
ar
X

iv
:1

70
5.

03
06

4v
1 

 [
cs

.I
T

] 
 8

 M
ay

 2
01

7
1

Optimal User Scheduling and Power Allocation

for Millimeter Wave NOMA Systems

Jingjing Cui, Student Member, IEEE, Yuanwei Liu, Member, IEEE,

Zhiguo Ding, Senior Member, IEEE, Pingzhi Fan, Fellow, IEEE and

Arumugam Nallanathan, Fellow, IEEE,

Abstract

This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter

wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation.

Random beamforming is invoked for reducing the feedback overhead of considered systems. A non-

convex optimization problem for maximizing the sum rate is formulated, which is proved to be NP-

hard. The branch and bound (BB) approach is invoked to obtain the ǫ-optimal power allocation policy,

which is proved to converge to a global optimal solution. To elaborate further, a low complexity

suboptimal approach is developed for striking a good computational complexity-optimality tradeoff,

where matching theory and successive convex approximation (SCA) techniques are invoked for tackling

the user scheduling and power allocation problems, respectively. Simulation results reveal that: i) the

proposed low complexity solution achieves a near-optimal performance; and ii) the proposed mmWave

NOMA systems is capable of outperforming conventional mmWave orthogonal multiple access (OMA)

systems in terms of sum rate and the number of served users.

Index Terms

Millimeter wave (mmWave), non-orthogonal multiple access (NOMA), power allocation, user schedul-

ing

J. Cui and P. Fan are with the Institute of Mobile Communications, Southwest Jiaotong University, Chengdu 610031, P. R.

China. (email: cuijingj@foxmail.com, p.fan@ieee.org).

Y. Liu and A. Nallanathan are with the Department of Informatics, King’s College London, London WC2R 2LS, U.K. (email:

{yuanwei.liu, arumugam.nallanathan}@kcl.ac.uk).

Z. Ding is with the School of Computing and Communications, Lancaster University, LA1 4YW, UK. (e-mail:

z.ding@lancaster.ac.uk).

Part of this work submitted in IEEE Global Communication Conference (GLOBECOM), Dec. Singapo, 2017 [1].

http://arxiv.org/abs/1705.03064v1


2

I. INTRODUCTION

The unprecedented demand for high data rates imposes challenges for fifth generation (5G)

networks. Millimeter wave (mmWave) communication has been viewed as a promising candidate

technology to address the challenge of bandwidth shortage [2], due to the large bandwidths in the

mmWave spectrum. Particularly, advances in mmWave hardware and the potential availability

of spectrum have encouraged the wireless industry to consider mmWave for the access link

in outdoor cellular systems. Different from the propagation characteristics in the sub-6GHz

wireless communication, the propagation in the mmWave band is highly directional with severe

propagation path loss, low penetration coefficients and high signal attenuation [3], [4]. To

compensate the large path loss in the mmWave band, directional beamforming provides an

effective solution to resist the large path loss as well as to provide sufficient received signal

power [5].

Non-orthogonal multiple access (NOMA) in power domain provides a superior spectral effi-

ciency and hence has recently received significant attentions [6]. The key idea of NOMA is to

multiplex multiple users on different power levels for multiple access within a given resource

block (e.g., time/frequency). Moreover, it particularly invokes successive interference cancellation

(SIC) techniques at receivers who have better channel conditions for removing intra-channel

interference. As a result, NOMA is capable of supporting massive connectivity and efficiently

meeting the users’ diverse quality of service (QoS) requirements [7].

Sparked by the aforementioned characteratics of mmWave communication and NOMA, the

use of NOMA in mmWave sprectrum is highly desired due to the following advantages:

• The highly directional transmission in mmWave spretrum implies that the users’ channels

can be severely correlated, which are suitable for applying NOMA technique.

• Directional beams in mmWave communication with large-scale arrays bring large antenna

array gains and small inter-beam interference, enabling NOMA transmission over each

beam.

• Applying NOMA into mmWave communication is capable of enhancing the spectral effi-

ciency, which provides a new highly rewarding candidate for 5G networks.

A. Prior Works

1) Studies on mmWave systems: In constrast to the conventional low frequency multiple-input

multiple-output (MIMO) systems, the additional radio frequency (RF) hardware constraints such
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as high-resolution analog-to-digital converters (ADCs) exist in mmWave systems. Hence, fully

digital baseband beamforming becomes impossible [8]. Considering the high power consumption

of mixed signal components in mmWave system, the hybrid analog and digital beamforming was

proposed in [9]. Since analog beamforming is implemented via analog phase shifters, the modulus

of the elements in the analog beamforming vectors are constrained to a constant. The hybrid

analog and digital beamforming for mmWave systems was studied in [8]–[11], where the designs

of the beamforming matrices are in general based on perfect channel state information (CSI).

Unfortunately, in practice, accurate channel estimation and CSI feedback to the base station (BS)

are difficult [12], [13], which induce heavy system overhead particularly in multi-user mmWave

downlink systems. To reduce the feedback overhead, a two-stage hybrid analog and digital

beamforming approach was proposed in [12], where the analog beamforming designs at the BS

and the users are constructed for maximizing its own desirable signal based on individual CSI. In

addition, random beamforming provides an effective approach in reducing the CSI feedback [14].

The performance of random bemforming in conventional mmWave systems was investigated in

[13]. It was shown that random beamfoming in mmWave channels is indeed capable of achieving

a very good sum rate performance with the aid of user scheduling and power allocation strategies.

2) Studies on single-input single-output (SISO)-NOMA systems: Early research contributions

have studied the potential implementation of NOMA in cognitive radio (CR) networks [15],

[16] and simultaneous wireless information and power transfer (SWIPT) protocol [17]. More

particularly, in [15], the impact of user paring on the transmission sum rate was investigated

both for fixed power allocation NOMA systems and CR inspired NOMA. As the interplay

between NOMA and CR is bi-directional, the application of NOMA in large-scale CR networks

was exploited in [16] with carefully considering the channel ordering issue. Aiming at addressing

energy related issues, in [17], a novel comparative NOMA scheme was proposed by invoking

simultaneous wireless information and power transfer (SWIPT) technique. Regarding the resource

allocation works in NOMA, a joint subcarrier and power allocation algorithm was developed in

[18], where a near optimal solution was developed based on Lagrangian duality and dynamic

programming. In [19], a low-complexity suboptimal algorithm based on matching theory was

developed to maximize energy efficy for multi-subcarrier (MC)-NOMA systems. The authors of

[20] proposed an asymptotically optimal joint power allocation and user scheduling algorithm

based on matching theory to maximize the sum rate of MC-NOMA systems. Furthermore, in [21],

an effective power allocation and user scheduling algorithm based on monotonic optimization
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theory was proposed for full-duplex MC-NOMA systems. Driven by the partial CSI feedback,

a power allocation strategy for SISO-NOMA systems based on the average CSI was developed

in [22].

3) Studies on multiple-input multiple-output (MIMO)-NOMA systems: In [23], the author

proposed a beamforming design approach to minimize transmission power where a multi-antenna

base station (BS) communicates two single-antenna NOMA users in each beam. In [24], a

multi-antenna BS performs NOMA transmission with K single-antenna users via designing the

beamforming vectors, in which an effective channel gain constraint was formulated to guarantee

users’ fairness. Based on these studies, the authors of [25] proposed an general MIMO-NOMA

designing framework, where users were firstly grouped into small-size clusters, and then the

NOMA principle was employed for each cluster. Furthermore, in [26], a user clustering and

power allocation scheme was proposed to optimize the user fairness of MIMO-NOMA systems.

be two.

B. Motivation and Contributions

While the aforementioned research contributions have laid a solid foundation on mmWave

and NOMA systems, the investigations on the applications of NOMA on mmWave band are

still in their fancy. Moreover, whether NOMA technique is capable of bringing perfromance

enhancement for mmWave networks are still unknown. In this paper, we study the mmWave

NOMA system, where the BS generates some separable beams and then NOMA transmission is

applied on each beam. It is worth pointing out that the characteristics of mmWave propagation

makes it impossible that applies the digital beamforming which was invoked in the conven-

tional sub-6GHz MIMO-NOMA works. In order to reduce the feedback overhead, the work

of [27] studied the co-existence of NOMA and mmWave systems with random beamforming,

which showed that the performance of the mmWave NOMA systems outperforms conventional

mmWave-OMA systems. The advantage of random beamforming applied in mmWave NOMA

systems is that only equivalent channel gains of all users are required at the BS. In an effort

for improving the performance of random beamforming, an efficient user scheduling method is

required. Moreover, power allocation strategies among inter/intra-beams are capable of further

enhancing the performance of mmWave-NOMA systems. In addition,the existence of inter-beam

interference in mmWave NOMA systems, makes the user scheduling and the power allocation

become more challenging and fundamentally different from the existed works for MC-NOMA

systems [18], [20], [21].
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Driven by solving all the aforementioned issues, in this paper, we investigate the mmWave

systems with adopting NOMA techniques under partial CSI feedback. More specifically, the BS

first generates a set of random beams, then each user feedback its scale channel gain to the BS,

which avoids the cumbersome system overhead on the feedback of channel vectors. By doing

so, the idealized perfect CSI assumption adopted in aforementioned MIMO-NOMA works [22-

25] are relaxed. Based on these channel information, the BS schedules multiple users on each

predefined beam, and then transmits the superposed signals based on NOMA with allocating

appropriate power for each beam as well as users. To the best of our knowledge, this is the first

work to jointly consider user scheduling and power allocation strategies in mmWave NOMA

systems. Our main contributions are summarized as follows.

1) We propose a general downlink mmWave NOMA systems with the aid of random beam-

forming, in which the BS requires the scale channel gains of all users rather than to

obtain all channel vectors of users. Then, we formulate the sum rate maximization problem

subject to the users’ QoS requirements by designing the user scheduling and power alloca-

tion strategy. We mathematically proved that the formulated problem is non-deterministic

polynomial-time (NP)-hard.

2) We decompose the original non-convex problem into two subproblems as user scheduling

and power allocation. By leveraging the branch and bound (BB) approach, we propose a

global optimal solution for the power allocation.

3) We develop a low complexity solution with the aid of matching theory and successive

convex approximation (SCA). Firstly, based on the concept of stable matching, we propose

a low complexity suboptimal algorithm. Secondly, we propose an efficient SCA algorithm

for providing a high-quality power allocation solutions. The properties of the matching

and SCA algorithms are analyzed.

4) We demonstrate that the proposed mmWave NOMA framework outperforms the con-

ventional mmWave OMA framework with the aid of both of the proposed algorithms.

Moreover, the proposed low complexity solution are capable of achieving a near-optimal

performance.

C. Organization

The rest of the paper is organized as follows. In Section II, the system model for studying

mmWave NOMA and the random beamforing scheme are presented. The joint user scheduling
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Fig. 1. System model for mmWave-NOMA transmission in downlink MISO scenario.

and power allocation problem are formulated in Section III. In Section IV, a global optimal

solution based on BB is provided and a low complexity power allocation and user scheduling

algorithm are developed in Section V. Simulation results are presented in Section VI, which is

followed by conclusions in Section VII.

II. SYSTEM MODEL

A. Signal Model

Consider an mmWave-NOMA downlink scenario composed of one BS with NRF transmit

antennas and K single antenna users. Assuming that the BS performs MIMO transmission with

M beams, K ≥ 2M . Denote by M = {1, · · · ,M} and K = {1, · · · , K} be the beam set and

the user set, respectively. The m-th transmit beamforming vector is denoted as wm ∈ CM×1. We

assume that the multiuser scheduler schedules qm users denoted by Cm on the m-th beam to

perform NOMA and C =
⋃

m∈M Cm is the set of the total scheduled users. We further assume

that each user is scheduled by a single beam at most; thus, Cm
⋂ Cn = ∅, n 6= m. Let cmk

indicate the indicators for user k on the m-th beam, cmk ∈ {0, 1}. If cmk = 1, it indicates user k

is scheduled on beam m and cmk = 0 if otherwise. Let sk denote the data symbol transmitted

for user k and βm
k be the transmission power assigned for user k on the m-th beam. We define

Mt = |C| to denote the total number of the scheduled users. The total transmission power satisfies
∑M

m=1

∑K

k=1 c
m
k β

m
k ≤ Ptot, where Ptot is the maximum transmission power of the BS.

In the proposed mmWave-NOMA system, the BS chooses Mt users among the K users in

the cell and broadcasts M independent superposed data streams to the Mt selected users with

beamforming matrix W = {w1, · · · ,wM}. Assuming user k is scheduled at the m-th beam, the

received signal at user k is

ymk =
h
mH
k wmcmk

√

βm
k sk

︸ ︷︷ ︸

Desired signal

+
h
mH
k wm

∑

j 6=k c
m
j

√
βm
j sj

︸ ︷︷ ︸

Intra-beam interference

+

∑

n6=m

∑

i∈K h
mH
k wnc

n
i

√
βn
i si

︸ ︷︷ ︸

Inter-beam interference

+
νk
︸︷︷︸

Noise

, (1)
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with j, k ∈ K and m,n ∈ M, where h
m
k ∈ C

NRF×1 be the mmWave channel between the BS

and user k and νk ∼ CN (0, σ2) is the additive white Gaussian noise for user k. It is assumed

that all users have the same noise power in this paper.

B. Channel Model

Different from the conventional low frequency channel, the mmWave channel in general

has limited scattering due to the high free-space path loss. Thus, we consider the geometric

channel model which can embody the low rank and spatial correlation characteristics of mmWave

communications [8], [12]. Using this model the channel from the BS to user k can be modelled

as

hk =
√

Mρk

L∑

l=1

ak,laBS(θk,l), (2)

where ρk denotes the average path-loss between the BS and user k. In a mmWave propagation

model, ρk is given by ρk = ηd−α
k , where η =

(
c

4πfc

)2
is the frequency independent constant

with c = 3 × 108m/s and the carrier frequency fc. Thus, the valuses of η are different for

different mmWave frequencies. dk is the distance between the BS and user k and α is the

path loss exponent depending on the line-of-sight (LoS) and non-line-of-sight (NLoS) links, i.e.,

α = αLoS for LoS link and α = αNLoS for NLoS link. In this paper, we assume that l = 1 is the

LoS link. Furthermore, ak,l is the complex gain of the l-th path with ak,l ∼ CN (0, 1). θk,l denotes

the l-th path’s normalized direction to the physical angle of departure φk,l with φk,l ∈ [0, 2π]

and θk,l =
2d sin(φk,l)

λ
, where λ is the signal wavelength, and d is the distance between antenna

elements. At last, aH
BS(θk,l) is the antenna array response vectors of the BS. In this paper, we

consider a uniform linear array (ULA), where a
H
BS(θk,l) can be defined as

aBS(φk,l) =
1√
M

[

1, ejπθk,l , · · · , ej(M−1)πθk,l

]T

. (3)

C. Analog Beamforming

Due to the high cost and power consumption for hardware constraints, a low-complexity analog

beamforming is adopted in this paper. Specifically, we consider the random beambeamforming

scheme to reduce the feedback overhead, where the direction of each analog beamforming vector

is predefined. Suppose that the BS will form M orthogonal beams for NOMA transmission. These

beams are predefined and are known to the BS and the users prior to transmission. Following

[13], these M orthogonal beamforming vectors can be constructed by

wm = a

(

ζ +
2(m− 1)

M

)

, (4)

where ζ denotes a random variable following a uniform distribution with ζ ∈ [−1, 1].

Assuming each user computes M equivalent channel gain and feedbacks the magnitudes

{gmk = |hH
k wm|2, m ∈ M} and the corresponding beam indices to the BS. With this information,
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the BS performs user scheduling and power allocation, which will be discussed in the following

sections.

III. PROBLEM FORMULATION

Since multiple users are supported on each beam, based on the principle of NOMA, each

user tries to employ SIC in a successive order to remove the intra-beam interference. Hence

the decoding order is an essential issue for the mmWave-NOMA systems. Let πm(k) be the

decoding order for user k on beam m, namely, if πm(k) = i, then user k scheduled on beam

m is the i-th signal to be decoded. For any two users j and k scheduled on beam m satisfying

πm(j) ≤ πm(k), the signal-to-interference- plus-noise ratio (SINR) of user k to decode user j

is given by

SINRm
j→k =

cmj gmk βm
j

gmk
∑

πm(i)>πm(j)

cmi βm
i +

∑

n6=m

gnkβ
n + σ2

,
(5)

with i, j, k ∈ Cm and m ∈ M, where βn =
∑K

i=1 c
n
i β

n
i is the transmission power on beam n.

The corresponding decoding rate is Rm
j→k = log2(1 + SINRm

j→k). The achievable SINR for user

j on beam m can be expressed as

SINRm
j→j =

cmj gmj βm
j

gmj
∑

πm(i)>πm(j)

cmi βm
i +

∑

n6=m

gnj β
n + σ2

,
(6)

with i, j ∈ Cm and m ∈ M. The correponding rate is Rm
j→j = log2(1 + SINRm

j→j). Under the

assumption of a given decoding order, to guarantee SIC performed successfully, the condition

Rm
j→k ≥ Rm

j→j for πm(k) ≥ πm(j), j, k ∈ Cm should be kept. For example, we assume that two

users on beam m. Given the decoding πm(j) = j, j = 1, 2, the SIC decoding condition at user

2 can be expressed as

Rm
1→2 ≥ Rm

1→1, (7a)

When three users are allowed on beam m, the SIC decoding condition at user 2 and user 3

under decoding order πm(j) = j, j = 1, 2, 3 can be given by






Rm
1→2 ≥ Rm

1→1,

Rm
1→3 ≥ Rm

1→1,

Rm
2→3 ≥ Rm

2→2.

(8a)

It is easy to know that there will be 2qm−1 − 1 =
∑qm−1

k=1

(
k

2

)
constraints when qm users are

multiplexed on a single beam.

The goal of the paper is to maximize the sum rate subject to the total power constraint, the

QoS constraints for each scheduled user and the optimal decoding order by scheduling Mt users

from the K users. It can be formulated as follows.

max
c,β,π

M∑

m=1

K∑

j=1

Rm
j→j (9a)

s.t. Rm
j→k ≥ Rm

j→j , πm(k) > πm(j), (9b)
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M∑

m=1

∑

j∈Cm

βm
j ≤ Ptot, (9c)

Rm
j→j ≥ R̄j , (9d)

K∑

k=1

cmk = qm, (9e)

M∑

m=1

cmk ≤ 1 (9f)

πm ∈ Π, j, k ∈ K, m ∈ M. (9g)

where c = {cmk |k ∈ K, m ∈ M}, β = {βm
k |k ∈ K, m ∈ M} and π = {πm(k), k ∈ K, m ∈

M} denote the optimization variable sets of the users, the power allocation coefficients and

the decoding order, respectively. Furthermore, Π denotes the set of all possible SIC decoding

orders. Constraint (9b) guarantees the optimal decoding order which ensure that the SIC can

be performed successfully [15] and constraint (9c) is the total tansmission power constraint.

Constraint (9d) guarantees the QoS for user πm(j) [28]. Due to the constraint on the detection

complexity of SIC receiver, we assume that each beam can be shared by qm users, qm ≥ 2, in

constraint (9e). Constraint (9f) indicates that each user can occupy one beam at maximum.

Theorem 1. Problem (9) is a NP hard problem. More specifically, problem (9) is NP hard even

only consider the power allocation or user scheduling.

Proof. See Appendix A.

Since problem (9) is NP hard, which results in solving problem (9) directly becomes in-

tractable. In the following sections, we will develop a optimal solutions based on BB techniques;

then, a low complexity algorithm based on matching theory and SCA techinique will be proposed

by exploiting the properties of the optimization problem itself.

IV. GLOBAL OPTIMAL SOLUTIONS

In this section, we try to solve problem (9) optimally to obtain a global solution as a

baseline. However, optimization problem (9) contains three multi-dimensional variables: two

combinational variables-c and π and one continuous variable-β. Considering the user scheduling

and the decoding order are combinational integer variables, exhaustive search is a straightforward

and basic method to find the optimal solution of integer programming problems [29]. Then for

given the scheduled users and the corresponding decoding order, we develop an optimal power

allocation strategy based on BB techniques [30] in the following.
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Specifically, for given a set of c and π, the sum rate maximization problem in (9) can be

simplifies as follows. For notation simplicity, let jm denote the j-th decoded user index scheduled

on beam m in the following.

max
β

M∑

m=1

qm∑

jm=1

Rm
jm→jm

(10a)

s.t. Rm
jm→km

≥ Rm
jm→jm

, (10b)

M∑

m=1

qm∑

jm=1

βm
jm

≤ Ptot, (10c)

Rm
jm→jm

≥ R̄jm , (10d)

km > jm, jm, km ∈ Cm, m ∈ M, (10e)

which is a subproblem of the original optimization problem in (9), since the optimization of

problem (10) only relates with the power allocation coefficients. Note that the objective and the

constraint (10d) contains a difference of concave functions in β. These features make problem

(10) is still NP-hard based on Theorem 1.

Due to the total transmission power constraint and the QoS constraints for the scheduled

users, problem (10) may not be always feasible for example when the channel condition of the

scheduled user is extremely poor, its QoS can not be guaranteed even to be allocated by the

total power. Before solve problem (10), we check the feasibility of problem (10) first.

Proposition 1. The feasibility of optimization problem (10) can be checked by solving the

following convex problem:

P ′ = min
β

M∑

m=1

∑

jm∈Cm

βm
jm

s.t. (10b) & (10d) & (10e).

(11)

The detailed proof of Proposition 1 can be referred as [31]. Note that problem (11) is a power

minimization problem, which can be solved directly via a standard optimization tool.

For given c and π, if optimization problem (11) is infeasible or the optimal objective value

P ′ > Ptot, then the given c and π can not be optimal. It implies we can not find a set of feasible

power allocation coefficients under given c and π satisfying the optimal decoding order. Hence,

the given c and π is can not be optimal.

A. Problem Transformations for BB Algorithms

Though the sum rate maximization problem in (10) is nonconvex, it is possible to find a

optimal solution based on a BB technique [32]. The basic idea using BB is to optimize the
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objective function over a multi-dimensional rectangle.

To elaborate further, we introduce a variable set {Γm
jm→jm

, jm ∈ Cm}, where Γm
jm→jm

denotes

the achievable SINR for user jm under given decoding order π. Similar to (6), it can be written

as

Γm
jm→jm

=
gmjmβm

jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n6=m gnjmβn + σ2
, (12)

with im, jm ∈ Cm, m ∈ M.

Furthermore, to give some useful sights, we rearrange constraint (10b) as
∑

n6=m

(

gmkm
gnjm − gmjmgnkm

)

βn +
(
gmkm

− gmjm

)
σ2 ≥ 0, (13)

which is equivalent expression for (9b).

Now problem (10) can be reformulated as a standard form for BB, which is given by

min
β̃,Γ

−
M∑

m=1

qm∑

jm=1

log2

(

1 + Γm
jm→jm

)

(14a)

s.t.Γm
jm→jm

≤
gmjmβm

jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n6=m gnjmβn + σ2
, (14b)

(10c) & (10d) & (10e) & (13). (14c)

Proposition 2. Problem (14) is equivalent to problem (10), hence the optimal solution to problem

(14) is also optimal for problem (10).

Proof. With the introduce variable set {Γm
jm→jm

, jm ∈ Cm, m ∈ M}, the objective in (10) can

be expressed as minimizing the following function

−
M∑

m=1

qm∑

jm=1

log2

(

1 + Γm
jm→jm

)

. (15)

with constraints (14b) and (14c). We relax the equalities in (12) to be

Γm
jm→jm

≤
gmjmβm

jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n6=m gnjmβn + σ2
, (16)

Based on monotonic increasing feature of log(·) function, (16) will be strict equality at

optimum, which implies (14) and (10) have the same optimal solution.

B. Preliminaries for BB Algorithms

In this subsection, we introduce the preliminary steps for BB algorithm. We start by transform-

ing the constraint sets into a multi-dimensional box set. Then, we construct the bound function

for each multi-dimensional box set. Finally, we propose a more effective algorithm to find the

values of the bound functions.

1) Constructing box constraint sets: We first define the objective function in (14) and the

feasible set for Γ as U(Γ) and G, respectively.

U(Γ) =−
M∑

m=1

qm∑

jm=1

log2

(

1 + Γm
jm→jm

)

, (17)
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G =
{

Γ|(14b) & (14c)

}

. (18)

Note that it is true that the objective function U(Γ) < 0. Therefore, the optimization problem

in (14) can be equivalently expressed as

min
Γ

U(Γ) s.t. Γ ∈ G. (19)

Now the optimal objective value can be written as p⋆ = infΓ∈G U(Γ). To formulate a standard

form for BB algorithm, let us define a new function as

Ũ(Γ) =







U(Γ) if Γ ∈ G

0 otherwise,

(20)

and note that for any set S ⊆ RMt , we have

inf
Γ∈S

Ũ(Γ) = inf
Γ∈G

U(Γ) = p⋆, (21)

if G ⊆ S. The first equality follows the fact that U(Γ) is a lower bound of Ũ(Γ) for Γ ∈ S.

Therefore, based on the feasible set in (18), we can construct a Mt-dimensional rectangle D0

as

D0 =
{

Γ|γ̄m
jm

≤ Γm
jm→jm

≤ Γ
m

jm→jm
, jm ∈ Cm, m ∈ M

}

, (22)

which satisfies G ⊆ D0. Here γ̄m
jm

= 2R̄jm − 1 and Γ
m

jm→jm
is the upper bound of Γm

jm→jm
. It is

easy to know that for each Γm
jm→jm

, it is upper bounded by

Γm,m
jm→jm

≤
gmjmPtot

σ2
. (23)

Note that for any Mt-dimensional rectangle D = {Γ|Γm
jm→jm

≤ Γm
jm→jm

≤ Γ
m

jm→jm
, jm ∈

Cm, m ∈ M} such that D ⊆ D0. Based on the observation, we define a function g(Γ) as

g(Γ|D) = inf
Γ∈D

Ũ(Γ). (24)

By combining (21) and (24), one can obtain that

g(Γ|D0) = inf
Γ∈D0

Ũ(Γ) = p⋆. (25)

Through the above discussions, problem (14) has been converted into a minimization of the

non-convex function U(Γ) over the a box constraint set D. With BB algorithms, searching is

organised by using a binary tree, where the initial box constraint set (18) will be subdivided

iteratively into smaller subsets for searching. At each leaf node, we can obtain a lower bound

and an upper bound for (14) by a bound function. Hence, construction of the bound functions

will be discussed in the following.

2) Construct upper bound and lower bound function: Based on the fact that Ũ in (20) is a

non-decreasing function, similar to [32], [33], the lower bound function g and the upper bound

function g can be constructed as

g(Γ) =







U(Γ), Γ ∈ G

0, otherwise,

(26)
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and

g(Γ) =







U(Γ), Γ ∈ G

0, otherwise,

(27)

Note that to calculate g(Γ) and g(Γ), the key step if to check if the condition Γ ∈ G is

guaranteed.

Let {Γm
jm→jm

} be a specified set of SINR values. Testing if these values are achievable is

equivalent to solving the following feasibility problem

Find β̃ s.t. Γ ∈ G. (28)

Though problem (28) is a convex problem and can be solved directly, to further improve the

computional efficiency, we develop a more efficient algorithm to check Γ ∈ G by exploiting the

features of problem (28).

3) Solution for problem (28): We first consider constraint (14b) for all k ∈ K. Let Γ =

[Γ1
11→11

, · · · ,Γ1
q1→q1

, · · · ,ΓM
1M→1M

, · · · ,ΓM
qM→qM

]T with Γ ∈ RMt×1 and β = [β1
1 , · · · , β1

q1
, · · · , βM

1M
, · · · , βM

qM
]T

with β ∈ RMt×1. By rearranging (14b) as

βm
jm

−Γm
jm→jm

qm∑

im=jm+1

βm
im

−
Γm
jm→jm

gmjm

∑

n6=m

gnjmβn ≥
Γm
jm→jm

gmjm
σ2, (29)

Based on the transformation, (14b) can be expressed as a compact form:
(
IMt

− (Λ+DG)
)
β � σ2

D1Mt
, (30)

where � or ≻ denotes the componentwise inequality between real matrix and vectors and

Λ = diag [Λ1, · · · ,ΛM ] ,

D = diag

[
Γ1

11→11

g1

11

, · · · , Γ1

q1→q1

g1
q1

, · · · , ΓM
1M→1M

gM
1M

, · · · , Γ
M
qM→qM

gM
qM

]

,

G =






G−1, · · · ,G−1
︸ ︷︷ ︸

q1

, · · · ,
G−M , · · · ,G−M
︸ ︷︷ ︸

qM






T

,

G−m =
[

g11m1
T
q1
, · · · , gm−1

1m
1
T
qm−1

,0T
qm

, · · · , gM1m1
T
qM

]

,

where Λm is a upper triangular matrix with the (jm, km)-th entry is Γm
jm→jm

for km > jm and

G ∈Mt×Mt
.

Lemma 1. Let Λ, D and G be given in (31), the following is satisfied:

Λ+DG � 0, (31)

which implies that Λ+DG is an irreducible nonnegative matrix.

Proof. Note that Λ, D and G are nonnegative matrices and Λ is a diagonal matrix with positive

entries. Thus, Λ+DG is irreducible nonnegative [34] and Lemma 1 is proved.
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Based on Lemma 1, the following theorem helps us to check if Γ ∈ G, where ρ(Λ + DG)

denotes the Perron-Frobenius eigenvalue of matrix Λ+DG.

Theorem 2. When problem (11) is feasible, for any Γ ≥ γ̄, γ̄ = {γ̄m
jm
, ∀j, ∀m}, we check if

Γ ∈ G by the following conditions:

1) ρ(Λ+DG) ≥ 1 ⇒ Γ 6∈ G;

2) ρ(Λ+DG) < 1 ⇒ β =
(
IMt

− (Λ+DG)
)−1

σ2
D1Mt

. If
∑M

m=1

∑qm
jm=1 β

m
jm

> Ptot, Γ 6∈ G;

3) When ρ(Λ+DG) < 1 and
∑M

m=1

∑qm
jm=1 β

m
jm

≤ Ptot, if β satisfies the constraints in (10b)

for all k, j and m, β is the corresponding optimal solution; otherwise, the corresponding

optimal power allocation coefficients can be obtained by solving problem (28).

Proof. See Appendix B.

Based on Theorem 2, we conclude the procedure of checking Γ ∈ G in Algorithm 1.

Algorithm 1 Checking the condition for Γ ∈ G
1: Construct matrices Λ, D and G as in (31)

2: If ρ(Λ+DG) ≥ 1, Γ 6∈ G and STOP

3: If ρ(Λ+DG) < 1, β =
(
IMt

− (Λ+DG)
)−1

σ2
D1Mt

.

4: if
∑M

m=1

∑qm
jm=1 β

m
jm

> Ptot then

5: Γ 6∈ G and STOP.

6: else

7: Solve problem (28) using standard convex tool.

8: If (28) is feasible, then Γ ∈ G; Otherwise, Γ 6∈ G. STOP.

9: end if

C. Proposed Optimal User Scheduling and Power Allocation Algorithms

Based on the above discussions, the procedures of the proposed BB algorithm for optimal

power allocation is described as follows. Let Dt = {A1
1(t), · · · , · · ·AM

qM
(t)} denote the set of

box subsets Am
jm
(t) = {Γm

jm→jm
(t) ≤ Γm

jm→jm
≤ Γ

m

jm→jm
(t)} for all jm and m at the t-th iteration.

D(0) is the initial rectangular constraint set, which is defined in (22) on the root node of the

binary tree. At the t-th iteration, we spilt Dt into two subsets BI and BII along one of its

longest edges, removing D(t) and adding the two new subsets to R(t). Next, we solve (28)

based on Algorithm 1 over each subset Bl, l ∈ {I, II}. A lower bound and a upper bound

can be obtained. Then, we choose the minimum over all upper bounds as U(t) and choose the
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minimum over all lower bounds as L(t), i.e., taking the minimum over all the upper and lower

bounds at each leaf node across all the levels in the binary tree. Removing the leaf node D
such that g(D) ≥ U(t), which will not affect the optimality of the BB tree. Repeat the above

procedures until it satisfies the accuracy ǫ which is the difference between the global upper

bound and the global lower bound. In the procedure of generating the BB tree, a sequence of

subsets will be generated from D(0). The details are given in Algorithm 2 that captures the

global optimal solution of (9).

Algorithm 2 The optimal power allocation algorithm based on BB

1: Initialization for BB:

1) Compute D(0) where Γ̂m
π(j)→π(j) =

gm
km

Ptot

σ2 .

2) Compute U(1) = g (D0), L(1) = g (D0) by solving problem (28).

3) Set {R(1) = D0}, optimal lower bound U∗ = U(1), tolerance ǫ > 0 and t = 1.

2: while U(t)− L(t) > ǫ do

3: Pick D ∈ R(t) for which g(D) = L(t) and set D(t) = D.

4: Subdivide D(t) along one of its longest edges into BI and BII .

5: Compute g
(
BI

)
, g

(
BII

)
by solving problem (28).

6: Update the upper bound U(t) and the lower bound L(t) as follows:

L(t) = min
D∈R(t+1)

g(D);

U(t) = min g(D)
D∈R(t+1)

;

update U∗ = min(U∗, U(t)).

7: Update R(t+ 1) by removing all Bt for which g(D) ≥ U(t + 1).

8: t := t+ 1.

9: end while

10: Output the absolute value |U∗| and the optimal power allocation β.

Remark 1. To ensure the global optimality, an exhaustive procedure is required. For ease of

implementation, we select the bisection method to implement the subdivision of D(t) [35].

For the set D(t), let v = 1
2

(
Γi + Γj

)
denote the midpoint of the longest edge of the set D(t)

and Γi and Γj correspond to the vertexes of the longest of the edge. Specifically, its subdivisions

BI and BII produced by bisection can be obtained by replacing Γi and Γj by v in BI and BII .
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Proposition 3. Algorithm 2 converges to the global optimal solution of problem (10b).

Proof. The convergence and the optimality can be proved by the following conditions:

1) According to the characteristics of BB, at each iteration t, the function g(Γ|D(t)) is bounded

by the lower and upper bound functions: g(Γ|D(t)) ≤ g(Γ|D(t)) ≤ g(Γ|D(t)).

2) The subdivision procedure is exhaustive since limt→∞ V (D(t)) = 0, where V (D(t)) denotes

the size of D(t). Hence, the sequence of the global upper bound U∗ obtained by any infinite

subdivisions with bisection is exhaustive.

3) By step 6, the minimization operations are performed on the lower and upper bounds.

Hence, the global upper bound U∗(t + 1) ≤ U∗(t), which is a decreasing sequence.

Based on the above facts, Algorithm 2 searches every possible points in the feasible set D and

thus is a global solution according to [35].

Remark 2. At the t-th iteration of Algorithm 2, U(t) and L(t) are the minimums over all the

upper bounds and lower bounds at each leaf nodes in the BB tree, respectively, which give a

global upper bound and lower bound on the optimal value of (10). The stopping criterion for

Algorithm 2 can be U(t)− L(t) ≤ ǫ for given a small ǫ, which means that U∗ − ǫ ≤ Uopt.

Remark 3. The overall complexity of Algorithm 2 is determined by the complexity of at each

iteration and the number of iterations required for achieving the desired tolerance. In general, the

worst case computational complexity of Algorithm 2 is exponential in the number of variables.

In summary, the proposed joint user scheduling and power allocation algorithm based on

BB technique is summarised in Algorithm 3. In Algorithm 3, let Θ be the all possible user

scheduling combinations with all possible decoding order. For each search, the optimal power

allocation is attained by BB algorithm.

Remark 4. The complexity of Algorithm 3 is determined by the search space of Θ and the

complexity at each search. As known the exhaust search is exponential complexity with O(KMt).

V. LOW COMPLEXITY SOLUTIONS

The computation is cumbersome to the global solution, specially when the size of the problem

becomes large. In order to reduce the computational complexity, our goal in this section is to

propose a low complexity algorithm that obtains a suboptimal solution of problem (9).
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Algorithm 3 Joint user scheduling and power allocation algorithm

1: Construct the set Θ contains all possible user scheduling combinations and all possible

decoding order. Set n = 1.

2: while Θ is not empty set do

3: Check the feasibility of the given c and π by solving problem (11).

4: Using Algorithm 2 to solve problem (10).

5: end while

6: U(n) = |U∗| and n := n+ 1.

7: Output the optimal objective value U∗ = max(U).

A. SCA-based Suboptimal Power Allocation Algorithms

To begin with, we consider the power allocation in (10) for the given the scheduled users

and decoding order. In this subsection, we develop a low complexity power allocation algorithm

based on first-order approximations and SCA.

To handle the nonconvex objective function in (10), we approximate the the nonconvex

objective by the following lower bound [36]:

µ ln(τ) + ν ≤ ln(1 + τ), (32)

where






µ = τ̃
1+τ̃

ν = log(1 + τ̃ )− z̃
1+τ̃

(33)

The approximation in (32) is tight at a chosen value τ̃ when the constants {µ, ν} are chosen

as (33). Thus, given a set of fixed {µ, ν}, problem (10) can be approximated as follows.

max
β

M∑

m=1

qm∑

jm=1

1

ln2

(

µm
jm

ln(SINRm
jm→jm

) + νmjm

)

(34a)

s.t.
∑

n6=m

(

gmkm
gnjm − gmjmgnkm

)

βn +
(
gmkm

− gmjm
)
σ2 ≥ 0, (34b)

M∑

m=1

qm∑

jm=1

βm
jm

≤ Ptot, (34c)

µm
jm

ln(SINRm
jm→km

) + νmjm ≥ ln2 R̄jm , (34d)

km > jm, jm, km ∈ Cm, m ∈ M. (34e)

However, (34) is still non-convex, since the objective function and constraint (34d) is not

concave in β. To proceed further, a variable transformation xm
jm

= ln(βm
jm
) is introduced. As a
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result, for any jm ∈ Cm and km ∈ Cm with km ≥ jm, we have

ln(SINRm
jm→km

) = ln(gmkm
) + xm

jm
− ln

( qm∑

im=jm+1

gmkm
ex

m
im +

∑

n6=m

gnkm
ex

n

+ σ2
)

, (35)

Now, we consider the constraint in (34b) becomes
∑

n6=m

gmjmgnkm
ex

n −
(
gmkm

− gmjm

)
σ2 ≤

∑

n6=m

gmkm
gnjmex

n

, (36)

which is non-convex. However it can be approximated by applying the first-order Taylor approx-

imation when giving a point x̃n. Let F (xn) =
∑

n 6=m gmkmg
n
jm
ex

n

.

F (xn) = F (x̃n) +∇xnF (x̃n)(xn − x̃n)

= F (x̃n) +
∑

n6=m

gmkm
gnjm

qn∑

in=1

(xn
in

− x̃n
in
).

(37)

Substituting (36) and (37) into problem (34), we can obtain the following approximation of

problem (34):

max
β

M∑

m=1

qm∑

jm=1

1

ln2

(

µm
jm

ln(SINRm
jm→jm

) + νmjm

)

s.t. gmjmgnkm
βn −

(
gmkm

− gmjm

)
σ2 ≤ F (x̃n)+

∑

n6=m

gmkm
gnjm

qn∑

in=1

(xn
in

− x̃n
in
),

M∑

m=1

qm∑

jm=1

βm
jm

≤ Ptot,

µm
jm

ln(SINRm
jm→jm

) + νmjm ≥ ln2 R̄jm ,

km > jm, jm, km ∈ Cm, m ∈ M,

(38)

Problem (38) is a convex optimization problem. It can be solved by a standard convex tool

such as cvx [37].

Remark 5. Problem (38) is a lower bound approximation of problem (10) because of the

relaxation in (32) and the first-order approximation in (37).

Since problem (38) is obtained by approximating problem (10) at a feasible point set {x̃n
in
}.

The approximation can be further improved by successively approximating problem (10) based

on the optimal solution {x̃n
in
} obtained by solving problem (38) in the previous approximation.

Therefore, the proposed successive approximation approach can be described in the following.

Remark 6. In each iteration of Algorithm 4, the sum rate will be improved successively.

However, due to the total power constraint, the generated sum rate sequence is bounded, which

implies the convergence of Algorithm 4.
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Algorithm 4 SCA algorithm for solving (10)

1: Initialize a set of feasible power allocation coefficient β.

2: Compute the objective value in (38), denoted as Φ[0]. Set t = 1.

3: while
|Φ[t]−Φ[t−1]|

Φ[t−1]
≤ ǫ′, where ǫ′ is a given stopping criterion. do

4: t := t+1.

5: Solve problem (38), to obtain the optimal solution {φm
j [t], j ∈ K} and β[t].

6: end while

7: Output the optimal {φm
j [t], j ∈ C} and β

Remark 7. Since the approximation in (32) and (37) are lower bound approximation for problem

(10), the solution generated by Algorithm 4 is suboptimal.

B. Many-to-One Matching Algorithm for User Scheduling
To avoid combinatorial complexity in exhausting search, in this section, we propose a low

complexity user scheduling algorithm based on matching theory [38], [39]. Given the user power

allocation coefficients, the optimization problem (9) can be transformed into

max
c

H =

M∑

m=1

qm∑

j=1

Rm
πm(j)→πm(j) (39a)

s.t. (9e) − (9g) (39b)

which can be formulated as a many to one bipartite matching problem with externalities among

users [39]. Based on the concept of stable matching, we will develop a low complexity matching

algorithm in the following.

1) Preliminaries of matching theory in user scheduling: Based on the definitions of M and

K in Section II-A, one can know that M and K are disjoint sets. In NOMA, each beam can

support multiple users simultaneously, but each user is allowed to access for at most one beam.

Thus, in matching, there exists a positive quota qm which indicates the number of users a beam

has to support. The quota for each beam may be different. This problem is to match the users

to the beams. This is a many-to one matching problem. These types of problems have a long

history in economics, such as the marriage problem (qm = 1) [38] and workers/firms problem

[39] or hospitals/residents problem [40] with qm > 1.

Definition 1. A many-to-one matching ϕ is a function from the set M⋃K into the set of

unordered families of elements of M⋃K⋃{0} such that
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1) |ϕ(k)| ≤ 1 for every user k ∈ K;

2) |ϕ(m)| = qm for every beam m ∈ M;

3) ϕ(k) ∈ M if and only if k ∈ ϕ(M);

4) k ∈ ϕ(m) ⇔ ϕ(k) = m.

The notation ϕ has different meanings depending on the parameter. If the parameter is a user

k, then ϕ(k) maps to the matched beam. If the parameter is a beam m, then ϕ(m) gives the set

of matched users.

Proposition 4. The user paring problem can be formulated as a many-to-one matching problem

with externalities among users.

Proof. From Definition V-B1, one can easy obtain that the user paring problem in (39) is a many

to one matching problem. Due to the inter-beam interference and the intra-beam interference

existed for each user’s achievable rate, each beam’ preferences depend not only on users whom

it support, but also on users whom the other beams support. Similarly, each user’s preferences

is not related with the only beam it matched but all of the beams. Based on these features, one

can conclude that this problem is a a many-to-one matching problem with with externalities

[39]–[41].

To model the externalities, we define the preference value for the user k on beam m as the

achievable rate:

Hm
k = log2

(

1 + Γm
k

)

. (40)

Then we define the preference value of beam m as

Hm =
∑

k∈ϕ(m)

log2

(

1 + Γm
k

)

. (41)

Thus, in this matching model, each beam m has a strict preference ordering ≻m over K. Each

user also has a preference relation ≻k over the set M⋃{0}, where {0} denotes the user is

unmatched. Specifically, for a given user k, any two beam m and m′ with m,m′ ∈ M, any two

matchings ϕ and ϕ′ is defined as

(m,ϕ) ≻k (m′, ϕ′) ⇔ Hm
k (ϕ) > Hm

k (ϕ′), (42)

which indicates that user k prefers beam m in ϕ to beam m′ in ϕ′ only if user k can achieve a

higher rate on beam m than beam m′. Similarly, for any beam m, its preference ≻m over the

user set can be describe as follows. For any two subsets of users C and C ′ with C 6= C ′ and

any two matchings ϕ and ϕ′, C = ϕ(m), C ′ = ϕ′(m):

(C,ϕ) ≻m (C′, ϕ′) ⇔ Hm(ϕ) > Hm(ϕ′), (43)
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which denotes that beam m prefers the set of users C to C ′ only when beam m can get a higher

rate from C.

Since externalities exist in the formulated matching problem, it is not straightforward to define

a stability concept because a stablility of a matching depends on how a deviating pair expects

the reaction of the other agents [39]. To tackle the externalities, the two-sided exchange stability

has been introduce in [41]. Based on the concept of two-sided exchange-stable matchings, we

propose a matching algorithm for the user paring problem in the next subsection.

2) Designs of many-to-one matching algorithm: To define exchange stability, it is convenient

to first define a swap matching ϕj
k in which user k and user j switch beams while keeping other

users’ assignments the same. We define a swap operation among the users to exchange their

matched beams. A swap matching between user j and user k is define as follows.

Definition 2. A swap matching is defined as ϕj
k = {ϕ \ {(k,m), (j, n)}⋃{(j,m), (k, n)}}

where ϕ(k) = m and ϕ(j) = n. To approve a swap operation, we introduce the concept of

swap-blocking pair.

Definition 3. Given a matching function ϕ and a pair of users (k, j), if there exist m = ϕ(k)

and n = ϕ(j) such that

1) ∀x ∈ {k, j,m, n}, Um(ϕ
j
k) ≥ Um(ϕ);

2) ∃x ∈ {k, j,m, n}, such that Um(ϕ
j
k) > Um(ϕ),

then the swap matching ϕj
k is approved, and (k, j) is called a swap-blocking pair in ϕ.

The features of the swap-blocking pair ensure that if a swap matching is approved, then the

achievable rates of any user involved will not decrease, and at least one user’s achievable rate

will increase.

Based on the above discussions, we can describe the users’ behaviours in the many-to-one

matching with externalities as bellow. Every two users can be arranged by the BS to form a

candidate swap blocking pair. The BS checks whether they can benefit each other by exchanging

their matches without hurting the interests of corresponding beams. Through a series of swap

operations, the matching can reach a stable status, also known as a two-sided exchange stable

matching defined as below.

Definition 4. A matching ϕ is two-sided exchange-stable (2ES) if and only if there does not
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exist a swap-blocking pair.

With the definition of above, we conclude the proposed user scheduling algorithm in Algo-

rithm 5.

Algorithm 5 User scheduling based on Matching Theory

1: Initialize the candidate user set A by Algorithm 6.

2: repeat

3: For any user k ∈ A, it searches for another user j ∈ A \ A(ϕ(k)).

4: if k, j is a swap-blocking pair then

5: ϕ = ϕj
k

6: else

7: Keep the current matching state

8: end if

9: until No swap-blocking pair is found

10: The stable matching ϕ

Remark 8. Note that the initialization algorithm is a deferred acceptance algorithm [38], the

complexity mainly lies in the number of the user proposing. In the worst case, the proposing

number is KM . In addition, the maximum number of swap operations in Algorithm 5 is M2q2m.

VI. SIMULTION RESULTS

In this section, simulations are conducted to evaluate the proposed algorithms. We consider

the channel model described in (2), with a number of paths L = 3. The AoDs are assumed to

take continuous values, and are uniformly distributed in [0, 2π]. The BS randomly generated M

orthogonal beam. The mmWave system is assumed to operated at 28 GHz carrier frequency.

The bandwidth of the system is assumed 100 MHz and with path-loss exponent cLoS = 2 and

cNLoS = 3. In the following simulations, we assume that the users are uniformly distributed in a

single cell with radius Rc and the SNR in the plots is defined as SNR = Pη

σ2M
[12]. In addition,

the stopping criteria ǫ = 0.1 and ǫ′ = 0.05. In addition, we assume q1 = · · · = qM = q, which

indicates that each beam can be occupied by q users simultaneously. All users have the same

QoS constraint is they are scheduled, i.e., R̄j = Rth, j ∈ C.

We first evaluate convergence of the proposed BB algorithm and the SCA algorithm solving

problem (10) in Fig. 2 for different SNR. As can be observed from Fig. 2, both of the proposed
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Algorithm 6 Initialization Algorithm

Initialization:

1: Initialize the preference lists for all users and beams based on the scalar channel gain

|hkwm′ |2, k ∈ K and m′ ∈ M.

2: Set the user set of accepted by beam m A0(m) = ∅ , the set of rejected users W0(m) = ∅
and the set of rejected beams W0(k) = ∅. Set t = 0.

3: repeat

4: t := t+ 1

5: All users not yet assigned k ∈ K\⋃m∈M At−1 propose to their current best beam that

has not reject user k, i.e. m = argmaxm′∈M\W(k)t−1 |hkwm′|2.

6: Denote the users who propose to beam m as k̃m
1 , · · · , k̃m

s′ .

7: Beam m accepts the first qm best ranked users from S = {km
1 , · · · , km

s } =

At−1(m)
⋃{k̃m

1 , · · · , k̃m
s′ } and update At(m) = {km

1 , · · · , km
qm
}, where s is the total

number propose to the beam m. .

8: Update the set of rejected users W t−1(m) = {km
qm+1, · · · , km

s } and the set of rejected

beams W t−1(k) = {m ∈ M : k ∈ W t−1(m)}.

9: until All beams are achieved its maximum number of users or each remained user has been

rejected by all beams.

10: Output ϕ and A = {At(m), m = 1, · · · ,M}.

BB and SCA algorithms are converged for different SNR. In the proposed BB algorithm, the

upper bound and the lower bound become tighter as the number of iterations grows. In addition,

though some performance loss has been caused by the proposed SCA algorithm, the convergence

speed of SCA is much faster than the proposed BB algorithm. The reason is that the BB algorithm

performs a bisection division process for each dimension, which approaches to the exhaustive

search in a small scale of ǫ.

In Fig. 3, we investigate the sum rate versus the SNR both in mmWave NOMA systems

and mmWave OMA systems with different algorithms. As can be observed from Fig. 3, the

sum rate of all algorithms increases monotonically with the SNR. This is because the sum

rate can be improved by optimizing user scheduling and power allocation via solving the

problem in (9). However, the multiuser mmWave system is interference limited due to the



24

inter-beam interference exist, the sum rate will not be improved with increasing the SNR.

In particular, three different algorithms solving problem (9) are plotted in Fig. 3: the global

optimal algorithm-Exhaust+BB, the moderate complexity algorithm- Matching+BB and the low

complexity algorithm - Matching+SCA. As shown, the sum rate of Exhaust+BB grows faster

than Matching+BB and Matching+SCA at the cost of the high complexity. Besides, compared

with Exhaust+BB and Matching+BB, Matching+SCA achieves a good sum rate performance.

Particularly, a same sum rate can be obtaibed with Matching+BB in the SNR regions of 0 ∼ 10

dB which indicates that the proposed suboptimal power allocation algorithm is efficient to

solving problem (10). In addition, it can be observed from Fig. 3, the sum rate of the mmWave

NOMA system outperforms that in the conventional mmWave OMA systems. This reveals that

the application of NOMA into mmWave can further improve the spectral efficiency.

Due to the high free-space path loss, there are different β values on different mmWave

frequencies. We examine the effects on the sum rate with different mmWave frequencies in Fig.

4.Fig. 4 illustrates the sum rate versus the SNR at different mmWave frequency for K = 100

for fc = 28 GHz and fc = 60 GHz. We observe that the proposed mmWave NOMA system

can achieve high sum rate under fc = 28 GHz compared to fc = 60 GHz, due to the fact that

mmWave link at 60 GHz has higher LoS and NLoS path loss exponents than that at 28 GHz,

which leads to lower signal strength at users. In addition, the gap between mmWave NOMA

and mmWave OMA decreases when the SNR becomes large. The reason is that at the high SNR

regions, the multiuser mmWave system becomes interference-limited. In this case, the inter-beam

interference becomes the main factor to restrain the sum rate increases in the mmWave NOMA

system the mmWave OMA system . The impact of the proposed power allocation algorithm using

SCA on the sum rate under different mmWave frequencies is also plotted in Fig. 4. To validate the

effectiveness, we compare the proposed SCA algorithm with the fixed power allocation scheme

in mmWave-NOMA, called Match+Fixed NOMA. In Match+Fixed NOMA, we assume that the

total power is distributed uniformly on each beam, and the power allocation between the users

in each beam is assumed to be β1 and β2 for the users with the better equivalent channel gain

and the poorer equivalent channel gain, respectively. As can be observed that the proposed SCA

algorithm can enhance the sum rate efficiently compared to the fixed power allocation scheme.

In Fig. 5, we investigate the sum rate of the mmWave system versus the total number of users

for SNR = 10 dB, q = 2. Rth = 0.02. Here, the average number of the selected users are fixed

with Mq for different algorithms. As can be observed from Fig. 5, the sum rate increases with the
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total number of users for the curves of Maching+SCA and Matching+Fixed Power. The reason

is that the inter-beam interference can be suppressed greatly when the number of users increases

by the proposed matching algorithm. However,the performance of the random user scheduling

algorithm is unsatisfied this is because the inter-beam interference can not be suppressed via

random user scheduling. In addition, some users with very poor channel conditions will be

scheduled which will decrease the total sum rate. Therefore, user scheduling is important for the

proposed mmWave NOMA systems. Furthermore, note that from Fig. 5, this increasing trend

becomes slower as the total number of users becomes larger, since when the total number of

users becomes large enough, the inter-beam interference will approach to constant.

In Fig. 6, we investigate the total sum rate versus maximum numbers of users sharing the

same beam, q in Matching+SCA. Different total number of users are considered with K = 100

and K = 200. As can be observed from Fig. 6, the proposed mmWave NOMA system can

achieve the better sum rate when the SNR increases. Besides, compared to the case of K = 100,

the sum rate can be improved by increasing the number of users. It can also be observed that

the sum rate increases with increasing q, because more users are accessed to the same resource.

Hence, the mmWave system is capble of obtain more performance gains by applying NOMA.

Furthermore, compare with the gap between q = 1 and q = 2, the gap becomes smaller from

q = 2 to q = 3 when K = 100, which is because of the total transmission power constraint at

the BS.
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VII. CONCLUSIONS

In this paper, the designs of user scheduling and power allocation algorithms for mmWave

NOMA systems with random beamforming were considered. Particularly, the formulated problem

for the maximization of the sum rate of the mmWave NOMA system was a mixed integer

programming. The original problem have been into two subproblems and solved independently:

1) for the integer optimization of the user scheduling, exhaust search is adopted for a small scale

problem; 2) BB was applied for solving the power allocation problem optimally. The generated

optimal user scheduling and power allocation solution was served as a benchmark due to its
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prohibitive computational complexity. Moreover, a low complexity suboptimal algorithm was

developed to strike a trade-off between the performance and complexity, where user scheduling

scheme and power allocation scheme were designed based on matching theory and SCA ap-

proach, respectively. Simulation results have been showed that the proposed suboptimal algorithm

achieved a near optimal performance with low complexity compared to the global algorithm. In

addition, our results showed that the sum rate of mmWave NOMA systems outperformed the

conventional mmWave OMA systems.

APPENDIX A: PROOF OF THEOREM 1

Base on the computational complexity theory, to show the problem (9) is NP-hard, we follows

the following three steps: 1) choose a suitable known NP-complete decision problem Q; 2)

construct a polynomial time transformation from any instance of Q to an instance of problem

(9); 3) prove the two instances have the same objective value under the transformation. In this

paper, to prove problem (9) is NP-hard, we divide the proof into two steps: qm = 1 and qm > 1.

1) We first consider the case qm = 1, (9) becomes a joint power and user scheduling problem

in the conventional OMA systems. The sum rate maximization problem in (9) becomes the

following form:

max
β,c

M∑

m=1

Rm
j→j

s.t.

M∑

m=1

βm
j ≤ Ptot, j ∈ K, m ∈ M,

(A.1)

which has been proved to be NP-hard in [42].

2) When qm > 1, we prove that (9) is NP-hard even known the power allocation. In the

following, we will construct an instance of problem (9) with known power allocation

coefficients. First, the three-dimentional matching is known to be NP-hard. We then consider

an instance with qm = 2. Assuming that the users are equally divided into two disjoined

sets K1 and K2 satisfying the size |K1| = |K2| = K
2

, K1

⋃K2 = K and K1

⋂K2 = ∅.

In addition, we assume that the two users j and k on beam m are selected such that

j ∈ K1 and K ∈ K2, respectively. Let V be a subset of M×K1 ×K2, where the element

Vl = (ml, k
1
l , k

2
l ) ∈ V . According to (41), the sum rate of any triple Vl can be denoted as

HVl
. Next, we need to determine if there exist a set V ′ ⊆ V with the size |V ′| = min{M, K

2
}

such that
∑|V ′|

l=1 HV ′

l
≤ λ, where any V ′

l ∈ V ′ and V ′
n ∈ V ′ do not contain the same elements.

Based on the definition, V ′ ⊆ V will be a three-dimentional matching when the following

conditions hold: 1) |V ′| = min{M, K
2
}; 2) For any two distinct triples: (ml, k

1
l , k

2
l ) ∈ V and



28

(m′
l, k

′1
l , k

′2
l ) ∈ V ′, we have ml 6= m′

l, k
1
l 6= k′1

l , k
2
l 6= k′2

l . When λ goes to nongative infinity,

problem (9) with known power allocation coefficients becomes a three-dimensional matching

problem. Therefore, the decision problem of the constructed instance is NP-complete and

the corresponding instance is NP-hard.

Since a special case of problem (9) is NP-hard, the original problem in (9) is NP-hard.

From the analysis of the above two cases, one can conclude that problem (9) is NP-hard.

APPENDIX B: PROOF OF THEOREM 2

Theorem 2 is similar to the classical feasibility conditions in [43]. These conditions are derived

based on Perron-Frobenius theory [34] by assuming the primitiveness of Λ + DG. Different

from the conventional OMA systems, in which only the total transmission power constraint is

considered, here we give a more general proof for NOMA system with the constraints of the

deconding order.

To begin with, we show that ρ(Λ+DG) < 1 is the necessary condition for Γ ∈ G. Base on

(30), we can construct the necessary condition for Γ ∈ G: if Γ ∈ G, then ∃β � 0 such that
(
IMt

− (Λ+DG)
)
β > σ2

D1Mt
. (B.1)

ignoring the constraints in (10b) and (10c). Since each element of Γ satisfying Γjm→jm ≥ γ̄jm

is strict positive, which indicates that σ2
D1Mt

≻ 0 and β ≻ 0. Based on these results, we can

further refine the above necessary condition as follows: if Γ ∈ G, then ∃β � 0 such that
(
IMt

− (Λ+DG)
)
β ≻ 0, (B.2)

neglecting the constraints in (10b) and (10c). Then based on the properties of the Perron-

Frobenius eigenvalue stated in [34], a positive solution to β that satisfies (B.2) exists is and

only if ρ
(
(Λ+DG)

)
< 1. Consequently, we the above necessary condition can be equivalently

expressed as: if Γ ∈ G, then ρ
(
(Λ+DG)

)
< 1. By contrast, if ρ

(
(Λ+DG)

)
≥ 1, then Γ /∈ G.

The second condition 2) follows from Proposition 2, where the SINR constraint in (14b)

are such that equalities, i.e.,
(
IMt

− (Λ + DG)
)
β = σ2

D1Mt
. Moreover, ρ(Λ + DG)

)
<

1, consequently, IMt
− (Λ + DG) is invertible and its inverse has nonnegative entries, i.e.,

IMt
− (Λ+DG)−1 � 0 [34]. Thus, β =

(
IMt

− (Λ+DG)
)−1

σ2
D1Mt

≻ 0.

The second part of 2) is to showing that β∗ =
(
IMt

− (Λ+DG)
)−1

σ2
D1Mt

is the minimum

power vector which sttisfies the SINR constraints in (14b). It is equivalently to verify that β∗ is

the optimal solution of the following linear vector optimization problem:

min
β

β s.t.
(
IMt

− (Λ+DG)
)
β � σ2

D1Mt
, (B.3)
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which is convex [30]. Hence the optimal solution satisfies thee KKT conditions, which are given

as follows:

(Λ+DG)λ = I, (B.4a)

((
IMt

− (Λ+DG)
)
β − σ2

D1Mt

)

λ = 0, (B.4b)

(
IMt

− (Λ+DG)
)
β � σ2

D1Mt
. (B.4c)

where λ ≻ 0 is the Lagrange multiplier vector. From (B.4a) and (B.4b), one can obtain that

λ = 0. Then from (B.4b) and (B.4c), it can be derived that
(
IMt

− (Λ +DG)
)
β = σ2

D1Mt
.

Therefore, the optimal solution of (B.3) is give by β∗ =
(
IMt

− (Λ + DG)
)−1

σ2
D1Mt

. As a

result, if
∑M

m=1

∑qm
jm=1 β

m
jm

> Ptot, Γ /∈ G.

Finally, we prove the condition 3) in Theorem 2. Since the constraints of SIC decoding order,

some solution attained by condition 3) may not satisfy the inequalities in (29). If so, the optimal

power allocation can be obtained by solving (14) directly.
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