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Abstract

This paper considers the downlink precoding for physical layer multicasting in massive multiple-
input-multiple-output (MIMO) systems. We study the max-min fairness (MMF) problem, where channel
state information (CSI) at the transmitter is used to design precoding vectors that maximize the minimum
spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink
transmission. Our system model accounts for channel estimation, pilot contamination, arbitrary path-
losses, and multi-group multicasting. We consider six scenarios with different transmission technologies
(unicast and multicast), different pilot assignment strategies (dedicated or shared pilot assignments),
and different precoding schemes (maximum ratio transmission and zero forcing), and derive achievable
spectral efficiencies for all possible combinations. Then we solve the MMF problem for each of these
scenarios and for any given pilot length we find the SE maximizing uplink pilot and downlink data
transmission policies, all in closed-forms. We use these results to draw a general guideline for massive
MIMO multicasting design, where for a given number of base station antennas, number of users, and

coherence interval length, we determine the multicasting scheme that shall be used.
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Parts of this paper has been submitted to IEEE GLOBECOM 2017 [1]. In [1], we briefly present ZF-undp and ZF-mudp,

refer to Fig. 1. In this manuscript, we present a detailed description of all six scenarios of Fig. 1.



I. INTRODUCTION

The advent of smartphones and tablets, data hungry applications, and the ever growing amount
of digital content have increased the mobile data traffic unprecedentedly [2]. It is anticipated
that the mobile data traffic will grow at a compound annual growth rate of 53% from 2015 to
2020 and reach 30.6 exabytes per month [2]. A considerable portion of this traffic belongs to the
contents that are of interest for groups of users in the network, for example, live broadcast of
sporting events, mobile TV, and regular system updates [3]-[5]. Although these types of traffic
can be delivered by unicast' transmission, theoretically it is more efficient to employ multicast
transmission® [6] and therefore it has been considered in different releases of the 3rd Generation
Partnership Project [3].

Multicasting can be performed in two different ways, either with the blind isotropic trans-
mission as in digital video broadcasting [4], [5] or by downlink precoding based on channel
state information (CSI) [6], [7]. As detailed in [7], the latter approach is more desirable for
wireless systems. In this paper by multicasting we refer to this second approach, where the
multi-antenna transmitter employs its CSI to perform precoding such that a desired metric of
interest is optimized [6], [7]. A seminal study of multicasting is presented in [6], where the
precoder design for the so-called max-min fairness (MMF) and quality of service (QoS) problems
is investigated. Considering a single-group single-cell system, it is shown that both MMF and
QoS problems are NP-hard and a suboptimal solution is presented. This work is then extended
to a multi-group single-cell scenario and it is shown that there exists a duality between the MMF
and QoS problems [7]. The MMF problem is then revisited under per-antenna power constraint
for multi-group single-cell systems in [8]. Also, the coordinated multicasting transmission for a
single-group multi-cell scenario is investigated in [9]. Note that [6]-[9] assume perfect CSI is
available at the base station (BS) and also at the user terminals (UTSs).

The aforementioned works (among many others) are based on the semidefinite relaxation
(SDR) technique and suffer from high computational complexity. Considering a multicasting
system with an N-antenna BS and G different multicasting groups, the complexity of SDR
based techniques is of O(G3°N%?) [7]. This high complexity makes the SDR based multicasting

"We present a formal definition of unicast and multicast transmissions in Section II. B.

For the sake of brevity, in this paper we refer to physical layer multicasting as multicasting.



algorithms impractical for large dimensional systems, e.g. massive MIMO systems where they
deploy hundreds of antennas [10].

Due to significant performance of massive MIMO in terms of energy and spectral efficiency
[11]-[13], it is a promising candidate for the fifth generation of cellular networks [14], [15].
Therefore recent works on multicasting have tried to address the high computational complexity
of massive MIMO multicasting [16]—[18]. Particularly, [16] presents a successive convex approx-
imation technique for single-group single-cell multicasting of large-scale antenna arrays which
reduces the computational complexity to O(N3®). The system set-up of [16] is extended to a
multi-group single-cell multicasting in [17]. Therein a feasible point pursuit based algorithm with
a complexity of O((GN)3?) is presented. However, the complexity is still high for large-scale
antenna systems with hundreds of antennas. Recently a low-complexity algorithm, O(N) for
single-group and O(GN?) for multi-group multicasting, for massive MIMO system is presented
in [18]. This algorithm not only reduces the complexity but also significantly outperforms the
SDR based methods.

The common denominator of the aforementioned algorithms is the perfect CSI assumption,
both at the BS and at the UTs. However, in practice the CSI is not available neither at the
BS nor at the UTs, and should be obtained. This introduces new challenges to the multicasting
problem, which is already NP-hard. To address the CSI acquisition problem, two approaches
have been presented in the literature. The first approach leverages the asymptotic orthogonality
of the channels in massive MIMO, which simplifies the precoding design [19]-[21]. The main
problem with the asymptotic approach is that a very large number of antennas, e.g., N > 4000,
is required to get close to the asymptotic performance, while the performance is poor for realistic
antenna numbers [20], [21].

The second approach relies on employing predefined multicasting precoders [22]. More pre-
cisely, considering a single-cell multi-group multicasting system, [22] presents a maximum ratio
transmission (MRT) based multicast precoder with a novel pilot allocation strategy. Contrary to
the common approach where a dedicated pilot is used per UT, it uses a shared pilot for all the
UTs within each multicasting group, hereafter called co-pilot assignment. They show numerically
that MRT multicasting with co-pilot assignment substantially outperforms the MRT unicasting
with dedicated pilot assignment in terms of minimum spectral efficiency (SE).

The improvement in the SE of multicast transmission, shown by [22], has motivated the

application of co-pilot assignment in the subsequent works [19]-[21]. But as this improved SE



The six cases considered in this paper
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Equivalent* : It will be shown in the proof of Theorem 1 that MRT-mudp and MRT-undp are equivalent.

Fig. 1: The six considered scenarios in this paper.

is observed by numerical comparison of MRT multicast transmission with co-pilot assignment,
and MRT unicast transmission with dedicated pilot assignment, a series of questions remain to
be answered:

« Does the same observation hold for zero forcing (ZF)?

o When is beneficial to employ co-pilot assignment instead of dedicated pilot assignment?

« Given a set of system parameters, which precoder and pilot assignment shall be used?

To answer these questions, we study six different possible scenarios as shown in Fig. 1. The first
layer of Fig. 1 considers the two possible transmission technology, unicast (un) and multicast
(mu). The second layer considers the employed pilot assignment strategy?, i.e., dedicated pilot
(dp) or co-pilot (cp). The third layer determines the precoding scheme, which is either MRT or
ZF. Then the six considered scenarios are: MRT-undp, ZF-undp, MRT-mudp, ZF-mudp, MRT-

mucp, and ZF-mucp.*

3Note that for unicast we just consider dedicated pilot assignment as the co-pilot assignment results in very weak performance
due to high inter-group interference and extreme pilot contamination.

*As an example note that MRT-mucp means MRT multicasting with co-pilot assignment.



In this paper, we answer the aforementioned questions while considering a multi-group massive

MIMO multicasting system with realistic CSI acquisition. Our main contributions are as follows:

o We derive achievable SEs for each UT in the system considering the set-ups depicted in
Fig. 1.

o We formulate the MMF problem for each of the six scenarios in Fig. 1. For an arbitrary
pilot length, we find 1) the optimal uplink pilots powers; 2) the optimal downlink data
transmission powers; and 3) the optimal SE for each UT in the system, all in closed-forms.

« Based on our analytical and numerical results, we draw a guideline for massive MIMO
multicasting design. More precisely, given the number of BS antennas, the number of UTs,
and the length of coherence interval, we determine the multicasting scheme that shall be

used.

The remainder of this paper is organized as follows. Section II introduces the system model, the
channel estimation, and elaborates the unicast and multicast transmissions. Section III presents the
precoding schemes and their associated achievable SEs. Section IV studies the MMF problem for
all set-ups of Fig. 1. Section V presents the numerical analysis and further detailed discussions.
Section VI summarizes the paper and presents the main conclusions.

Notations: The following notation is used throughout the paper. Scalars are denoted by lower
case letters whereas boldface lower (upper) case letters are used for vectors (matrices). We denote
by I; the identity matrix of size G’ and represent the j column of I; as e; . The symbol CA/ (., .)
denotes the circularly symmetric complex Gaussian distribution. The trace, transpose, conjugate
transpose, and expectation operators are denoted by tr(.), ()T, (), and E[.], respectively. We

denote the cardinality of a set G by |G|.

II. SYSTEM AND SIGNAL MODEL

We consider multi-group multicasting in a single-cell massive MIMO system. We assume the
system has one BS with NV antennas and it transmits GG data streams toward ' multicasting
groups. We denote the set of indices of these G multicasting groups as G, i.e., G = {1,...,G}.
We assume the jth data stream, j € {1,..., G}, is of interest for /; single antenna UTs, and we
say these /; UTs belong to the jth multicasting group. We denote the set of indices of all the
UTs in jth multicasting group as IC;, i.e. K; = {1,..., K;}. Therefore |G| = G and |K;| = Kj.
We assume each UT is assigned to just one multicasting group, i.e. K;NKC; =0 Vi, j € G, # j.
We denote the total number of UTs in the system as K;,; = Zle K;.



We consider a block flat-fading channel model where C'z (in Hz) is the coherence bandwidth
and Cp (in seconds) is the coherence time. Hence the channels are static within a coherence
interval of T' = C'gCr symbols. We assume the BS does not have a priori CSI but estimates
the channels by uplink pilots transmission using a TDD protocol, exploiting channel-reciprocity.
The procedure is detailed next. Under these assumptions, we represent the channel between
the BS and UT k in multicasting group j as g;;. We assume all the UTs have independent
Rayleigh fading channels, as it well-matches non-line-of-sight measurements [23]. This implies

that g, ~ CN (0, B;:In)VE, j, where 3, represents the large-scale fading.

A. Channel Estimation

The BS uses uplink pilot transmission to estimate the channels to the UTs in the system.
As detailed in Section I, it can be performed either by dedicated pilot assignment [11], [12],
or by co-pilot assignment [22]. The dedicated pilot approach sacrifices more resources, e.g.,
time-frequency slots in each coherence interval, to achieve a better estimation of the channel
of each UT in the system. On the other hand, the co-pilot approach enforces deliberate pilot
contamination among UTs of each multicasting group in order to reduce the consumed time-
frequency resources. In the sequel we elaborate the channel estimation under each of these
scenarios.

1) Channel Estimation with Dedicated Pilot Assignment: The dedicated pilot assignment uses
one pilot per UT, so it requires K, pilots per coherence interval. Denoting the pilot length as T;lp,
to have orthogonal pilots we have T;lp > K. Under dedicated pilot assignment, the minimum

mean-square error (MMSE) estimate of the channel of UT k in group j is

dp Tgppﬁﬁjk dp
=TT w7 |\ VT p”“-‘g‘wrn) (1
o ‘|’Tppjk5jk ( rEaRs
where n ~ CN(0,Iy) is the normalized additive noise and pY, is the uplink pilot power of

Tdppu 32
UT k in group j. Therefore we have g% ~ CN(0,7%1y) with 4% = o Pk
J J J 1+ pop“ Bik
p PjiPj

the estimation error is gjg = gjg — gk ~ CN(0, (Bjr — vf,f )In). Moreover, we denote the

Also

N x K, matrix obtained by stacking the estimated channel of all the UTs in the system as
Gap =[Gy, ..., Ggl, where G; = [&F, ..., 875 | Vj € G.
2) Channel Estimation with Co-pilot Assignment: The co-pilot assignment uses one pilot per

multicast group, so it requires G pilots per coherence interval. Denoting the pilot length as 77,



to have orthogonal pilots we need 7,7 > G. Under co-pilot assignment the MMSE estimate of

the channel of UT £ in multicasting group j is

Cp.u K;
Tp pjkﬁjk J
gr = > /TP m + 1 )

K.
cp J (0
L+ 7" > s pjmﬁjm m=1

cp U Q2
T PjkPjk

K,
| A Y P
that the channel estimate of each UT is contaminated by other UTs in its multicasting group.

where g7} ~ CN(0,771y) with 777 = . From (2) it is easy to observe

The estimation error of gy, is g7} = &7, — g;x ~ CN (0, (Bjx — 7;;,)1n). Moreover, we need the

estimation of a linear combination of the channels of all the UTs within this multicasting group,

which we denote as g; = ZkKil \/ 7o Pk’ Tts MMSE estimate is

K; K;
N TP Zki1 pukﬁ‘k . -
g =—" el DR Vas i e 3)

- cp K; U
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K.
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and we have g; ~ CN(0,7;1y) with ; = (" 2 i D) . Also we denote the N x G

c K;
147" Zﬁil pjkﬁjk
matrix obtained by stacking the vectors g; Vj € G as G, = (g1, ..., 8¢

B. Transmission Mode: Unicast versus Multicast

As motivated in Section I, we want to understand when it is beneficial to employ multicast
transmission instead of unicast transmission. Therefore we consider both unicast and multicast
transmissions in the sequel. Let us denote by s; ~ CA(0,1) Vi € G the signal requested by the
UTs in the ¢th multicasting group, i.e., K;. We assume s; is independent across ¢. We stack them
in a vector s = [sy,...,sq]7.

1) Unicast Transmission: In unicast transmission we consider a K, X 1 data vector x where

T
X=181,...,581,80,...,80,...,8G,.--,5a| - 4)
—

K Ko Ka
Also the precoding matrix is an N x K, matrix W, = [Wi1,..., Wik, ..., WKk, Where wy,

is the precoding vector of UT k& in multicasting group j. We will provide more details on the

Note that for K; =1, gj = \/7'5717}%&%-



exact structure of the precoding vectors in Section II. The received signal of UT £ in multicasting

group j during downlink transmission is

K;

a
Yik = gﬁCWunx +n= gﬁc Z Z WS +n 5)
i=1

t=1
where n ~ CN(0,1) is the normalized noise.

2) Multicast Transmission: In the multicast case we use s as the data vector. Also the
precoding matrix becomes an N x G matrix W,,, = [wy,...,Wg| where w; is the joint
precoding vector of all the UTs in jth multicasting group. In this case, the received signal

of UT £ in multicasting group j is

G
Yjk = gﬁchuS +n= gﬁ Z W;S; + n. (6)

i=1
ITII. PRECODER STRUCTURES AND ACHIEVABLE SES

It is well known that in massive MIMO systems linear precoding schemes provide close-to-

optimal performance [24]. Also it has been shown that the asymptotically optimal precoders in

massive MIMO multicasting are linear combinations of the channels [19], [21]. Therefore, in

the sequel we consider two common linear precoding schemes in the context of massive MIMO

systems, namely MRT and ZF [25], and derive the achievable SE for them.

A. Precoder Structure and Achievable SE for Unicast Transmission

Consider the N x K, precoding matrix W, = [W11,..., Wjk, ..., Wk, ] for unicast trans-

mission with dedicated pilots. Then the MRT and ZF precoding vectors of UT k in group j

are
MRT—undp __ D5k . ap 7

ik = ap Sk

N7
wl - d

= \/pﬂq’)/];f N_KtOt) GdP(G de) lel/jk,Ktms (®)
where vy, = >7 Ky + k. ey, k., is the vjth column of Ix,,, and p% is the downlink
power allocated to this user. Note that for w)i™" and w%, we have E[[|w}*"|?] = pf and
E[|[w%[I] = pfi. We denote the total utilized downlink power as Py, = S i1 Z ply Do, Given

(7) and (8), we can achieve the following SEs for the UTs in the system.



Proposition 1. With MRT unicast transmission and dedicated pilot assignment, an achievable

SE for user k of group i is

dp
SENRT — (11— 2 ) logy(1+ SINRYT ) ©)

dp, dl
MRT—undp __ N7, Di

where SINR;, =15 B, P is the effective SINR of this user.
ikd dp

Proof. The proof follows the conventional bounding® technique in [26] and is omitted for brevity.

]

Proposition 2. With ZF unicast transmission and dedicated pilot assignment, an achievable SE
for user k of group i is

TP
SER Y = (1= 7 | logy(1+ SINRET™™) (10)

N — K, )y Ppd
where SINRiZkF —undp _ ( t t)Z;k Pir

Proof. The proof follows the conventional bounding technique in [26] and is omitted for brevity.

O

is the effective SINR of this user.

B. Precoder Structure and Achievable SEs for Multicast Transmission

As detailed in Section II.A, the required CSI for multicast transmission can be achieved either
by dedicated pilot assignment or by co-pilot assignment. In the sequel we present the precoder

structure and achievable SEs for both cases.

®In Propositions 1 and 2, the achievable SE is obtained by employing the use and then forget (UatF) bounding technique
[26], [27]. Compared to the classic application of UatF in massive MIMO, here we have a subtle technicality as follows. The
interference caused by the transmission to the other UTs in group ¢ is uncorrelated with the effective transmission to user k
in group ¢, however the message is the same. Therefore the transmission to the other UTs within a multicast group does not

contribute to the desired signal power and act as interference.



1) Precoder Structure and Achievable SE for Multicast Transmission with Dedicated Pilot
Assignment: If dedicated pilot assignment is employed then the MRT and ZF precoding vectors

of jth multicast group are

d i i d

MRT—mudp J ~.ap

Wj == d gk (11)

k=1 N7j£ ’
K;
ZF—mud ~ - e -1G 5

W (1, G (GG 6 Y i 2

k=1

where p?,i is the downlink power of UT k in group 7, G_j = [Gl, . Gj_l, GjH, . GG]
P

(N =)k
MRT—mud K; ZF —mud K;

E[lw; *II7] = 2252, pfi and E[||w} "I = k2 e

Note that there is a subtle difference between ZF-undp and ZF-mudp. The ZF-undp scheme

: MRT—mud ZF—mud
and pj, = with v; = K — Kj. For w; TP and wiT TP we have

ensures that (within the limitations of channel estimation errors) any UT is immune to the
transmissions intended for all other UTs, in its own multicasting group and also in other
multicasting groups. Therefore it requires N > K;,;. However, ZF-mudp just ensures that the
UTs within each multicasting group are rendered immune (within the limitations of channel
estimation errors) to the transmissions to the rest of UTs in other multicasting groups and every
UT experiences intra-group interference from the transmissions intended for the other UTs in

its own group. Hence it requires N > (K, — max;eg K).

Remark 1. Notice that (12) is a generalized version of the precoder proposed in [18], since that
it accounts for imperfect CSI. As the precoder presented in [18] outperforms the SDR based
multicasting schemes, this generalization works as a benchmark and enable us to indirectly
compare our proposed methods with the SDR based algorithms. This is of particular interest,
as the SDR-based algorithms, which are assuming perfect CSI is available at both BS and UTs,

are the baseline schemes used in the literature [6]—[9].
Given (11) and (12), we can achieve the following SEs.

Theorem 1. With MRT multicast transmission and dedicated pilot assignment, an achievable

SE for user k of group 1 is

dp

SENRT-mudp _ (1 - %) logy(1 + SINRj 7). (13)



d
NP pii

where SINRMRT—mudp - _~" Jik Fik
i 1 + szpdp

is the effective SINR of this user.

Proof. The proof follows by showing that when we have a common message for all the users

in each multicasting group, the MRT-mudp is equivalent with MRT-undp:

G Kj
Wunx _ Z W%RT undp Z MRT mudp o Wmus
j=1 k=1 j=1
Hence the SINR and SE are the same as Proposition 1. [

Theorem 2. With ZF multicast transmission and dedicated pilot assignment, an achievable SE

for user k of group i is

SEZF mudp (1

dp

= ) logy (1 + SINRZ—™uP), (14)

(N — i) vk
]- + ’Y;ilf Z =1 pzm (6”? ryzk )

Proof. The proof is given in Appendix A. [

where SINRZ P —

is the effective SINR of this user.

2) Precoder Structure for Multicast Transmission with Co-pilot Assignment: 1f co-pilot as-

signment is utilized then the MRT and ZF precoding vectors of jth multicast group are

MRTfmucp _ pj 15

W, N% (15)

wi TP = [ (N = G) GG Ga) eja (16)

where p¢' is the downlink power of the precoding vector of group j. Note that for WMRT Hep
and WZF P we have E[HWMRT PP = pd and E[HW]ZF MPIP] = pdt. We denote the

utilized downlink power as P, = Z]G:l pj . By using MRT as in (15), it has been shown that

the following achievable SE for user k of group ¢ can be obtained [22]
—Imuc Tcp —Imuc

SEMRT-muep _ (1 - %) logy(1 4+ SINR}FTmuep) (17)

Ny

I+ ﬁzkpcp
we can achieve the following SE.

where SINR) P — is the effective SINR of this user. By using ZF as in (16),

Theorem 3. With ZF multicast transmission and co-pilot assignment, an achievable SE for user

k of group 1 is

TC”
SEZF-muep <1 = ) logy (1 + SINRZ Py, (18)



(N — G)vf;fpfl

Proof. The proof is given in Appendix B. [

where SINRZZkF Her — is the effective SINR of this user.

In Theorem 3 we obtained a simple closed-form for the SINR of ZF-mucp, while the precoder
is entirely based on the composite channels, e.g., g; Vj € G. This is because we took advantage
of the fact that Vj € G,Vk € Kj, gjg and g; are equal up to a scalar coefficient. Hence ZF-mucp
can cancel the inter-group interference, within the limitation of the channel estimates, which
leads to the obtained simple closed-form for the SINR of ZF-mucp. The proof details are given
in Appendix B.

Remark 2. Note that when we switch from MRT to ZF in the above scenarios, e.g., from

Proposition 1 to Proposition 2, the SINR terms always change in a particular way. The signal

power in the numerator reduces by a factor of N

Also the interference in the denominator reduces from [Py, to (Bix — fyf,f )Pap or from B P.,
10 (Bir — i) Pep- This is due to the fact that ZF uses these r degrees of freedom to cancel the

interference toward other UTs at the cost of reducing the received power of each UT.

IV. MAX-MIN FAIRNESS PROBLEM

The MMF problem is the common problem of interest in multicasting systems, where we
maximize the minimum of a metric of interest given some constraints on the resources. For the
sake of simplicity, the existing works in the literature [6]—[9], [17]-[22] consider the SINR as
the metric of interest and the available power at the BS as the resource constraint, while ignoring
CSI acquisition. Here we consider a more general problem formulation for MMF that accounts
for the CSI acquisition. We choose the SE as our metric of interest and also we set our resource
constraints as 1) the available power at the BS; 2) the uplink training power limit of the UTs;

and 3) the length of the pilots. Therefore the MMF problem for dedicated pilot assignment is

TP
. _r dp
P1: . {Lnaix{p }g]lérglvr]?el}rcl (1 T ) log,(1 + SINRYY) (19)
s.t. Pik < p“tolt Vke Kj,Vje g (19-C1)
SHWE as.c2
=1 k=1

7 e {Kiot, ..., T} (19-C3)



where p%"t is the maximum pilot power of user £k in group 7, and P is the total available power

at the BS. Similarly, the MMF problem for co-pilot assignment is

cp

. . ) T o
(= 152 (o) ) 10 heK, (1= - )logy(1 + SINR ) (20)
st P SpRT Yke KpVie g (20-C1)

G
Pp=) 1 <P (20-C2)

j=1
€ {G,...,T}. (20-C3)

Note that the constraints (19-C2) and (20-C2) are due to the total available power at the BS,
but are slightly different. When we use a dedicated pilot per UT, we obtain a dedicated estimate
of the channel of each user. Hence in the downlink we can decide on the amount of power we
allocate to the UTs on a per UT basis, e.g., pﬁ. On the other hand, for co-pilot transmission, the
channel estimates of all UTs within a multicasting group are different just by a scalar coefficient.
Hence we just can allocate the power on a per group basis, e.g., p?l. It is straightforward to show
that for both P1 and P2, the constraints (19-C2) and (20-C2) should be met with equality. To

see this, assume the contrary, e.g., at the optimal solution of P2 we have P > F,, = Z].Gzl p?l.

P
Pep

Then one can increase all the p;” by a factor of 5—. This increases each UT’s SE, hence improves
the minimum SE of the system. This contradicts our assumption. Consequently at the optimal
solution of P2, P = P,,. In the remainder of this section, we find the optimal solutions to P1
and P2 for the six considered scenarios of Fig. 1.

To solve P1 and P2, we use a two-step approach. First, we solve them for any arbitrary value
of Tgp or 7, and determine their optimal solution in closed-form. Second, we find the optimal
value of T]fp or 7,7 by searching over the finite discrete set of all the possible values, thanks

to the closed-form obtained in the first step. Given an arbitrary Tgp, as logarithm is a strictly

increasing function, P1 can be replaced with a problem P’1 as follows

P'l: max min min SINR®Y (21)
{p2}.{pt, } YIEG VheK; J

st.  19-Cl and P, = P.



Similarly, P2 can be replaced with a problem P’2 as follows

P'2: max min min SINRS} (22)
{01} {p, } VI€G VREK, J

s.t. 20-Cl and P, = P.

A. MMF solution for MRT-undp

Theorem 4. Consider P'1 with MRT-undp, then at the optimal solution all the UTs receive the

same SINR and it is equal to
-1

G K;
r—np (Y LEOeP (23)
i k=1

dpp utot Q2
with yd”* = —Z ; ik
] 1+ Tp PP Bt
UT k in group i are

. The optimal uplink training and downlink transmission powers of

pir = ik 24
. 1+ BuP
=g T (25)
Ve NV
Proof. The proof is given in Appendix C. U

B. MMF solution for ZF-undp

Theorem 5. Consider P'1 with ZF-undp, then at the optimal solution all the UTs receive the

same SINR and it is equal to
(N — Ktot)P

i Y T

ik

I‘_

(26)

dp utot 2
dpx p'L ik
with v, =

T + poputot Bir
UT k in group i are

. The optimal uplink training and downlink transmission powers of

pir = P 27

aw L+ (B — %dlf*)P r

e 28)
P =i (N )

Proof Sketch. The proof is similar to the proof of Theorem 4 and its sketch is presented for

brevity. First it should be shown that for every UT £ in group ¢ its SINR is monotonically



increasing with p;. which results in (27). Then it should be shown that at the optimal solution
all UTs will have the same SINR, which also determines (28). Now using this fixed value for
the SINR and the downlink transmission power constraint, we obtain (26). ]

Remark 2 described the similarities between the SE expressions with MRT and ZF, and the
same pattern appears in the optimal solutions to the MMF problem. As we switch from the
MRT to ZF in Theorems 4 and 5, the coherent beamforming gain reduces from N to N — K.
BiuP (B — )P

dp* to dp*

the fact that ZF uses the degrees of freedom provided by tﬁge large-scale gntenna array to cancel

Also the interference in the denominator reduces from . This is due to

the interference toward other UTs at the cost of reducing the desired signal power at each UT.

C. MMF solution for MRT-mudp

Corollary 1. Consider P'1 with MRT-mudp, then at the optimal solution all the UTs receive the
same SINR and it is equal to (23).

Proof. From Theorem 1, we know MRT-mudp is equivalent to MRT-undp. Hence it provides

the same SINR for each UT. Therefore its optimal solution is the same as Theorem 4. 0

D. MMF solution for ZF-mudp

Theorem 6. Consider P'1 with ZF-mudp, then at the optimal solution all the UTs receive the

same SINR, i.e., ' = SINRZ.Z,CF_mudpk Vi, k, and it is the solution of the equation

G
rA;
P = —_ 29
; 1 Bik . d TP P B, . _
where \; = S8 | — + P22 — P with v = 2 apd T < mingeg{ Y24 ).
= (7?15* v " 1+ TP piet By LK
Also the optimal uplink training and downlink transmission powers of UT k in group i are
pix = Pie” (30)
r 1 Bik
dl* dl 7
dix _ P+ p - P 31
LA,
here P = ———
where P N _TK,
Proof. The proof is given in Appendix D. 0

Note that as the right hand side of (29) is an increasing function of I, its solution can simply

be obtained by line search.



E. MMF solution for MRT-mucp

Theorem 7. Consider P'2 with MRT-mucp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

NP
I'= (32)
ZG 1+ T}fp Zm lpzmﬁlm
=1 ppTi
62ptot
with ¥; = minte;c i ];tﬁ Vi € G. The optimal uplink training and downlink transmission
it

powers of UT k in group 1 are

1+Pﬂik

P =——— 1T VieG KeKk, (33)
ik
D(L+ 757 300, P Bim)
l* m=1 im/~rm .
i = Vjeqg. (34)
PpNTz
Proof. The proof is given in Appendix E. [

F. MMF solution for ZF-mucp

Theorem 8. Consider P'2 with ZF-mucp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

P(N -G
I = (G—1) (35)
Zj:l A
Cp’r, % putot 2
ith A; = E,=K,T,P+7; 4 dY; = mi .—‘v’
with Aj = 5 g (E 1) B Y, P+Y55 70 @m an minker, 7 +5gkp e
G. The optimal uplmk training and downlink transmission powers of UT k in group i are
1 i P .
Pk =—+§k T, VkeK,Vieg (36)
ik
1
dl* .
= P Vv . 37
(Z N ) jeg 37)
Proof. The proof is given in Appendix F. [

The achieved results (Theorems 4 to 8 and Corollary 1), determine the optimal value of the
SINR, the uplink training powers, and the downlink transmission powers in closed-form, for any
given pilot length. These closed-form results enable us to find the optimal value of SE by simply
searching over 77 € {Kyo, ..., T} or 7% € {G,..., T} and find the pilot length that provides
the highest SE.



V. NUMERICAL ANALYSIS AND FURTHER DISCUSSIONS

In this section, we use the results of Section IV to perform a numerical analysis and propose
a guideline for multicasting design in massive MIMO systems. In our simulations we consider
a system with G multicasting groups where each group has K UTs, i.e., K; = K Vi € G. The
cell radius is considered to be 500 meters and the UTs are randomly and uniformly distributed
in the cell excluding an inner circle of radius 35 meters. The large-scale fading parameters are
modeled as 3, = d/z%, where v = 3.76 is the path-loss exponent and the constant d = 10~%3
regulates the channel attenuation at 35 meters [28]. Also z;; is the distance between UT £ in
group ¢ and the BS in meters. At a carrier frequency of 2 GHz, the transmission bandwidth
(BW) is assumed to be 20 MHz, the coherence bandwidth and coherence time are considered
to be 300 kHz and 2.5 ms, which results in a coherence interval of length 750 symbols for a
vehicular system with speed of 108 kilometers per hour [26]. The noise power spectral density
is considered to be —174 dBm/Hz.

Fig. 2 studies the effect of the system parameters, i.e., G, K, N, p%"t, and P, on the optimal
SEs that can be obtained for the six scenarios depicted in Fig. 1. Figs. 2a, 2c, and 2e represent the
high SNR regime, where for the cell-edge, the training SNR is —5.8 dB (equivalent to p}‘,ﬁ"t =1
Watt over the BW) and the downlink SNR is 10 dB (equivalent to P = 40 Watt over the BW).
Also Figs. 2b, 2d, and 2f are representing the low SNR regime, where for the cell-edge, the
training SNR is —15.8 dB (equivalent to p;.‘,iOt = (.1 Watt over the BW) and the downlink SNR
is —5.8dB (equivalent to P = 1 Watt over the BW).

From Fig. 2 we make the following observations:

o The dedicated pilot assignment is more vulnerable to SNR reduction than the co-pilot
assignment, comparing the two SNR regimes. For example, consider N = 600, then the
average reduction in SE of ZF-undp comparing Figs. 2a, 2c, 2e respectively with Figs. 2b,
2d, 2f is 6.85 times while with MRT-mucp and ZF-mucp it is 1.69 times. This is because
the emphasis in dedicated pilot assignment is on achieving good channel estimates, while
the co-pilot assignment is focusing on saving time-frequency resources. Hence in the low
SNR regime as long as Ky, is large enough, e.g. Ky £ 0.2N , MRT-mucp and ZF-mucp
provide better performance than other schemes.

o In the high SNR regime, ZF-undp significantly outperforms the co-pilot approaches as
soon as N becomes slightly bigger than K (N Z 1.15K;,), as it can be verified from
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Figs. 2a, 2c, and 2e. The reason is twofold. First, with dedicated pilot assignment a pilot
contamination free channel estimation is achieved. Second, in high SNR regime Tgp is close
to Ky, and as N Z 1.15K;, there are enough time-frequency resources for downlink
transmission. While for co-pilot assignment the channel estimates are highly contaminated
due to the shared pilots.

It is plausible that MRT-mucp can provide a better SE than ZF-undp if there is downlink
pilot transmission, as downlink pilot transmission can be done efficiently just by employing
G symbols of the coherence interval for downlink training [29]. Therefore in Fig. 2 we also
have presented the minimum SE of MRT-mucp with genie UTs, i.e., MRT-mucp-Genie,
where we assume the UTs perfectly estimate their channels from G downlink training
symbols. Even in this case, in the high SNR regime, ZF-undp significantly outperforms
the MRT-mucp with genie UTs, as soon as N becomes slightly bigger than K, e.g.,
N Z 1.2K;,, see Figs. 2a, 2c, and 2e.

The SE of the co-pilot assignment approaches is more robust to adding more UTs to the
system than the SE of the dedicated pilot assignment approaches. For example, consider
N = 700 and compare the SE of ZF-undp and MRT-mucp in Figs. 2c¢ and 2d (where
Ky, = 150) respectively with Figs. 2e and 2f (where K;,; = 500). For ZF-undp the SE
reduces by a factor of 2.95 (comparing Fig. 2c¢ with Fig. 2e) and 7.77 (comparing Fig. 2d
with Fig. 2f) while for MRT-mucp it reduces by a factor of 2 (comparing Fig. 2¢ with Fig.
2e) and 2.36 (comparing Fig. 2d with Fig. 2f). This is because adding more UTs increases
the pilot overhead in dedicated pilot assignment approaches while it has a slight effect
for co-pilot approaches. Hence co-pilot approaches are more suitable for applications like
DVB-H or mobile TV over wide areas with many users [4], [5].

As we increase K, by adding more multicasting groups, e.g., in applications with large
number of multicasting UTs such as DVB-H [4], the downlink training becomes less
important and can be neglected, e.g., compare Figs 2a, 2c, and 2e or Figs 2b, 2d, and 2f.
This is because adding more groups requires more time-frequency resources for downlink
training.

MRT-mucp nearly provides the same SE as ZF-mucp, e.g. see Figs. 2c, 2d, 2e. This is
because the deliberate pilot contamination that was enforced to the precoder structure, (16),
prevents the ZF-based pecoder from suppressing the interference efficiently. Therefore due

to the higher complexity of ZF, if the co-pilot strategy is employed, it is beneficial to use
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MRT-mucp rather than ZF-mucp.

o MRT-mucp always outperform MRT-undp and MRT-mudp, e.g., see Figs 2e and 2f. Hence
if MRT is employed for multicasting, it is better to use the MRT-mucp scheme.

 In all of the considered setups in Fig. 2, the maximum performance is either achieved by
ZF-undp or MRT-mucp. Hence a multicasting system need to support these two transmission
modes and switch between them depending on the system parameters.

o As detailed in Remark 1, ZF-mudp is the generalized version of the precoder proposed in
[18] and it outperforms the SDR-based precoding schemes [7]. Also ZF-mudp is always
outperformed by either MRT-mucp or ZF-undp. Therefore in a massive MIMO system
that accounts for CSI acquisition, a system with hybrid transmission that switches between

MRT-mucp and ZF-undp outperforms SDR-based approaches [7], [18].

The aforementioned observations were achieved either at high or low SNR regime. Fig. 3
verifies them for a wide range of SNR. Considering N = 300, G = 4, K = 50, Fig 3a presents
the SE of the proposed scheme for a fixed cell edge training SNR of —5.8 dB, while the cell
edge downlink SNR is changing from —20 dB to 20 dB. Fig. 3b presents the SE for a fixed cell
edge downlink SNR of 10 dB while the cell edge training SNR is changing from —30 dB to 5
dB. Note that the same observation holds true, e.g., 1) MRT-mucp and ZF-mucp have the same
performance; 2) The optimal performance is achieved by switching between MRT-mucp and
ZF-undp; 3) at low SNR the co-pilot approaches perform better than the dedicated approaches,
and the opposite holds for high SNR; and 4) MRT-mucp always outperform MRT-undp and
MRT-mudp.

As some of the state of the art multicast standards and applications, e.g. DVB-H and mobile
TV, employ omnicast transmission [4], [5], it is interesting to compare the performance of the
proposed multicast schemes with omnicast transmission. Therefore in Fig. 4 we consider a system
with P = 40 Watt, p;f"t = 1 Watt, and G multicasting groups where G is changing from 1 to 30
with K UTs per group. It presents the minimum SE versus the number of multicasting groups
for the proposed multicasting schemes and the omnicast transmission. For omnicast transmission
we assume the channels are perfectly known at the UTs, and the minimum SE is computed as

follows

, 1 P|lh;||?
SEOmnicast =E |:{§n}71{%} E |:5 10g2 (1 + %) ’6]k:|:| (38)

where the outer expectation is with respect to large-scale fading and the inner expectation is with
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Fig. 3: SE versus SNR.

respect to small-scale fading. Note that (38) provides an upper bound on the performance of
an omnicast transmission as we assumed perfect channel knowledge at the UTs. In practice,
terminals will have to rely on channel estimates obtained from downlink pilots. This pilot
transmission is complicated by the fact that optimal training entails the transmission of mutually
orthogonal pilots from each antenna; with a large number of antennas, this pilot overhead can
be significant. A reduction of the pilot overhead, at the cost of some spatial diversity order
loss, can be achieved by transmission into a pre-determined subspace [30], [31]. Note that
in independent Rayleigh fading, a conventional omnicast system that uses a single antenna is
equivalent to the considered array [31], while maximal dimensionality reduction applied. A
corresponding achievable SE can be obtained from [32], by setting p; = 0 in equation (49)
therein’, which we refer to as omnicast with imperfect downlink CSI. From Fig. 4 one can see
that for any K,,;, = GK, at least ZF-undp or MRT-mucp provide significantly better performance
than omnicast transmission. Note that even when we have K;,; = 1500 UTs in the system, MRT-

undp provides more than 3 times higher SE than omnicast transmission. This highly motivates

"There is an M’ parameter in equation (49) of [32], that in Fig. 4 we found its optimal value by exhaustive search, which

gives us the best lower bound that can be obtained for omnicast transmission based on [32].
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the application of massive MIMO in new multicasting standards [4], [5].

Based on the numerical analysis provided in this section, Fig. 5 presents a guideline for
multicasting in massive MIMO systems. Given the system parameters, it determines which
scheme should be applied in different scenarios. Also based on our derived results in Section

IV, we can explicitly specify the SE that can be obtained using this selected scheme.

VI. SUMMARY AND CONCLUSION

In this paper, we studied multi-group multicasting in the context of massive MIMO. First, we
introduced different transmission technologies (multicast and unicast), different pilot assignment
strategies (co-pilot or dedicated pilot assignment), and the two common precoding schemes in
massive MIMO (MRT and ZF). The six possible combinations were outlined in Fig. 1. Second,
for each of these schemes we derived an achievable SE while accounting for the uplink pilot-
based CSI acquisition. Third, for any given training length, we solved the max-min fairness
problem for the proposed schemes and found the optimal uplink pilot powers, downlink precoding
powers, and the optimal SEs, all in closed-forms. Fourth, based on the achieved results we
evaluated the proposed schemes numerically and drew a guideline for practical multi-group

massive MIMO multicasting design. We showed that a massive MIMO multicasting system
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need to support two transmission modes, i.e., MRT-mucp and ZF-undp, and switches between

them depending on the system parameters.

APPENDICES

The appendix provides the proof of proposed theorems and propositions. We will frequently
use the following lemma, which can be proved by standard techniques (for example see Section

IT of [26]).

Lemma 1. Consider a discrete memoryless channel with input x € C and output y= hx + v+ n,
where h is a deterministic channel coefficient, v is a random interference with zero mean and
power E[[v|?] = p, that is uncorrelated with x, and n ~ CN(0,0?) is independent circularly
symmetric complex Gaussian noise. Then if the input power is limited as E||z|*] = P and
the channel response h € C and interference power p, € R, are known at the output, then

P|h|?
SINR = |—|2 and r = log,(1 + SINR) are the achievable SINR and SE for this channel.

Pyt o
APPENDIX A - ACHIEVABLE SE WITH ZF-MUDP

Starting from (6) and applying (12) we have

i 7 ik
3 Y =1

(& J/

G
~ de ZF—mudp de ZF—mudp ~dpH ___ZF-mudp ~dpH ZF—mudp
Yik= ]E[gzk | si H(gy w —E[g;." w; 1)si—8; W, Sjt+n.

(39)
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Now using Lemma 1 while considering h, z and v as shown in (39), we obtain the following

effective SINR for UT £ in group i:
’]E[Ade ZF mudp”Q

o var (gl ) S Bl W

7
Next we find the exact value of each term in (40). For the term E[g""w”" ™ %] we have

K;
Blg Wi = R i (Viaghel Iy - GL(GTG)TGN)) | @
m=1

(40)

SINR[ ™ =

)

= Z tr ( mgfﬁbg%h’] (In — G—z(éié—z)_lél—{z)D
= Vi (V=B [ (G(GHG ) GH)]) = VEm (N = w).

Now let us consider the interference term due to imperfect CSI. We have

HgdeW]ZF mudp‘ ] E[g;l];:HWJZF mude]ZF rnudegzl]f] (42)

d ZF —mud ZF —mudpH
=By — i e (E[w? TP ) = (g, Zpﬁ

Now we need to calculate the variance term,

var(gi " wi ™) = Ellg wit ] — Bl w1 (43)

Denote C; = Iy — G_;(G*,G_;)"'GX,. For the term E[|g/*" w’" ™ %|2] we have

(g wT %) = B[giF C; Z\/uzmg Z\/uz g Cigl]

2
= tr (]E ) + pirE {(gfkaCZg%)) ]

+ tr (E ) .
(i3)

Notice that (i77) is equal to zero due to the independency of gzk and glp Vt # k,t € K;. The

grgrie( 3030 \rlmmtgf;gzﬂf)

=1,m#£k t=1,t+£k

®

K;
grer’c ( > Viwpagieit + Z \/uzmumgfﬁlgf;f}[> i

t=1,t#k m=1,m#k

term (i ) reduces to
Z mmtr< [gffgfﬁHCléfﬁngH ]) o Z mmtr< [ zéfigfiHCZ]>

m=1,m#k m=1,m#k

= ’yzk’ Z sz%z]E tI‘ i Z p

m=1,m#k m=1,m#k



25

where in (a) we used the fact that N — v; = tr (C;). For the term (ii), denote g% = /7% hy,
with hy;, ~ CN(0,1y), then we have

2 R R 2 dl ~dp
paE [(gzkffcgfg) } = 1 (VP)E {(hgcih@ } J]\’[’“_V’; (tr(Cy)2 + tr(C2))  (44)
_ .dl_dp dl  dp
= DikVik (N - Vi) + PirVik -
Therefore var(glP"w?' ™) = A% S dl  Now, inserting (41), (42), and (43) into (40)

7

and utilizing that the pilot length is T;fp, the SE is obtained as given in (14).

APPENDIX B - ACHIEVABLE SE WITH ZF-MUCP

Starting from (6) and applying (16) we have

P u
H ZF— —mucp, (a) vV Tp pzkﬁlk ~H. ZF—mucp cpH ZF— mucp
yir=(8i, — 8ir) D _W; ST = Wi

g W, zk
pZm 1pzmﬁzmj 1

J

TCP ¥ i
p V 'p pzkﬁ k pfl%(N N G) . g7’pH Z WZF mucpsj +n (45)
Zm 1 zmﬁzm oz =
h v
. ) o PiPik . o
where in (a) we used gjc.i = g;. Now applying Lemma 1 considering h, = and

K.
T >kl p?kﬂjk

v as shown in (45), we obtain the effective SINR
Tﬁpp?kﬂfkpfl%(]\f - G)

cp 2
. Z’”Jp%mg%m)mue - (46)
1+ Z] 1 EH 8ik W ‘ ]

cpH ZF —mucp

In the above equation for the terms E[[g;" w ] we have
H~cpH ZF mucp’ ] [ cpH ]ZF muchJZF mucpchp] o tr(E[gfggf,fHW]ZF much]ZF mucpH])

(a) (]E[gzc]fgzc]fH]E[W?F_much]ZF_mucpH]) (6@]9 . ’sz;)tr(E[ ZF much]ZF mucpH])

= (Bix — i) E[w? T P ITTmR) — (g, p (47)

where (a) is due to the fact that gf,{j and g; are independent. Inserting (47) into (46) and noting
that the pilot length is 777, we obtain (18) for the SE of this UT.
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APPENDIX C - MMF PROBLEM FOR MRT-UNDP

First note that SINR%RT_undp, given in Proposition 1, is monotonically increasing with respect

to vf,f , and also %‘.i,f is monotonically increasing with respect to py;.. Therefore, the optimal value
dp,utot Q2
. * Tp Pik Pik
for p is pi = p4°t and A% = —2
k k k Vik 1+ Tgpp%(,t Bir
SINRMF e — SINR%[RT_undp =T Vk,t,i,j. Assume the contrary, i.e., that UT ¢ in group
J has the minimum SINR and there exists a UT k in a group ¢ with (i, k) # (j,t) such that

SINRFT—mndp SINR%IRT_“MP. Then one can improve SINR%RT_undp by changing p¢} and p};

1 i P
respectively to pj, — 0 and pf{ + 9, where 0 < 0 < (SINRYRT-mnde _ SINR%IRT—undP) ;Bd ;f* _
Vik

Note that this just changes the SINR},*" "' and SINR%[RT*““dp, and the other SINRs remain

. Now we prove that at the optimal solution

intact. By performing this process once (or repeating it multiple times, if we have multiple
UTs with same minimum SINR), we can increase the minimum SINR of the system, which

contradicts our optimality assumption. Hence at the optimal solution all the SINRs are equal.

ae . L1+ BiP)

Therefore, p,* = . Now by summing over all UTs in all groups and performing

. . ; AP\ —1
some straightforward operations we can find [' = N P( Zle Zfiﬁ 1:6 ;ip) .
it

APPENDIX D - MMF PROBLEM FOR ZF-MUDP

Starting from SINR”' ™" given in Theorem 2, and similar to Appendix C we can show
dp . utot 22
. . Tp P; ;
that the optimal value for p is pi* = pif* and 7F* = — 2k %
L+ 7 i Bin

at the optimal solution SINRZ ™% — SINRJZtF_mudp = I' Vk,t,4,j. Assume the contrary,

. Now we prove that

i.e., that UT ¢ in group j has the minimum SINR, and there exists a UT k& in a group ¢ with
(i,k) # (j.t) such that SINR}; ™ > SINR7 ™. Denote az = (N — v;)v pli and
by, = 1+ ’yf,f : ZKzl P+ P(By — vflf *). Then one can increase the minimum SINR of the

m
a'kb't — a'tb‘k . .
Rt S which contradicts

system by reducing p% to pf — 8, where 0 < § < o L
. . o (N =)y by — agy )
the assumption. Therefore at the optimal solution all UTs have the same SINR. Now consider

UTs k and ¢ in ith multicasting group. Let us denote P! = 221:1 pd! | then we have
o Vit Pk _ Vit vt 48)
L+ B+ P(B — i) L+ P+ P(Bi — %)
with I' = (N — v;)I';. Hence we can write
r 1 Bik
dix dl i
CIN =)y Vir
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Summing over the downlink power of all UTs in group ¢ and after some straightforward

operations we obtain P# = T'A;(N — v; — I'K;)™!, where A; Zk (s 7 4+ por Bix P).

7 dp*

Note that as Vi € G P* >0 and Y1, P = Py, = P, we have I' < mmzeg{N i), Summmg

over all groups downlink powers we have (29) and I' can be found by solving it.

APPENDIX E - MMF PROBLEM FOR MRT-MUCP

First we prove that at the optimal solution SIN R?/,ICRT_m“Cp = SINRM™ ™™ vt k4 5. Let us

denote the user with the minimum SINR in ith group as kmin;, i.e., kmin; = arg min;c ... Now
MRT—mucp _ SINRMRTfmucp i j

jkmin; ikming

we prove that at the optimal solution of P’2 we have SINR
Assume the contrary, then 3j,i € G such that SINRYL ™P ~ QINRMEL-muP  Now one

jkmin; ikmin;

can change p¢' and p{ respectively to p¥ — ¢ and pf + 0 with 0 < § < (SINRRT-mucp _

Fkmin;
SINRJRT- ””“Cp)—1 + Dymin
N 7 kmznj
our optimality assumption. Now we prove that at the optimal solution the SINR of all the

users within each group are the same, i.e., SINR}. " ™ = SINR}™ ™™ vk t € K;,Vi €
G. Assume the contrary, 3k,t € K, such that SINRMRT mep SINRZ[RT*H“‘CP. Then one

and improve the minimum SINR of the system®, which contradicts

can improve the minimum SINR of this group by reducing p}. to pi — J, where 0 < § <
(1+ 757 3y P Bim) (1 + it P)
Tgp @2}{ N dl

for group ¢ we have

(SINRNMT=P — SINR}™"~P). Hence at the optimal answer

g
b, = L = L Vi, ke IC;, Vi € 50
1+ 8P 1+ B,P ieg (50)

where ®; is a fixed number. Equivalently we have

u Q2 u Q2
PirPik DPit Pt :
;= = Vk,t € K;,Vi € 51
L+ GuP 1+ BuP €9 eh

where T, is a fixed constant. Considering the fact that SINRMRT fuep

is strictly increasing with

utot

respect to pj;. and noting that p¥, < p¥°*, the optimal uplink power will be equal to

1 i P
pie = 206l ek vieg (52)
zk
utot Q2 N dl cp
where T, = mingeg, Lik_ ik Therefor SINIZ{i.\gRT_muCp =7, B . As we
1+ B P 1+ S pe 8,

already showed the SINR at the optimal point is equal among all UTs "and we have I' =

SINR;, "' ™PVi, k. Hence we have pd* = T'(1 + 7 "0 pi 8.} /7’ NY;. Now summing

pd* over all groups and employing the total available power constraint we achieve (32).

8If we have multiple groups with equal value of minimum SINR, we can improve the minimum SINR of the system by

repeating the same procedure multiple times.
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APPENDIX F - MMF PROBLEM FOR ZF-MUCP

First we prove that at the optimal solution SINRJZ.IQF e — QINRZTT™P Wt ki, j. Let us
denote the user with the minimum SINR in ith group as kmin;, i.e., kmin; = arg min;c ;.. Now

we prove that at the optimal solution SINRZS —™uP — GINRZF —mucp

ikmin, kming - Assume the contrary, then

37,7 € G such that SINR]Z,fmZI;l“CP > SINRZ™?. Now one can change pd" and pd respectively

improve the minimum SINR of the system, which contradicts our optimality assumption. Now

and

to p¥ — & and p' +0 with 0 < § < (SINRZ ™ —SINRZ} mucp)

jkmin ikmin
we prove that at the optimal answer the SINR of all the UTs within each group are the same,
ie., SINRZZkF*mUCp — SINRZF™P Yk ¢ € K;,Vi € G. Assume the contrary, 3k,t € K; such
that SINRZ ™" > SINRZ"™?_ Then one can improve the minimum SINR of this group by
+ (/61k - ’yzk) (SINRZF mucp SINRZ-ZtF_muCp). Hence

p{'(N - G)
at the optimal answer the SINR of all users within group ¢ are equal and we have

1
reducing p}j. to pf — 0, where 0 < § <

Vi Vit
A, = - = Vi, ke IC;,Vi € G. (53)
L+ Bk =) P 1+ (Bie — )P

Equivalently we have v} (1 + PBit) = 7;/ (1 + PB) Vi, k € K;,Vi € G. Therefore

p?k ik qut it .
T, = = Vi, ke K;,Vi € 54
1+ BuP 14 BuP ieg >4)

where T; is a fixed constant. Now note that it is exactly the same as (51) and hence the optimal

uplink powers are given as

1 i P
p;*,;‘:—Jrﬂ’“ T, Vk € K;,Vi € G (55)
ik

putot 2
where T, = mingex, ; j’: 3 zljD Using the above result and after straightforward calculation we

ik

TCpTi
obtain A; = s (p E, = PT)) Vie G, where B, = K;T,P+7T; Zm 1 ﬁzm Since we proved
that the SINR is equal for all UTs, we have I' = SINRZ' ™ = (N — G)A;p, where T is a
r

fixed constant. Now, p# = m, and summing over all downlink powers and using the

dlx

total available power constraint we achieve (35) and (37) for the I' and p{**, respectively.
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