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Abstract

In beam-based massive multiple-input multiple-output systems, signals are processed spatially in the

radio-frequency (RF) front-end and thereby the number of RF chains can be reduced to save hardware

cost, power consumptions and pilot overhead. Most existing work focuses on how to select, or design

analog beams to achieve performance close to full digital systems. However, since beams are strongly

correlated (directed) to certain users, the selection of beams and scheduling of users should be jointly

considered. In this paper, we formulate the joint user scheduling and beam selection problem based on

the Lyapunov-drift optimization framework and obtain the optimal scheduling policy in a closed-form.

For reduced overhead and computational cost, the proposed scheduling schemes are based only upon

statistical channel state information. Towards this end asymptotic expressions of the downlink broadcast

channel capacity are derived. To address the weighted sum rate maximization problem in the Lyapunov

optimization, an algorithm based on block coordinated update is proposed and proved to converge to the

optimum of the relaxed problem. To further reduce the complexity, an incremental greedy scheduling

algorithm is also proposed, whose performance is proved to be bounded within a constant multiplicative

factor. Simulation results based on widely-used spatial channel models are given. It is shown that the

proposed schemes are close to optimal, and outperform several state-of-the-art schemes.
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I. INTRODUCTION

In massive multiple-input multiple-output (MIMO) based wireless communication systems,

the spectral and radiated energy efficiency can be both boosted by the deployment of massive

number of antennas [1]. Moreover, the high beamforming gain of a massive antenna array is

the main enabler for millimeter-wave systems against high pathloss. Therefore, it is extremely

important to design high-performance, efficient and practical transmission strategy in massive

MIMO systems for the emerging 5G cellular system.

Under the assumption that full digital signal processing is performed at the base station (BS)

side with massive antenna arrays, the system performance has been widely investigated, e.g.,

in [1]–[3]. However, it is widely accepted that full digital signal processing implementation

encounters very severe challenges in practice, on account of the following impediments.

Radio-frequency (RF) chain hardware cost and power consumptions. Full digital signal

processing requires that all antennas can be digitally controlled from baseband. Hence, one

dedicated RF chain, including e.g., low-noise amplifier, analog-digital-converter (ADC), power

amplifier and etc., is needed for each antenna. In massive MIMO systems, not only is this

requirement entails a dramatic increase in the deployment cost of the system, but also that the

power consumption would be driven up to a prohibitive level. As indicated in the previous work

[4] [5], concretely, a BS with 256 RF chains consumes about 10 times the power (only the RF

chains) as compared with an entire current long-term-evolution (LTE) BS.

Baseband signal processing complexity. The spatial baseband processing includes multiple

kinds of matrix operations, such as inversions and singular-value-decompositions (SVDs) whose

complexity scales with M3 where M is the number of antenna elements for full digital process-

ing. Moreover, these extremely demanding matrix operations are required to be executed very

frequently (once every 1 ms for spatial precoding in LTE systems). This is very challenging to

the design of baseband processing units, both in terms of chip costs and power consumption.

System specific limitations. Aside from the first two challenges, there are some other practical

considerations which are system-specific. For example, the fronthaul interface in cloud radio

access networks (C-RAN) poses a serious limitation in the number of data streams that can be

transmitted between the remote-radio-units (RRUs) and the baseband units (BBUs). Considerable

amounts of work has been dedicated to the signal spatial compression in C-RAN [6]. Moreover,

the channel state information (CSI) acquisition overhead in frequency-division-duplexing (FDD)
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Fig. 1. An illustration of the beam-based massive MIMO systems where user scheduling and beam selection are correlated.

system scales with the number of digitally controllable antennas. It constitutes a major bottleneck

in realizing the massive MIMO gain in FDD systems.

In view of these challenges, architectures with low RF- and processing-complexity have

been proposed extensively, e.g., in [7]–[13]. The existing literature can be divided into three

categories. The first is hybrid beamforming, which adopts an RF front end with an analog

beamforming module such that the number of RF chains is significantly reduced [8]. Although

the analog beamforming module is usually composed of phase shifters with constant-amplitude

beamforming weights to save hardware cost, the high-speed phase shifters, whose quantity is the

same with the number of antenna elements, pose a drastic challenge to the cost of RF front ends.

In this regard, the recently proposed beamspace MIMO architecture [10] adopts a lens antenna

array which acts analogously like a lens focusing on light beams from different directions. It

transforms the signal into the angular domain and thus reduces the number of RF chains due

to signal angular sparsity. Since it does not require any phase shifters, the total cost is reduced,

and therefore it is considered to be one of the candidate solutions to the 5G millimeter-wave

massive MIMO systems. The other approach is based on digital beamforming which involves

multi-layer signal processing [4], [11], [14]. Although the number of RF chains is not reduced,

the processing complexity and pilot overhead problems are partly solved.

In essence, all the aforementioned solutions aim at providing comparable performance as

full digital processing systems with limited number of RF chains and reduced complexity in

massive MIMO systems. Based on Fig. 1, the current literature mainly focuses on the right side
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of the figure, i.e., the antenna to beam mapping and beam selection schemes, which leverages

the angular domain power sparsity of the channel to transform the signals from the antenna

domain to the beam domain. Towards this end, beam sweeping and steering methods in the

hybrid beamforming architecture can be used to capture the signal direction [15]. Other methods

adopt joint analog and digital precoding design [9] [16]. In beamspace MIMO systems, the

lens antenna array can be regarded as a directional beamforming module with low cost. On the

other hand, the left side of the Fig. 1 which represents user-beam mapping, is scantly treated.

The user-beam mapping essentially deals with user scheduling in the beam domain. Unlike

the previous user scheduling related work, e.g., in [17]–[19], the user scheduling problem in

the beam domain is tangled with the beam selection. In reality, due to the angular sparsity of

the massive MIMO channel [20], the beams, which represent the signal directions, are strongly

related to the users, in the sense that each beam usually contains signals of very few (possibly

one) users. Therefore, the user scheduling and beam selection have to be jointly considered to

avoid possible performance degradation due to user-beam mismatch.

The channel state information (CSI) is of vital importance to the system. The CSI can be

categorized as instantaneous CSI and statistical CSI. It is worthwhile to emphasize the specific

CSI usage at each stage (time scale) of the beam-based massive MIMO transmissions since most

existing work ignores this and assumes instantaneous CSI is always available [21] [22] . We

propose that beam-based downlink scheduling should be performed only based on the statistical

CSI. The reason is two-fold. From an implementation perspective, the statistical CSI is much

easier to obtain than instantaneous CSI, attributing to the fact that statistical CSI can be obtained

with much lower cost because a) it can be estimated without dedicated pilots [23]; b) it varies

at a lower speed (in the order of 1 second to 10 seconds) compared with instantaneous CSI

(in the order of 1 ms to 100 ms) [24]. Moreover, in C-RAN systems, the beamforming module

is integrated with the remote radio heads (RRHs) and hence limited computation capability is

expected [25] which prevents us from using complicated channel estimation schemes. On the

other hand, it is also theoretically possible to only rely on statistical CSI in the user scheduling

and beam selection phase, since beams are essentially long-term statistics. Furthermore, the

statistical CSI can be obtained efficiently with a limited number of RF chains based on, e.g.,

compressive sensing based channel estimation schemes [7] [26].

In this paper, we aim to address the user and beam joint scheduling problem in beam-based

massive MIMO downlinks. The contributions include:
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• We formulate the problem based on the Lyapunov-drift optimization framework. An optimal

scheduling policy is proposed thereby to achieve optimum utilities. The optimality proof is

given which shows the achieved utility is arbitrarily close to the optimum.

• To address the queue weighted sum rate maximization problem arisen in optimizing the

Lyapunov-drift, which is a mixed integer programming (MIP) problem, the block-coordinated-

update-based (BCU-based) algorithm which deals with the continuous convex relaxation of

the MIP problem is proposed. In order to implement the algorithm based on statistical CSI,

a deterministic equivalence of the downlink broadcast channel capacity in the large antenna

array regime is derived, depending only on statistical CSI. The BCU-based algorithm is

proved to converge to the global optimum of the relaxed problem. An iterative water-filling

based approach is also proposed to reduce the number of iterations.

• Furthermore, a low-complexity incremental greedy algorithm is proposed. We prove that

the greedy algorithm can achieve near-optimal performance, within a multiplicative factor

due to the submodular property of the problem.

• By simulations, it is shown that the proposed algorithms outperforms several state-of-the-

art beam selection schemes. Moreover, since it is based on statistical CSI, the frequency of

executing the algorithm is significantly reduced, making it more preferable in practice.

A. Related Work

The proposed joint user and scheduling schemes are related to the beam selection problem in

beamspace MIMO systems [21], [22], [27]–[30], or more generally antenna selection problem

in MIMO systems [31]. However, the considered joint scheduling problem in beam domain is

unique, in the sense that the beam magnitudes are strongly correlated with users. The beam-

user scheduling problem is also considered in a switched-beam based massive MIMO system

in [28], where one pre-defined (fixed) beam is associated with one user. In [29], a greedy

joint scheduling of beams of users is proposed and we will compare our results with it in the

simulations. Concerning the literature related to the mathematical treatment adopted in the paper,

the Lyapunov-drift optimization framework is attributed to the pioneer work by Neely [32]. The

large system deterministic equivalence to derive the downlink channel capacity is related to the

celebrated random matrix theory [33]. Furthermore, in the algorithm design, the BCU technique

dates back to multi-convex optimization, e.g., in [34], and the approximation factor of the greedy

algorithm is related to the submodular set function optimization problem as in [35].
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B. Paper Organizations and Notations

The remainder of the paper is organized as follow. In Section II, the system model and channel

model are presented, and the problem is formulated. In Section III, the Lyapunov-drift approach

is used to design an optimal scheduling policy. In Section IV, a BCU-based scheduling algorithm

is described to address the queue weighted sum rate maximization problem. In Section V, a low-

complexity greedy algorithm is presented. The simulation results are conveyed in Section VI.

Finally, we conclude our work in Section VII.

Throughout the paper, we use boldface uppercase letters, boldface lowercase letters and

lowercase letters to designate matrices, column vectors and scalars, respectively. XT and X†

denotes the transpose and complex conjugate transpose of matrix X , respectively. Xi,j and xi

denotes the (i, j)-th entry and i-th element of matrix X and vector x, respectively. tr(X) denotes

the trace of matrix X . Denote by E(·) as the expectation operation. Denote by IN as the N

dimensional identity matrix. The logarithm log(x) denotes the binary logarithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Model

The single-cell system downlink is considered in this paper, where a BS with M co-located

antennas transmits to Nt single-antenna users.1 The BS has K RF chains (K ≤ M ). Assuming

narrow-band and time-invariant channels2, the receive signal of user-n is, ,

yn = h†nx+ nn, (1)

where hn is an M -dimensional channel vector, x is the downlink transmit signals, and nn denotes

the i.i.d. Gaussian additive noise with unit variances. The downlink channel matrix is denoted

by H = [h1,h2, ...,hNt ]
†. The transmit signal after beamforming can be written as

x = Bas, (2)

1The proposed schemes can be straightforwardly extended to multiple-antenna-user case by treating multiple antennas of a

user as multiple users with an identical channel correlation matrix [23] and setting the backlog pressure Qn(t) in P3 to be the

same for these antennas.
2Wideband channels can be decomposed to a set of parallel narrow-band channels by, e.g., orthogonal-frequency-division-

multiplexing (OFDM) modulations. The time-invariant channel assumption essentially deals with data transmission inside the

channel coherence time (or block length in the block fading channel model).
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where s denotes the K-dimensional digitally precoded data symbols for the scheduled, i.e.,

spatial-multiplexed Ns users (Ns ≤ K such that a linear digital precoder such as zero-forcing

precoder can eliminate the inter-user-interference,3 and obviously Ns ≤ Nt). The RF (analog)

beamforming, which can be realized by the lens antenna array and beam selection in beamspace

MIMO or general analog beamforming in hybrid beamforming architectures, is denoted by Ba

with dimension M ×K. On account of the analog beamforming, the effective channel observed

from baseband is

H̄ = HBa, (3)

where the effective channel vector corresponding to user-n is denoted by h̄n and H̄ =
[
h̄1, ..., h̄Nt

]†.
The RF beamforming considered in the paper is a widely adopted directional beamforming

scheme4, and hence

Ba = BDFTΣb, (4)

where BDFT is the equivalent discrete-Fourier-transform (DFT) matrix (or Kronecker product

of DFT matrices for uniform planar antenna arrays (UPAs)). The beam selection decision is

denoted by the diagonal matrix Σb whose entries are binary, i.e., (Σb)i,i ∈ {0, 1}, ∀i.

B. Channel Model

Based on a geometry-based channel model [36], the channel vector of the n-th user can be

written as

hn =

√
M

Ln

Ln∑
l=1

β
(n)
l α

(
θ

(n)
l , ψ

(n)
l

)
, (5)

where Ln denotes the total number of multi-path components (MPCs) in the propagation medium

including line-of-sight (LoS) and none-line-of-sight (NLoS) MPCs. The amplitude of each MPC

is denoted by β(n)
l , and θ(n)

l and ψ(n)
l denote the azimuth and elevation angles of the l-th arriving

3In the simulations, we assume K = Ns and hence K ≤ Nt.
4Note that the RF beamforming in this paper can be readily generalized to arbitrary beam pattern, e.g., the eigenvector-based

beam pattern in [14], by replacing the DFT-based beamforming matrix BDFT with the desired beamforming matrix. Also note that

although directional beamforming is adopted, the proposed schemes can adapt to the channel variation more flexibly compared

with traditional directional antenna based systems, by updating the channel statistics estimations and adjusting beam patterns.



8

MPC, respectively. Thereby, the steering vector for one MPC is given by (assuming UPA whereas

one-dimensional uniform-linear-array (ULA) can be regarded as a special case)

αUPA
(
θ

(n)
l , ψ

(n)
l

)
=

1√
M

[
1, ..., e

−j2π
(
mλh sin θ

(n)
l cosψ

(n)
l +nλv cos θ

(n)
l sinψ

(n)
l

)
, ...,

e
−j2π

(
(H−1)λh sin θ

(n)
l cosψ

(n)
l +(V−1)λv cos θ

(n)
l sinψ

(n)
l

)]T
, (6)

where H and V denote the number of columns and rows in the UPA, respectively, and λh and

λv are the antenna spacing in the horizontal and vertical domains, respectively. The order of

elements in the steering vector is mapped to the indexing order of antennas in the UPA. The

physical meaning of the steering vector and channel representation in (5) is that for an MPC

with direction-of-arrival (DoA)
(
θ

(n)
l , ψ

(n)
l

)
, the array response is given by (6). Summing up

all the contributing MPCs, we obtain the compound channel representation in (5). Based on the

channel model, the RF beamforming in (4) can take advantage of the limited number of MPCs

as compared with the number of antennas, and only selects a subset of the beams to attain

equivalent performance (signal power) with a smaller number of RF chains.

However, the beam selection cannot be isolated from the user scheduling problem. Apart

from the reasons given in Section I, from a throughput perspective, different users have different

transmission needs resulting from traffic demand or fairness considerations. Therefore, the user

scheduling and beam-domain CSI should also be jointly considered. The joint beam-domain

massive MIMO downlink scheduling problem is formulated as follows.

C. Problem Formulations

The long-time average rate of user n is denoted by R̄n, and the instantaneous rate of user n

at time t is denoted by Rn(H(t), π(t)), given the channel coefficients H(t) and control policy

(user scheduling and beam selection as far as the paper is concerned) π(t). Note that this does

not mean the scheduling decision relies on the availability of instantaneous CSI, as in Proposition

1 an deterministic equivalence of the rate expression will be derived which is based solely upon

statistical CSI. Based on ergodicity, R̄n = E{Rn(H , π)}, ∀n ∈ {1, ..., Nt}, where the expectation

is taken over channel coefficients H(t) and possibly π(t) when a stochastic control policy is

considered. The achievable ergodic rate region can be characterized as

R = coh
⋃
π∈X

{
R̄ : 0 ≤ R̄n ≤ E [Rn(H , π)]

}
, (7)
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whereR is a Nt-dimensional region, R̄n is its n-th component, and “coh” denotes the closure of a

convex hull. The set of all feasible scheduling policies is denoted by X . The utility maximization

problem is formulated as

P1: maximize
Σu,Σb

U
(
R̄
)
, subject to R̄ ∈ R, (8)

where Σu is a diagonal matrix denoting user scheduling decision at time t, i.e., si
∆
= (Σu)i,i ∈

{0, 1}, and bi
∆
= (Σb)i,i denotes the beam selection decision. The network utility function U

(
R̄
)

is defined as a function of the long-time average rate for each user, e.g.,

Usum
(
R̄
)

=
Nt∑
n=1

R̄n (9)

for sum rate maximization,

Upfs
(
R̄
)

=
Nt∑
n=1

log(R̄n + cn) (10)

for proportional-fairness scheduling (PFS) [37], where cn’s are non-negative constants to reg-

ularize the logarithm expressions, and typical value is cn = 0, ∀n ∈ {1, ..., Nt} for exact PFS

or cn = 1, ∀n ∈ {1, ..., Nt} to ensure positive objective function value which is a mathematical

convenience. Basic properties of the utility function U
(
R̄
)

are required, e.g., concavity and

monotonicity [38], over the rate vector (R1, ..., RNt).

III. OPTIMAL BEAM-BASED JOINT SCHEDULING POLICY

To solve P1, it is found that two severe challenges exist. First, the ergodic capacity region

R does not yield a closed-form expression. The work in [39] [40] characterizes the broadcast

channel (BC) capacity region and a duality between BC and multiple-access-channel (MAC)

in the sense of both capacity region and outage probability is found. Moreover, an iterative

water-filling algorithm is proposed to calculate it, given the instantaneous channel coefficients.

Nevertheless, no closed-form expressions are available except for capacity bounds [41].5 Sec-

ondly, the scheduling and beam selection decisions should be made dynamically to match the

channel variations and user traffic in time. To address these issues, we seek to leverage a powerful

tool of Lyapunov-drift optimization which is shown to have superior performance compared to

5The broadcast channel capacity formula is adopted as the optimization objective in this paper due to its better generality

compared with, e.g., achievable rates based on linear precoding schemes. It is also because that non-linear downlink transmission

schemes, e.g., non-orthogonal multiple access schemes, are attracting more and more attention recently.
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static solutions [42] with simple decision structures (max-weight structure [43]); thereby, P1 is

decomposed into P2 and P3 described in the following.

Essentially, P1 is a time-average network utility maximization problem which is hard to

solve directly. The Lyapunov-drift approach decomposes the time-average optimization into

optimization in each scheduling step; and the resultant sub-problems are formulated as P2 and

P3. By applying the solutions to P2 and P3 at each scheduling step, the time-average network

utility can be optimized.

A. Lyapunov-Drift Based Network Utility Maximization

To maximize the network utility function in (8), the transmission need of each user, which

is determined by the transmission history and utility function, is represented by a set of virtual

queues. The arrival process is designed to reflect the transmission urgency of each user and

a max-weight algorithm is applied to stabilize the queues whenever possible. Specifically, let

Qn(t) denote the virtual queue length in bits of user n at the beginning of t-th scheduling step,

let an(t) denote the number of (virtual) arrival bits which are optimization variables for utility

maximization, and let µn(t) denote the allocated number of service bits to queue-n, which equals

the allocated number of service bits between scheduling steps. The queuing dynamics are written

as

Qn(t+ 1) = Qn(t)− µ̃n(t) + an(t), (11)

where µn(t) =
∑T

τ=1Rn(H(τ), π(τ)), the number of channel uses between scheduling steps

is denoted by T , and µ̃n(t) = min{Qn(t), µn(t)} denotes the number of actual service bits,

considering the circumstances that sometimes the queue is emptied given the amount of allocated

service bits. Notice that the queues here are created virtually to facilitate the utility maximization

and thus they are not real traffic patterns. In Section VI (Fig. 5), we extend to stochastic real

traffic scenarios in simulations. The optimal beam-based downlink scheduling policy at a given

scheduling time t, i.e., a dynamic policy which achieves the solution to (8), can be described as

below.

Admission control: For virtual queue Q(t) = [Q1(t), ..., QNt(t)], let the number of arrival

bits, i.e., a(t), be the solution of

P2: maximize
a(t)

V U (a(t))− a(t)TQ(t), subject to 0 ≤ an(t) ≤ Amax, ∀n ∈ {1, ..., Nt},

(12)
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where V and Amax are pre-defined constants6.

Scheduling: Given the arrival process determined above, the service, i.e., the joint scheduling

decisions, is based on the solution of the following problem:

P3: maximize
Σu,Σb,p

Nt∑
n=1

[
Qn(t)sn

T∑
τ=1

Rn (H(τ),Σu,Σb,p)

]
(13)

s.t.,
Nt∑
n=1

pn ≤ P, (14)

Nt∑
i=1

si = Ns,

M∑
i=1

bi = K, si ∈ {0, 1}, bi ∈ {0, 1}, (15)

where p = [p1, ..., pNt ] denotes the transmit power corresponding to Nt user data streams and

hence P in (14) is the sum power constraint. The scheduling decisions are denoted by binary

variables si and bi. Σb and Σu are diagonal matrices consisting of si and bi, respectively. The

downlink instantaneous transmission rate Rn (H(t),Σu,Σb,p) is a function of the downlink

transmit power allocation, channel coefficients, and scheduling decisions. The departure from

the n-th virtual queue is µn(t) = sn
∑T

τ=1Rn (H(τ),Σu,Σb,p).

It is observed that the admission control problem P2 is a convex problem and hence is easy

to solve. For instance with PFS utility, the optimal admission control is given by

a∗n(t) = min

{
V

Qn(t)
, Amax

}
, n ∈ {1, ..., Nt}. (16)

However, the problem P3 is an MIP problem, which is NP-complete [44]. Before diving into

details on solving P3 in the following sections, we assume the optimal solutions to both problems

are obtained for the moment, which is denoted by π∗. The optimality of the algorithm is

established in the following theorem.

Theorem 1: Denote

R̄∗ = arg max
R̄∈R

U
(
R̄
)
. (17)

Suppose the transmission rate is bounded, i.e., 0 ≤ R̄n ≤ Rmax, ∀n ∈ {1, ..., Nt}, the utility

function U(·) is concave and entry-wise non-decreasing, and bounded on [0, Rmax]. The channel

6For Typical values, V and Amax can be approximately 100-fold of the service rate.
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coefficients H(t) are i.i.d. over different scheduling periods, then based on the scheduling

algorithm resulting from P2 and P3, the following conditions are met.

lim inf
τ→∞

U

(
1

τ

τ−1∑
t=0

E[R(t)]

)
≥ U

(
R̄∗
)
− C/V, (18)

lim
τ→∞

E [Qn(τ)]

τ
= 0, ∀n. (19)

Proof: See Appendix A.

Remark 1: Theorem 1 reveals that the utility function of the time-averaged transmission rate

based on the scheduling decisions derived in P2 and P3 is within a constant (arbitrary small if

V is large) to the optimum and the virtual queues are mean-rate-stable, where C is a constant

related to Amax (40). In the following, we will dig into the methods to solve P3.

IV. BLOCK COORDINATE UPDATE BASED METHOD FOR P3

This section is dedicated to solving the scheduling problem of P3 only based on the knowledge

of statistical CSI. The previous section establishes the optimality of the proposed beam-based

scheduling algorithm given the solutions of P2 (generally easy to solve) and P3. However, due

to the NP-hardness of P3, explicit solutions are hard to attain. More importantly, it is proposed

that the scheduling decisions of P3 should only rely on statistical CSI, rendering the solution

even more intractable. Towards this end, an algorithm based on solving the convex relaxation

of the original problem leveraging the BCU technique and random matrix theory is proposed.

First, P3 is transformed for better exposition based on the uplink-downlink duality [39] [45].

The instantaneous achievable rate in P3 is evaluated by the MIMO broadcast channel capacity.

The following Proposition 1 derives an implicit asymptotic expression of the objective function

in P3 such that the optimization is only dependent on statistical CSI which in this case is the

channel correlation matrices.

Proposition 1: In the large system regime, i.e., K →∞ and K/Ns → β, the queue-weighted

downlink channel capacity in P3 is asymptotically equivalent to

D(Q,R1, ...,RNt ,Σu,Σb,p)

4
=

Nt∑
n=1

qnT log

1 + pnsntr

ΣbB
†
DFTRnBDFTΣb

(
1

M

n−1∑
j=1

pjsjΣbB
†
DFTRjBDFTΣb

1 + en,j
+ I

)−1
 ,

(20)
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where qi’s are arranged in non-increasing order, and en,i is the unique solution of the following

equations.

en,i = tr

ΣbB
†
DFTRiBDFTΣb

(
1

M

n−1∑
j=1

pjsjΣbB
†
DFTRjBDFTΣb

1 + en,j
+ I

)−1
 . (21)

Proof: See Appendix B.

A. Convex Relaxation

Although the original MIP P3 is NP-hard, it can be relaxed to a multi-convex problem by

replacing the binary constraints with real-value constraints. The convex relaxation of an MIP is

a widely-used technique to achieve near-optimal solutions to the original problem [46] [47]. The

relaxed version of P3 is stated below.

P4: maximize
Σb,w

D(Q,R1, ...,RNt , INt ,Σb,w) (22)

s.t.,
Nt∑
n=1

wn ≤ P,
M∑
i=1

bi = K, 0 ≤ bi ≤ 1,∀i, (23)

where wn = pnsn, and D is defined in (20). Define the optimum solution of P4 as b∗i ’s and w∗n’s,

respectively. Then the scheduling decision is to schedule the beams and users corresponding to

the largest K b∗i ’s and Ns w
∗
n’s, respectively. It is observed that P4 is a multi-convex problem

[34] since the objective function is concave in both Σb and w. In view of this, the following

Algorithm 1, which bases upon the BCU technique is proposed.

The basic idea of the proposed BCU-based user and beam joint scheduling is that an iterative

method which cyclically optimizes user scheduling and beam selection with the other fixed

is guaranteed to converge to the global optimum of P4. In order to accelerate the iteration, an

iterative water filling approach which is based on [48] and deals with user scheduling is adopted.

Convergence of the proposed algorithm: The convergence to the global optimum is due to the

convergence results of the BCU algorithm [49]. The details of the proof is given in Appendix

C. It is found through simulations that the BCU-based algorithm normally converges after 2-

3 iterations. Therefore, the computational complexity and convergence time are acceptable in

simulated scenarios.

Remark 2: The Algorithm 1 can solve the joint user scheduling and beam selection problem

based on statistical CSI. Therefore, it is applicable before channel estimations. After the system
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Algorithm 1: BCU-Based Scheduling

1 Initialization: Σ(0)
b = IM ;

2 Iteration: for t = 1 : T do

3 User scheduling update based on iterative water filling: ∀n ∈ [1, Nt], ω
(0)
n = P/Nt;

for tw = 1 : Tw do

4 Compute for each n,

β
(tw)
n = tr

[
Σ

(t−1)
b B†DFTRnBDFTΣ

(t−1)
b

(
1
M

∑n−1
j=1

w
(tw−1)
j Rj

1+en,j
+ I

)−1
]

, where en,i is

the unique solution of the equations in (21);

5 Apply the classical water filling algorithm with water levels defined by β(tw)

γ(tw) = arg max∑Nt
n=1 γn≤P,γ≥0

Nt∑
n=1

qn log
(
1 + γnβ

(tw)
n

)
Update ω as ω(tw) = (1− 1/M)ω(tw−1) + (1/M)γ(tw)

6 if ‖ω(tw)
n − ω(tw−1)

n ‖ < ε then

7 w(t) = ω(tw), break;

8 Beam selection: Solve for Σ(t)
b , which is the solution to the convex optimization

problem of P4 with w = w(t).

9 Stopping criterion: if ‖w(t) −w(t−1)‖ < ε1 and ‖Σ(t)
b −Σ

(t−1)
b ‖ < ε2 then

10 wopt = ω(t), Σb,opt = Σ
(t)
b , break;

11 Output: The scheduling user set is the users with the largest Nt values in wopt. The

selected beams are the ones with the largest K values in the diagonal entities of Σb,opt.

selects users and beams, the instantaneous channel estimations can be implemented and subse-

quently digital precoding and decoding can follow. This is in line with the multi-layer signal

processing concept proposed in, e.g., [4] [14], which proposes that the pre-beamforming should

be done based on channel statistics to save RF chains, complexity and system overhead.

V. INCREMENTAL SELECTION BASED METHOD FOR P3

Although the BCU-based algorithm is guaranteed to converge to the optimum of the relaxed

convex optimization problem, it still has high complexity due to the iterative algorithm design.



15

Therefore it may take a long time to converge. In this regard, an algorithm which selects users and

beams incrementally with low complexity is proposed. The key to the design of the algorithm is

to derive the incremental selection criterion. Thanks to the results in Proposition 1, the structure

of the asymptotic rates in (20) can be utilized to give such a criterion. Thereby, the incremental

selection algorithm is described in Algorithm 2, which assumes K = Ns
7.

Algorithm 2: Incremental Greedy Scheduling (IGS)

1 Initialization: U = B = ∅; Uall = [1 : Nt], Ball = [1 : M ]

2 Incremental Selection: for t = 1 : Ns do

3 Find the user-nt and the beam-bt that maximize:

(nt, bt) = arg max
n∈Uall\U,b∈Ball\B

qn log

1 +
P

Ns
tr

ΣbR̄nΣb

(
1

M

∑
j∈U

P
Ns
ΣbR̄jΣb

1 + en,j
+ I

)−1


where R̄j = B†DFTRjBDFT,

(Σb)i,i =

 1, for i ∈ B ∪ {b}

0, else,

and

en,i = tr

ΣbR̄iΣb

(
1

M

∑
j∈U

P
Ns
ΣbR̄jΣb

1 + en,j
+ I

)−1
 .

Update: U ∪ {nt} → U, B ∪ {bt} → B

4 Output: The scheduling user set is U, and the selected beam set is B.

Remark 3: Due to the successive interference cancellation (SIC) structure in the broadcast

channel queue-weighted capacity expression in Proposition 1, the rates of the users decoded

(selected in IGS) first will not be affected by the users decoded (selected in IGS) later. Therefore,

the IGS algorithm is viable because the earlier decisions are decoupled from later ones.

Complexity analysis: The IGS has a complexity of O(NsNtM), because in each step it involves

an exhaustive search over O(MNt) possible user and beam combination, and there are Ns

7The assumption is justified by arguing that maximum degree-of-freedom is achieved with K = Ns.
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iterations. Compared with an exhaustive search over all user and beam subsets with complexity

of
(
Nt
Ns

)(
M
K

)
, and the BCU-based scheduling which is difficult to quantize the complexity due to

the iterative design of the algorithm, the IGS has a relatively very low complexity.

Due to the greedy nature of the IGS algorithm, it may fail to find the optimum sets of users

and beams to schedule. Hence, it is better to have a worst-case performance bound of the IGS,

such that potentially arbitrarily bad solutions are excluded. Fortunately, this is the case for the

proposed IGS, due to the submodularity property [35] of the problem.

Theorem 2: Denote the queue weighted sum rate achieve by the IGS algorithm as DIGS, and

the global optimum as Dopt, then it is satisfied that

DIGS ≥ (1− e−1)Dopt. (24)

Proof: The proof is based on the submodularity of the queue-weighted sum rate maximiza-

tion problem in P3. Informally, the submodularity property indicates the problem has diminishing

returns, i.e., in this case the sum rate increase by scheduling a user or a beam is larger when

scheduled with a smaller user/beam set, i.e.,

D(U1 ∪ u)−D(U1) ≥ D(U2 ∪ u)−D(U2), (25)

for any u ∈ Uall\(U1 ∪U2) and U1 ⊆ U2. This is easily validated since the same user will suffer

from more interference with a larger scheduled user set. There are two additional conditions

for submodularity, which is that the function should be nondecreasing and nonnegative. The

nondecreasing property, i.e.,

D(U ∪ u) ≥ D(U), ∀u ∈ Uall\U, (26)

can be proved by arguing that at least, zero power can be allocated to the user or beam to obtain

equal performance without the user or beam since the objective function is a maximization over

all user and beam selection schemes. It should be noted that although the nonnegative condition

is easily validated, e.g., for the sum rate maximization or max-min rate maximization, it is not

met exactly for the PFS sum logarithm rate optimization. However, if we fix cn = 1, ∀n in (10),

the objective function is non-negative and thus the submodularity property is upheld.

Based on the submodularity, it can be proved that the IGS achieves a near-optimum perfor-

mance. The remaining details of the proof is well-known in the literature and therefore omitted

for brevity [35], [50].
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Remark 4: Although with Theorem 2, it is only proved that the IGS achieves at least about

60% throughput of the optimum scheme, the performance in reality is much better than that,

as which will be shown by simulations. Existing work which also utilizes the greedy algorithm

with submodularity property also agrees with this finding [50].

VI. SIMULATION RESULTS

In this section, simulation results are presented. The channel model is as described in Section

II-B, where the number of MPCs for each user is Ln = 3, ∀n (including one LoS MPC), unless

stated otherwise. The ULA is used in the simulations and the amplitude of the LoS MPC is 10

times the one of the NLoS MPCs. The DoAs of the signals are generated from i.i.d. uniform

distributions. The antenna spacing d = λ/2, where λ denotes the carrier wavelength. In some of

the following cases where users’ pathlosses are not identical, the distances of users are generated

based on an i.i.d. uniform distributions from 30 to 200 meters and the pathloss γn is

γn =

(
dn
d0

)−γ
, (27)

where γ = 2 which is in line with mm-wave channel measurements [51] and d0 is some reference

point distance. The regularized zero-forcing (RZF) precoder is adopted for system evaluation, i.e.,

define Krzf =
(
H̄†H̄ +MαIM

)−1. The RZF precoding matrix is expressed as Bd = ζKrzfH̄
†,

where ζ is a normalization scalar to fulfill the power constraint, and α is the regularization

factor [52]. Although RZF precoder is not the optimal coding scheme for Gaussian broadcast

channel (dirty-paper-coding with minimum-mean-square-error (MMSE) precoder is proved for

optimality but limited in reality due to high complexity), it can achieve full degree-of-freedom

(DoF) in the high signal-to-noise-ratio (SNR) region and is easy to implement. In the simulations,

α = Ns/ρ, where ρ is the receive SNR [52]. The user instantaneous rate is calculated by the

Shannon formula. The block fading model is adopted, where the channel stays constant for

10 time slots and evolves to another realization based on an i.i.d. distribution. The phase and

amplitude of each MPC is generated randomly. The simulation runs for 1000 such blocks and

calculate the time-averaged downlink transmission rates. The constants used in the Lyapunov-

drift optimization are set to be V = Amax = 102rmax, where rmax is the maximum rate of the

users. The ε, ε1 and ε2 in the stopping criterion in BCU-based algorithm are set to be 10−2ρ/K.

In comparisons, the state-of-the-art interference aware beam selection scheme (IA-BS) in [21],
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Fig. 2. Sum rate comparisons with identical user pathloss. The number of BS antennas is 256, the number of users is 100, the

number of scheduled users and beams are both 40.

and the BDMA scheme in [29] are also simulated. These schemes for comparisons are shown

to perform better than several other existing schemes, e.g., [22].

In Fig. 2, our proposed BCU-based algorithm and the IGS algorithm are compared with the

IA-BS algorithm [21] and the BDMA scheme [29]. Since the sum rates are considered, the

utility function in (9) is adopted. The scheduled user set in IA-BS is assumed to have the most

channel power. It is observed that by jointly considering user scheduling and beam selection, the

sum rate performance can be improved in the high-SNR regime. The reason is that in the high-

SNR regime, the interference is dominating the performance, and thus by jointly considering

the user scheduling and beam selection by the proposed schemes, the interference is better

suppressed. The BDMA scheme simply adopts a sequential approach which selects the beam-

user pairs incrementally, and it builds on optimizing a sum-rate upper bound; both factors lead to

performance degradation. Thus, the resultant performance is not as good. Nonetheless, it should

be noted that the BDMA scheme is designed for multiple-antenna users and hence the interference

can be suppressed thereby whereas such effects are not captured in the presented simulations.

Therefore, we focus on the IA-BS scheme for comparisons in the following. Furthermore, the

figure also shows that the BCU-based and IGS algorithms achieve very similar performance in

this scenario.

Considering the utility functions with user-fairness considerations, e.g., the PFS utility function

in (10), the performance advantage of the proposed schemes is more obvious as shown in Fig. 3
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Fig. 3. Sum log rate comparisons with (left) and without (right) non-identical user pathloss. The users with non-identical

pathloss are generated with distances i.i.d. uniformly distributed between 20 m to 200 m. The number of BS antennas is 256,

the number of users is 100, the number of scheduled users and beams are both 40.

(left). Based on the IA-BS, the beams with stronger channels are always preferred, corresponding

to users with small pathloss, resulting in ignorance of the fairness among users. In the proposed

joint scheduling schemes, the admission control in P2 utilizes a virtual queue to control the

fairness among users. Note that since there are always unscheduled users in the IA-BS due to

their small pathloss, the sum log rate of the IA-BS scheme in this case is negative infinity. In

Fig. 3 (right), the performance with identical pathloss is presented. Due to the fact that users

have identical large-scale fading, and hence equal probability to have good channels, the IA-BS

can achieve reasonably good fairness performance.

In order to show the performance loss of our proposed schemes compared with optimal

scheduling, an exhaustive search over all the feasible user and beam sets is conducted to solve

P3 and the optimal scheduling performance is obtained accordingly. Due to the prohibitive high

complexity of exhaustive search, we consider a small-scale problem where there are 8 users, 8

BS antennas and 4 scheduled users and beams. Nonetheless, it is found by many existing works,

e.g., [53] [54], that the impact of imperfect downlink scheduling decreases with the increase

of antenna dimension due to the channel hardening effect. Therefore, the relative performance

gap with a larger system dimension should be smaller, or at least similar with that in Fig. 4.

In Fig. 4, the left and right figures show sum-rate and sum-log-rate optimizations, respectively.

It is observed that in general the proposed schemes can achieve near-optimal performance. The

BCU-based scheme is shown to have better performance compared with the IGS, but with higher
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Fig. 4. Comparisons with optimal scheduling. The number of users is 8, the number of scheduled users and beams are both 4.

cn = 1, ∀n as in (10).

complexity. The performance bound which we prove for the IGS algorithm is also plotted in

the figure. The IGS scheme always performs better than the (1− 1/e) bound. In the low SNR

regime, it is observed that the IA-BS scheme outperforms the IGS scheme, due to the reason that

the IA-BS scheme always selects the user and its corresponding beam which have the strongest

channel, and that in Fig. 4 we set cn = 1 in the log rate to ensure positive utilities and thus less

penalty on the unfairness among users is accounted for.

A throughput comparison with a stochastic traffic model is carried out and shown in Fig. 5

and 6. Instead of considering full-buffer greedy transmitting sources, each user’s arrival traffic

is modeled as a Bernoulli process, i.e., the arrival process for user-n

αn = bnrc, ∀n (28)

where bn is i.i.d. Bernoulli distributed with expected mean values of pn, rc is a constant which

denotes approximately the service rate of each user, and rc = Ns
Nt

log(1+η ρ
Ns

) where η denotes the

approximate SNR loss coefficient introduced by interference. Therefore, based on this setting, the

mean values of bn can be regarded as the traffic intensity where pn = 0 denotes zero traffic, and

pn close to 1 denotes heavy traffic. The queuing dynamic is, with slightly abusing the notations,

qn(t+ 1) = qn(t)− µ̃n(t) + αn(t), (29)

where µ̃n(t) = min{qn(t), µn(t)} denotes the actual service rate taken into account of empty

queues. The throughput is calculated by averaging the sum actual service rate of each user µ̃n(t).
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Fig. 5. Sample paths of the system average throughput evaluations. The number of BS antennas is 64, the number of users is

40, the number of scheduled users and beams are both 20. η = 0.4.

Our proposed Lyapunov-drift based schemes, i.e., BCU-based and IGS, can be easily adapted

to this traffic model, by replacing the virtual queues in (11) with (29) and eliminating the

admission control step in P2. We assume the IA-BS scheme [21] schedules Ns users with the

Ns-largest queue lengths and selects beams accordingly, which is in line with the methodology

that upper layers, e.g., medium-access-control (MAC) layer, schedules some users and push the

bits to physical layer. In comparisons, the proposed schemes jointly considers user scheduling

with traffic demands and beam selection. One sample path of the system is depicted in Fig. 5,

where the left and right sub-figures denote relatively low and heavy traffic, respectively. The

system average throughput is stationary after about 100 time slots, which equals about 100 ms

given the LTE numerologies where one time slot (transmission-time-interval) is one subframe

(1 ms). With this convergence time, it is found that the proposed schemes can effectively converge

to a reasonably good solution before the statistical CSI varies (usually at a time scale of several

seconds). In Fig. 6, the average throughput is compared among different scheduling schemes

under different traffic intensities. It is observed that the proposed schemes outperform the IA-BS

scheme when the system is with high traffic load. Note that when the system is not fully loaded,

i.e., traffic intensity is lower than about 0.6, the average throughput equals the sum arrival rate

and thus the performance advantage of the proposed schemes have not emerged. It is shown that

joint considerations of user scheduling and beam selection leads to better system throughput.
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Fig. 6. The number of BS antennas is 64, the number of users is 40, the number of scheduled users and beams are both 20.

η = 0.4.

VII. CONCLUSIONS

In this paper, the BCU-based scheduling scheme and the IGS scheme are proposed to address

the join user scheduling and beam selection optimization problem in beam-based massive MIMO

systems based only on statistical CSI. The problem is formulated under the Lyapunov-drift

optimization framework. In order to solve the weighted rate maximization problem therein, the

proposed BCU-based scheme leverages the convex relaxation of the problem and adopts the BCU

technique with the iterative water-filling approach. It is proved that the BCU-based scheduling

scheme iteratively converges to the optimum of the relaxed problem. Due to its iterative algorithm

structure, relatively high complexity is required. Towards this end, the IGS algorithm is proposed

which is based on a greedy approach. Nevertheless, it is proved that the IGS scheme can achieve

performance within a multiplicative factor of (1−e−1) to the optimum. In simulations, it is shown

that the proposed schemes can achieve near-optimal performance and outperform the state-of-

the-art beam selection schemes, with utilities such as sum rate and proportional fairness. While

existing works focuses on the beam selection, which effectively strive to maximize the sum rate

performance, they are not optimized when the user scheduling and beam selection are jointly

considered especially when user fairness is taken into account. The performance bound we derive

for the IGS scheme is also shown to be well observed.
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APPENDIX A

PROOF OF THEOREM 1

We first briefly review the Lyapunov-drift approach, which is the main mathematical tool in

our proof. Define the Lyapunov function as

L(t) ,
1

2

∑
n

Q2
n(t), (30)

and the Lyapunov drift as

∆(t) , E[L(t+ 1)− L(t)|Q(t)]. (31)

Lemma 1: If there exist constants B and ε, which satisfy

∆(t) ≤ B − ε
∑
n

Qn(t), (32)

then we have:

1) If ε ≥ 0, then all queues are mean rate stable.

2) If ε > 0, then

lim sup
τ→∞

1

τ

τ∑
t=1

E

[∑
n

Qn(t)

]
≤ B

ε
, (33)

and hence all queues are strongly stable.

Proof: The proof of Lemma 1 follows the standard procedure as in [32].

Given the queuing dynamics (11) and based on the definition in (31), we have

∆(t) ≤ E

[
1

2

∑
n

(
Q2
n(t+ 1)−Q2

n(t)
)∣∣Q(t)

]

= E

[
1

2

∑
n

(
(Qn(t)− µ̃n(t) + an(t))2 −Q2

n(t)
)∣∣Q(t)

]

= E

[∑
n

(
1

2
µ̃2
n(t)− µ̃n(t)Qn(t) +

1

2
a2
n(t) +Qn(t)an(t)− an(t)µ̃n(t)

)∣∣∣∣Q(t)

]

≤ E

[∑
n

(
1

2
µ2
n(t)− µn(t)Qn(t) +

1

2
a2
n(t) +Qn(t)an(t)

)∣∣∣∣Q(t)

]

= E

[∑
n

µ2
n(t) + a2

n(t)

2

∣∣∣∣Q(t)

]
−
∑
n

Qn(t)E [µn(t)− an(t)|Q(t)] . (34)

Observing that

E

[∑
n

µ2
n(t) + a2

n(t)

2

∣∣∣∣Q(t)

]
≤ T 2

2

[
rn,max + A2

max

]
, B, (35)
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where rn,max = log (1 + ‖hn‖2P ) denotes the maximum transmission rate in one channel use

since rn,max is the channel capacity as if the user n was alone, it follows that

∆(t) ≤ B −
∑
n

Qn(t)E [µn(t)− an(t)|Q(t)] . (36)

Therefore, for any arrival rate inside the ergodic capacity region, since the scheduling problem

in P3 minimize the right-hand side of (36), the condition in Lemma 1 (32) is upheld with ε ≥ 0,

i.e., all queues are mean rate stable. In order to show the throughput-optimality in (18), subtract

a term related to the utility function,

∆(t)− V E [U(a(t))|Q(t)] ≤ B −
∑
n

Qn(t)E [µn(t)|Q(t)]︸ ︷︷ ︸
Scheduling

+ E

[∑
n

Qn(t)an(t)− V U(a(t))

∣∣∣∣∣Q(t)

]
︸ ︷︷ ︸

Admission control

, (37)

It is observed that the admission control and scheduling problems in P2 and P3 are equivalent

to minimize the related terms in (37) as labeled. Therefore, given the solution to P2 and P3, the

left-hand side of (37) is less than the term on the right-hand side with any queue-independent

scheduling and admission control. Concretely,

∆(t)− V E [U(a(t))|Q(t)] ≤ B −
∑
n

Qn(t)R̄n +
∑
n

Qn(t)zn − V U(z), (38)

where R̄n and zn denotes any queue-independent service rate and admission rate, respectively.

Taking expectations on both sides over Q(t), and taking the telescoping sum yields (assuming

Q(0) = 0 for better exposition),

1

τ

τ−1∑
t=0

E [Qn(t)] (R̄n − zn) ≤ B + V

(
U

(
1

τ

τ−1∑
t=0

E [a(t)]

)
− U(z)

)
(39)

Let z = R̄∗ which is the rate point in R that achieves the optimum utility function. Based on

the fact that all queues are mean rate stable as shown before, the left-hand side is non-negative,

it then follows that

U(R̄∗) ≤ U

(
1

τ

τ−1∑
t=0

E [a(t)]

)
+B/V

≤ U

(
1

τ

τ−1∑
t=0

E [R(t)]

)
+B/V (40)
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Let τ → ∞, take the lim sup and rearrange the terms yields the optimality condition in (18).

The inequality in (40) is based on the fact the queues are all mean rate stable the utility function

is non-decreasing. This completes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

Let qn = Qn(t) denote the virtual queue state at the scheduling time t, define

G(Q,H ,Σu,Σb,p)
∆
=

Nt∑
n=1

qnsn

T∑
t=1

Rn (H(t),Σu,Σb,p)

=
Nt∑
n=1

qπnsπn

T∑
t=1

log
det
(
I +

∑n
j=1 ΣbB

†
DFThπjh

†
πj
BDFTΣbpπjsπj

)
det
(
I +

∑n−1
j=1 ΣbB

†
DFThπjh

†
πjBDFTΣbpπjsπj

)
=

Nt∑
n=1

qπnsπn

T∑
t=1

log
(

1 + h†πnBDFTΣbA
−1ΣbB

†
DFThπnpπnsπn

)
=

Nt∑
n=1

qn

T∑
t=1

log
(

1 + h†nBDFTΣbA
−1ΣbB

†
DFThnpnsn

)
(41)

where

A = I + H̄[n−1]H̄
†
[n−1],

H̄[n−1] =
√
pπjsπjΣbB

†
DFT [h1, ...,hn−1] , (42)

and πi ∈ [1, ..., Nt] is a permutation of the user index which satisfies qπ1sπ1 ≥ ... ≥ qπNt
sπNt

representing the decoding order in the dual uplink multiple-access-channel [40]. The last equality

is based on the fact that

x log det(I +Ax) = log det(I +Ax), ∀x ∈ {0, 1}, (43)

and without loss of generality, we assume qi’s are arranged in non-increasing order. We invoke

[55, Theorem 1] which is stated at the end of the proof as Lemma 2 for reading convenience.
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Denote the channel correlation matrix for user-n as Rn, and it yields

G(Q,H ,Σu,Σb,p)

=
Nt∑
n=1

qn

T∑
t=1

log
(

1 + pnsntr
[
x†nR

1
2
nBDFTΣbA

−1ΣbB
†
DFTR

1
2
nxn

])
K→∞−−−→

Nt∑
n=1

qn

T∑
t=1

log
(

1 + pnsntr
[
ΣbB

†
DFTRnBDFTΣbA

−1
])

(44)

K→∞−−−→
Nt∑
n=1

qnT log

1 + pnsntr

ΣbB
†
DFTRnBDFTΣb

(
1

M

n−1∑
j=1

pjsjΣbB
†
DFTRjBDFTΣb

1 + en,j
+ I

)−1
 ,

(45)

where en,i is the unique solution of the following equations.

en,i = tr

ΣbB
†
DFTRiBDFTΣb

(
1

M

n−1∑
j=1

pjsjΣbB
†
DFTRjBDFTΣb

1 + en,j
+ I

)−1
 . (46)

The inequality (44) is based on [56, Lemma 14.2], and (45) is based on the following lemma.

Lemma 2: Let BN = X†NXN + SN with SN ∈ CN×N Hermitian nonnegative definite and

XN ∈ Cn×N random. The ith column xi of X†N is xi = R
1
2
i yi, where the entries of yi ∈ Cri

are i.i.d. of zero mean, variance 1/N and have eighth-order moment of order O
(

1
N4

)
. The

matrices Ri’s are channel correlation matrices for each user, and QN ∈ CN×N is deterministic.

Assume lim supN→∞ sup1≤i≤N ‖Ri‖ < ∞ and let QN have uniformly bounded spectral norm

(with respect to N ). Define

mBN ,QN
(z) =

1

N
trQN (BN − zIN)−1 . (47)

Then, for z ∈ C\R+, as n, N grow large with ratios βN,i = N/ri and β = N/n such that

0 < lim infN βN ≤ lim supN βN <∞ and 0 < lim infN βN,i ≤ lim supN βN,i <∞, we have that

mBN ,QN
(z)−mo

BN ,QN
(z)→ 0 (48)

almost surely, with mo
BN ,QN

(z) given by

mo
BN ,QN

(z) =
1

N
trQN

(
1

N

n∑
j=1

Rj

1 + eN,j(z)
+ SN − zIN

)−1

(49)

where the functions eN,j(z) form the unique solution of

eN,i(z) =
1

N
trRi

(
1

N

n∑
j=1

Rj

1 + eN,j(z)
+ SN − zIN

)−1

(50)
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APPENDIX C

PROOF OF THE CONVERGENCE OF THE BCU-BASED ALGORITHM

First, the proof of the iterative water filling approach in the user scheduling part is given.

Consider the user scheduling problem with beam selection fixed, i.e.,

P5: maximize
w

Nt∑
n=1

qn log (1 + fn(w)) (51)

s.t.,
Nt∑
n=1

wn ≤ P, (52)

Denote

fn(w) = fn(w1, w2, ..., wn) = wntr

ΣbB
†
DFTRnBDFTΣb

(
1

M

n−1∑
j=1

wjRj

1 + en,j
+ I

)−1
 . (53)

The key to the proof is to construct the equivalent optimization problem as stated below.

P6: maximize
w(m), 0≤m≤Nt−1

1

Nt

Nt−1∑
m=0

Nt∑
n=1

qn log (1 + fn(w1([m+ 1]Nt), w2([m+ 2]Nt), ..., wn([m+ n]Nt)))

(54)

s.t.,
Nt∑
n=1

wn(m) ≤ P, ∀m. (55)

The reason that P5 and P6 are equivalent is straightforward due to the Shur-concavity of the

objective function of P6 [57]. Therefore, the solution of P6 is obtained at the point which satisfies

w(m) = w, ∀m. (56)

Since P6 is concave in w(m), the BCU technique which cyclically optimizes w(m) with others

fixed is guaranteed to converge to the global optimum, which yields the same procedure as in

Algorithm 1 with some minor mathematical manipulations [58]. Therefore, we conclude that the

iterative water filling approach adopted in Algorithm 1 converges to the optimum in the user

scheduling step.

Next, it will be shown that the BCU technique which cyclically update user scheduling and

beam selection converges to the optimum. Based on [34], it is sufficient to check if the problem

satisfies the following two conditions:

• The objective function, denoted by φ(x), is continuously differentiable in some neighbor-

hood of every stationary point of φ(x).
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• For every k, 1 ≤ k ≤ n, φ(x) is a strictly concave function of xk, the other points xj ,

j 6= k, being arbitrarily chosen in their respective domains.

The above two conditions are easily met in this problem since D(Q,R1, ...,RNt , INt ,Σb,w)

is continuously differentiable in the whole domain and concave in Σb and w, respectively.

Therefore, the proposed BCU-based scheduling scheme is guaranteed to converge to the global

optimum.
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