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Abstract

This paper considers the downlink precoding for physical layer multicasting in massive multiple-

input-multiple-output (MIMO) systems. We study the max-min fairness (MMF) problem, where channel

state information (CSI) at the transmitter is used to design precoding vectors that maximize the minimum

spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink

transmission. Our system model accounts for channel estimation, pilot contamination, arbitrary path-

losses, and multi-group multicasting. We consider six scenarios with different transmission technologies

(unicast and multicast), different pilot assignment strategies (dedicated or shared pilot assignments),

and different precoding schemes (maximum ratio transmission and zero forcing), and derive achievable

spectral efficiencies for all possible combinations. Then we solve the MMF problem for each of these

scenarios and for any given pilot length we find the SE maximizing uplink pilot and downlink data

transmission policies, all in closed-forms. We use these results to draw a general guideline for massive

MIMO multicasting design, where for a given number of base station antennas, number of users, and

coherence interval length, we determine the multicasting scheme that shall be used.
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I. INTRODUCTION

The advent of smartphones and tablets, data hungry applications, and the ever growing amount

of digital content have increased the mobile data traffic unprecedentedly [2]. It is anticipated

that the mobile data traffic will grow at a compound annual growth rate of 53% from 2015 to

2020 and reach 30.6 exabytes per month [2]. A considerable portion of this traffic belongs to the

contents that are of interest for groups of users in the network, for example, live broadcast of

sporting events, mobile TV, and regular system updates [3]–[5]. Although these types of traffic

can be delivered by unicast1 transmission, theoretically it is more efficient to employ multicast

transmission2 [6] and therefore it has been considered in different releases of the 3rd Generation

Partnership Project [3].

Multicasting can be performed in two different ways, either with the blind isotropic trans-

mission as in digital video broadcasting [4], [5] or by downlink precoding based on channel

state information (CSI) [6], [7]. As detailed in [7], the latter approach is more desirable for

wireless systems. In this paper by multicasting we refer to this second approach, where the

multi-antenna transmitter employs its CSI to perform precoding such that a desired metric of

interest is optimized [6], [7]. A seminal study of multicasting is presented in [6], where the

precoder design for the so-called max-min fairness (MMF) and quality of service (QoS) problems

is investigated. Considering a single-group single-cell system, it is shown that both MMF and

QoS problems are NP-hard and a suboptimal solution is presented. This work is then extended

to a multi-group single-cell scenario and it is shown that there exists a duality between the MMF

and QoS problems [7]. The MMF problem is then revisited under per-antenna power constraint

for multi-group single-cell systems in [8]. Also, the coordinated multicasting transmission for a

single-group multi-cell scenario is investigated in [9]. Note that [6]–[9] assume perfect CSI is

available at the base station (BS) and also at the user terminals (UTs).

The aforementioned works (among many others) are based on the semidefinite relaxation

(SDR) technique and suffer from high computational complexity. Considering a multicasting

system with an N -antenna BS and G different multicasting groups, the complexity of SDR

based techniques is of O(G3.5N6.5) [7]. This high complexity makes the SDR based multicasting

1We present a formal definition of unicast and multicast transmissions in Section II. B.
2For the sake of brevity, in this paper we refer to physical layer multicasting as multicasting.
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algorithms impractical for large dimensional systems, e.g. massive MIMO systems where they

deploy hundreds of antennas [10].

Due to significant performance of massive MIMO in terms of energy and spectral efficiency

[11]–[13], it is a promising candidate for the fifth generation of cellular networks [14], [15].

Therefore recent works on multicasting have tried to address the high computational complexity

of massive MIMO multicasting [16]–[18]. Particularly, [16] presents a successive convex approx-

imation technique for single-group single-cell multicasting of large-scale antenna arrays which

reduces the computational complexity to O(N3.5). The system set-up of [16] is extended to a

multi-group single-cell multicasting in [17]. Therein a feasible point pursuit based algorithm with

a complexity of O((GN)3.5) is presented. However, the complexity is still high for large-scale

antenna systems with hundreds of antennas. Recently a low-complexity algorithm, O(N) for

single-group and O(GN2) for multi-group multicasting, for massive MIMO system is presented

in [18]. This algorithm not only reduces the complexity but also significantly outperforms the

SDR based methods.

The common denominator of the aforementioned algorithms is the perfect CSI assumption,

both at the BS and at the UTs. However, in practice the CSI is not available neither at the

BS nor at the UTs, and should be obtained. This introduces new challenges to the multicasting

problem, which is already NP-hard. To address the CSI acquisition problem, two approaches

have been presented in the literature. The first approach leverages the asymptotic orthogonality

of the channels in massive MIMO, which simplifies the precoding design [19]–[21]. The main

problem with the asymptotic approach is that a very large number of antennas, e.g., N > 4000,

is required to get close to the asymptotic performance, while the performance is poor for realistic

antenna numbers [20], [21].

The second approach relies on employing predefined multicasting precoders [22]. More pre-

cisely, considering a single-cell multi-group multicasting system, [22] presents a maximum ratio

transmission (MRT) based multicast precoder with a novel pilot allocation strategy. Contrary to

the common approach where a dedicated pilot is used per UT, it uses a shared pilot for all the

UTs within each multicasting group, hereafter called co-pilot assignment. They show numerically

that MRT multicasting with co-pilot assignment substantially outperforms the MRT unicasting

with dedicated pilot assignment in terms of minimum spectral efficiency (SE).

The improvement in the SE of multicast transmission, shown by [22], has motivated the

application of co-pilot assignment in the subsequent works [19]–[21]. But as this improved SE
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The six cases considered in this paper

Multicasting

(mu)

Co-pilot 
Assignment

(cp)

MRT ZF

Dedicated Pilot 
Assignment

(dp)

MRT ZF

Unicasting

(un)

Dedicated Pilot 
Assignment

(dp)

MRT ZF

Layer 1

Layer 3

Layer 2

MRT-mucp ZF-mucp MRT-mudp ZF-mudp MRT-undp ZF-undp

Equivalent*

Equivalent* : It will be shown in the proof of Theorem 1 that MRT-mudp and MRT-undp are equivalent.

Fig. 1: The six considered scenarios in this paper.

is observed by numerical comparison of MRT multicast transmission with co-pilot assignment,

and MRT unicast transmission with dedicated pilot assignment, a series of questions remain to

be answered:

• Does the same observation hold for zero forcing (ZF)?

• When is beneficial to employ co-pilot assignment instead of dedicated pilot assignment?

• Given a set of system parameters, which precoder and pilot assignment shall be used?

To answer these questions, we study six different possible scenarios as shown in Fig. 1. The first

layer of Fig. 1 considers the two possible transmission technology, unicast (un) and multicast

(mu). The second layer considers the employed pilot assignment strategy3, i.e., dedicated pilot

(dp) or co-pilot (cp). The third layer determines the precoding scheme, which is either MRT or

ZF. Then the six considered scenarios are: MRT-undp, ZF-undp, MRT-mudp, ZF-mudp, MRT-

mucp, and ZF-mucp.4

3Note that for unicast we just consider dedicated pilot assignment as the co-pilot assignment results in very weak performance

due to high inter-group interference and extreme pilot contamination.
4As an example note that MRT-mucp means MRT multicasting with co-pilot assignment.
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In this paper, we answer the aforementioned questions while considering a multi-group massive

MIMO multicasting system with realistic CSI acquisition. Our main contributions are as follows:

• We derive achievable SEs for each UT in the system considering the set-ups depicted in

Fig. 1.

• We formulate the MMF problem for each of the six scenarios in Fig. 1. For an arbitrary

pilot length, we find 1) the optimal uplink pilots powers; 2) the optimal downlink data

transmission powers; and 3) the optimal SE for each UT in the system, all in closed-forms.

• Based on our analytical and numerical results, we draw a guideline for massive MIMO

multicasting design. More precisely, given the number of BS antennas, the number of UTs,

and the length of coherence interval, we determine the multicasting scheme that shall be

used.

The remainder of this paper is organized as follows. Section II introduces the system model, the

channel estimation, and elaborates the unicast and multicast transmissions. Section III presents the

precoding schemes and their associated achievable SEs. Section IV studies the MMF problem for

all set-ups of Fig. 1. Section V presents the numerical analysis and further detailed discussions.

Section VI summarizes the paper and presents the main conclusions.

Notations: The following notation is used throughout the paper. Scalars are denoted by lower

case letters whereas boldface lower (upper) case letters are used for vectors (matrices). We denote

by IG the identity matrix of size G and represent the j column of IG as ej,G. The symbol CN (., .)

denotes the circularly symmetric complex Gaussian distribution. The trace, transpose, conjugate

transpose, and expectation operators are denoted by tr(.), (.)T , (.)H , and E[.], respectively. We

denote the cardinality of a set G by |G|.

II. SYSTEM AND SIGNAL MODEL

We consider multi-group multicasting in a single-cell massive MIMO system. We assume the

system has one BS with N antennas and it transmits G data streams toward G multicasting

groups. We denote the set of indices of these G multicasting groups as G, i.e., G = {1, . . . , G}.

We assume the jth data stream, j ∈ {1, . . . , G}, is of interest for Kj single antenna UTs, and we

say these Kj UTs belong to the jth multicasting group. We denote the set of indices of all the

UTs in jth multicasting group as Kj , i.e. Kj = {1, . . . , Kj}. Therefore |G| = G and |Kj| = Kj .

We assume each UT is assigned to just one multicasting group, i.e. Ki∩Kj = ∅ ∀i, j ∈ G, i 6= j.

We denote the total number of UTs in the system as Ktot =
∑G

j=1Kj .
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We consider a block flat-fading channel model where CB (in Hz) is the coherence bandwidth

and CT (in seconds) is the coherence time. Hence the channels are static within a coherence

interval of T = CBCT symbols. We assume the BS does not have a priori CSI but estimates

the channels by uplink pilots transmission using a TDD protocol, exploiting channel-reciprocity.

The procedure is detailed next. Under these assumptions, we represent the channel between

the BS and UT k in multicasting group j as gjk. We assume all the UTs have independent

Rayleigh fading channels, as it well-matches non-line-of-sight measurements [23]. This implies

that gjk ∼ CN (0, βjkIN)∀k, j, where βjk represents the large-scale fading.

A. Channel Estimation

The BS uses uplink pilot transmission to estimate the channels to the UTs in the system.

As detailed in Section I, it can be performed either by dedicated pilot assignment [11], [12],

or by co-pilot assignment [22]. The dedicated pilot approach sacrifices more resources, e.g.,

time-frequency slots in each coherence interval, to achieve a better estimation of the channel

of each UT in the system. On the other hand, the co-pilot approach enforces deliberate pilot

contamination among UTs of each multicasting group in order to reduce the consumed time-

frequency resources. In the sequel we elaborate the channel estimation under each of these

scenarios.

1) Channel Estimation with Dedicated Pilot Assignment: The dedicated pilot assignment uses

one pilot per UT, so it requires Ktot pilots per coherence interval. Denoting the pilot length as τ dpp ,

to have orthogonal pilots we have τ dpp ≥ Ktot. Under dedicated pilot assignment, the minimum

mean-square error (MMSE) estimate of the channel of UT k in group j is

ĝdpjk =

√
τ dpp pujkβjk

1 + τppujkβjk

(√
τ dpp pujkgjk + n

)
(1)

where n ∼ CN (0, IN) is the normalized additive noise and pujk is the uplink pilot power of

UT k in group j. Therefore we have ĝdpjk ∼ CN (0, γdpjkIN) with γdpjk =
τ dpp p

u
jkβ

2
jk

1 + τ dpp pujkβjk
. Also

the estimation error is g̃dpjk = ĝdpjk − gjk ∼ CN (0, (βjk − γdpjk )IN). Moreover, we denote the

N × Ktot matrix obtained by stacking the estimated channel of all the UTs in the system as

Ĝdp = [Ĝ1, . . . , ĜG], where Ĝj = [ĝdpj1 , . . . , ĝ
dp
jKj

] ∀j ∈ G.

2) Channel Estimation with Co-pilot Assignment: The co-pilot assignment uses one pilot per

multicast group, so it requires G pilots per coherence interval. Denoting the pilot length as τ cpp ,
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to have orthogonal pilots we need τ cpp ≥ G. Under co-pilot assignment the MMSE estimate of

the channel of UT k in multicasting group j is

ĝcpjk =

√
τ cpp pujkβjk

1 + τ cpp
∑Kj

m=1 p
u
jmβjm

 Kj∑
m=1

√
τ cpp pujmgjm + n

 (2)

where ĝcpjk ∼ CN (0, γcpjkIN) with γcpjk =
τ cpp p

u
jkβ

2
jk

1 + τ cpp
∑Kj

m=1 p
u
jmβjm

. From (2) it is easy to observe

that the channel estimate of each UT is contaminated by other UTs in its multicasting group.

The estimation error of gjk is g̃cpjk = ĝcpjk − gjk ∼ CN (0, (βjk − γcpjk)IN). Moreover, we need the

estimation of a linear combination of the channels of all the UTs within this multicasting group,

which we denote as gj =
∑Kj

k=1

√
τ cpp pujkgjk.

5 Its MMSE estimate is

ĝj =
τ cpp
∑Kj

k=1 p
u
jkβjk

1 + τ cpp
∑Kj

k=1 p
u
jkβjk

 Kj∑
k=1

√
τ cpp pujkgjk + n

 (3)

and we have ĝj ∼ CN (0, γjIN) with γj =
(τ cpp

∑Kj

k=1 p
u
jkβjk)

2

1 + τ cpp
∑Kj

k=1 p
u
jkβjk

. Also we denote the N × G

matrix obtained by stacking the vectors ĝj ∀j ∈ G as Ĝcp = [ĝ1, . . . , ĝG].

B. Transmission Mode: Unicast versus Multicast

As motivated in Section I, we want to understand when it is beneficial to employ multicast

transmission instead of unicast transmission. Therefore we consider both unicast and multicast

transmissions in the sequel. Let us denote by si ∼ CN (0, 1) ∀i ∈ G the signal requested by the

UTs in the ith multicasting group, i.e., Ki. We assume si is independent across i. We stack them

in a vector s = [s1, . . . , sG]T .

1) Unicast Transmission: In unicast transmission we consider a Ktot×1 data vector x where

x = [s1, . . . , s1︸ ︷︷ ︸
K1

, s2, . . . , s2︸ ︷︷ ︸
K2

, . . . , sG, . . . , sG︸ ︷︷ ︸
KG

]T . (4)

Also the precoding matrix is an N ×Ktot matrix Wun = [w11, . . . ,wjk, . . . ,wGKG
], where wjk

is the precoding vector of UT k in multicasting group j. We will provide more details on the

5Note that for Kj = 1, gj =
√
τ cpp pujkgjk.
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exact structure of the precoding vectors in Section II. The received signal of UT k in multicasting

group j during downlink transmission is

yjk = gHjkWunx + n = gHjk

G∑
i=1

Ki∑
t=1

witsi + n (5)

where n ∼ CN (0, 1) is the normalized noise.

2) Multicast Transmission: In the multicast case we use s as the data vector. Also the

precoding matrix becomes an N × G matrix Wmu = [w1, . . . ,wG] where wj is the joint

precoding vector of all the UTs in jth multicasting group. In this case, the received signal

of UT k in multicasting group j is

yjk = gHjkWmus + n = gHjk

G∑
i=1

wisi + n. (6)

III. PRECODER STRUCTURES AND ACHIEVABLE SES

It is well known that in massive MIMO systems linear precoding schemes provide close-to-

optimal performance [24]. Also it has been shown that the asymptotically optimal precoders in

massive MIMO multicasting are linear combinations of the channels [19], [21]. Therefore, in

the sequel we consider two common linear precoding schemes in the context of massive MIMO

systems, namely MRT and ZF [25], and derive the achievable SE for them.

A. Precoder Structure and Achievable SE for Unicast Transmission

Consider the N ×Ktot precoding matrix Wun = [w11, . . . ,wjk, . . . ,wGKG
] for unicast trans-

mission with dedicated pilots. Then the MRT and ZF precoding vectors of UT k in group j

are

wMRT−undp
jk =

√√√√ pdljk

Nγdpjk
ĝdpjk (7)

wZF−undp
jk =

√
pdljkγ

dp
jk (N −Ktot) Ĝdp(Ĝ

H
dpĜdp)

−1eνjk,Ktot (8)

where νjk =
∑j−1

t=1 Kt + k, eνjk,Ktot is the νjkth column of IKtot , and pdljk is the downlink

power allocated to this user. Note that for wMRT
jk and wZF

jk , we have E[‖wMRT
jk ‖2] = pdljk and

E[‖wZF
jk ‖2] = pdljk. We denote the total utilized downlink power as Pdp =

∑G
j=1

∑Kj

k=1 p
dl
jk. Given

(7) and (8), we can achieve the following SEs for the UTs in the system.
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Proposition 1. With MRT unicast transmission and dedicated pilot assignment, an achievable

SE for user k of group i is

SEMRT−undp
ik =

(
1−

τ dpp
T

)
log2(1 + SINRMRT−undp

ik ) (9)

where SINRMRT−undp
ik =

Nγdpik p
dl
ik

1 + βikPdp
is the effective SINR of this user.

Proof. The proof follows the conventional bounding6 technique in [26] and is omitted for brevity.

Proposition 2. With ZF unicast transmission and dedicated pilot assignment, an achievable SE

for user k of group i is

SEZF−undp
ik =

(
1−

τ dpp
T

)
log2(1 + SINRZF−undp

ik ) (10)

where SINRZF−undp
ik =

(N −Ktot)γ
dp
ik p

dl
ik

1 + (βik − γdpik )Pdp
is the effective SINR of this user.

Proof. The proof follows the conventional bounding technique in [26] and is omitted for brevity.

B. Precoder Structure and Achievable SEs for Multicast Transmission

As detailed in Section II.A, the required CSI for multicast transmission can be achieved either

by dedicated pilot assignment or by co-pilot assignment. In the sequel we present the precoder

structure and achievable SEs for both cases.

6In Propositions 1 and 2, the achievable SE is obtained by employing the use and then forget (UatF) bounding technique

[26], [27]. Compared to the classic application of UatF in massive MIMO, here we have a subtle technicality as follows. The

interference caused by the transmission to the other UTs in group i is uncorrelated with the effective transmission to user k

in group i, however the message is the same. Therefore the transmission to the other UTs within a multicast group does not

contribute to the desired signal power and act as interference.
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1) Precoder Structure and Achievable SE for Multicast Transmission with Dedicated Pilot

Assignment: If dedicated pilot assignment is employed then the MRT and ZF precoding vectors

of jth multicast group are

wMRT−mudp
j =

Kj∑
k=1

√√√√ pdljk

Nγdpjk
ĝdpjk (11)

wZF−mudp
j = (IN − Ĝ−j(Ĝ

H
−jĜ−j)

−1ĜH
−j)

Kj∑
k=1

√
µjkĝ

dp
jk (12)

where pdljk is the downlink power of UT k in group j, Ĝ−j = [Ĝ1, . . . , Ĝj−1, Ĝj+1, . . . , ĜG],

and µjk =

√
pdljk

(N − νj)γdpjk
with νj = Ktot − Kj . For wMRT−mudp

j and wZF−mudp
j we have

E[‖wMRT−mudp
j ‖2] =

∑Kj

k=1 p
dl
jk and E[‖wZF−mudp

j ‖2] =
∑Kj

k=1 p
dl
jk.

Note that there is a subtle difference between ZF-undp and ZF-mudp. The ZF-undp scheme

ensures that (within the limitations of channel estimation errors) any UT is immune to the

transmissions intended for all other UTs, in its own multicasting group and also in other

multicasting groups. Therefore it requires N ≥ Ktot. However, ZF-mudp just ensures that the

UTs within each multicasting group are rendered immune (within the limitations of channel

estimation errors) to the transmissions to the rest of UTs in other multicasting groups and every

UT experiences intra-group interference from the transmissions intended for the other UTs in

its own group. Hence it requires N ≥ (Ktot −maxj∈GKj).

Remark 1. Notice that (12) is a generalized version of the precoder proposed in [18], since that

it accounts for imperfect CSI. As the precoder presented in [18] outperforms the SDR based

multicasting schemes, this generalization works as a benchmark and enable us to indirectly

compare our proposed methods with the SDR based algorithms. This is of particular interest,

as the SDR-based algorithms, which are assuming perfect CSI is available at both BS and UTs,

are the baseline schemes used in the literature [6]–[9].

Given (11) and (12), we can achieve the following SEs.

Theorem 1. With MRT multicast transmission and dedicated pilot assignment, an achievable

SE for user k of group i is

SEMRT−mudp
ik =

(
1−

τ dpp
T

)
log2(1 + SINRMRT−mudp

ik ). (13)
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where SINRMRT−mudp
ik =

Nγdpik p
dl
ik

1 + βikPdp
is the effective SINR of this user.

Proof. The proof follows by showing that when we have a common message for all the users

in each multicasting group, the MRT-mudp is equivalent with MRT-undp:

Wunx =
G∑
j=1

Kj∑
k=1

wMRT−undp
jk sj =

G∑
j=1

wMRT−mudp
j sj = Wmus.

Hence the SINR and SE are the same as Proposition 1.

Theorem 2. With ZF multicast transmission and dedicated pilot assignment, an achievable SE

for user k of group i is

SEZF−mudp
ik =

(
1−

τ dpp
T

)
log2(1 + SINRZF−mudp

ik ). (14)

where SINRZF−mudp
ik =

(N − νi)γdpik pdlik
1 + γdpik

∑Ki

m=1 p
dl
im + (βik − γdpik )Pdp

is the effective SINR of this user.

Proof. The proof is given in Appendix A.

2) Precoder Structure for Multicast Transmission with Co-pilot Assignment: If co-pilot as-

signment is utilized then the MRT and ZF precoding vectors of jth multicast group are

wMRT−mucp
j =

√
pdlj
Nγj

ĝj (15)

wZF−mucp
j =

√
pdlj γj(N −G) Ĝcp(Ĝ

H
cpĜcp)

−1ej,G (16)

where pdlj is the downlink power of the precoding vector of group j. Note that for wMRT−mucp
j

and wZF−mucp
j we have E[‖wMRT−mucp

j ‖2] = pdlj and E[‖wZF−mucp
j ‖2] = pdlj . We denote the

utilized downlink power as Pcp =
∑G

j=1 p
dl
j . By using MRT as in (15), it has been shown that

the following achievable SE for user k of group i can be obtained [22]

SEMRT−mucp
ik =

(
1−

τ cpp
T

)
log2(1 + SINRMRT−mucp

ik ) (17)

where SINRMRT−mucp
ik =

Nγcpik p
dl
i

1 + βikPcp
is the effective SINR of this user. By using ZF as in (16),

we can achieve the following SE.

Theorem 3. With ZF multicast transmission and co-pilot assignment, an achievable SE for user

k of group i is

SEZF−mucp
ik =

(
1−

τ cpp
T

)
log2(1 + SINRZF−mucp

ik ). (18)



12

where SINRZF−mucp
ik =

(N −G)γcpik p
dl
i

1 + (βik − γcpik )Pcp
is the effective SINR of this user.

Proof. The proof is given in Appendix B.

In Theorem 3 we obtained a simple closed-form for the SINR of ZF-mucp, while the precoder

is entirely based on the composite channels, e.g., ĝj ∀j ∈ G. This is because we took advantage

of the fact that ∀j ∈ G,∀k ∈ Kj , ĝcpjk and ĝj are equal up to a scalar coefficient. Hence ZF-mucp

can cancel the inter-group interference, within the limitation of the channel estimates, which

leads to the obtained simple closed-form for the SINR of ZF-mucp. The proof details are given

in Appendix B.

Remark 2. Note that when we switch from MRT to ZF in the above scenarios, e.g., from

Proposition 1 to Proposition 2, the SINR terms always change in a particular way. The signal

power in the numerator reduces by a factor of N−κ
N

, where κ depends on the considered scenario.

Also the interference in the denominator reduces from βikPdp to (βik − γdpik )Pdp or from βikPcp

to (βik − γcpik )Pcp. This is due to the fact that ZF uses these κ degrees of freedom to cancel the

interference toward other UTs at the cost of reducing the received power of each UT.

IV. MAX-MIN FAIRNESS PROBLEM

The MMF problem is the common problem of interest in multicasting systems, where we

maximize the minimum of a metric of interest given some constraints on the resources. For the

sake of simplicity, the existing works in the literature [6]–[9], [17]–[22] consider the SINR as

the metric of interest and the available power at the BS as the resource constraint, while ignoring

CSI acquisition. Here we consider a more general problem formulation for MMF that accounts

for the CSI acquisition. We choose the SE as our metric of interest and also we set our resource

constraints as 1) the available power at the BS; 2) the uplink training power limit of the UTs;

and 3) the length of the pilots. Therefore the MMF problem for dedicated pilot assignment is

P1 : max
τdpp ,{pdljk},{p

u
jk}

min
∀j∈G

min
∀k∈Kj

(1−
τ dpp
T

) log2(1 + SINRdp
jk ) (19)

s.t. pujk ≤ putotjk ∀ k ∈ Kj,∀ j ∈ G (19-C1)

Pdp =
G∑
j=1

Kj∑
k=1

pdljk ≤ P (19-C2)

τ dpp ∈ {Ktot, . . . , T} (19-C3)
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where putotjk is the maximum pilot power of user k in group j, and P is the total available power

at the BS. Similarly, the MMF problem for co-pilot assignment is

P2 : max
τcpp ,{pdlj },{pujk}

min
∀j∈G

min
∀k∈Kj

(1−
τ cpp
T

) log2(1 + SINRcp
jk) (20)

s.t. pujk ≤ putotjk ∀ k ∈ Kj,∀ j ∈ G (20-C1)

Pcp =
G∑
j=1

pdlj ≤ P (20-C2)

τ dpp ∈ {G, . . . , T}. (20-C3)

Note that the constraints (19-C2) and (20-C2) are due to the total available power at the BS,

but are slightly different. When we use a dedicated pilot per UT, we obtain a dedicated estimate

of the channel of each user. Hence in the downlink we can decide on the amount of power we

allocate to the UTs on a per UT basis, e.g., pdljk. On the other hand, for co-pilot transmission, the

channel estimates of all UTs within a multicasting group are different just by a scalar coefficient.

Hence we just can allocate the power on a per group basis, e.g., pdlj . It is straightforward to show

that for both P1 and P2, the constraints (19-C2) and (20-C2) should be met with equality. To

see this, assume the contrary, e.g., at the optimal solution of P2 we have P > Pcp =
∑G

j=1 p
dl
j .

Then one can increase all the pdlj by a factor of P
Pcp

. This increases each UT’s SE, hence improves

the minimum SE of the system. This contradicts our assumption. Consequently at the optimal

solution of P2, P = Pcp. In the remainder of this section, we find the optimal solutions to P1

and P2 for the six considered scenarios of Fig. 1.

To solve P1 and P2, we use a two-step approach. First, we solve them for any arbitrary value

of τ dpp or τ cpp and determine their optimal solution in closed-form. Second, we find the optimal

value of τ dpp or τ cpp by searching over the finite discrete set of all the possible values, thanks

to the closed-form obtained in the first step. Given an arbitrary τ dpp , as logarithm is a strictly

increasing function, P1 can be replaced with a problem P ′1 as follows

P ′1 : max
{pdljk},{p

u
jk}

min
∀j∈G

min
∀k∈Kj

SINRdp
jk (21)

s.t. 19-C1 and Pdp = P.
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Similarly, P2 can be replaced with a problem P ′2 as follows

P ′2 : max
{pdlj },{pujk}

min
∀j∈G

min
∀k∈Kj

SINRcp
jk (22)

s.t. 20-C1 and Pcp = P.

A. MMF solution for MRT-undp

Theorem 4. Consider P ′1 with MRT-undp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

Γ = NP

 G∑
i=1

Kj∑
k=1

1 + βikP

γdp∗ik

−1

(23)

with γdp∗ik =
τ dpp p

utot
ik β2

ik

1 + τ dpp putotik βjt
. The optimal uplink training and downlink transmission powers of

UT k in group i are

pu∗ik = putotik (24)

pdl∗ik =
1 + βikP

γdp∗ik N
Γ. (25)

Proof. The proof is given in Appendix C.

B. MMF solution for ZF-undp

Theorem 5. Consider P ′1 with ZF-undp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

Γ =
(N −Ktot)P∑G

i=1

∑Ki

k=1

1 + (βik − γdp∗ik )P

γdp∗ik

(26)

with γdp∗ik =
τ dpp p

utot
ik β2

ik

1 + τ dpp putotik βik
. The optimal uplink training and downlink transmission powers of

UT k in group i are

pu∗ik = putotik (27)

pdl∗ik =
1 + (βik − γdp∗ik )P

γdp∗ik (N −Ktot)
Γ. (28)

Proof Sketch. The proof is similar to the proof of Theorem 4 and its sketch is presented for

brevity. First it should be shown that for every UT k in group i its SINR is monotonically
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increasing with puik which results in (27). Then it should be shown that at the optimal solution

all UTs will have the same SINR, which also determines (28). Now using this fixed value for

the SINR and the downlink transmission power constraint, we obtain (26).

Remark 2 described the similarities between the SE expressions with MRT and ZF, and the

same pattern appears in the optimal solutions to the MMF problem. As we switch from the

MRT to ZF in Theorems 4 and 5, the coherent beamforming gain reduces from N to N −Ktot.

Also the interference in the denominator reduces from
βikP

γdp∗ik

to
(βik − γdp∗ik )P

γdp∗ik

. This is due to

the fact that ZF uses the degrees of freedom provided by the large-scale antenna array to cancel

the interference toward other UTs at the cost of reducing the desired signal power at each UT.

C. MMF solution for MRT-mudp

Corollary 1. Consider P ′1 with MRT-mudp, then at the optimal solution all the UTs receive the

same SINR and it is equal to (23).

Proof. From Theorem 1, we know MRT-mudp is equivalent to MRT-undp. Hence it provides

the same SINR for each UT. Therefore its optimal solution is the same as Theorem 4.

D. MMF solution for ZF-mudp

Theorem 6. Consider P ′1 with ZF-mudp, then at the optimal solution all the UTs receive the

same SINR, i.e., Γ = SINRZF−mudp∗
ik ∀i, k, and it is the solution of the equation

P =
G∑
i=1

Γ∆i

N − νi − ΓKi

(29)

where ∆i =
∑Ki

k=1

(
1

γdp∗ik

+ P
βik

γdp∗ik

− P

)
with γdp∗ik =

τ dpp p
utot
ik β2

ik

1 + τ dpp putotik βik
and Γ < mini∈G{N−νiKi

}.

Also the optimal uplink training and downlink transmission powers of UT k in group i are

pu∗ik = putotik (30)

pdl∗ik =
Γ

N − νi

(
1

γdp∗ik

+ P dl
i + P

βik

γdp∗ik

− P

)
(31)

where P dl
i =

Γ∆i

N − νi − ΓKi

.

Proof. The proof is given in Appendix D.

Note that as the right hand side of (29) is an increasing function of Γ, its solution can simply

be obtained by line search.
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E. MMF solution for MRT-mucp

Theorem 7. Consider P ′2 with MRT-mucp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

Γ =
NP∑G

i=1

1 + τ cpp
∑Ki

m=1 p
u∗
imβim

τ cpp Υi

(32)

with Υi = mint∈Ki

β2
itp

tot
it

1 + Pβit
∀i ∈ G. The optimal uplink training and downlink transmission

powers of UT k in group i are

pu∗ik =
1 + Pβik
β2
ik

Υi ∀i ∈ G, K ∈ Ki (33)

pdl∗i =
Γ(1 + τ cpp

∑Ki

m=1 p
u∗
imβim)

τ cpp NΥi

∀j ∈ G. (34)

Proof. The proof is given in Appendix E.

F. MMF solution for ZF-mucp

Theorem 8. Consider P ′2 with ZF-mucp, then at the optimal solution all the UTs receive the

same SINR and it is equal to

Γ =
P (N −G)∑G

j=1
1

∆j

(35)

with ∆j =
τ cpp Υj

1 + τ cpp (Ej − PΥj)
, Ej = KjΥjP+Υj

∑Kj

m=1

1

βjm
, and Υj = mink∈Kj

putotjk β2
jk

1 + βjkP
∀j ∈

G. The optimal uplink training and downlink transmission powers of UT k in group i are

pu∗ik =
1 + βikP

β2
ik

Υi ∀k ∈ Ki, ∀i ∈ G (36)

pdl∗i =

(
G∑
j=1

∆i

∆j

)−1

P ∀j ∈ G. (37)

Proof. The proof is given in Appendix F.

The achieved results (Theorems 4 to 8 and Corollary 1), determine the optimal value of the

SINR, the uplink training powers, and the downlink transmission powers in closed-form, for any

given pilot length. These closed-form results enable us to find the optimal value of SE by simply

searching over τ dpp ∈ {Ktot, . . . , T} or τ dpp ∈ {G, . . . , T} and find the pilot length that provides

the highest SE.
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V. NUMERICAL ANALYSIS AND FURTHER DISCUSSIONS

In this section, we use the results of Section IV to perform a numerical analysis and propose

a guideline for multicasting design in massive MIMO systems. In our simulations we consider

a system with G multicasting groups where each group has K UTs, i.e., Ki = K ∀i ∈ G. The

cell radius is considered to be 500 meters and the UTs are randomly and uniformly distributed

in the cell excluding an inner circle of radius 35 meters. The large-scale fading parameters are

modeled as βik = d̄/xνik where ν = 3.76 is the path-loss exponent and the constant d̄ = 10−3.53

regulates the channel attenuation at 35 meters [28]. Also xik is the distance between UT k in

group i and the BS in meters. At a carrier frequency of 2 GHz, the transmission bandwidth

(BW) is assumed to be 20 MHz, the coherence bandwidth and coherence time are considered

to be 300 kHz and 2.5 ms, which results in a coherence interval of length 750 symbols for a

vehicular system with speed of 108 kilometers per hour [26]. The noise power spectral density

is considered to be −174 dBm/Hz.

Fig. 2 studies the effect of the system parameters, i.e., G, K, N , putotjk , and P , on the optimal

SEs that can be obtained for the six scenarios depicted in Fig. 1. Figs. 2a, 2c, and 2e represent the

high SNR regime, where for the cell-edge, the training SNR is −5.8 dB (equivalent to putotjk = 1

Watt over the BW) and the downlink SNR is 10 dB (equivalent to P = 40 Watt over the BW).

Also Figs. 2b, 2d, and 2f are representing the low SNR regime, where for the cell-edge, the

training SNR is −15.8 dB (equivalent to putotjk = 0.1 Watt over the BW) and the downlink SNR

is −5.8dB (equivalent to P = 1 Watt over the BW).

From Fig. 2 we make the following observations:

• The dedicated pilot assignment is more vulnerable to SNR reduction than the co-pilot

assignment, comparing the two SNR regimes. For example, consider N = 600, then the

average reduction in SE of ZF-undp comparing Figs. 2a, 2c, 2e respectively with Figs. 2b,

2d, 2f is 6.85 times while with MRT-mucp and ZF-mucp it is 1.69 times. This is because

the emphasis in dedicated pilot assignment is on achieving good channel estimates, while

the co-pilot assignment is focusing on saving time-frequency resources. Hence in the low

SNR regime as long as Ktot is large enough, e.g. Ktot ' 0.2N , MRT-mucp and ZF-mucp

provide better performance than other schemes.

• In the high SNR regime, ZF-undp significantly outperforms the co-pilot approaches as

soon as N becomes slightly bigger than Ktot (N ' 1.15Ktot), as it can be verified from
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(a) G=3, K=10, P =40, and putot=1 Watt.
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(b) G=3, K=10, P =1, and putot=0.1 Watt.
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(c) G=3, K=50, P =40, and putot=1 Watt.
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(d) G=3, K=50, P =1, and putot=0.1 Watt.
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(e) G=10, K=50, P =40, and putot=1 Watt.
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(f) G=10, K=50, P =1, and putot=0.1 Watt.

Fig. 2: SE versus N for different system setups.
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Figs. 2a, 2c, and 2e. The reason is twofold. First, with dedicated pilot assignment a pilot

contamination free channel estimation is achieved. Second, in high SNR regime τ dpp is close

to Ktot, and as N ' 1.15Ktot there are enough time-frequency resources for downlink

transmission. While for co-pilot assignment the channel estimates are highly contaminated

due to the shared pilots.

• It is plausible that MRT-mucp can provide a better SE than ZF-undp if there is downlink

pilot transmission, as downlink pilot transmission can be done efficiently just by employing

G symbols of the coherence interval for downlink training [29]. Therefore in Fig. 2 we also

have presented the minimum SE of MRT-mucp with genie UTs, i.e., MRT-mucp-Genie,

where we assume the UTs perfectly estimate their channels from G downlink training

symbols. Even in this case, in the high SNR regime, ZF-undp significantly outperforms

the MRT-mucp with genie UTs, as soon as N becomes slightly bigger than Ktot, e.g.,

N ' 1.2Ktot, see Figs. 2a, 2c, and 2e.

• The SE of the co-pilot assignment approaches is more robust to adding more UTs to the

system than the SE of the dedicated pilot assignment approaches. For example, consider

N = 700 and compare the SE of ZF-undp and MRT-mucp in Figs. 2c and 2d (where

Ktot = 150) respectively with Figs. 2e and 2f (where Ktot = 500). For ZF-undp the SE

reduces by a factor of 2.95 (comparing Fig. 2c with Fig. 2e) and 7.77 (comparing Fig. 2d

with Fig. 2f) while for MRT-mucp it reduces by a factor of 2 (comparing Fig. 2c with Fig.

2e) and 2.36 (comparing Fig. 2d with Fig. 2f). This is because adding more UTs increases

the pilot overhead in dedicated pilot assignment approaches while it has a slight effect

for co-pilot approaches. Hence co-pilot approaches are more suitable for applications like

DVB-H or mobile TV over wide areas with many users [4], [5].

• As we increase Ktot by adding more multicasting groups, e.g., in applications with large

number of multicasting UTs such as DVB-H [4], the downlink training becomes less

important and can be neglected, e.g., compare Figs 2a, 2c, and 2e or Figs 2b, 2d, and 2f.

This is because adding more groups requires more time-frequency resources for downlink

training.

• MRT-mucp nearly provides the same SE as ZF-mucp, e.g. see Figs. 2c, 2d, 2e. This is

because the deliberate pilot contamination that was enforced to the precoder structure, (16),

prevents the ZF-based pecoder from suppressing the interference efficiently. Therefore due

to the higher complexity of ZF, if the co-pilot strategy is employed, it is beneficial to use
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MRT-mucp rather than ZF-mucp.

• MRT-mucp always outperform MRT-undp and MRT-mudp, e.g., see Figs 2e and 2f. Hence

if MRT is employed for multicasting, it is better to use the MRT-mucp scheme.

• In all of the considered setups in Fig. 2, the maximum performance is either achieved by

ZF-undp or MRT-mucp. Hence a multicasting system need to support these two transmission

modes and switch between them depending on the system parameters.

• As detailed in Remark 1, ZF-mudp is the generalized version of the precoder proposed in

[18] and it outperforms the SDR-based precoding schemes [7]. Also ZF-mudp is always

outperformed by either MRT-mucp or ZF-undp. Therefore in a massive MIMO system

that accounts for CSI acquisition, a system with hybrid transmission that switches between

MRT-mucp and ZF-undp outperforms SDR-based approaches [7], [18].

The aforementioned observations were achieved either at high or low SNR regime. Fig. 3

verifies them for a wide range of SNR. Considering N = 300, G = 4, K = 50, Fig 3a presents

the SE of the proposed scheme for a fixed cell edge training SNR of −5.8 dB, while the cell

edge downlink SNR is changing from −20 dB to 20 dB. Fig. 3b presents the SE for a fixed cell

edge downlink SNR of 10 dB while the cell edge training SNR is changing from −30 dB to 5

dB. Note that the same observation holds true, e.g., 1) MRT-mucp and ZF-mucp have the same

performance; 2) The optimal performance is achieved by switching between MRT-mucp and

ZF-undp; 3) at low SNR the co-pilot approaches perform better than the dedicated approaches,

and the opposite holds for high SNR; and 4) MRT-mucp always outperform MRT-undp and

MRT-mudp.

As some of the state of the art multicast standards and applications, e.g. DVB-H and mobile

TV, employ omnicast transmission [4], [5], it is interesting to compare the performance of the

proposed multicast schemes with omnicast transmission. Therefore in Fig. 4 we consider a system

with P = 40 Watt, puotjk = 1 Watt, and G multicasting groups where G is changing from 1 to 30

with K UTs per group. It presents the minimum SE versus the number of multicasting groups

for the proposed multicasting schemes and the omnicast transmission. For omnicast transmission

we assume the channels are perfectly known at the UTs, and the minimum SE is computed as

follows

SEOmnicast = E
[

min
{j},{k}

E
[

1

G
log2

(
1 +

P‖hjk‖2

σ2

)
|βjk

]]
(38)

where the outer expectation is with respect to large-scale fading and the inner expectation is with
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(a) SE vs Downlink SNR.
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(b) SE vs Training SNR.

Fig. 3: SE versus SNR.

respect to small-scale fading. Note that (38) provides an upper bound on the performance of

an omnicast transmission as we assumed perfect channel knowledge at the UTs. In practice,

terminals will have to rely on channel estimates obtained from downlink pilots. This pilot

transmission is complicated by the fact that optimal training entails the transmission of mutually

orthogonal pilots from each antenna; with a large number of antennas, this pilot overhead can

be significant. A reduction of the pilot overhead, at the cost of some spatial diversity order

loss, can be achieved by transmission into a pre-determined subspace [30], [31]. Note that

in independent Rayleigh fading, a conventional omnicast system that uses a single antenna is

equivalent to the considered array [31], while maximal dimensionality reduction applied. A

corresponding achievable SE can be obtained from [32], by setting ρ′b = 0 in equation (49)

therein7, which we refer to as omnicast with imperfect downlink CSI. From Fig. 4 one can see

that for any Ktot = GK, at least ZF-undp or MRT-mucp provide significantly better performance

than omnicast transmission. Note that even when we have Ktot = 1500 UTs in the system, MRT-

undp provides more than 3 times higher SE than omnicast transmission. This highly motivates

7There is an M ′ parameter in equation (49) of [32], that in Fig. 4 we found its optimal value by exhaustive search, which

gives us the best lower bound that can be obtained for omnicast transmission based on [32].
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Fig. 4: Comparison between Multicast and Omnicast transmissions.

the application of massive MIMO in new multicasting standards [4], [5].

Based on the numerical analysis provided in this section, Fig. 5 presents a guideline for

multicasting in massive MIMO systems. Given the system parameters, it determines which

scheme should be applied in different scenarios. Also based on our derived results in Section

IV, we can explicitly specify the SE that can be obtained using this selected scheme.

VI. SUMMARY AND CONCLUSION

In this paper, we studied multi-group multicasting in the context of massive MIMO. First, we

introduced different transmission technologies (multicast and unicast), different pilot assignment

strategies (co-pilot or dedicated pilot assignment), and the two common precoding schemes in

massive MIMO (MRT and ZF). The six possible combinations were outlined in Fig. 1. Second,

for each of these schemes we derived an achievable SE while accounting for the uplink pilot-

based CSI acquisition. Third, for any given training length, we solved the max-min fairness

problem for the proposed schemes and found the optimal uplink pilot powers, downlink precoding

powers, and the optimal SEs, all in closed-forms. Fourth, based on the achieved results we

evaluated the proposed schemes numerically and drew a guideline for practical multi-group

massive MIMO multicasting design. We showed that a massive MIMO multicasting system
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Massive MIMO 
Multicasting Regimes 

�	 < ���� MRT-mucp

� > ����

High SNR

� <	���� MRT-mucp

K��� < � ≲ 1.2���� Either*

1.2	���� ≲ �
���� < � ≲ 2	���� Either*

2	���� ≲ � ZF-undp

Low SNR

� ≲ 5	���� MRT-mucp

5���� ≲ � ≲ 7���� Either*

7���� ≲ �

� ≲ 2���� Either*

2���� ≲ � ZF-undpEither* means either MRT-mucp or ZF-undp.

Fig. 5: The massive MIMO multicasting regimes.

need to support two transmission modes, i.e., MRT-mucp and ZF-undp, and switches between

them depending on the system parameters.

APPENDICES

The appendix provides the proof of proposed theorems and propositions. We will frequently

use the following lemma, which can be proved by standard techniques (for example see Section

II of [26]).

Lemma 1. Consider a discrete memoryless channel with input x∈C and output y= hx+ v+ n,

where h is a deterministic channel coefficient, v is a random interference with zero mean and

power E[|v|2] = pv that is uncorrelated with x, and n ∼ CN (0, σ2) is independent circularly

symmetric complex Gaussian noise. Then if the input power is limited as E[|x|2] = P and

the channel response h ∈ C and interference power pv ∈ R+ are known at the output, then

SINR =
P |h|2

pv + σ2
and r = log2(1 + SINR) are the achievable SINR and SE for this channel.

APPENDIX A - ACHIEVABLE SE WITH ZF-MUDP

Starting from (6) and applying (12) we have

yik=E[ĝdpHik wZF−mudp
i ]︸ ︷︷ ︸
h

si︸︷︷︸
x

+(ĝdpHik wZF−mudp
i −E[ĝdpHik wZF−mudp

i ])si−g̃dpHik

G∑
j=1

wZF−mudp
j sj︸ ︷︷ ︸

v

+n.

(39)
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Now using Lemma 1 while considering h, x and v as shown in (39), we obtain the following

effective SINR for UT k in group i:

SINRZF−mudp
ik =

|E[ĝdpHik wZF−mudp
i ]|2

1 + var(ĝdpHik wZF−mudp
i ) +

∑G
j=1 E[|g̃dpHik wZF−mudp

j |2]
. (40)

Next we find the exact value of each term in (40). For the term E[ĝdpHik wZF−mudp
i ] we have

E[ĝdpHik wZF−mudp
i ] =

Ki∑
m=1

E
[
tr
(√

µimĝ
dp
imĝ

dpH
ik (IN − Ĝ−i(Ĝ

H
−iĜ−i)

−1ĜH
−i)
)]

(41)

=

Ki∑
m=1

tr
(
E[
√
µimĝ

dp
imĝ

dpH
ik ]E[(IN − Ĝ−i(Ĝ

H
−iĜ−i)

−1ĜH
−i)]
)

=
√
µikγ

dp
ik

(
N − E

[
tr
(
Ĝ−i(Ĝ

H
−iĜ−i)

−1ĜH
−i

)])
=
√
µikγ

dp
ik (N − νi).

Now let us consider the interference term due to imperfect CSI. We have

E[|g̃dpHik wZF−mudp
j |2] =E[g̃dpHik wZF−mudp

j wZF−mudpH
j g̃dpik ] (42)

=(βik − γdpik )tr(E[wZF−mudp
j wZF−mudpH

j ]) = (βik − γdpik )

Kj∑
t=1

pdljt.

Now we need to calculate the variance term,

var(ĝdpHik wZF−mudp
i ) = E[|ĝdpHik wZF−mudp

i |2]− |E[ĝdpHik wZF−mudp
i ]|2. (43)

Denote Ci = IN − Ĝ−i(Ĝ
H
−iĜ−i)

−1ĜH
−i. For the term E[|ĝdpHik wZF−mudp

i |2] we have

E[|ĝdpHik wZF−mudp
i |2] = E[ĝdpHik Ci

Ki∑
m=1

√
µimĝ

dp
im

Ki∑
t=1

√
µitĝ

dpH
it Ciĝ

dp
ik ]

= tr

(
E

[
ĝdpik ĝ

dpH
ik Ci

(
Ki∑

m=1,m 6=k

Ki∑
t=1,t6=k

√
µimµitĝ

dp
imĝ

dpH
it

)
Ci

])
︸ ︷︷ ︸

(i)

+µikE
[(

ĝdpHik Ciĝ
dp
ik

)2
]

︸ ︷︷ ︸
(ii)

+ tr

(
E

[
ĝdpik ĝ

dpH
ik Ci

(
Ki∑

t=1,t6=k

√
µikµitĝ

dp
ik ĝ

dpH
it +

Ki∑
m=1,m 6=k

√
µimµikĝ

dp
imĝ

dpH
ik

)
Ci

])
︸ ︷︷ ︸

(iii)

.

Notice that (iii) is equal to zero due to the independency of ĝdpik and ĝdpit ∀t 6= k, t ∈ Ki. The

term (i) reduces to
Ki∑

m=1,m 6=k

µimtr
(
E
[
ĝdpik ĝ

dpH
ik Ciĝ

dp
imĝ

dpH
im Ci

])
= γdpik

Ki∑
m=1,m 6=k

µimtr
(
E
[
Ciĝ

dp
imĝ

dpH
im Ci

])

= γdpik

Ki∑
m=1,m 6=k

µimγ
dp
imE [tr (Ci)]

(a)
= γdpik

Ki∑
m=1,m 6=k

pdlim
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where in (a) we used the fact that N − νi = tr (Ci). For the term (ii), denote ĝdpik =
√
γdpik ĥik

with ĥik ∼ CN (0, IN), then we have

µikE
[(

ĝdpHik Ciĝ
dp
ik

)2
]

= µik(γ
dp
ik )2E

[(
ĥHikCiĥik

)2
]

=
pdlikγ

dp
ik

N − νi
(
tr(Ci)

2 + tr(C2
i )
)

(44)

= pdlikγ
dp
ik (N − νi) + pdlikγ

dp
ik .

Therefore var(ĝdpHik wZF−mudp
i ) = γdpik

∑Ki

m=1 p
dl
im. Now, inserting (41), (42), and (43) into (40)

and utilizing that the pilot length is τ dpp , the SE is obtained as given in (14).

APPENDIX B - ACHIEVABLE SE WITH ZF-MUCP

Starting from (6) and applying (16) we have

yik=(ĝcpik − g̃cpik)H
G∑
j=1

wZF−mucp
j sj+n

(a)
=

√
τ cpp puikβik

τ cpp
∑Ki

m=1p
u
imβim

G∑
j=1

ĝHi w
ZF−mucp
j sj−g̃cpHik

G∑
j=1

wZF−mucp
j sj+n

=

√
τ cpp puikβik

τ cpp
∑Ki

m=1 p
u
imβim

√
pdli γi(N −G)︸ ︷︷ ︸

h

si︸︷︷︸
x

− g̃cpHik

G∑
j=1

wZF−mucp
j sj︸ ︷︷ ︸
v

+n (45)

where in (a) we used ĝcpjk =

√
τ cpp pujkβjk

τ cpp
∑Kj

k=1 p
u
jkβjk

ĝj . Now applying Lemma 1 considering h, x and

v as shown in (45), we obtain the effective SINR

SINRZF−mucp
ik =

τ cpp p
u
ikβ

2
ikp

dl
i γi(N −G)

(τ cpp
∑Ki

m=1 p
u
imβim)2

1 +
∑G

j=1 E[|g̃cpHik wZF−mucp
j |2]

. (46)

In the above equation for the terms E[|g̃cpHik wZF−mucp
j |2] we have

E[|g̃cpHik wZF−mucp
j |2] = E[g̃cpHik wZF−mucp

j wZF−mucpH
j g̃cpik ] = tr(E[g̃cpik g̃

cpH
ik wZF−mucp

j wZF−mucpH
j ])

(a)
= tr(E[g̃cpik g̃

cpH
ik ]E[wZF−mucp

j wZF−mucpH
j ]) = (βik − γik)tr(E[wZF−mucp

j wZF−mucpH
j ])

= (βik − γik)E[wZF−mucpH
j wZF−mucp

j ] = (βik − γik)pdlj (47)

where (a) is due to the fact that g̃cpik and ĝi are independent. Inserting (47) into (46) and noting

that the pilot length is τ cpp , we obtain (18) for the SE of this UT.
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APPENDIX C - MMF PROBLEM FOR MRT-UNDP

First note that SINRMRT−undp
ik , given in Proposition 1, is monotonically increasing with respect

to γdpik , and also γdpik is monotonically increasing with respect to puik. Therefore, the optimal value

for puik is pu∗ik = putotik and γdp∗ik =
τ dpp p

utot
ik β2

ik

1 + τ dpp putotik βik
. Now we prove that at the optimal solution

SINRMRT−undp
ik = SINRMRT−undp

jt = Γ ∀k, t, i, j. Assume the contrary, i.e., that UT t in group

j has the minimum SINR and there exists a UT k in a group i with (i, k) 6= (j, t) such that

SINRMRT−undp
ik > SINRMRT−undp

jt . Then one can improve SINRMRT−undp
jt by changing pdlik and pdljt

respectively to pdlik − δ and pdljt + δ, where 0 < δ < (SINRMRT−undp
ik − SINRMRT−undp

jt )
1 + βikP

Nγdp∗ik

.

Note that this just changes the SINRMRT−undp
ik and SINRMRT−undp

jt , and the other SINRs remain

intact. By performing this process once (or repeating it multiple times, if we have multiple

UTs with same minimum SINR), we can increase the minimum SINR of the system, which

contradicts our optimality assumption. Hence at the optimal solution all the SINRs are equal.

Therefore, pdl∗ik =
Γ(1 + βikP )

Nγdp∗ik

. Now by summing over all UTs in all groups and performing

some straightforward operations we can find Γ = NP
(∑G

j=1

∑Kj

t=1
1+βjtP

γdp∗jt

)−1.

APPENDIX D - MMF PROBLEM FOR ZF-MUDP

Starting from SINRZF−mudp
ik , given in Theorem 2, and similar to Appendix C we can show

that the optimal value for puik is pu∗ik = putotik and γdp∗ik =
τ dpp p

utot
ik β2

ik

1 + τ dpp putotik βik
. Now we prove that

at the optimal solution SINRZF−mudp
ik = SINRZF−mudp

jt = Γ ∀k, t, i, j. Assume the contrary,

i.e., that UT t in group j has the minimum SINR, and there exists a UT k in a group i with

(i, k) 6= (j, t) such that SINRZF−mudp
ik > SINRZF−mudp

jt . Denote aik = (N − νi)γ
dp∗
ik pdlik and

bik = 1 + γdp∗ik

∑Ki

m=1 p
dl
im + P (βik − γdp∗ik ). Then one can increase the minimum SINR of the

system by reducing pdlik to pdlik − δ, where 0 < δ <
aikbjt − ajtbik

(N − νi)γdp∗ik bjt − ajtγdp∗ik

, which contradicts

the assumption. Therefore at the optimal solution all UTs have the same SINR. Now consider

UTs k and t in ith multicasting group. Let us denote P dl
i =

∑Ki

m=1 p
dl
im, then we have

Γi =
γdp∗ik pdlik

1 + γdp∗ik P dl
i + P (βik − γdp∗ik )

=
γdp∗it pdlit

1 + γdp∗it P dl
i + P (βit − γdp∗it )

(48)

with Γ = (N − νi)Γi. Hence we can write

pdl∗ik =
Γ

(N − νi)
(

1

γdp∗ik

+ P dl
i + P

βik

γdp∗ik

− P ). (49)
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Summing over the downlink power of all UTs in group i and after some straightforward

operations we obtain P dl
i = Γ∆i(N − νi − ΓKi)

−1, where ∆i =
∑Ki

k=1( 1

γdp∗ik

+ P
βik

γdp∗ik

− P ).

Note that as ∀i ∈ G P dl
i ≥ 0 and

∑Ki

k=1 P
dl
i = Pdp = P , we have Γ < mini∈G{N−νiKi

}. Summing

over all groups downlink powers we have (29) and Γ can be found by solving it.

APPENDIX E - MMF PROBLEM FOR MRT-MUCP

First we prove that at the optimal solution SINRMRT−mucp
jk = SINRMRT−mucp

it ∀t, k, i, j. Let us

denote the user with the minimum SINR in ith group as kmini, i.e., kmini = arg mink∈Ki
. Now

we prove that at the optimal solution of P ′2 we have SINRMRT−mucp
jkminj

= SINRMRT−mucp
ikmini

∀i, j.

Assume the contrary, then ∃j, i ∈ G such that SINRMRT−mucp
jkminj

> SINRMRT−mucp
ikmini

. Now one

can change pdlj and pdli respectively to pdlj − δ and pdli + δ with 0 < δ < (SINRMRT−mucp
jkminj

−

SINRMRT−mucp
ikmini

)
1 + βjkminj

P

Nγcpjkminj

and improve the minimum SINR of the system8, which contradicts

our optimality assumption. Now we prove that at the optimal solution the SINR of all the

users within each group are the same, i.e., SINRMRT−mucp
ik = SINRMRT−mucp

it ∀k, t ∈ Ki,∀i ∈

G. Assume the contrary, ∃k, t ∈ Ki such that SINRMRT−mucp
ik > SINRMRT−mucp

it . Then one

can improve the minimum SINR of this group by reducing puik to puik − δ, where 0 < δ <
(1 + τ cpp

∑Ki

m=1 p
u
imβim)(1 + βikP )

τ cpp β2
ikNp

dl
i

(SINRMRT−cp
ik − SINRMRT−cp

it ). Hence at the optimal answer

for group i we have

Φi =
γcpik

1 + βikP
=

γcpit
1 + βitP

∀t, k ∈ Ki,∀i ∈ G (50)

where Φi is a fixed number. Equivalently we have

Υi =
puikβ

2
ik

1 + βikP
=

puitβ
2
it

1 + βitP
∀k, t ∈ Ki,∀i ∈ G (51)

where Υi is a fixed constant. Considering the fact that SINRMRT−mucp
ik is strictly increasing with

respect to puik and noting that puik ≤ putotik , the optimal uplink power will be equal to

pu∗ik =
1 + βikP

β2
ik

Υi ∀k ∈ Ki,∀i ∈ G (52)

where Υi = mink∈Ki

putotik β2
ik

1 + βikP
. Therefor SINRMRT−mucp

ik = Υi

Npdli τ
cp
p

1 + τ cpp
∑Ki

m=1 p
u
imβim

. As we

already showed the SINR at the optimal point is equal among all UTs and we have Γ =

SINRMRT−mucp
ik ∀i, k. Hence we have pdl∗i = Γ(1 + τ cpp

∑Ki

m=1 p
u∗
imβim)/τ cpp NΥi. Now summing

pdl∗i over all groups and employing the total available power constraint we achieve (32).

8If we have multiple groups with equal value of minimum SINR, we can improve the minimum SINR of the system by

repeating the same procedure multiple times.
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APPENDIX F - MMF PROBLEM FOR ZF-MUCP

First we prove that at the optimal solution SINRZF−mucp
jk = SINRZF−mucp

it ∀t, k, i, j. Let us

denote the user with the minimum SINR in ith group as kmini, i.e., kmini = arg mink∈Ki
. Now

we prove that at the optimal solution SINRZF−mucp
jkminj

= SINRZF−mucp
ikmini

. Assume the contrary, then

∃j, i ∈ G such that SINRZF−mucp
jkminj

> SINRZF−mucp
ikmini

. Now one can change pdlj and pdli respectively

to pdlj −δ and pdli +δ with 0 < δ <
(
SINRZF−mucp

jkminj
−SINRZF−mucp

ikmini

)1 + (βjkminj
− γcpjkminj

)P

(N −G)γcpjkminj

and

improve the minimum SINR of the system, which contradicts our optimality assumption. Now

we prove that at the optimal answer the SINR of all the UTs within each group are the same,

i.e., SINRZF−mucp
ik = SINRZF−mucp

it ∀k, t ∈ Ki,∀i ∈ G. Assume the contrary, ∃k, t ∈ Ki such

that SINRZF−mucp
ik > SINRZF−mucp

it . Then one can improve the minimum SINR of this group by

reducing puik to puik− δ, where 0 < δ <
1 + (βik − γcpik )P

pdli (N −G)
(SINRZF−mucp

ik −SINRZF−mucp
it ). Hence

at the optimal answer the SINR of all users within group i are equal and we have

∆i =
γcpik

1 + (βik − γcpik )P
=

γcpit
1 + (βit − γcpit )P

∀t, k ∈ Ki,∀i ∈ G. (53)

Equivalently we have γcpik (1 + Pβit) = γcpit (1 + Pβik) ∀t, k ∈ Ki,∀i ∈ G. Therefore

Υi =
puikβ

2
ik

1 + βikP
=

puitβ
2
it

1 + βitP
∀t, k ∈ Ki,∀i ∈ G (54)

where Υi is a fixed constant. Now note that it is exactly the same as (51) and hence the optimal

uplink powers are given as

pu∗ik =
1 + βikP

β2
ik

Υi ∀k ∈ Ki,∀i ∈ G (55)

where Υi = mink∈Ki

putotik β2
ik

1 + βikP
. Using the above result and after straightforward calculation we

obtain ∆i =
τ cpp Υi

1 + τ cpp (Ei − PΥi)
∀i ∈ G, where Ei = KiΥiP + Υi

∑Ki

m=1

1

βim
. Since we proved

that the SINR is equal for all UTs, we have Γ = SINRZF−mucp
ik = (N −G)∆ip

dl
i , where Γ is a

fixed constant. Now, pdli =
Γ

(N −G)∆i

, and summing over all downlink powers and using the

total available power constraint we achieve (35) and (37) for the Γ and pdl∗i , respectively.
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