not on node location or
traffic patterns.

Note, the arena-rate function does not approximate the
signal strength at X but rather provides a weighted indication
of the presence of transmission i nearby X . Indeed, the
potential of arenas lies less in capturing the relation between
senders but rather in providing a spatial framework which
compactly captures the interactions between simultaneous di-
rect transmissions via (11) and their impact on any location X .
Moreover, arenas are free of detailed information on topology
or traffic patterns, and, most importantly, allow the use of
integration and other analytical tools.

C. Arenas for the Classical Channel Models

An arena can be thought of as representing to a fair degree
the interference caused at the sender, respectively the low noise
level required at the receiver. Natural choices are:

disturbance area AS
i := {X : |X − Si | ≤ li} (12)

protection area AD
i := {X : |X − Di | ≤ li} (13)

where li = |Si −Di | (see Fig. 1). Extending the argumentation
of the illustrative example in IV-A, we are able to establish
arena-bounds for the appropriate choices of an arena under all
models of Section III as stated in Lemma 4.1. Its proof is in
the Appendix.

Lemma 4.1: Choose one of the following sets as transmis-
sion arena under the indicated channel models:

Ai :=
{

AS
i Protocol Model 1,3, Physical Model

AD
i Protocol Model 2,3, Physical Model. (14)

1 More generally we could allow an arena-rate function to be any non-
negative function φi and define the arena-bound M to satisfy

∑
i∈Q φi (X) ≤

M ·Wo . In this case, we would set the arena to be the domain of φi . This
level of generality can be used for various channel models to improve the
bounds, but it is beyond the scope of this paper.

Fig. 2. If we set Pk = k!(β2α)kPmin and lk = 2k ε where ε is a small
constant, then all transmissions will be successful. Consequently,

∑
k φk (X) =

mW for all X ∈ [S1, D1].

Then, the corresponding arena-bounds can be chosen inde-
pendently of the number of sources as

M :=


1 for ∆ > 2, any Protocol Model,
d
(4+2∆)d
∆2d − 1e for ∆ ≤ 2, Protocol Models 1, 2,

d
(2+∆)d
∆d − 1e for ∆ ≤ 2, Protocol Model 3,⌈

3αPmax
βPmin

⌉
for Physical Model.

(15)
For the Physical Model, we assume that there are two con-
stants Pmax and Pmin which bound the transmission power of
any node at any time from above and below.

Note that the above arena-bounds (15) depend only on the
parameters of the channel model; in particular, they do not
depend on the number of nodes.

To this end, the special assumption for the Physical Model
guarantees that the ratio of the power of any two senders
is bounded by Pmax/Pmin independently of the number of
senders. Fig. 2 shows a topology and set of simultaneous
successful transmission such that the best arena-bound at point
X grows linearly with the number of nodes. Note that the
maximal power grows here with the number of nodes.

However, such bounds are not tight in the sense of V-B
and we prefer arena-bounds which are constant or at most
logarithmic in the number of nodes such as in the next lemma.

Lemma 4.2: Under the Generalized Physical Model, for
both AS

i and AD
i we may chose the arena-bound

M :=
(
maxi(Wi)

B
+

3αPmax log2(e · #Q)
Pmin

)
. (16)

Alternatively, (11) holds also for

M ′ := 2 log2(e) ·
Pmax
Pmin

(
3lmax
lmin

)α
(17)

which depends on the network topology via lmax and lmin, the
maximum distance and minimum distance between transmitter
and receiver pairs in Q. The constants Pmax and Pmin are
as in Lemma 4.1.

D. One-to-Many Arena-rate function

Consider a wireless channel with a transmitter Si and a set
of receivers D(1)i ,D

(2)
i , . . . ,D

(m)
i . In analogy to (10) we define

the one-to-many arena-rate function of this transmission to be

φi(X) = max
k=1,...,m

φ
(k)
i (X) (18)

where φ
(k)
i (X) is an arena-rate function of the transmission

Si to D(k)i . This means that the one-to-many arena becomes
the union of the arenas of successful transmissions from the
transmitter to the receivers (see Fig. 3). It is essential to note:
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Fig. 3. The disturbance area AS
i of a transmitter and the protec-

tion area AD
i of a receiver form arenas for a one-to-many transmission

(Si, {D
(1)
i , D

(2)
i , D

(3)
i }).

Lemma 4.3: The arena-bound M of these one-to-many
arena-rate functions can be chosen as in the unicast case (see
Lemmas 4.1 and 4.2).

For a proof, note that the one-to-many arena-rate function
φi(X) at point X equals the arena-rate function of one of the
receivers, say D(ki )i . Thus, we have

∑
i φi(X) =

∑
i φ
(ki )
i (X).

Denoting by Q ′ the set of unicast pairs (Si,D
(ki )
i ) we have

#Q = #Q ′ and we may use the same arena-bounds as in the
unicast case.

V. BOUNDS ON THE TRANSPORT CAPACITY

In this section, we compute novel transport capacity bounds
which are sensitive to network topology and hold for arbitrary
traffic patterns. Using the concept of transmission arenas we
are able to understand and quantify the impact of more detailed
spatial information on wireless network capacity. This leads
us to insights into design and operation of wireless networks:
Placing or activating nodes such as to increase the length of the
EMST will increase capacity (see below). Our computed upper
bounds are also valid for multicast transport capacity that will
be used in the following section to derive upper bounds on
the multicast capacity.

A. Upper Bound on CT

In this section we develop upper bounds for the transport
capacity of an arbitrary wireless network in terms of the length
of its Euclidean Minimum Spanning Tree (EMST). An EMST
is a tree formed by the network nodes where the weights of
the edges are the Euclidean distances of the nodes such that
the total weight of the tree is minimal.

Theorem 5.1: Let M be the arena-bound of the underly-
ing channel model (see (15) and (16)). Then, the transport
capacity of an arbitrary wireless network is bounded as

CT ≤ M ·Wo · LEMST (19)

where LEMST is the length of EMST of the network.

Proof of Theorem 5.1: First, we establish a useful simple
property in the following lemma. The claim follows easily
from the fact that the portion of the curve Γ located inside AS

i
has a length of at least li . Similar for AD

i .

Lemma 5.2: Consider a continuous curve Γ that connects
Si to Di . Then, for both, Ai = AS

i and Ai = AD
i , we have

liWi ≤

∫
Γ

φi(X)d` (20)

Now, consider an arbitrary set of transmitter and receiver
pairs Q at a given time instant τ (see Section III-B). Denote
the EMST curve by ΓEMST. Clearly, for every transmitter
and receiver pair (Si,Di), there exists a path in the EMST
which connects the transmitter Si to receiver Di . The proof of
theorem 5.1 is completed by using lemma 5.2 as follows∑

i∈Q

liWi ≤
∑
i∈Q

∫
ΓEMST

φi(X) d` =
∫
ΓEMST

∑
i∈Q

φi(X) d`

≤

∫
ΓEMST

MWo d` =MWoLEMST

Note that theorem 5.1 applies to any channel model with an
arena-rate function such that (20) holds and an arena-bound
M exists. In addition, theorem 5.1 applies to any network.
When the nodes are distributed homogenously in the network
the upper-bound (19) will become similar to the bounds in
current literature. The well-known bounds of [1], [14], [15],
e.g., are special cases of theorem 5.1. When the distribution
of the nodes is nonhomogeneous most bounds existing today
cannot be applied or are larger than (19). Some examples are
given in [31].

Corollary 5.3: Let M be the arena-bound of the underlying
channel model. Assume that the network nodes are located
in a d-dimensional cube with volume V. Then, the transport
capacity is bounded as

CT ≤ M ·Wo · Kd
d
√

Vnd−1 (21)

where Kd = 1, 3, 6 in d = 1, 2, 3 dimensional space.

B. On the Tightness of the Upper Bound on CT

As we establish next, the length of the EMST is indeed a key
quantity since the bound of Theorem 5.1 differs typically from
the maximum achievable transport capacity of the network by
at most a factor of O(log(n)).

Theorem 5.4: The following holds under all channel models
of Section III except Protocol Model 3, and under assumption
that for the Physical models α > d (see (3) and (4)).
Assume a well-connected2 wireless network with EMST size
LEMST is given. Then, there exists a traffic pattern in the
network with transport capacity of CT such that

CT ≥ K1 ·Wo · LEMST/K2 (22)

where K1 is a constant number, also K2 = 1 if d = 1 and
K2 = log(n) if d = 2, 3. Recall that d denotes the dimension
of the network as defined at the beginning of Section III.

Note that the bound of Theorem 5.4 cannot be improved
more than a constant if the length of EMST is the only

2To avoid pathologies we call a network well-connected, if there exists
constants 0 < ε1, ε2 such that for every arbitrary two nodes there are a path,
and a time scheduling for transporting data at rate ε1Wo along the path with
transmission power ε2Pmax.
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topology information of the network. A pathological example
has been shown in [31]. Also, here we point out that tight
upper and lower bounds can be derived for Protocol model 3
based on the Maximum Independent Set (MIS) of the network
graph. These bounds have been presented earlier [31].

C. Upper bound on CMT

Here, we develop an upper bound on the multicast transport
capacity and use this bound to derive novel upper bounds
on the multicast capacity of wireless networks under various
topology and traffic patterns.

Theorem 5.5: Assume Protocol Model 2 or 3 or the Physical
Model for wireless channel. Let M be the arena-bound of
the underlying channel model. Then, the multicast transport
capacity of an arbitrary network is bounded as

CMT ≤ M ·Wo · LEMST (23)

where LEMST is the length of EMST of the network.

Similar to Theorem 5.1, we establish first a Lemma.
Lemma 5.6: Consider a continuous curve Γ that connects

Si to D(1)i ,D
(2)
i , . . . ,D

(m)
i . Then, for AD

i =
⋃m

j=1 A
D
( j)
i

i , we have

LiWi ≤

∫
Γ

φi(X)d` (24)

where Li is the length of Euclidean Steiner Tree (EST) that
connects the transmitter Si to its receivers D(1)i ,D

(2)
i , . . . ,D

(m)
i .

The lemma follows from the fact that the portion of the
curve Γ located inside AD

i has a length of at least Li . To see
this, notice that each receiver D(j)i is connected to Si via a
portion of the Γ curve. If part of this portion goes outside
of AD

i , we replace it with a line segment from D(j)i to Si as
shown in Fig. 4. Otherwise, no change is made to the portion.
This procedure leads to a new curve Γ̂ which connects Si to
all receivers and which is located entirely inside AD

i . It is
straightforward to show that the size of Γ̂ is not less than the
part of Γ located inside AD

i . Also, since Γ̂ connects Si to all
receivers, its size is at least Li .
Proof of Theorem 5.5: Now, consider an arbitrary set of
multicast transmissions Q at a given time instant τ (see
Section III-B). Denote the EMST curve by ΓEMST. From
Lemmata 5.2 and 5.6 it follows that∑

i∈Q

LiWi ≤
∑
i∈Q

∫
ΓEMST

φi(X) d` =
∫
ΓEMST

∑
i∈Q

φi(X) d`

≤

∫
ΓEMST

MWo d` =MWoLEMST

We point out that Theorem 5.5 can be established also for
Protocol model 1 and the Generalized Physical Model at the
cost of an extra constant factor in the upper bound. For a proof,
define the arena to be AS

i = {X : |X − Si | ≤ 2li}. We omit the
details for lack of space.

From the above results, we have CT ≤ CMT = O(Wo·LEMST)
and since CT = Ω(Wo · LEMST/log(n)), we can conclude that
CMT /CT = O(log(n)).

Finally, we compute an upper bound on the multicast
capacity using the above upper bound on CMT .

Fig. 4. The EMST curve Γ (blue, dashed and solid) and the protection area
AD (shaded) of the sender-receiver-tuple (Si, {D

(1)
i , D

(2)
i , D

(3)
i , D

(4)
i }). A

part of Γ lies outside AD . Therefore, we replace the dashed part of Γ by
dashed straight lines in black to connect the sender and all receivers by a
new curve Γ̂ (solid blue and dashed black) which is located entirely inside
the protection area.

Corollary 5.7: Consider a wireless network with n nodes
which are homogeneously distributed in a square area A.
Assume multicast sessions from every node to nm randomly
selected nodes in the network. Then, the total throughput of
the multicast sessions is bounded by

λ = O(WoM
√

n
nm
) a.s. (25)

as n→∞.
Proof of Corollary 5.7: Based on the Theorem 5.5, CTM =

O(WoMLEMST) and we know that a.s. LEMST = Θ(
√

An).
From the definition of multicast transport capacity, we have
λLEST ≤ CTM , where LEST is the average length of the EST
of the multicast sessions. It has been shown that LEST =
Ω(
√

Anm) a.s. [41]. From the above inequalities we conclude
that λ = O(WoM

√
An/
√

Anm)
We point out that similar upper bounds on multicast capacity

based on the length of the Euclidean Steiner Tree have been
proposed in other work [6], [11], [12]. However, no rigorous
mathematical proof has been given so far. Our novel analytical
proof uses an upper bound on the multicast transport capacity
to bound the multicast throughput capacity of the network. In
the next section, we present yet another rigorous methodology
based on arenas which allows to find an upper bound on the
multicast capacity.

VI. BOUNDS ON MULTICAST CAPACITY

So far, we dealt with transport capacity. In this section, we
generalize the concept of transmission arena-rate functions and
establish novel capacity bounds for multicast flows.

A. Diffusion-span
In order to tackle the multicast capacity we define a quantity

analogous to the curve integral (20). While the curve integral
is tailored to the one-dimensional transport of information
inherent to unicast flows, this new quantity should be tailored
to the spatial distribution of information inherent to multicast
flows. Thus motivated we define diffusion-span of a given
particular multicast bit b by considering the space integral

σΩb =
∑
i∈Hb

∫
Ω

IAi (X) dX (26)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX 20XX 8

where Hb is the set of transmissions (whether one-to-one or
one-to-many) which transport the bit b of the multicast flow
and Ω ⊂ Rd is an arbitrary Borel set.

We may think of the diffusion-span σb as the volume of
space inside Ω which is “filled” or “spanned” for transporting
a particular bit. Clearly, it depends on the locations of the
transmissions (routing paths) and the shape of Ω. The shape of
Ω is chosen properly such that Lemma 6.1 and Theorem 6.2
provide upper bounds on the capacity. For many scenarios,
setting Ω to be a large d = 1, 2, 3-dimensional sphere (or cube)
containing the transmission arenas, the diffusion-span can be
easily computed as σΩ

b
= πd

∑
i∈Hb

ldi where πd is the volume

of unit sphere in Rd and li is the length of i’th transmission
on the paths.

B. Multicast Capacity Bounds

Note that we sum over successive hops along a path Hb in
(26), as opposed to a set of simultaneous transmissions as in
(11). Thus, we average over time in order to obtain bounds:

Lemma 6.1: Assume that data bits {b1, b2, . . .} have been
generated and transported to their destinations in time interval
[0,T]. Then,

1
T

∑
bk

σΩbk
≤ MWo |Ω| (27)

where |Ω| =
∫
Ω

dX is the volume of Ω.
Now, we consider a multicast session s in the network for

which we have at our disposal a lower bound ss on the long
term average σΩ

bk
; again, bk denote the bits transported by the

session. Applying ss over the space that is occupied by the
transmissions which transport the information bits from the
source to the destinations we are able to establish the following
result:

Theorem 6.2: Assume that ss ≤ (
∑

bk
σΩ
bk
)/(

∑
bk

1) as T →
∞ where {bk}k are the transported bits under session s. Let
λs be the rate of successfully transported bits of the session.
Then

λs ≤ MWo
|Ω|

ss
(28)

Proof of Theorem 6.2: Consider the transported bits in the time
interval [0,T−TD] (T >> TD) where TD is the maximum delay
for transporting a bit under session s. From the assumption,
the number of the successfully transported bits in this interval
is λs(T − TD). Then, we have

(T − TD)λs · ss =
λs(T−TD )∑

k=1
ss ≤

λs(T−TD )∑
k=1

σΩbk

=

λs(T−TD )∑
k=1

∑
i∈Hbk

∫
Ω

IAi (X)dX

≤ T ·max
Q

∑
j∈Q

∫
Ω

φ j(X)dX

= T ·
∫
Ω

©­«max
Q

∑
j∈Q

φ j(X)
ª®¬ dX

≤ T MWo ·

∫
Ω

dX

Letting T →∞ completes the proof.
As an example, consider a wireless network with grid

topology and random multicast flows. Then, the multicast
capacity can be bound using Theorem 6.2 as stated in the
next corollary.

Corollary 6.3: Consider a wireless network with n nodes
which are distributed as a grid in a square area A. Assume a
multicast session s from a source node to nm randomly selected
nodes in the network. Then, as n→∞,

λs = O(WoM
√

n
nm
) a.s. (29)

as n→∞.

Notably, our novel framework can provide further results on
multicast capacity. This framework is used to in our previous
work [9], to derive a new bound on the multicast capacity of
large homogeneous wireless networks.

VII. CUTSET BOUNDS BASED ON TOPOLOGY

Calculating cutset bounds for wireless networks usually
leads to a complicated maximization problem in terms of
channel parameters among various nodes [43], [44]. In this
section, we present a method for computing novel cutset
bounds and capacity bounds using our arena framework. While
the method developed here lends itself to tackle much more
general problems, we address two particular cases for illus-
tration purposes: (i) bounding the capacity region of the rates
of simultaneous fixed-path flows (ii) bounding the maximum
aggregate data rate carried between two parts of a wireless
network. Due to lack of space, we constrain this section to
the cutset bound. Further results can be found in our earlier
work [31].

A. Bounding Average Rates via Arenas

Let N denote the set of nodes which are used as senders
at certain times along the routes of the a number of flows.
For each such sender Si ∈ N , let Ti denote the set of time
instants during which it is successfully sending. Finally, let M
denote the arena-bound under the channel model put in place.
Then, the defining inequality of (11) implies for any fixed time
instant τ: ∑

Si ∈N

WiIAi (X) · ITi (τ) ≤ M ·Wo (30)

Fixing the location X and averaging over the time interval
[0,T] we find ∑

Si ∈N

< Wi > IAi (X) ≤ M ·Wo, (31)

where < Wi >:= 1
T

∫ T

0 Wi ·ITi (τ)dτ is the average rate at which
the sender Si transmits data.

In this section we exploit this bound by considering loca-
tions X where we expect the most restrictive conditions in the
network, i.e., where a large number of arenas overlap, in order
to get effective upper bounds on the average rates.
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Fig. 5. Computing a cutset bound on the flow from left to right in the
rectangular area lx ∗ ly .

B. Maximum Flow Rate across a Rectangular Region

Here, we study the maximum data flow rate between two
parts in a network in a special case, namely for the flow rate of
one side of a rectangular area to the other as shown in Fig. 5.
We assume that there is no single node in the rectangular area
able to relay information directly from nodes on the left side
to nodes on the right side. Denoting the length and width of
the rectangle by lx and ly we find that the maximum flow rate
from left to right is bounded by MWo · dly/2lxe.

For the proof, consider points X1, X2, . . . , Xk close to the
left side of the rectangle area in distance 2lx from each other.
The number of such points is k = dly/2lxe. Any transmission
from the left to the right side of the rectangle contains at least
one of these points Xj in its arena (AS

i ). Summing (31) over
all Xk , the sum of transmission rates becomes bounded by
k · MWo.

In general, this framework can be used to bound the maxi-
mum output/input flow rate of a set of nodes U in a wireless
network. First, we find a minimal set of points {X1, . . . , Xk}

in the space such that every transmission between U and the
rest of the nodes include at least one of selected points in its
arena. Then, by applying (31) on each point, we show that the
maximum flow rate by kMWo. Obviously, smaller k provide
tighter bounds on the maximum flow rate.

Note that in the special case where ly = lx our results covers
the earlier [45]. In [9], the above method is used to bound the
maximum flow rate toward a set of relatively isolated nodes
in a large homogeneous network. Based on this, a new upper
bound is derived for multicast capacity.

C. Maximum Flow Rate across Border of Different Densities

Sometimes it is useful to introduce a virtual gap in a network
in form of a rectangular region in order to find a cutset bound.
Fig. 6 depicts an interesting scenario where this approach
proves useful. Here, the density of nodes decreases from ρ1
to ρ2 along a border line. We define a virtual gap in form
of a rectangle with ly equal to the length of the border line,
with x = 1/

√
2ρ2 and position it inside the area with lower

density ρ2 just adjacent to the border line. Then the number of
nodes inside the virtual gap is approximately ρ2lxly = ly

√
ρ2/2.

Therefore, the maximum flow rate which enters the virtual
gap is bounded by MWoly

√
ρ2/2. Also, from the last result,

Fig. 6. Computing a cutset bound on the flow that goes from high-density
(ρ1) area to low-density area (ρ2).

the maximum flow rate that passes through the virtual gap is
bounded by MWoly/(2lx) = MWoly

√
ρ2/2. Therefore, the total

maximum flow rate passing across the border line is bounded
by MWoly

√
2ρ2.

VIII. CONCLUSION AND FUTURE WORK

We introduced the novel concept of transmission arenas
which allows one to study the effect of topology and traffic pat-
terns on the capacity of wireless networks in much more detail
than existing work. Note that the networks are not assumed
to be homogeneous. The key property behind all results is
the existence of an arena-bound which imposes limitations on
simultaneous transmissions in a compact, analytically tractable
way. The simplicity and effectiveness of our methodology
comes from the fact that we take a spatial approach where
arena-rate functions indicate the impact at every location in
the network space caused by simultaneous transmissions.

The arena-bound imposed at every location and time is used
in three ways: 1) fixing a location and averaging over time
we find cutset bounds on simultaneous flows which are more
accurate or computationally less demanding than standard
methods. 2) fixing time and averaging along appropriate curves
we provide novel bounds on the transport capacity in terms of
the network’s Euclidean Minimum Spanning Tree or Euclidean
Steiner Tree. They are more accurate than the existing bounds
since they do not rest on the assumption of a homogeneous
network. 3) fixing time and averaging over space we introduce
novel bounds on multicast sessions. Our work applies to the
three classical channel models, the Protocol, the Physical
and the Generalized Physical Models in all dimensions of
space. Our approach also motivates future studies which aim
to investigate network capacity using alternative arena-rate
functions and allows for investigating wireless networks with
multi-channel, directional antennas and hybrid backbones.

APPENDIX

Proof of Lemma 4.1: Consider an arbitrary point X ∈ Rd at
time τ and assume that φ1(X), . . . , φm(X) > 0. If m = 1 the
upper bound is trivial. So, assume that m > 1 and l1 ≤ l2 ≤
. . . ≤ lm without lack of generality (see Fig. 7). We find the
arena-bound M for the models separately as follows:



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX 20XX 10

Protocol Model (1): First we obtain an inequality through
double application of triangular inequality. Consider two trans-
mitters Sj and Sk , then

|Sj − Sk | ≥
1
2
(|Sj − Dk | − |Sk − Dk | +|Sk − Dj | − |Sj − Dj |)

≥
1
2
((1 + ∆)(lj + lk) − lj − lk) =

∆

2
(lj + lk)

The inequality shows that the balls with radiuses ∆lj/2 around
the transmitters Sj are disjoint in Rd for j = {1, 2, . . . ,m}.
Now, we consider a bigger ball with radius (1+∆/2)lm around
point X , it covers the balls around S1, . . . , Sm. So, we have

m∑
j=1

πd(∆lj/2)d < πd(1 + ∆/2)dldm. (32)

where πd is the volume of unit sphere in Rd .
On the other hand, we assumed that D1 receives success-

fully, (i.e. φ1(X) > 0). From the channel model we have

(1 + ∆)lm < |Sm − D1 |

≤ |Sm − X | + |X − S1 | + |S1 − D1 |

≤ lm + 2l1

From above it follows that

lm ≤
2
∆

l1. (33)

Clearly, if ∆ > 2 then (33) is a contradiction which shows that
m = 1 and we set M = 1 for this case. If ∆ ≤ 2, (32) and
(33) imply that m(∆l1/2)d < ( 2(1+∆/2)∆

l1)d , hence m < (4+2∆)d
∆2d .

Therefore, we set M = d (4+2∆)d
∆2d − 1e.

Protocol Model (2): Here, the problem formulation becomes
the same as for Model (1), using AD

i instead of AS
i . So, we

obtain the same M .
Protocol Model (3): We prove a stronger result here. Con-

sider ψi(X) = Wi · I |X−Si | ≤r . Clearly, φi(X) ≤ ψi(X) when
φi(X) is defined in terms of arena AS

i . Now, we show that∑
i ψi(X) ≤ M ·Wo. Similar to the proof of Model 1, we show if

∆ > 2 then M = 1. If ∆ ≤ 2, we consider the balls with radius
∆r/2 around the transmitters Sj . These balls are disjoint and
contained in the bigger ball with radius (1+∆/2)r around point
X . It follows that m < πd(1 + ∆/2)drd/πd(∆r/2)d = (2+∆)

d

∆d .

Therefore, we can set M = d (2+∆)
d

∆d − 1e.
Note that the same M is obtained if we use this method for

arena AD
i .

Physical Model: Here, we bound the SINR of receiver Dm

as the following

|Sk − Dm | ≤ |Sk − X | + |X − Sm | + |Sm − Dm | ≤ 3lm

So,

SINRm <
Pml−αm∑m−1

k=1 Pk |Sk − Dm |
−α
≤

Pmax
Pmin

l−αm∑m−1
k=1 |Sk − Dm |

−α

≤
Pmax
Pmin

l−αm∑m−1
k=1 (3lm)−α

=
3αPmax
(m − 1)Pmin

Since, SINRm ≥ β, it follows that β < 3αPmax
(m−1)Pmin

, hence m <
3αPmax
βPmin

+ 1. Therefore, we can set M = d 3
αPmax
βPmin

e.

Fig. 7. Point X is in the intersection of the disturbance areas of some
simultaneous transmission.

Proof of Lemma 4.2: Similar to the proof of Lemma 4.1,
consider l1 ≤ l2 ≤ . . . ≤ lm. If m = 1 the upper bound is
trivial, so let us consider the case m > 1. We bound the SINR
of receiver Dj for a 1 < j ≤ m in the following way

|Sk − Dj | ≤ |Sk − X | + |X − Sj | + |Sj − Dj | ≤ 3lj

for all k < j. It follows that

SINRj <
Pj l−αj∑j−1

k=1 Pk |Sk − Dj |
−α

≤
Pmax
Pmin

l−αj∑j−1
k=1 |Sk − Dj |

−α

≤
Pmax
Pmin

l−αj∑j−1
k=1(3lj)−α

=
3αPmax
( j − 1)Pmin

So,

Wj ≤ B log2(1 + SINRj) ≤ B
3αPmax
( j − 1)Pmin

log2(e) (34)

Therefore,3∑
φi(X) ≤ W1 +

m∑
j=2

B
3αPmax
( j − 1)Pmin

log2(e)

≤ max
i
(Wi) + B

3αPmax
Pmin

log2(e)
#Q−1∑
j=1

1
j

≤ max
i
(Wi) + B ·

3αPmax log2(e · #Q)
Pmin

For the second upper bound, we bound SINRj for all j

|Sk − Dj | ≤ |Sk − X | + |X − Sj | + |Sj − Dj | ≤ 3lmax

So,

SINRj <
Pj l−αj

m∑
k=1,k,j

Pk |Sk − Dj |
−α

≤
Pmax
Pmin

l−αj
m∑

k=1,k,j
|Sk − Dj |

−α

≤
Pmax
Pmin

lmin
−α

m∑
k=1,k,j

(3lmax)−α
=

Pmax
(m − 1)Pmin

(
3lmax
lmin
)α

3We use the following inequality
∑m

j=1
1
j ≤ 1 + log(m)
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Then∑
φi(X) ≤

m∑
j=1

B log2(1 + SINRj)

≤ !Bm log2

(
1 +

Pmax
(m − 1)Pmin

(
3lmax
lmin
)α

)
≤ 2 log2(e)B

Pmax
Pmin
(
3lmax
lmin
)α

Note that the same M is obtained for AD
i using this method.

Proof of Corollary 5.3: From Theorem 5.1, it is enough to
show that LEMST ≤ Kd

d
√

Vnd−1. In one dimensional space, the
inequality in obvious, because LEMST is the diameter of the
network. In two and three dimensional space we use induction
for all n > 1. We set Kd = 3d, and prove the inequality for
n = 2, 3. Obviously, the maximum distance between two nodes
is less than the diameter of the cube (

√
d d
√

V). So, LEMST ≤
(n − 1)

√
d d
√

V < 3d d
√

Vnd−1 (only for n = 2, 3).
For n > 1, we assume the inequality for k ≤ n − 1 and we

prove for k = n. Consider the balls with radius 1.5 d

√
V
n around

all nodes. At least πd(1.5 d

√
V
n )

d/2d volume of each ball is
located inside V . The sum of the volumes of these balls inside
V is larger than n · πd(1.5 d

√
V
n )

d/2d = πd3d

4d V > V . Therefore,
at least two of these balls are not disjoint that means there
exists a pair of nodes within distance 2 ∗ 1.5 d

√
V
n = 3 d

√
V
n .

We eliminate one of these nodes from the set of the nodes.
For the remaining n − 1, we know the length of the EMST is
less than 3d d

√
V(n − 1)d−1. By adding the eliminated node and

connecting it to its closet neighbor we build an spanning tree
with length of less than 3d d

√
V(n − 1)d−1+3 d

√
V
n < 3d d

√
Vnd−1

(to prove this inequality, show that d(1 − 1/n) d−1
d + 1/n < d

using 0 < 1/n < 1). Therefore, LEMST ≤ 3d d
√

Vnd−1.
Proof of Theorem 5.4: We construct a time scheduling and
traffic pattern along some edges of the EMST which achieves
the lower bound. We consider d = 1 and d ≥ 2 cases
separately.

When d = 1, the EMST is the line segment between the two
most remote nodes. Due to the well-connectivity assumption,
data can be transported between the farthest nodes at rate
εWo. This gives us a traffic pattern and time scheduling with
a transport capacity larger than K1WoLEMST where K1 = ε .
When d ≥ 2, we proceed in five steps.

Step 1: We select the edges of the EMST with the length
of at least LEMST/2n. Denote the set of selected edges by
l1 ≤ . . . ≤ lm. We have the following inequality for

∑
li:

m∑
i=1

li ≥ LEMST − (n − m)LEMST/2n > LEMST/2

Step 2: We partition {l1, ..., lm} into u sets C1, . . . , Cu where
Cj = {li : 2−jLEMST < li ≤ 2−j+1LEMST}. Note that u =
dlog2(2n)e. We divide the time into u equal time slots. During
the j th time slot, the data is transmitted only along the edges
of Cj . Next, we do steps 3 to 5 at time slots of Cj for all
j = 1, 2, . . . , u.

Step 3: We divide the space into cube cells with side size
rj = 2−j+1LEMST such that the coordinates of their centers are
(i1rj, i2rj, . . . , idrj) for i1, . . . , id ∈ Z (see Fig. 8).

Such a cellular structure has two properties. (i) If a vertex
of an edge li ∈ Cj is located in a cell, the other vertex of li in
located either in the same cell or in one of the 3d−1 neighbor
cells around it. (ii) The number of edges in set Cj with at least
one of their vertices located in the same cell is bounded by a
constant.

For a proof, assume that there are k1 edges of Cj such that at
least one on their vertices is inside the cell. Since the lengths
of the edges are less than rj , the edges are located inside
the cube with side size 3rj formed by the cell and the areas
its neighbor cells. By Corollary 5.3, the length of the EMST
of the vertices of these edges is less than Kd

d

√
(2k1)d−13drdj .

This is an upper bound for the sum of the lengths of the edges,
because if we can connect all these vertices with a spanning
tree with smaller length, then we can reduce the length of the
EMST of the network which is a contradiction. On the other
hand, the length of the edges of Cj is at least rj/2, so the sum
of the length of the edges is larger than k1rj/2. We conclude
that k1rj/2 < 3Kdrj

d
√
(2k1)d−1, and k1 < 22d−1(3Kd)

d .
Step 4: We assign color C(ρq1, ρq2, . . . , ρqd

) to the cell
with center coordinates of (q1rj, q2rj, . . . , qdrj), where ρq =
q(mod)k2. For time scheduling, we divide the time slot of Cj
into kd

2 subslots and we assign one color to each subslot. At
every time subslot only the cells with the corresponding color
can be active. A cell is called active when a vertex inside the
cell transmits.

The constant k2 is chosen large enough such that data
can be transmitted along some edges Cj in different cells
simultaneously and with rate Wo. Using Lemma 9.1, we can
set k2 for different channel models as (35).

Lemma 9.1: The value of k2 for different channel models
can be chosen as

k2=


d3 + ∆e Protoc. Models 1, 2,
d2 + ( β1−ε

∑
Q∈Zd

◦
|Q |−α)1/αe Phys. Model,

d2 + ( 2ε−1
1−ε

∑
Q∈Zd

◦
|Q |−α)1/αe Gener. Phys. Model.

(35)
where Zd

◦ := Zd\{(0, . . . , 0)}.
Proof of Lemma 9.1: We prove the lemma for Protocol Model
1 and 2 and Physical models separately.

From the definition of Cj , the distance between each sender
and receiver pair is less than rj . Therefore, the circular
interference area created by a transmission has radius of at
most (1+∆)rj . If we set the distance (of centers) of two cells
which contain to simultaneous sender larger than (3+∆)rj , then
the distance between each sender from the receiver of the other
sender is larger than (1+∆)rj . Therefore, when k2 ≥ 3+∆, then
all simultaneous transmissions are successful under Protocol
Model 1 and 2 .

Next, we consider the Physical and the Generalized Physical
Model. Note that the well-connectivity assumption restricts
the length of the edges of the EMST and guarantees that k2
is finite. For a proof, consider two vertices (nodes) of the
edge lm (the edge maximum size). Any path which connects
these two nodes has an edge with size larger than or equal
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to lm, otherwise we can reduce the length of the EMST. So,
transmissions along distance lm with maximum power εPmax
and rate εWo must be feasible. It follows that li ≤ lm ≤
(
εPmax
βN )

1/α in Physical Model, and li ≤ lm ≤ (
εPmax

(2ε−1)N0B
)1/α in

Generalized Physical Model. Later, we apply these inequalities
for computing parameter k2 in the cellular structure.

Recall that the simultaneous transmitters are in the dif-
ferent cells with the same color. For example, consider a
transmitter Si in cell (0, . . . , 0) with a receiver Di within
distance rj . Any simultaneous transmitter Si′ must lie in a
cell (q1k2, q2k2, . . . , qdk2) where Q = (q1, . . . , qd) ∈ Zd

◦ . The
distance between the sender Si′ and the receiver Di is then
at least

√
q2

1 + . . . + q2
d

k2rj − 2rj , and since |Q | ≥ 1, at least
≥ rj(k2 − 2)|Q |. Thus,

SINR ≥
Pmaxl−αi

N +
∑

Q∈Zd
◦

Pmax(rj k2 |Q | − 2rj)−α

≥
Pmaxl−αi

N +
∑

Q∈Zd
◦

Pmax(rj(k2 − 2)|Q |)−α

≥
1

N
Pmax

lαi + (k2 − 2)−α
∑

Q∈Zd
◦
|Q |−α

≥
1

N
Pmax

lαm + (k2 − 2)−α
∑

Q∈Zd
◦
|Q |−α

≥
1

ε/β + (k2 − 2)−α
∑

Q∈Zd
◦
|Q |−α

Next, we set k2 large enough such the computed lower bound
of SINR is larger than β. Then we have

k2 ≥ 2 + (
β

1 − ε

∑
Q∈Zd

◦

|Q |−α)1/α (36)

We apply the same techniques for Generalized Physical Model.
Then, we can show that the following k2 satisfies the lemma.

k2 ≥ 2 + (
2ε − 1
1 − ε

∑
Q∈Zd

◦

|Q |−α)1/α (37)

Note that we use the assumption α > d to show that∑
Q∈Zd

◦
|Q |−α converges and k2 is a finite number.

Step 5: Since, we need at most k1 transmission along the
edges of Cj for each cell, we divide the subslot of the cell
into k1 equal subsubslots. In each time subsubslot, data is
transmitted along one of the edges.

For this traffic pattern and time scheduling scheme the
average transmission rate along the edges {l1, ..., lm} equal to
Wo/(k1kd

2 u). This yields a transport capacity of at least:

CT ≥ Wo/(k1kd
2 u)

m∑
i=1

li

> Wo/(k1kd
2 u) · LEMST/2 ≥ K1Wo · LEMST/log(n)

where K1 is a constant number.
Proof of Corollary 6.3: We set Ω = A. Then, we only need
to show that setting ss = cA

√
nm
n satisfies the condition of

Theorem 6.2, almost surely, as n grows, where c is a constant.
To prove ss ≤ (

∑
bk
σΩ
bk
)/(

∑
bk

1) a.s., we show that ss ≤
σΩ
bk

a.s. as n grows. Consider nm random destinations of a

Fig. 8. k2 is large enough such that the nodes in different cells with same
color can transmit simultaneously with rate Wo .

particular data bit bk . Using probability theory techniques, we
can show that the size of maximum independent set has a lower
bounds proportional to nm, i.e., there exists a constant c1 such
that #MIS(2

√
A
nm
) > c1nm, almost surely, as nm grows (see

Lemma 2 in [33]). We draw circles with radius
√

A
nm

around
the nodes of MIS. Clearly, the circles are disjoint in the plane.
Next, for every transmission, we color all the grid squares (side
size =

√
A
n ) which at least π

4 of their area is located inside
the disturbance area of the transmission to black. It is easy
to show that if we connect the neighbor black squares, then a
path from the transmitter to the receiver (receivers in one-to-
many transmissions) is created. This shows that there exists a
path of black squares which connects MIS to a node outside of
the circle corresponding to it. So, the number of black squares
inside the circle is at least b

√
A
nm
/

√
A
n c. Since the circles are

disjoint, we conclude that the number of black squares is larger
than c1nm · b

√
A
nm
/

√
A
n c ≥ c2

√
nnm. This shows that the sum

of disturbance areas of the transmissions which transport a
particular bit is larger than c2

√
nnm π

4
A
n = cA

√
nm
n .
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