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Abstract—Millimeter wave offers a sensible solution to the ca-
pacity crunch faced by 5G wireless communications. This paper
comprehensively studies physical layer security in a multi-input
single-output (MISO) millimeter wave system where multiple
single-antenna eavesdroppers are randomly located. Concerning
the specific propagation characteristics of millimeter wave, we
investigate two secure transmission schemes, namely maximum
ratio transmitting (MRT) beamforming and artificial noise (AN)
beamforming. Specifically, we first derive closed-form expressions
of the connection probability for both schemes. We then analyze
the secrecy outage probability (SOP) in both non-colluding
eavesdroppers and colluding eavesdroppers scenarios. Also, we
maximize the secrecy throughput under a SOP constraint, and
obtain optimal transmission parameters, especially the power
allocation between AN and the information signal for AN beam-
forming. Numerical results are provided to verify our theoretical
analysis. We observe that the density of eavesdroppers, the
spatially resolvable paths of the destination and eavesdroppers all
contribute to the secrecy performance and the parameter design
of millimeter wave systems.

Index Terms—Physical layer security, millimeter wave, multi-
path, stochastic geometry, artificial noise, secrecy outage, secrecy
throughput.

I. INTRODUCTION

Driven by an increasing number of smart devices and

wireless data applications, an explosive growth of demand

for spectrum in wireless communications appears during the

past years. Exploiting millimeter wave becomes a promising

approach for providing plentiful spectrum resources to im-

prove the system capacity [1], [2]. Following this trend, the

study on millimeter wave communications has attracted great

research affords. Millimeter wave channel modeling [3], [4],

beamforming schemes [5]-[9] and network performance [10],

[11] have been investigated intensively in the past few years.

It becomes a promising candidate for the 5G cellular system.

Given the open feature of the wireless channels, security

is a significant concern when designing wireless transmission

schemes. Physical layer security has become a popular way to

improve the secrecy performance of wireless communication

systems by utilizing wireless channel characteristics [12]-[14].

Thanks to the application of multi-antenna techniques, physi-

cal layer security is greatly enhanced in [15], [16]. With mul-
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tiple antennas, the transmitter can use transmit beamforming

either to enhance the legitimate user’s channel, i.e., maximum

ratio transmitting (MRT) beamforming [17], or to deteriorate

eavesdroppers’ channels by emitting artificial noise (AN), i.e.,

AN beamforming [18], [19]. Also, transmit antenna selection

technique can be exploited as an effective approach to improve

the quality of the legitimate user’s channel [20]. When de-

signing secure transmission schemes, reducing secrecy outage

probability (SOP) [17], [20] and increasing secrecy throughput

[19] are two significant goals.

In wiretap scenarios, eavesdroppers are always passive and

their locations are hard to acquire in practice. To model

the unknown locations of potential eavesdroppers, stochastic

geometry theory has provided a powerful tool recently, with

which eavesdroppers’ positions can be represented by a spatial

distribution such as a Poisson point process (PPP) [21]-[23].

This makes the secure transmission scheme design and secrecy

performance evaluation possible in the wireless systems with

potentially unknown eavesdroppers.

We should point out that, the wireless channel significantly

influences the design and analysis of physical layer secu-

rity, and the millimeter wave channel is truly different from

the traditional microwave channel which has rich scattering.

Based on the measurements conducted in New York City, the

ray cluster channel model, constituted by several clusters of

propagation paths, is built for millimeter wave systems [4].

This model is further adopted in [5]-[8] to design and analyze

millimeter wave beamforming schemes. Therefore, the major

concern for the implementation of physical layer security

in millimeter wave communication systems is the specific

propagation characteristics of millimeter wave, which can be

described as follows. Firstly, due to the sparse multipaths and

scattering of the millimeter wave propagation environment,

traditional statistically independent fading distributions are no

longer suitable to model the millimeter wave channel. Chan-

nels in the millimeter wave band are correlated fading rather

than independent and identically distributed (i.i.d.) Rayleigh.

Secondly, the small carrier wavelength of millimeter wave

enables the realization of large antenna arrays, which can pro-

duce extremely high beamforming gain and directionality [24].

This helps to improve the secrecy performance of millimeter

wave transmission [25].

Driven by the new propagation features, studies on secure

transmissions in millimeter wave systems spring up, both in

point-to-point transmissions [26]-[32] and networks [33]-[35].

Specifically, for the point-to-point millimeter wave systems,

switched array techniques are utilized in [26], [27], where

http://arxiv.org/abs/1801.09391v1


2

a subset of transmit antennas are randomly selected to emit

signals with every symbol period. This results in a clear con-

stellation in the legitimate user’s direction and a high symbol

error rate in undesired directions. This method that needs only

a single RF chain is easy to implement in millimeter wave

systems. However, the switching speed to be matched at per-

symbol rate leads to a huge system overhead, and the antenna

sparsity caused by switching makes the secure transmission

vulnerable to attacking [36]. Hybrid beamforming design for

millimeter wave systems to resist eavesdropping is studied

in [28], [29]. Furthermore, in our previous work [30]-[32],

we design beamforming schemes and analyze secrecy perfor-

mance for the millimeter wave system which contains only

one eavesdropper. For the scope of millimeter wave networks,

the authors in [33]-[35] analyze the secrecy performance of

cellular or Ad hoc networks under the stochastic geometry

framework. Both the noise-limited and AN-assisted cellular

networks are considered in [33]. The tradeoff between the

connection outage probability and secrecy outage probability

is investigated for a microwave and millimeter wave hybrid

cellular network in [34]. The impact of random blockages

and antenna gain on the secrecy performance of Ad hoc

networks is analyzed in [35]. These three works focus on the

network-wide performance analysis, and the beam pattern is

approximated by a sectored antenna model for mathematical

tractability.

In all the aforementioned studies, they either do not con-

sider multipath transmission, or do not investigate the effect

of multiple randomly distributed eavesdroppers. To the best

of our knowledge, no previous work has provided secure

transmission schemes and comprehensive secrecy performance

analysis under a more practical ray cluster channel model

that characterizes multipath propagation for a millimeter wave

system with the stochastic geometry framework. So far, how

to safeguard the point-to-point millimeter wave system against

randomly located eavesdroppers under a more practical mil-

limeter wave channel model is still unknown, which motivates

our work.

A. Our Work and Contributions

In this paper, we study physical layer security in a multi-

input single-output (MISO) millimeter wave system con-

sidering multipath propagation under a stochastic geometry

framework, where the locations of multiple single-antenna

eavesdroppers are modeled as a homogeneous PPP. Connec-

tion probability, SOP and secrecy throughput are studied to

evaluate the secrecy performance of the transmission schemes.

Our contributions are summarized as follows:

1) In the presence of multiple randomly located eavesdrop-

pers, we investigate two transmission schemes, namely MRT

beamforming and AN beamforming, under the discrete angular

domain channel model which characterized by multiple spa-

tially resolvable paths. We obtain the probability distribution

function (PDF) for the number of overlapped common channel

paths between the destination and an arbitrary eavesdropper to

facilitate the secrecy performance analysis.

2) We derive the closed-form connection probability for

both transmission schemes and evaluate the impact of the

number of destination’s resolvable paths on the connection.

Then we obtain the closed-form expressions of SOP for the

non-colluding eavesdroppers scenario and the accurate ap-

proximation of SOP for the colluding eavesdroppers scenario.

In addition, we maximize the secrecy throughput for both

schemes, and derive the optimal power allocation between AN

and the information signal for the AN scheme. we observe

that more power should be allocated to AN in the dense

eavesdroppers scenario or in the situation where the number of

the destination’s resolvable paths or that of the eavesdropper’s

resolvable paths is large.

3) We reveal that AN beamforming has a better secrecy

performance than MRT beamforming when the number of the

eavesdropper’s resolvable paths is large, the density of eaves-

droppers is large or the transmit power is high. Otherwise,

MRT beamforming as a simple method shows its superiority.

Furthermore, we find that the decrease of the number of the

destination’s resolvable paths is beneficial for improving the

secrecy performance in both beamforming schemes, while the

impact of the number of the eavesdropper’s resolvable paths

on the secrecy throughput are different between two schemes.

B. Organization and Notations

This paper is organized as follows. In Section II, we build

the channel model, analyze spatially resolvable paths, and

describe performance metrics. In Section III, we propose two

secure transmission schemes against randomly located eaves-

droppers. In Sections IV and V, we analyze the connection

probability, the SOP and the secrecy throughput for both

schemes. In Section VI, we provide numerical results to verify

our theoretical analysis. In Section VII, we conclude our paper.

We use the following notations in this paper: bold upper-

case (lowercase) letters denote matrices (vectors). (·)∗, (·)T ,

(·)H , | · |, ‖ · ‖, P{·} and EA{·} denote conjugate, trans-

pose, conjugate transpose, absolute value, Euclidean norm,

probability, and mathematical expectation with respect to A,

respectively. CN (µ, σ2), Exp(λ) and Gamma(N, λ) denote

circularly symmetric complex Gaussian distribution with mean

µ and variance σ2, exponential distribution with parameter λ,

and gamma distribution with parameters N and λ, respectively.

CM×N denotes the space of all M×N matrices with complex-

valued elements. Z+ denotes positive integer domain. log(·),
lg(·) and ln(·) denote base-2, base-10 and natural logarithms,

respectively. fu(·), Fu(·) and F−1
u (·) denote the PDF, cumu-

lative distribution function (CDF) of u and inverse function

of Fu(·), respectively. The intersection, union and difference

between two sets Ω1 and Ω2 are denoted by Ω1∩Ω2, Ω1∪Ω2

and Ω1\Ω2, respectively. Ei(−x) =
∫∞
x

e−t

t dt with x > 0.

II. SYSTEM MODEL

We consider a millimeter wave system where a transmit-

ter communicates with a destination while randomly located

eavesdroppers attempt to intercept the information. The trans-

mitter is equipped with Nt antennas, the destination and
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eavesdroppers are all equipped with single antenna1. Without

loss of generality, we assume the transmitter is located at the

origin and the destination is located at coordinate (rd, 0). As

shown in Fig. 1(a), eavesdroppers are located according to a

homogeneous PPP Φe of density λ on the 2-D plane with the

kth eavesdropper having a distance rk from the transmitter.

A. Discrete Angular Domain Channel Model

Due to the sparse characteristics of the millimeter wave

propagation environment, millimeter wave channels can be

described by a ray cluster based spatial channel model [4]-

[8]. The channel is assumed to be a sum of the contributions

of Nc clusters with Nr paths in each cluster and can be

formulated as h =
√

β
NcNr

∑

lc

∑

lr
glc,lra(Θlc,lr)

H , where

β is the average path loss between the transmitter and the

receiver, glc,lr is the complex gain of the lthr path in the

lthc cluster, a(Θlc,lr ) is the normalized array response at the

azimuth angle of departure (AOD) of θlc,lr , and Θlc,lr ,
sin(θlc,lr ). When a uniform linear array (ULA) is adopted,

the normalized array response can be described as a(Θ) =
1√
Nt

[

1, e−j 2πd
λ

Θ, e−j2 2πd
λ

Θ, · · · , e−j(Nt−1) 2πd
λ

Θ
]T

, where d

is the antenna spacing, λ is the wavelength, and generally

d = λ
2 .

Based on the ray cluster model, in order to conduct the

theoretical analysis of the transmission schemes, the millimeter

wave channel is modeled as a discrete angular domain channel

model in existing literature [3], [37], [38] and our previous

work [30], which can be described as

h =

√

1

L
r−

α
2 gUH , (1)

where g = [g1, g2, · · · , gNt] is the complex gain vector, r−
α
2

is the average path loss, r is the distance between the trans-

mitter and the receiver, U , [a(Ψ1), a(Ψ2), · · · , a(ΨNt)] is

the spatially orthogonal basis with Ψi , 1
M (i−1− Nt−1

2 ) and

M = Nt
d
λ . This model is based on the principle that every

aperture-limited system has a finite angular resolution [37].

Since paths with Θ differing by less than 1
M are not resolvable

by the array, the angular domain can be sampled at a fixed

spacing 1
M and represented by the spatially orthogonal basis

U. Experimental results in [4], [39] show that the millimeter

wave channel most likely contains only one cluster where the

overwhelming proportion of transmit power is concentrated

on. Therefore, we assume that signals are transmitted through

one cluster and all the AODs of paths are distributed within the

angular range [θmin, θmax]. If Ψi ∈ [sin(θmin), sin(θmax)], the

ith column of U (the ith orthogonal basis vector) represents a

spatially resolvable path and we assume that the ith complex

gain gi is a complex Gaussian coefficient with gi ∼ CN (0, 1);
otherwise, gi = 0 [4], [24], [30]. L is defined as the number

of spatially resolvable paths with L < Nt. Then the channels

of the destination and the kth eavesdropper can be described

1This assumption is used for tractability. In practice, multiple receive
antennas are equipped and they will form a receive beam, which is equivalent
to a directional single antenna. This will not influence the analysis performed
in this paper. Similar assumption has also been adopted by [5], [26], [27],
[29]-[34], etc.
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Fig. 1. Millimeter wave system model with stochastic geometry framework.

as hd =
√

1
Ld

r
−α

2

d gdU
H and hk =

√

1
Le

r
−α

2

k gkU
H , where

Ld and Le are the numbers of the destination’s and each

eavesdropper’s resolvable paths, respectively.

We assume the AODs of all the destination’s paths and

those of the kth eavesdropper’s paths are distributed within

the angular range [θd,min, θd,max] and [θk,min, θk,max] respec-

tively. As shown in Fig. 1(b), we define the set Ωd ,
{Id,i|Id,i ∈ Z+,ΨId,i ∈ [sin(θd,min), sin(θd,max)], Id,1 <
Id,2 < · · · < Id,Ld

}, where Id,i is an index of the orthog-

onal basis vector which represents a destination’s spatially

resolvable path. Define the set Ωk , {Ik,i|Ik,i ∈ Z+,ΨIk,i
∈

[sin(θk,min), sin(θk,max)], Ik,1 < Ik,2 < · · · < Ik,Le
}, where

Ik,i is an index of the orthogonal basis vector which rep-

resents a resolvable path of the kth eavesdropper. Define

Ω = {1, 2, · · · , Nt}, Ωa , Ωd = Ω\Ωd, Ωc,k , Ωd ∩ Ωk

and Ωp,k , Ωd\Ωc,k, Ωn,k , Ωk\Ωc,k. Also, we denote Lc,k

as the number of the overlapped common paths between the

destination and the kth eavesdropper. For notational brevity,

we omit k from Lc,k, Ωc,k, Ωp,k and Ωn,k, and treat Lc,

Ωc, Ωp and Ωn as functions of k by default. We define the

function S(B,Ωs) to generate a matrix whose columns are

selected from B, and Ωs contains all the selected columns’

indexes. Define g̺ν , S(g̺,Ων) ∈ C1×Lν , where ̺ ∈ {d, k},

ν ∈ {c, p, n, a}, and Lν is the cardinality of Ων .

We assume that the instantaneous channel state information
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(CSI) of the destination is perfectly known at the transmitter

[18], [19]. Since eavesdroppers passively receive signals, their

instantaneous CSIs are unknown, whereas the distribution of

gk is available.

B. Spatially Resolvable Paths

Unlike the traditional wireless channels with rich scatter-

ing, the millimeter wave channel involves a limited angular

coverage which is represented by the directions of propa-

gation paths. As we have demonstrated in [30], the secrecy

performance of the millimeter wave system is dramatically

influenced by Lc, which is the number of the overlapped

common paths between the eavesdropper’s and the destina-

tion’s spatially resolvable paths. When Lc becomes larger, the

correlation between the channel of the destination and that

of the eavesdropper is larger. More confidential information is

leaked to the eavesdropper so that the secrecy performance will

be poorer. However, under the stochastic geometry framework,

it is hard to get the exact value of Lc due to the randomness of

eavesdroppers’ locations and the lack of eavesdroppers’ CSIs.

Fortunately, we derive the PDF of Lc in the following lemma,

which will be extensively used in subsequent sections.

Lemma 1: The PDF of Lc can be given by

p(Lc) =



































∑Lu

i=Ll
ωi

π
, Lc = Ll,

2ωLc

π
, Lc = 1, 2, · · · , Ll − 1,

1−
Ll
∑

i=1

p(i), Lc = 0,

(2)

where ωi , arcsin
(

ΨNt−Ld
2 +i+1

)

− arcsin
(

ΨNt−Ld
2 +i

)

,

Ll , min{Ld, Le} and Lu , max{Ld, Le}.

Proof 1: Eavesdroppers are located according to a homoge-

neous PPP so that the angles of eavesdroppers’ locations are

uniformly distributed within the range [−π
2 ,

π
2 ]. In order to get

the probability of Lc = m, m ∈ {0, 1, · · · ,min{Ld, Le}}, we

need to know the angular range Υm which satisfies that, the

destination and the kth eavesdropper will have m overlapped

common resolvable paths when the kth eavesdropper is lo-

cated in Υm. In other words, [θk,min, θk,max] should cover m
destination’s spatially resolvable paths, where [θk,min, θk,max]
is the angular range where AODs of the kth eavesdropper’

paths are distributed in as discussed in the last subsection.

Then we can obtain the probability p(m) = W(Υm)
π , where

W(·) denotes the width of an angular range. With this idea in

mind, we move the kth eavesdropper to find out the angular

range Υm as shown in Fig. 2.

Since the destination is located at (rd, 0) and with Ld

resolvable paths, we have Ωd = {Nt−Ld

2 + 1, Nt−Ld

2 +
2, · · · , Nt+Ld

2 − 1, Nt+Ld

2 } where Ωd,i =
Nt−Ld

2 + i. Define

the angular range ∆i ,
[

arcsin
(

ΨNt−Ld
2 +i

)

, arcsin
(

ΨNt−Ld
2 +i+1

)]

, and the width

ωi , W(∆i) = arcsin
(

ΨNt−Ld
2 +i+1

)

−arcsin
(

ΨNt−Ld
2 +i

)

.

We find that ∆i describes the angular range between the ith

and the (i + 1)th spatially resolvable paths of the destination

1D
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1dL -
D
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Transmitter Destination
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(a) Lc = 1

Transmitter
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1
e
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D
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D
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(b) Lc = Le(Ld = 5, Le = 3)
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D

,minkq

Transmitter
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D

DestinationD

EavesdropperE
thk

,maxkq

(c) Lc = Ld(Ld = 5, Le = 6)

Fig. 2. Distribution for the number of the overlapped common paths between
the destination and the kth eavesdropper. The pink area shows the angular
range [θd,min, θd,max] where AODs of the destination’s paths are distributed
in, and the green area shows the angular range [θk,min, θk,max] where AODs

of the kth eavesdropper’s paths are distributed in. Red solid lines are the
spatially resolvable paths of the destination. Each red dashed line represents
an angle in U but not the spatially resolvable path of the destination. (a)
describes the situation that Lc = 1, which is similar as all the situations when
Lc < Ll. (b) and (c) describe the situation that Lc = Ll with Ld > Le and
Ld < Le respectively.
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when 1 ≤ i ≤ Ld − 1. Due to the symmetry of the sine

function and the definition of Ψi, we have ωi = ωLd−i.

As shown in Fig. 2(a), if θk,max is located within ∆1 or

θk,min is located within ∆Ld−1, we have Lc = 1. Thus we

derive the PDF of Lc = 1, which is p(1) =
ω1+ω(Ld−1)

π = 2ω1

π .

Then we analyze two different cases Ld ≥ Le and Ld < Le.

1) Ld ≥ Le

In this case, 0 ≤ Lc ≤ Le. From the analysis of Lc = 1
given above, we derive the PDFs p(Lc) =

2ωLc

π , Lc =
1, 2, · · · , Le − 1 by analogy. The situation when Lc = Le is

special. As shown in Fig. 2(b), when θk,max ∈ ∆Le
∪∆Le+1∪

· · · ∪∆Ld
, Lc = Le, hence we have p(Lc) =

∑Ld
i=Le

ωi

π .

2) Ld < Le

In this case, 0 ≤ Lc ≤ Ld, and we derive the PDFs p(Lc) =
2ωLc

π , Lc = 1, 2, · · · , Ld − 1. As shown in Fig. 2(c), when

θk,max ∈ ∆Ld
∪∆Ld+1 ∪ · · · ∪∆Le

, Lc = Ld, hence we have

p(Lc) =
∑Le

i=Ld
ωi

π .

Combining the above two cases completes the proof.

C. Wiretap Encoding Scheme and Performance Metrics

We consider both non-colluding eavesdroppers and collud-

ing eavesdroppers scenarios. In non-colluding eavesdroppers

scenario, each eavesdropper individually decodes confidential

messages and the equivalent signal-to-interference-plus-noise

ratio (SINR) of the wiretap channel can be expressed as

ξe = maxek∈Φe
ξk, where ξk is the received SINR of the

kth eavesdropper. In colluding eavesdropper scenario, eaves-

droppers jointly decode confidential messages with maximum

ratio combining reception and ξe =
∑

ek∈Φe
ξk. Then the

capacities of the destination’s channel and the wiretap channel

are Cd = log(1 + ξd) and Ce = log(1 + ξe). Adopting the

well-known Wyner’s wiretap encoding scheme, we denote the

codeword rate and secrecy rate as Rt and Rs. In addition,

we define Re , Rt −Rs as the rate redundancy to resist the

interception. We analyze the following metrics to evaluate the

secrecy performance of transmission schemes.

Connection probability: Only if Cd > Rt, the destination

is able to decode the confidential message correctly. This cor-

responds to a reliable connection event. We define connection

probability as

Pc = P{Cd > Rt}. (3)

Secrecy outage probability: If Ce > Re, perfect secrecy

is broken and a secrecy outage occurs. We adopt an on-off

transmission scheme proposed in [19], where the transmitter

decides whether to transmit or not based on the instantaneous

CSI of the destination. Throughout the paper, for notational

brevity, we define µ , ‖gd‖2 as the overall channel gain

of the destination and δ as the transmission threshold. Since

the channel gain µ varies from time to time, the transmitter

emits signals only when µ > δ; otherwise, the transmission

suspends. The SOP is defined as

Pso = P{Ce > Rt −Rs|µ}, ∀µ > δ. (4)

Secrecy throughput: Secrecy throughput is defined as the

effective average transmission rate of the confidential message,

which is formulated as

τ = Eµ [Rs(µ)] , (5)

where Rs(µ) = 0 for µ ≤ δ.

III. TRANSMISSION SCHEMES

In this section, we propose two transmission schemes,

namely MRT beamforming and AN beamforming, to resist

overhearing of multiple randomly located eavesdroppers.

A. MRT Beamforming

By exploiting MRT beamforming, the signals received

at the destination and the kth eavesdropper are yMRT
d =√

Phdw1s + nd and yMRT
k =

√
Phkw1s + nk, where

w1 = hH
d /‖hd‖ is the beamforming vector, P is the total

transmit power, s is the information bearing signal with

E[|s|2] = 1, nd and nk are i.i.d. additive white Gaussian

noise with nd ∼ CN (0, σ2
n) and nk ∼ CN (0, σ2

n). We define

µc,k , ‖gdc‖2 and µp,k , ‖gdp‖2 as the destination’s channel

gain of the common paths and the non-common paths with the

kth eavesdropper. For notational brevity, we omit k from µc,k

and µp,k, and treat them as functions of k by default. We easily

find that µ = µc + µp. Then the SNRs of the destination and

the kth eavesdropper can be respectively described as

ξMRT
d =

Pr−α
d

σ2
nLd

‖gdU
H‖2 = cµr−α

d , (6)

ξMRT
k =

Pr−α
k |gkU

HUgH
d |2

σ2
nLe‖gdUH‖2 =

aµcr
−α
k |gkc

g
H
dc

‖gdc‖ |
2

µ
. (7)

where a , P
Leσ2

n
and c , P

Ldσ2
n

. We find that gk,ig
∗
d,i 6= 0 only

if i ∈ Ωd ∩ Ωk, i.e., i ∈ Ωc. Thus we have gkg
H
d = gkcg

H
dc.

B. AN Beamforming

Based on the CSI of the destination, we design the AN

beamforming matrix as W2 = S(U,Ωa) to transmit AN to

the null space of the destination’s channel. Since Ωa = Ω\Ωd,

we have hdW2 = 0, hence the destination is not influ-

enced by AN. We observe that by leveraging the specific

propagation characteristics of millimeter wave, we form the

null space only through selecting some columns from U,

which is really simple to operate. Then signals received by

the destination and the kth eavesdropper can be described as

yAN
d =

√
ηPhdw1s +

√

(1−η)P
Nt−Ld

hdW2z + nd and yAN
k =

√
ηPhkw1s+

√

(1−η)P
Nt−Ld

hkW2z+nk, where z ∈ C
(Nt−Ld)×1

is the AN bearing signal with E[zzH ] = INt−Ld
, η is the

power allocation ratio of the information signal power to

the total transmit power with 0 ≤ η ≤ 1. When η = 1,

AN beamforming is equavalent to MRT beamforming where

information signal is transmitted with full power. The SINRs
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of the destination and the kth eavesdropper can be respectively

formulated as

ξAN
d =

ηPr−α
d

σ2
nLd

‖gdU
H‖2 = ηcµr−α

d , (8)

ξAN
k =

ηPr−α
k

Leµ
|gkU

HUgH
d |2

(1−η)Pr−α
k

(Nt−Ld)Le
‖gkUHW2‖2 + σ2

n

=

ηaµcr
−α
k

µ |gkc
g
H
dc

‖gdc‖ |
2

(1−η)ar−α
k

(Nt−Ld)
‖gkn‖2 + 1

. (9)

By denoting gkU
HW2 =

[

χ1, χ2, · · · , χ(Nt−Ld)

]

, we have

χj =
∑Nt

i=1 gk,ia(Ψi)
Hw2,j . Since W2 = S(U,Ωa) and U

is a unitary matrix, we get gkU
HW2 = gka. Since Ωn =

Ωk\Ωc, by getting rid of those zero elements in gka, we have

‖gka‖ = ‖gkn‖.

IV. SECRECY PERFORMANCE OF MRT BEAMFORMING

In this section, we analyze the secrecy performance in

terms of the connection probability, the SOP and the secrecy

throughput for MRT beamforming.

A. Connection Probability

Since µ ∼ Gamma(Ld, 1), connection probability of MRT

beamforming defined in (3) can be described as

Pc = P{Cd > Rt} = P{ξMRT
d > 2Rt − 1}

=
1

Γ(Ld)
Γ

(

Ld,
(2Rt − 1)rαd

c

)

,
(10)

where Γ(·) is the gamma function, and Γ(·, ·) denotes the

upper incomplete gamma function with Γ(n, x) = (n −
1)! e−x

∑n−1
m=0

xm

m! .

B. Secrecy Outage Performance

1) Non-Colluding Eavesdroppers: We first derive the CDF

of ξMRT
k in (7). Define u ,

∣

∣

∣
gkc

g
H
dc

‖gdc‖

∣

∣

∣

2

, Since each element

of gkc follows a Gaussian distribution with zero mean and unit

variance, which is independent of the unit-norm vector
g
H
dc

‖gdc‖ ,

we have u ∼ Exp(1). The CDF of ξMRT
k is given by

Fξk(x) = P

{

aµcr
−α
k

µ
u < x

}

= 1− e−
µxrα

k
aµc . (11)

From the definition of µc, we find that µc ∼
Gamma(Lc, 1). Then the CDF of ξe can be calculated as

Fξe(x) = P

{

max
ek∈Φe

ξk < x

}

= EΦe,{µc}

[

∏

ek∈Φe

P {ξk < x}
]

(a)
= exp

{

−λ

∫ ∞

0

∫ 2π

0

Eµc

{

e−
µxrα

k
aµc

}

rkdθdrk

}

= exp

{

−πλΓ

(

2

α
+ 1

)

(µx

a

)− 2
α

Ll
∑

Lc=1

p(Lc)

×Eµc

{

(

1

µc

)− 2
α

}}

= exp

{

−πλΓ

(

2

α
+ 1

)

(µx

a

)− 2
α

Ll
∑

Lc=1

p(Lc)
Γ(Lc +

2
α )

Γ(Lc)

}

,

(12)

where (a) holds for the probability generating functional

lemma (PGFL) over PPP [41]. We need to mention that

when Lc = 0, gkc and gH
dc in (7) both equal to 0, hence

we have ξk = 0 and P{ξk < x} = 1. Since the formula
∏

ek∈Φe

P{ξk < x} is a multiplication operation, the case Lc = 0

does not contribute to Fξe . Therefore, we only consider Lc

from 1 to Ll.

With the CDF of ξe, we obtain the SOP defined in (4) as

Pso(µ) = P{Ce > Cd −Rs|µ}

= P

{

ξMRT
e >

ξMRT
d − (T − 1)

T

}

= 1− exp

{

−πλΓ

(

2

α
+ 1

)(

µ[cµr−α
d − (T − 1)]

aT

)− 2
α

×
Ll
∑

Lc=1

p(Lc)
Γ(Lc +

2
α )

Γ(Lc)

}

.

(13)

where T , 2Rs .

2) Colluding Eavesdroppers: In this scenario,

secrecy outage probability can be written by

Pso(µ) = P

{

a
µ

∑

ek∈Φe
µcur

−α
k >

cµr−α
d

−(T−1)

T

}

=

P

{

Ie >
µ[cµr−α

d
−(T−1)]

aT

}

, where Ie ,
∑

ek∈Φe
µcur

−α
k . We

first calculate the Laplace transform of Ie by

LIe(s) = EΦe,u,µc

[

e
−s

∑
ek∈Φe

µcur
−α
k

]

= EΦe

{

∏

ek∈Φe

Eu,µc

[

exp
(

−sµcur
−α
k

)]

}

(b)
= exp

{

−λ

Ll
∑

Lc=1

2πp(Lc)Eu,µc

×
[
∫ ∞

0

[

1− exp
(

−sµcur
−α
k

)]

rkdrk

]}

= exp

{

−πλ

Ll
∑

Lc=1

p(Lc)s
2
αΓ(1− 2

α
)Eu

(

u
2
α

)

Eµc

(

µ
2
α
c

)

}

= exp

{

−πλs
2
αΓ(1− 2

α
)Γ(1 +

2

α
)

Ll
∑

Lc=1

p(Lc)
Γ(Lc +

2
α )

Γ(Lc)

}

,

(14)

where (b) holds for PGFL over PPP.

After deriving LIe(s), we can obtain the CDF of Ie through

inverse Laplace transform, and then get the SOP. However,

inverse Laplace transform causes considerable calculation

complexity and induces analysis intractable. Therefore, we

provide an approximation of Pso in the following theorem.

Theorem 1: The SOP in the scenario of colluding eaves-

droppers for MRT beamforming can be approximated as

Pso '
N
∑

n=0

(

N

n

)

(−1)nLIe

(

qaTn

µ[cµr−α
d − (T − 1)]

)

, (15)
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Fig. 3. SOP versus Rs for different N ’s, with Nt = 100, P = 0dBm,
rd = 50m, Ld = 20, Le = 20, α = 4 and λ = 10−5.

where LIe(s) is given by (14), q , N(N !)−
1
N and N is

defined as the number of terms used in approximation.

Proof 2: Defining ι as a normalized gamma random variable

with the shape parameter N , we have

Pso(µ) = P

{

aT Ie

µ[cµr−α
d − (T − 1)]

> 1

}

(c)≈ P

{

aT Ie

µ[cµr−α
d − (T − 1)]

> ι

}

(d)

'
{

1− exp

[

− qaT Ie

µ[cµr−α
d − (T − 1)]

]}N

,

(16)

where (c) holds for the fact that a normalized gamma random

variable converges to identity when its shape parameter goes

to infinity, and (d) follows the CDF bound of a normalized

gamma random variable [10], [33]. By using binomial expan-

sion, we obtain the tight lower bound of Pso given in (15).

As shown in Fig. 3, Pso given in Theorem 1 is more similar

to the simulation results when N becomes larger, and we get

a good approximation when N increases to 5. Thus we use

N = 5 in the following numerical analysis. In addition, we

find that Pso increases when Rs increases. The underlying

reason is that when we set a higher Rs, the rate redundancy

Re = Rt −Rs which is utilized to against the eavesdropping

becomes lower and the secrecy outage requirement Ce > Re

is easier to meet.

C. Secrecy Throughput Maximization

In this subsection, we maximize the secrecy throughput

subject to a tolerable SOP constraint in the non-colluding

eavesdroppers scenario. We first maximize Rs(µ) and formu-

late the optimization problem as

max
Rt,δ

Rs(µ),

s.t. 0 < Rs(µ) < Rt ≤ Cd, (17a)

Pso(µ) ≤ ǫ, (17b)

where ǫ ∈ [0, 1] is the SOP threshold. Following the def-

inition formula of the SOP in (4), the SOP constraint can

be rewritten as Pso(µ) = 1 − Fξe(2
Rt−Rs − 1) ≤ ǫ. Since

Fξe(x) is a monotonically increasing function, we obtain

Rs ≤ Rt − log(1 + F−1
ξe

(1 − ǫ)), where F−1
ξe

(·) denotes the

inverse function of Fξe(·). As Rt should not exceed Cd, we

set Rt equal to Cd to achieve a maximum Rs, which is

R∗
s(µ) = [Cd − log(1 + F−1

ξe
(1− ǫ))]+. (18)

From (12), by denoting ρ , F−1
ξe

(1 − ǫ), we have ρ = a̟
µ

with ̟ ,
[

−πλΓ( 2
α
+1)

ln(1−ǫ)

∑Ll

Lc=1 p(Lc)
Γ(Lc+

2
α
)

Γ(Lc)

]
α
2

. In addi-

tion, in order to obtain a positive R∗
s , Cd > log(1+ ρ) should

be satisfied. Since Cd = log(1+cµr−α
d ), the maximum Rs(µ)

of MRT beamforming can be given by

R∗
s(µ) = log

1 + cµr−α
d

1 + ρ
, (19)

with the transmission constraint µ > δ =
√

z1rαd
c , where z1 ,

̟a = ρµ, and δ is the transmission threshold. According to

the on-off transmission scheme, the transmitter radiates signals

with R∗
s(µ) only when µ > δ; otherwise, the transmitter keeps

silence and we set Rs(µ) = 0. After obtaining R∗
s(µ), we

calculate the maximum secrecy throughput according to (5).

Theorem 2: The maximum secrecy throughput of MRT

beamforming can be given by

τ∗ =

Ld−1
∑

m=0

e−δδLd−1−m

Γ(Ld −m)

[

V

(

1

δ

)

+ V

(

cr−α
d

1 + cr−α
d δ

)

−V

(

1

δ + z1

)

+ log
δ(1 + cr−α

d δ)

δ + z1

]

,

(20)

where V (x) = 1
ln 2

∑m
n=1

1
(m−n)! [

(−1)m−n−1

xm−n e
1
x Ei(− 1

x ) +
∑m−n

k=1 (k − 1)!(− 1
x)

m−n−k].
Proof 3: Please see Appendix A.

Corollary 1: τ∗ monotonically decreases with rd and λ,

while monotonically increases with ǫ.
Proof 4: From τ∗ =

∫∞
δ R∗

s(x)fµ(x)dx =
∫∞
δ log

1+cxr−α
d

1+
z1
x

fµ(x)dx, we have ∂τ∗

∂δ < 0, ∂τ∗

∂z1
< 0

and ∂τ∗

∂rd
< 0, hence we derive dτ∗

dz1
= ∂τ∗

∂δ
dδ
dz1

+ ∂τ∗

∂z1
< 0.

Therefore, we obtain dτ∗

dλ = dτ∗

dz1
dz1
dλ < 0, dτ∗

dǫ = dτ∗

dz1
dz1
dǫ > 0

and dτ∗

drd
= ∂τ∗

∂δ
dδ
drd

+ ∂τ∗

∂rd
< 0.

Corollary 1 implies that MRT beamforming achieves higher

secrecy throughput in a sparser eavesdroppers scenario, under

a more moderate SOP constraint, or when the distance between

the destination and the transmitter is smaller.

Corollary 2: At the high transmit power regime, i.e., P →
∞, The maximum secrecy throughput of MRT beamforming

is given in (21), and is independent of P .

τ∗ =

Ld−1
∑

m=0

e−δδLd−1−m

Γ(Ld −m)
V

(

1

δ

)

. (21)

Proof 5: When P → ∞, we have a → ∞ and c → ∞.

Following (19), lim
P→∞

R∗
s(µ) = log

cµ2r−α
d

a̟ = log
µ2Ler

−α
d

Ld̟
.

By exploiting the same integration method as Theorem 2,

we derive the result given in (21). Since δ =
√

̟Ldrαd
Le

is

independent of P , we have that τ∗ is independent of P when

P → ∞.
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V. SECRECY PERFORMANCE OF AN BEAMFORMING

In this section, we first investigate the connection and

secrecy outage performance of AN beamforming. Then we

maximize the secrecy throughput under a given SOP constraint

and derive the optimal power allocation ratio η∗.

A. Connection Probability

Given ξAN
d = ηcµr−α

d , from (10), the connection probabil-

ity of AN beamforming can be given by

Pc =
1

Γ(Ld)
Γ

(

Ld,
(2Rt − 1)rαd

ηc

)

. (22)

B. Secrecy Outage Performance

1) Non-Colluding Eavesdroppers: Define v , ‖gkn‖2, we

have v ∼ Gamma(Le − Lc, 1). Since Ωc ∩Ωn = Ø, u and v
are independent to each other. The CDF of ξAN

k can be given

by

Fξk(x) = 1− Ev

[

e
− (1−η)µx

ηµc(Nt−Ld)
v− µxrα

k
ηaµc

]

(e)
= 1− e−

µxrα
k

ηaµc

[

1 +
(1− η)µx

ηµc(Nt − Ld)

]−(Le−Lc)

,

(23)

where (e) holds for the integration formula [40, 3.326.2]. The

CDF of ξe can be calculated as

Fξe(x) = EΦe,{µc}

[

∏

ek∈Φe

P {ξk < x}
]

= exp

{

−λ

∫ ∞

0

∫ 2π

0

Eµc

{

[

1 +
(1 − η)µx

ηµc(Nt − Ld)

]−(Le−Lc)

×e−
µxrα

k
ηaµc

}

rkdθdrk

}

= exp

{

−πλΓ

(

2

α
+ 1

)(

µx

ηa

)− 2
α

Ll
∑

Lc=1

p(Lc)

×Eµc

{

[

1 +
(1− η)µx

ηµc(Nt − Ld)

]−(Le−Lc)( 1

µc

)− 2
α

}}

.

(24)

Denoting b , (1−η)µx
η(Nt−Ld)

yields

Fξe(x) = exp

{

−πλΓ

(

2

α
+ 1

)(

µx

ηa

)− 2
α

Ll
∑

Lc=1

p(Lc)

×
∫ ∞

0

(µc + b)−(Le−Lc)µ
Le−Lc+

2
α

c
µLc−1
c

Γ(Lc)
e−µcdµc

}

(f)
= exp

{

−πλΓ

(

2

α
+ 1

)(

µx

ηa

)− 2
α

Ll
∑

Lc=1

p(Lc)e
b

Γ(Lc)

×
∫ ∞

b

y−(Le−Lc)(y − b)Le+
2
α
−1e−ydy

}

0 2 4 6 8 10
0
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0.6

0.8

1

x

F
ξ e
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)

 

 

Simulation
Upper Bound

η = 0.3, 0.5, 0.7

Fig. 4. Fξe (x) versus x for different η’s, with Nt = 100, Ld = 20,
Le = 20, α = 4, λ = 1 and P = 0dBm.

(g)
= exp

{

−πλΓ

(

2

α
+ 1

)

Γ

(

2

α
+ Le

)(

µx

ηa

)− 2
α

×
Ll
∑

Lc=1

p(Lc)e
b
2 b

Lc+
2
α

−1

2

Γ(Lc)
WLc−2Le−

2
α

+1

2 ,
−Lc−

2
α

2

(b)







,

(25)

where (f) follows from the variable transformation y = µc+b
and (g) holds for the integration formula [40, 3.383.4]. Since

the formula inside the mathematical expectation in (24) is a

convex function of 1
µc

, using Jensen’s inequality yields

Fξe(x) ≤ exp

{

−πλΓ

(

2

α
+ 1

)(

µx

ηa

)− 2
α

Ll
∑

Lc=1

p(Lc)

×
[

1 +
(1− η)µx

η(Nt − Ld)
Eµc

(

1

µc

)]−(Le−Lc) [

Eµc

(

1

µc

)]− 2
α

}

= exp

{

−πλΓ

(

2

α
+ 1

)(

µx

ηa

)− 2
α

Ll
∑

Lc=1

p(Lc) (Lc − 1)
2
α

×
[

1 +
(1− η)µx

η(Nt − Ld)(Lc − 1)

]−(Le−Lc)
}

.

(26)

The above formula (26) gives an upper bound of Fξe(x). In

order to verify the accuracy of (26), we plot Fξe(x) in (26)

versus x for different values of η in Fig. 4. We find that the

upper-bound curves coincide well with simulation ones, and

they are very tight. Thus we use the result in (26) instead of

(25) in the following deductions.

Then the SOP of AN beamforming can be expressed as

Pso(µ) = 1− exp

{

−πλΓ

(

2

α
+ 1

)

×
{

µ[ηcµr−α
d − (T − 1)]

ηaT

}− 2
α Ll
∑

Lc=1

p(Lc) (Lc − 1)
2
α

×
[

1 +
µ(1 − η)[ηcµr−α

d − (T − 1)]

ηT (Nt − Ld)(Lc − 1)

]−(Le−Lc)
}

.

(27)
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2) Colluding Eavesdroppers: In this scenario,

Pso(µ) = P{∑ek∈Φe

ηaµcr
−α
k

µ
u

(1−η)ar
−α
k

Nt−Ld
v+1

>
ηcµr−α

d
−(T−1)

T } =

P

{

Ie >
ηcµr−α

d
−(T−1)

T

}

, where Ie ,
∑

ek∈Φe

z2µcu
z3v+rα

k
with

z2 , ηa
µ and z3 , (1−η)a

Nt−Ld
. Then we derive a closed-form

expression for LIe(s) in the following lemma.

Lemma 2: The Laplace transform of Ie can be given by

LIe(s) = exp

{

−πλΓ(1 + 2α)Γ(1− 2α)
Γ(Le − 2α)

Γ(Le +
3
2 )

z−2α−1
3

×z2s

Ll
∑

Lc=1

p(Lc)LcF

(

Lc + 1, 2α+ 1;Le +
3

2
;−sz2

z3

)

}

.

(28)

Proof 6: Please see Appendix B.

Following Theorem 1, in the scenario of colluding eaves-

droppers, the SOP of AN beamforming can be approximated

as

Pso '
N
∑

n=0

(

N

n

)

(−1)nLIe

(

qTn

ηcµr−α
d − (T − 1)

)

. (29)

C. Secrecy Throughput Maximization and Optimal Power Al-

location

In this subsection, we optimize η to get a maximum secrecy

throughput under the SOP constraint for the AN scheme in the

non-colluding eavesdroppers scenario.

According to (18) and by denoting ρ(η) ,
F−1

ξe
(1−ǫ)

η for the

AN scheme, the optimization problem can be formulated as

max
η

Rs(µ) = log
1 + ηcµr−α

d

1 + ηρ(η)
,

s.t. 0 ≤ η ≤ 1, ρ(η) < cµr−α
d ,

(30)

where ρ(η) < cµr−α
d is the transmission constraint of the on-

off transmission scheme that guarantees a positive Rs(µ).
Rewriting the definition formula of ρ(η) as

FAN
ξe

(ηρ(η)) = 1 − ǫ, we derive J(ρ) − Q = 0,

where J(ρ) , ρ−
2
α

∑Ll

Lc=1 z4[1 + z5(1 − η)ρ]−(Le−Lc)

and Q , − ln(1−ǫ)(µ
a
)
2
α

πλΓ( 2
α
+1)

, with z4 , p(Lc)(Lc − 1)
2
α ,

z5 , µ
(Nt−Ld)(Lc−1) . It is hard to get a analytical expression

of ρ(η) for the AN scheme. Instead, we investigate the

relationship between ρ(η) and η in the following lemma in

order to find an efficient way to calculate ρ with a given η.

Lemma 3: ρ(η) is a monotonically increasing and convex

function of η in the range η ∈ [0, 1].
Proof 7: Please see Appendix C.

From the definition of ρ, we easily obtain that ρ ≥ 0. Due to

Lamma 3, the maximum ρ is achieved at η = 1. Then we can

obtain ρmax = Q−α
2 (
∑Ll

Lc=1 z4)
α
2 from J(ρ) − Q = 0. We

define Ξ(ρ) , J(ρ)−1 −Q−1 = 0. Evidently, for an given η,

Ξ(ρ) is a monotonically increasing function of ρ. Since Ξ(0) =
−Q−1 < 0 and Ξ(ρmax) = Q−1{∑Ll

Lc=1 z4{
∑Ll

Lc=1 z4[1 +

z5(1 − η)Q−α
2 (
∑Ll

Lc=1 z4)
α
2 ]−(Le−Lc)}−1 − 1} ≥ 0, we find

that Ξ(ρ) has the unique zero-crossing point. Therefore, we

can obtain the unique root ρ of Ξ(ρ) = 0 by utilizing the

bisection method within the range [0, ρmax].

Theorem 3: Given ρ < cµr−α
d , Rs is a concave function of

η. The optimal η∗ that maximizes Rs is given by

η∗ =











1,
cµr−α

d

1 + cµr−α
d

−
ρmax +

αµ
2(Nt−Ld)

ρ2max

1 + ρmax
> 0,

η⋆, otherwise,
(31)

where η⋆ is the unique root of the following equation

dRs

dη
=

1

ln 2

(

cµr−α
d

1 + ηcµr−α
d

−
ρ+ η dρ

dη

1 + ηρ

)

= 0, (32)

with dρ
dη defined in (36).

Proof 8: Please see Appendix D.

The above theorem provides the solution of the optimization

problem (30), and supplies an efficient approach, i.e., the

bisection method, that can be used to search the optimal η⋆,

due to the concavity of Rs on η. Then we investigate how the

optimal power allocation ratio η⋆ varies in different scenarios

in the following corollary.

Corollary 3: The optimal η⋆ monotonically decreases with

λ and rd, and monotonically increases with ǫ.

Proof 9: Please see Appendix E.

Corollary 3 indicates that when the transmission is more

vulnerable to eavesdropping, i.e., with a poorer quality of the

destination’s channel, in a denser eavesdroppers scenario or

under a more rigorous SOP constraint, we should allocate

more power to AN.

Next, we calculate the transmission threshold δ. We have

already derived the transmission constraint ρ(η) < cµr−α
d to

guarantee a positive Rs. Since ρ(η) monotonically increases

with η, if ρ(0), the minimum ρ(η), is not below cµr−α
d , i.e.,

ρ(0) ≥ cµr−α
d ⇒ µ ≤ rαd ρ(0)

c , the transmission constraint

ρ(η) < cµr−α
d can not be satisfied. Hence we can not find

a feasible η to maintain the positivity of Rs. Therefore, µ >
rαd ρ(0)

c must be guaranteed, and as a consequence we set δ =
rαd ρ(0)

c , which corresponds to an on-off transmission, i.e., when

µ > δ, the transmitter radiates signals with R∗
s(µ); otherwise,

the transmission suspends and we set Rs(µ) = 0.

From (5), the maximum secrecy throughput of AN beam-

forming can be given by

τ∗ =

∫ ∞

rα
d

ρ(0)

c

R∗
s(µ)fµ(x)dx, (33)

where fµ(x) =
x(Ld−1)

Γ(Ld)
e−x.

VI. NUMERICAL RESULTS

In this section, numerical results are presented to verify our

theoretical analysis. The transmitter is equipped with an ULA

containing 100 antennas. We set the pass loss exponent α = 4
and the noise power σ2

n = −60dBm [30], [33], [35].
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Fig. 5. Connection probability versus Ld for different rd’s, with P = 10dBm,
Rt = 6 and η = 0.8.
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Fig. 6. SOP versus Ld for different λ’s, with Nt = 100, P = 0dBm,
rd = 50m, Le = 20, η = 0.5 and Rs = 4.

A. Connection and Secrecy Outage Performance

Fig. 5 describes connection probability versus Ld for dif-

ferent values of rd. We find that when rd is small, connection

probability increases as the number of resolvable paths Ld

increases. The trend is opposite when rd is large. The under-

lying reason is that when the number of paths becomes larger,

the influence of paths with either very high or very low gain

becomes weaker, i.e., the received power is closer to its mean

and the randomness is smaller. When rd is small, the mean

of SNR is high. Therefore, with the increase of Ld, SNR is

closer to its higher mean and the connection probability will

increase. Otherwise, when rd is large, SNR approaches to its

lower mean and the connection probability will decrease. We

also observe that connection probability of AN beamforming

is lower than that of MRT beamforming due to the fact that

partial transmit power is allocated to the AN transmission.

Fig. 6 presents Pso versus Ld for different values of λ. As

shown in the figure, Pso is higher in colluding eavesdroppers

scenario than that in non-colluding eavesdroppers scenario.

The differences are more obvious when eavesdroppers are

denser. For both AN beamforming and MRT beamforming,

Pso decreases when Ld reduces. The underlying reason is

that when the number of the destination’s resolvable paths

Ld drops, the information signal is transmitted through fewer
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Fig. 7. Optimal power allocation ratio η∗ versus Ld for different rd’s, with
Nt = 100, P = 10dBm, Le = 20, λ = 5× 10−6 and ǫ = 0.01.
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Fig. 8. Optimal power allocation ratio η∗ versus λ for different Le’s, with
Nt = 100, P = 10dBm, Ld = 20, rd = 50m and ǫ = 0.01.

directions, which leads to a lower chance of confidential

message leakage.

B. Optimal Power Allocation of AN Beamforming

Fig. 7 investigates the optimal power allocation ratio η∗

that maximizes the secrecy throughput versus Ld for different

values of rd. we find that η∗ increases with the decrease of

rd. The figure also shows that for a given Le = 20, when Ld

varies from 10 to 30, η∗ is getting smaller. It is because that

when Ld becomes larger, the transmit beam of the information

signals covers more spatially resolvable directions, so that

eavesdroppers’ resolvable paths are more likely to fall into

that beam, which means that eavesdroppers will receive more

information signals. Thus we should give a larger fraction of

transmit power to AN transmission in order to interfere with

eavesdroppers.

Fig. 8 plots the optimal power allocation ratio η∗ that

maximizes the secrecy throughput versus λ for different values

of Le. As shown in the figure, η∗ decreases as λ increases,

which implies that we should increase AN power when secure

transmissions become more vulnerable to intercepting. In

addition, the value of η∗ falls down with an increase in Le. The

underlying reason is that when Le becomes larger, resolvable
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Fig. 9. Optimal power allocation ratio η∗ versus P for different ǫ’s, with
Nt = 100, P = 10dBm, Ld = 20, Le = 20, rd = 50m and λ = 5×10−6 .
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Fig. 10. Secrecy throughput versus Ld for different rd’s, with Nt = 100,
P = 10dBm, Le = 20, λ = 5× 10−6 and ǫ = 0.01.

paths of eavesdroppers and those of the destination are more

likely to overlap, and then eavesdroppers are able to wiretap

more confidential messages. Therefore, more power is ought

to be allocated to AN transmission in order to deteriorate

eavesdroppers’ channels.

Fig. 9 illustrates the optimal power allocation ratio η∗

that maximizes the secrecy throughput versus P for different

values of ǫ. η∗ keeps 1 at the low transmit power region

and then drops as P increases, which implies that we should

transmit information signals with full power to achieve a

higher message rate at the low power regime and give a larger

fraction of power to AN transmission when the transmit power

becomes higher. We also find that for a given transmit power

P , as ǫ decreases, η∗ decreases.

C. Secrecy Throughput Performance

Fig. 10 describes the secrecy throughput versus Ld for

different values of rd. Secrecy throughput becomes higher

with the decrease of rd, which confirms the fact that a better

destination’s channel contributes to a promotion of secrecy

throughput. We also find that the secrecy throughput increases

as Ld decreases. The underlying reason is that confidential

signals are radiated through all the directions of the destina-

tion’s resolvable paths. In the small Ld scenario, the transmit

10 15 20 25 30
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Le

S
ec

re
cy

 T
hr

ou
gh

pu
t

 

 

AN,λ = 10−5

AN,λ = 8 × 10−6

AN,λ = 5 × 10−6

MRT,λ = 10−5

MRT,λ = 8 × 10−6

MRT,λ = 5 × 10−6

Fig. 11. Secrecy throughput versus Le for different λ’s, with Nt = 100,
P = 10dBm, Ld = 20, rd = 50m and ǫ = 0.01.

beam which contains secrecy messages is narrow. It is hard for

eavesdroppers to intercept. Therefore, smaller Ld is beneficial

for enhancing the secrecy throughput.

Fig. 11 presents the secrecy throughput versus Le for

different values of λ. We observe that the secrecy throughput

increases with a smaller λ for both transmission schemes,

which indicates that secrecy performance improves in a sparse

eavesdropper scenario. As the number of the eavesdropper’s

resolvable paths Le changes, the variation tendencies of MRT

beamforming and AN beamforming are different. For MRT

beamforming, the secrecy throughput turns to be lower as

Le increases. It is because that in the large Le situation,

eavesdroppers’ resolvable paths are more likely to cover

the destination’s resolvable paths in which directions the

information signals emit. Thus eavesdroppers overhear more

secrecy messages and the secrecy performance will be poorer.

Although a heavier leakage to eavesdroppers also happens in

the AN beamforming case when Le grows, the transmitter

gives more power to AN transmission as shown in Fig. 8, so

that the interference received by eavesdroppers increases too.

With the transmission of AN, the SINR of eavesdroppers may

drop. Therefore, the results in the figure show that the secrecy

throughput increases when Le increases for the AN scheme.

In addition, we observe that the gap between the secrecy

throughput of AN beamforming and that of MRT beamforming

is more evident in the denser eavesdropper scenario.

Fig. 12 describes the secrecy throughput versus P for

different values of ǫ. Obviously, by increasing transmit power

P , the secrecy throughput increases. We also see that MRT

beamforming presents a comparable performance to AN beam-

forming in the low transmit power scenario. As revealed in

Corollary 2, the secrecy throughput of MRT beamforming

at the high transmit power regime converges to a constant

which is irrespective to P . However, since more power is

allocated to the AN transmission to confuse eavesdroppers as

shown in Fig. 9, the secrecy throughput of AN beamforming

keeps increasing, and the superiority of AN beamforming

becomes more obvious. Meanwhile, as the increase of the SOP

constraint threshold ǫ, the secrecy throughput becomes higher.
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VII. CONCLUSION

This paper has comprehensively studied secure transmis-

sions in millimeter wave systems where the locations of

eavesdroppers are modeled as an independent homogeneous

PPP. We have established a discrete angular domain channel

model which characterized by spatially resolvable paths to

facilitate the theoretical design and analysis of secure trans-

mission schemes. Then we have evaluated the performance

of MRT beamforming and AN beamforming by obtaining the

connection probability, the SOP and the secrecy throughput.

Particularly, we have derived the optimal power allocation

between AN and the information signal that maximizes the

secrecy throughput for AN beamforming. Through our analy-

sis, we have revealed that the superiority of AN beamforming

over MRT beamforming is highly significant in dense eaves-

droppers scenario, at the high transmit power regime or in

the situation that the number of the eavesdropper’s spatially

resolvable paths is large.

APPENDIX A

PROOF OF THEOREM 2

Since µ ∼ Gamma(Ld, 1), the PDF of µ can be given

by fµ(x) = x(Ld−1)

Γ(Ld)
e−x. By substituting (19), we derive the

maximum secrecy throughput of MRT beamforming as

τ∗ =

∫ ∞

δ

R∗
s(x)fµ(x)dx

(h)
=

∫ ∞

0

1

Γ(Ld)
log

(y + δ)[1 + cr−α
d (y + δ)]

y + δ + z1

× (y + δ)Ld−1e−(y+δ)dy

=
e−δ

Γ(Ld)

Ld−1
∑

m=0

(

Ld − 1

m

)

δLd−1−m

∫ ∞

0

[

log(1 +
1

δ
y)

+ log(1 +
cr−α

d

1 + cr−α
d δ

y)− log(1 +
1

δ + z1
y)

+ log
δ(1 + cr−α

d δ)

δ + z1

]

yme−ydy,

(34)

where (h) holds for the transformation y = x− δ. According

to [40, 4.337.5], the final result shown in (20) is obtained.

APPENDIX B

PROOF OF LEMMA 2

LIe(s) = EΦe,u,v,µc

[

e
−s

∑
ek∈Φe

z2µcu

z3v+rα
k

]

= exp

{

−2πλ

Ll
∑

Lc=1

p(Lc)Eu,v,µc

[
∫ ∞

0

[1

− exp

(

−s
z2µcu

z3v + rαk

)]

rkdrk

]}

= exp

{

−2πλ

Ll
∑

Lc=1

p(Lc)

∫ ∞

0

∫ ∞

0

∫ ∞

0

sz2µc

×(rαk + sz2µc + z3v)
−1rkdrkf(v)f(µc)dvdµc

}

(i)
= exp

{

−πλΓ(1 + 2α)Γ(1 − 2α)

Ll
∑

Lc=1

p(Lc)

×
∫ ∞

0

∫ ∞

0

sz2µc(sz2µc + z3v)
−2α−1f(v)f(µc)dvdµc

}

(j)
= exp

{

−πλΓ(1 + 2α)Γ(1− 2α)z
−Le−Lc

2 −α
3 (sz2)

Le−Lc
2 −α

×
Ll
∑

Lc=1

p(Lc)

∫ ∞

0

µ
Le−Lc

2 −α
c e

sz2µc
2z3

×W−Le+Lc
2 −α, 1−Le+Lc

2 +α

(

sz2µc

z3

)

f(µc)dµc

}

,

(35)

where f(u) = e−u, f(v) = v(Le−Lc−1)

Γ(Le−Lc)
e−v and f(µc) =

µ(Lc−1)
c

Γ(Lc)
e−µc are PDFs of u, v and µc respectively, (i) holds

for the transformation x = rαk and the integration formula

[40, 3.194], (j) holds for the transformation y = z3v+ sz2µc

and the integration formula [40, 3.383.4]. By utilizing the

integration formula [40, 7.621.3], we obtain the result in (28).

APPENDIX C

PROOF OF LEMMA 3

The first-order and second-order derivatives of ρ(η) can be

given by

dρ

dη
= −∂J/∂η

∂J/∂ρ
=

ρ2

ρ(1 − η) + 2
ασ

, (36)

d2ρ

dη2
=

2

ρ

(

dρ

dη

)2

+
ρ2[ς − 2

α
dσ
dη ]

[ρ(1− η) + 2
ασ]

2
, (37)

where σ ,
∑Ll

Lc=1 z4[1+z5(1−η)ρ]−(Le−Lc)

∑Ll
Lc=1 z4z5(Le−Lc)[1+z5(1−η)ρ]−(Le−Lc)−1

, and

ς , ρ − (1 − η) dρdη . Since σ > 0, obviously, dρ
dη > 0. By

substituting (36), we have ς =
2
α
σρ

ρ(1−η)+ 2
α
σ

> 0. Denoting
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C1 ,
∑Ll

Lc=1 z4z5(Le − Lc)[1 + z5(1 − η)ρ]−(Le−Lc)−1 and

C2 ,
∑Ll

Lc=1 z4[1 + z5(1 − η)ρ]−(Le−Lc), we have

dσ

dη
=

dC2

dη

C1
−

C2
dC1

dη

C2
1

=
1

C2
1

{C1

Ll
∑

Lc=1

z4z5(Le − Lc)[1 + z5(1− η)ρ]−(Le−Lc)−1ς

− C2

Ll
∑

Lc=1

z4z
2
5(Le − Lc)(Le − Lc + 1)

× [1 + z5(1− η)ρ]−(Le−Lc)−2ς}

<
ς

C2
1

{C2
1 − C2C3}

(k)

≤ 0,

(38)

where C3 ,
∑Ll

Lc=1 z4z
2
5(Le−Lc)

2[1+z5(1−η)ρ]−(Le−Lc)−2

and (k) holds for the Holder’s inequality (
∑

xy)2 ≤
(
∑

x2)(
∑

y2) with x = {z4[1 + z5(1− η)ρ]−(Le−Lc)} 1
2 and

y = {z4z25(Le−Lc)
2[1+ z5(1− η)ρ]−(Le−Lc)−2} 1

2 . Thus we

have that d2ρ
dη2 > 2

ρ

(

dρ
dη

)2

> 0. With dρ
dη > 0 and d2ρ

dη2 > 0, we

complete the proof.

APPENDIX D

PROOF OF THEOREM 3

The second-order derivative of Rs can be described as

d2Rs

dη2
= − 1

ln 2

{

(cµr−α
d )2

(1 + ηcµr−α
d )2

+
1

(1 + ηρ)2

×
[

(1 + ηρ)

(

2
dρ

dη
+ η

d2ρ

dη2

)

−
(

ρ+ η
dρ

dη

)2
]}

,

(39)

with dρ
dη and d2ρ

dη2 given by (36) and (37). Substituting d2ρ
dη2 >

2
ρ

(

dρ
dη

)2

> 0 (see Appendix C) into the above equation yields

d2Rs

dη2 < − 1
ln 2

[

(cµr−α
d

)2

(1+ηcµr−α
d

)2
− ρ2

(1+ηρ)2

]

. Since cµr−α
d > ρ, we

have d2Rs

dη2 < 0, i.e., Rs is a concave function of η.

For the concavity of Rs, the maximum value of Rs is

achieved either at the boundaries or at the zero-crossing point

of dRs

dη . From the first-order derivative formula of Rs in (32),

we obtain dRs

dη |η=0 = 1
ln 2 (cµr

−α
d − ρ) > 0 and dRs

dη |η=1 =

1
ln 2

{

cµr−α
d

1+cµr−α
d

− ρmax+
αµ

2(Nt−Ld)
ρ2
max

1+ρmax

}

. If dRs

dη |η=1 > 0, Rs

monotonically increases with η, and the optimal value of η is

1 with the condition directly obtained from dRs

dη |η=1 > 0. If
dRs

dη |η=1 ≤ 0, Rs first increases and then decreases, and the

optimal value of η is the unique root of dRs

dη .

APPENDIX E

PROOF OF COROLLARY 3

Substituting (36) into (32) and denoting ĉ , cµr−α
d yield

(ĉη2 + 1)ρ2 + (ĉη +
2

α
σ − ĉ)ρ− 2

α
σĉ = 0. (40)

Denote the left side of the above equation as Y , we obtain

∂Y

∂η
= z6

dρ

dη
+

2

α
(ρ− ĉ)

dσ

dη
+ 2ĉηρ2 + ĉρ > 0, (41)

where z6 , 2ĉη2ρ+ 2ρ+ ĉη + 2
ασ − ĉ. By substituting (40),

we have z6 = ρ+ ĉη2ρ+ 2
α ĉσ

1
ρ > 0. From ρ < ĉ and dσ

dη < 0,

we derive ∂Y
∂η > 0.

1) λ: dη
dλ = −∂Y/∂λ

∂Y/∂η = − z6
dρ
dλ

∂Y/∂η , where z6 > 0 and ∂Y
∂η > 0.

From the definition of Ξ, we find Ξ = 0, ∂Ξ
∂ρ > 0 and ∂Ξ

∂λ < 0,

hence dρ
dλ = −∂Ξ/∂λ

∂Ξ/∂ρ > 0. Thus we derive dη
dλ < 0.

2) ǫ: dη
dǫ = − ∂Y/∂ǫ

∂Y/∂η = − z6
dρ
dǫ

∂Y/∂η , where z6 > 0 and ∂Y
∂η > 0.

Since ∂Ξ
∂ǫ > 0 , we have dρ

dǫ = − ∂Ξ/∂ǫ
∂Ξ/∂ρ < 0. Thus we obtain

dη
dǫ > 0.

3) rd: dη
drd

= −∂Y/∂rd
∂Y/∂η = −

∂Y
∂ĉ

dĉ
drd

∂Y/∂η , where dĉ
drd

< 0 and
∂Y
∂η > 0. Since ∂Y

∂ĉ = η2ρ2 + ηρ − ρ − 2
ασ, substituting (40)

yields ∂Y
∂ĉ = −(ρ2 + 2

ασρ)
1
ĉ < 0. Thus we obtain dη

drd
< 0.

With 1)-3), we complete the proof.
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