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Abstract

This paper considers secrecy enhancement mechanisms in visible light communication (VLC) systems with

spatially distributed passive eavesdroppers (EDs) under the assumption that there are multiple LED transmitters and

one legitimate receiver (UE). Based on certain amplitude constraints, we propose an optimal beamforming scheme

to optimize secrecy performance. Contrary to the case where null-steering is made possible by using knowledge

of the ED locations, we show that the optimal solution when only statistical information about ED locations is

available directs the transmission along a particular eigenmode related to the intensity of the ED process and the

intended channel. Then, a sub-optimal LED selection scheme is provided to reduce the secrecy outage probability

(SOP). An approximate closed-form for the SOP is derived by using secrecy capacity bounds. All analysis is

numerically verified by Monte Carlo simulations. The analysis shows that the optimal beamformer yields superior

performance to LED selection. However, LED selection is still a highly efficient suboptimal scheme due to the

complexity associated with the use of multiple transmitters in the full beamforming approach. These performance

trends and exact relations between system parameters can be used to develop a secure VLC system in the presence

of randomly distributed EDs.
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I. INTRODUCTION

D
UE to the rapid proliferation of mobile communication devices and the associated difficulties

in adequately allocating spectra to support new services, visible light communication (VLC) has

become an increasingly interesting topic of research in academia and industry. The VLC medium does not

interfere with RF systems, and VLC spectrum can be easily reused (spatially) since light can be confined

to a certain indoor area. Moreover, VLC uses unregulated spectrum with a wide bandwidth (428 to 750

THz) and is capable of exploiting existing LED light infrastructure for communication [1], [2].

Compared to RF channels, VLC exploits light-of-sight (LoS) propagation and has relatively good signal

confinement properties. However, the VLC channel is still of a broadcast nature. Therefore, securing VLC

transmissions is an important issue, particularly for deployments in open places such as public libraries,

offices, and shopping malls. To cope with the security issue in RF systems, the focus on physical layer

security (PLS), which is based on the information theoretic notion of employing coding to achieve secure

communication, has accelerated since Wyner’s seminal work [3]. Due to the broadcast nature of RF

communications, both the legitimate receiver, or user equipment (UE), and eavesdroppers (EDs) may

receive data from the source. However, the principle of PLS states that if the capacity of the intended

data transmission channel is higher than that of the eavesdropping channel, the data can be transmitted at

a rate close to the difference in their capacities, the so-called secrecy capacity, so that only the intended

receiver can successfully decode the data.

It is difficult to obtain knowledge of passive ED locations. Yet, the analysis of secrecy capacity in

spatial networks inherently depends upon this geometric properties. The mathematical theory of stochastic

geometry is a powerful tool for dealing with spatial uncertainty [4], [5]. Using stochastic geometric

methods, the impact of random ED locations on secrecy performance for RF communications has been

investigated in recent years [6]–[9]. The location distribution of EDs can be modeled as a Poisson point

process (PPP) or a binomial point process (BPP). In [6], the locations of multiple legitimate pairs and

EDs were represented as independent two-dimensional PPPs, and the average secrecy throughput in such

a wireless network was studied. Multiple-input multiple-output (MIMO) transmission with beamforming

was considered later in [7], [8] to enhance secrecy performance. Transmit antenna selection and full-duplex

schemes have also been used to enhance secrecy performance with randomly located EDs [9].

Motivated by the advantage of PLS, a recent topic of interest in the research community has been the

investigation of PLS applied in VLC systems using various transmission methods, e.g., beamforming,



jamming, etc. Recently, Lampe et al analyzed the achievable secrecy rate for single-input single-output

(SISO) and multiple-input single-output (MISO) scenarios and proposed a variety of beamforming

schemes such as zero-forcing (null-steering), artificial noise generation, friendly jamming, and robust

beamforming [10]–[12]. Additionally, Alouini et al proposed the truncated normal input distribution and

the truncated generalized normal input distribution to increase the secrecy rate under constraints on the

input signal amplitude [13], [14]. It is important to note, however, that these contributions assumed a small

number of EDs are present in the system and either the channel state information (CSI) or the locations

of the EDs are known. In practice, it might be impossible to obtain ED CSI or locations.

Inspired by the aforementioned contributions exploiting stochastic geometry in RF communications, our

previous work [15] firstly developed an analogous approach to modeling ED locations in VLC systems. In

this paper, we use this model to further analyze system performance and propose new MISO beamforming

solutions. The contributions of this paper can be summarized comprehensively as follows:

• we propose a MISO beamforming solution that optimizes secrecy performance measures (e.g., SNR

and secrecy capacity bounds) subject to a signal amplitude constraint for VLC systems when only

information about the ED intensity measure is available at the transmitter;

• we demonstrate that the proposed beamforming method is well approximated by a simple LED

selection scheme when the distance between the UE and one of the transmitting LEDs is small;

• we obtain closed-form bounds on the secrecy outage probability (SOP) when LED selection is

adopted.

The rest of this paper is organized as follows1. Section II begins with the system model describing the

modulation and beamforming schemes in VLC and providing various performance measures. In Section

III, the optimal beamformer maximizing secrecy performance is investigated. In Section IV, LED selection

is proposed, and closed-form upper and lower bounds on the SOP are calculated. Section V gives numerical

results that support out analysis. Section VI concludes the paper.

II. SYSTEM MODEL

A. Data Transmission

We consider the downlink of a VLC system in a rectangular room2 as shown in Fig. 1, where W , L,

and Z denote the width, the length, and the height of the ceiling relative to the work plane, respectively.

1The notation and symbols used in the paper are listed in Table I.
2This may be an open space such as a shopping mall or a large office.



TABLE I. Notation and Symbols Used in the Paper

Symbol Definition/Explanation

L the length of a room

W the width of a room

Z the height from the ceiling to the work plane

N number of transmitters

ΦE poisson point process of EDs

λE ED intensity function

IDC fixed bias current

R photodetector’s responsivity

α modulation index

φ1/2 half illuminance angle

APD physical area of a photodiode

φ angle of irradiance

ψ angle of incidence

κ refractive index of an optical concentrator

Ψc received field of view of a photodiode

R set of real numbers

R
+ set of non-negative real numbers

1 all-ones column vector

0 all-zeros column vector

E[·] expectation operator

P(·) probability operator

[·]T transpose operator

Γ(x, y) upper incomplete gamma function

Fig. 1. Rectangular room configuration for VLC systems. W and L are the room’s width and length, and Z denotes the height

from the ceiling to the work plane. Dots denote LED transmitters.

We assume that one fixed UE exists and multiple random EDs are randomly distributed according to a

PPP ΦE with intensity λE in the room. Note that there is no assumption that the PPP is homogeneous.

We assume all the receiver nodes are located on the same work plane, and N transmitters are attached to

the ceiling of the room. Each transmitter — i.e., an LED fixture consisting of multiple individual LEDs

— is assumed to be capable of communicating independently of other transmitters [10]. We assume that



EDs act independently of one another (i.e., there is no collusion).

A DC-biased pulse-amplitude modulation (PAM) VLC scheme is considered [10], [11]. The data signal

x(t) ∈ R in time slot t is a zero-mean current signal superimposed on a fixed bias current IDC ∈ R+. The

fixed bias IDC is used for the purpose of illumination. To maintain linear current-to-light conversion, the

amplitude of the modulated signal x(t) is constrained such that |x(t)| ≤ αIDC , where α ∈ [0, 1] is termed

the modulation index. Thus, the dynamic range of the LED is IDC ± αIDC . Also, since E[x(t)] = 0, the

data signal does not affect illumination.

The VLC channel model can be written as

y(t) = hx(t) + n(t) (1)

where h is the channel transfer coefficient and n(t) is the zero-mean additive white Gaussian noise (AWGN)

at a receiver. According to [16], the channel gain h in a VLC system corresponding to an LED with a

generalized Lambertian emission pattern is given by

h =



η
(m + 1)APD

2πl2

κ2 cosm(φ)
sin2(Ψc)

cos(ψ)RT for |ψ | ≤ Ψc,

0 for |ψ | > Ψc

(2)

where η (W/A) is the current-to-light conversion efficiency and m = − ln(2)/ln(cos(φ1/2)) is the order of

Lambertian emission with half illuminance at φ1/2, and APD is the physical area of the photodiode (PD).

As shown in Fig. 1, l is the distance between the transmitter and the receiver, and d denotes the distance

between the transmitter and the receiver in the work plane. φ is the angle of irradiance, and ψ is the angle

of incidence. Also, κ is the refractive index of the optical concentrator at the receiver, Ψc denotes the

received field of view of the PD, R is the photodetector’s responsivity, and T (V/A) is the transimpedance

amplifier gain. Note that this channel model considers only an LoS component. Moreover, by assuming

that a receiver’s PD faces up normal to the work plane, we can rewrite (2) in terms of l as

h =η
(m + 1)APD

2πl2

κ2

sin2(Ψc)

(
Z

l

)m (
Z

l

)
RT = Kl−(m+3) (3)

where K =
(
η(m + 1)APDZm+1κ2RT

)
/
(
2π sin2(Ψc)

)
.

As in [10], we define a beamforming vector w = [w1,w2, ...,wN ]T , where wi for i ∈ {1, 2, ...,N} is a

weight for the ith transmitter and |wi | ≤ 1. Thus, the transmitted signal vector x(t) ∈ RN can be written as

x(t) = ws(t), where s(t) is the transmitted data symbol. Accordingly, the transmitted signal x(t) is subject



to the amplitude constraint |x(t)| � αIDC1. Therefore, the received signal at the UE and eavesdropper Ee

with e ∈ ΦE can be described as

yU(t) = h
T

U
x(t) + nU(t), (4a)

yEe
(t) = h

T

Ee
x(t) + nEe

(t) (4b)

respectively, where hU and hEe
∈ RN are the channel gain vectors from the transmitters to the UE and

eavesdropper Ee, respectively, and nU and nEe
are zero-mean AWGN random variables at the UE and

eavesdropper Ee, each with variance σ2. For notational convenience, the time index t is ignored for the

remainder of the paper.

B. Performance Measures

For Gaussian VLC channels with amplitude constraints, the peak signal-to-noise ratio (SNR) at the UE

and the eavesdropper Ee can be written as

γU =

α2I2
DC

w
T
hUh

T

U
w

σ2
, (5a)

γEe
=

α2I2
DC

w
T
hEe

h
T

Ee
w

σ2
. (5b)

The capacity of the VLC channel is given by [17]

C = max
pX

I(X;Y ) (6)

where pX is the input distribution and I(·; ·) denotes the mutual information. Note that the random variable

X has an amplitude constraint, i.e., |X | ≤ αIDC . It is infeasible to calculate the closed-form solution for

(6) due to this amplitude constraint [18]. Thus, the capacity upper and lower bounds are used for our

analysis, which are given in [17, Theorem 5] as

Cupper
=

1

2
log (1 + γ) , (7a)

Clower
=

1

2
log

(
1 +

2γ

πe

)
(7b)

where γ is the received SNR.

In addition to that, we define the SOP as the probability that the secrecy capacity Cs is lower than a



threshold secrecy rate Cth, i.e.,

PSO = P(Cs ≤ Cth). (8)

However, since the closed-form of the secrecy capacity with the input amplitude constraint is also not

readily available, we employ the lower and upper bounds on secrecy capacity as defined in [10, Theorem

1], which are given by

Clower
s =

1

2
log

(
6γU + 3πe

πeγ∗
E
+ 3πe

)
, (9a)

C
upper
s =

1

2
log

(
γU + 1

γ∗
E
+ 1

)
(9b)

where γ∗
E
= max

e∈ΦE

γEe
(i.e., the worst case ED with the highest SNR). Applying these bounds yields the

following upper and lower bounds on the SOP:

P
upper

SO
= P(Clower

s ≤ Cth), (10a)

Plower
SO = P(Cupper

s ≤ Cth). (10b)

III. OPTIMAL BEAMFORMING

In this section, we propose beamformer designs based on the formulation of several optimisation

problems that aim to improve secrecy performance when only information about the intensity of the

ED PPP is known. Crucially, we demonstrate that the proposed beamforming solutions apply to both

homogenous and inhomogeneous ED processes.

A. Optimization Based on SNR

Without knowledge of ED locations, a natural objective is to minimize the average SNR of EDs γE

subject to a constraint on the minimum require UE SNR γU , same as in RF communications [19]–[21].

A related, alternative objective may be to maximize γU subject to a constraint on γE . In this subsection,

both of these cases will be investigated.

1) Minimizing Average Eavesdropper SNR: The SNR of the UE (5a) can be written as

γU = ϕw
T
Aw (11)



where ϕ = α2I2
DC

/σ2 and A = hUh
T

U
. Note that the rank of A is one. Also, from (5b), the average SNR

of an ED can be written as

γE = E[ϕw
T
hEe

h
T

Ee
w] = ϕw

T
E[hEe

h
T

Ee
]w = ϕw

T
Bw (12)

where B = E[hEe
h

T

Ee
]. The element in the ith row and jth column of B is given by

Bi, j =
1

NE

∫ L
2

−L
2

∫ W
2

−W
2

λE (x, y)K2

lm+3
i

(x, y)lm+3
j

(x, y)
dx dy (13)

where λE(x, y) is the intensity of EDs at the point (x, y) and li(x, y) for i ∈ {1, 2, · · · , N} is the distance

between the ith transmitter and the point (x, y). Note that λE(x, y) is a constant when the ED point process

is homogeneous. Also, NE denotes the average number of EDs, which is given by

NE =

∫ L
2

−L
2

∫ W
2

−W
2

λE(x, y) dx dy. (14)

From the formulation given above, it is clear that the optimal beamforming vector w
∗ is given by

w
∗
= arg min

w
ϕw

T
Bw (15a)

s. t.



ϕw

T
Aw ≥ ρU

|w| � 1

(15b)

where ρU denotes the required SNR of the UE. Note that the optimal beamformer w
∗ is 0 ∈ RN without

the first constraint. Then, we form the Lagrangian [22] as follows

L = ϕw
T
Bw − λ

(
ϕw

T
Aw − ρU

)
− µT

−(w + 1) + µT

+
(w − 1) (16)

where λ ∈ R and µ−, µ+ ∈ RN are the Lagrange multipliers. To let L have the non-trivial minimum value

with respect to w and analytically calculate the optimal solution of (15), the condition has to be satisfied

as

µ− = µ+ = 0. (17)

According to the local sensitivity analysis in [22], zero Lagrange multipliers µ− and µ+ imply that the

second inequality constraint is slack, i.e., |wi | , 1 for i ∈ {1, 2, ...,N}.



If (17) can be satisfied3, computing the partial derivative of L with respect to w and setting the result

equal to zero leads to

(B − λA)w = 0. (18)

The optimal beamforming vector must satisfy (18). If λ = 0 (i.e., the UE SNR constraint is inactive), w

should belong to the null space of B. Referring to (13), it should be clear that the rank of B depends on

the intensity of the ED process. Indeed, it is possible that the intensity is such that B is reduced rank. On

the other hand, if B is full rank4, we have

B
−1

Aw = ηw (19)

where η = 1/λ. This implies that η is the eigenvalue of B
−1

A and w is the corresponding eigenvector.

Hence, the optimal solution satisfies

γE = ϕw
T
Bw = ϕ

1

η
w

T
Aw ≥ 1

ηmax

ρU . (20)

From this, we deduce that the minimum γE is inversely proportional to the maximum eigenvalue ηmax.

Here, since A is rank one, we have that B
−1

A is rank one since

0 < rank
(
B
−1

A

)
≤ min

{
rank

(
B

)
, rank(A)

}
= 1. (21)

Hence, there exists a single non-zero eigenvalue ηmax, and the optimal beamformer w
∗ is obtained by

scaling the corresponding eigenvector such that ϕw
∗T

Aw
∗
= ρU and |w∗ | ≺ 1. When feasible, the fact

that only one non-zero eigenvalue exists implies the solution is unique. Hence, it is clear that this approach

gives a simple method of calculating the beamforming vector.

On the other hand, if ρU is high so that (17) cannot be satisfied, the optimal solution w
∗ can be

calculated numerically, since the objective function (15a) is convex (Note B is a positive semidefinite

matrix).

2) Maximizing User SNR: We now investigate the problem of maximizing the SNR of the UE γU

while constraining the average SNR of the EDs γE . Similar to the previous subsection, we can formulate

3If ρU can be achieved by only the transmission of the nearest LED to the UE, the beamformers of other transmitters must not be ±1.

Moreover, without loss of generality, we can assume that the beamforming element of the nearest LED can be very close to ±1, but not

equals to ±1. Then, (17) can be satisfied.
4This condition can be confirmed when the ED PPP is homogeneous, for example.



the optimization problem as

w
∗
= arg max

w
ϕw

T
Aw (22a)

s. t.



ϕw

T
Bw ≤ ρE

|w| � 1

(22b)

where ρE is the target constraint on the average SNR of EDs.

Following the same approach as above leads to an analogous result when B is nonsingular:

B
−1

Aw = λw. (23)

Hence, λ and w are an eigenvalue-eigenvector pair for B
−1

A. The optimal solution satisfies

γU = ϕw
T
Aw = ϕλw

T
Bw ≤ λmaxρE (24)

where λmax is the maximum (indeed, the only nonzero) eigenvalue, and the optimal beamformer w
∗ is

the associated eigenvector after being scaled such that ϕw
∗T

Bw
∗
= ρE and |w| ≺ 1 (if feasible).

B. Optimization Based on Capacity

In this subsection, we will investigate the optimal beamformer based on the capacities of the UE and

EDs.

1) Minimizing Eavesdropper Average Capacity: Since the closed-form expression for the capacity of

a VLC channel is not available, we will use the upper and lower bounds given in (7). Thus, the optimal

beamformer w
∗ minimizing the average ED capacity upper bound is given by

w
∗
= arg min

w
E

[
1

2
log

(
1 + γEe

) ]
(25a)

s. t.




1
2

log(1 + 2γU
πe

) ≥ ξU

|w| � 1

(25b)

where ξU is the required capacity lower bound for the UE. However, since the objective function (25a)

does not lend itself to tractable analysis and a practically implementable solution, we revise the objective

function using Jensen’s inequality, i.e., it becomes (1/2) log(1 + γE ), which allows us to obtain the

suboptimal beamformer w
∗. In addition, since log(·) is a monotonic increasing function, (25) can be



reformulated to

w
∗
= arg min

w
ϕw

T
Bw (26a)

s. t.



ϕw

T
Aw ≥ M1

|w| � 1

(26b)

where M1 =
(
22ξU − 1

)
πe/2. Note that (26) has an identical form to (15). It follows that the suboptimal

beamformer w
∗ is the eigenvector corresponding to the maximum eigenvalue of B

−1

A after being scaled

such that ϕw
∗T

Aw
∗
= M1 and |w| ≺ 1.

2) Maximizing User Capacity: The optimization problem for maximizing the lower bound of the UE’s

capacity subject to an ED capacity constraint can be formulated as

w
∗
= arg max

w

1

2
log

(
1 +

2γU

πe

)
(27a)

s. t.




1
2
E

[
log(1 + γEe

)
]
≤ ξE

|w| � 1

(27b)

where ξE is the target constraint for the average capacity upper bound of EDs. Again, by applying Jensen’s

inequality to the constraint, we arrive at the alternative formulation

w
∗
= arg max

w
ϕw

T
Aw (28a)

s. t.



ϕw

T
Bw ≤ M2

|w| � 1

(28b)

where M2 = 22ξE − 1. Hence, we deduce that the suboptimal beamforming vector is the eigenvector

corresponding to the maximum eigenvalue of B
−1

A scaled appropriately.

C. Comparing MISO Beamforming to LED Selection

In the previous subsection, we showed that the optimal beamformer for SNR and rate objectives is

universally related to the maximum eigenmode of B
−1

A. The proposed optimal beamforming vector

cannot be a null-steering solution as was the case in [11] unless a (perhaps pathological) condition occurs

that makes B singular.

Since A depends on the UE’s location and B depends on the transmitter locations and the intensity

function of the EDs, we can note that when the UE is located near to a transmitter, the optimal beamformer
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Fig. 2. The average SNR of EDs for different UE locations plotted against beamforming weights. Two transmitters T1 and T2

are located at (2.5, 0) and (−2.5, 0), respectively. The room size is L = 8 m and W = 8 m. ρU = 40 dB is applied.

looks like a transmitter selection process, i.e., the nearest transmitter’s weight is dominant to the others.

This is because the eigenvector corresponding to the maximum eigenvalue is significantly affected by the

maximum diagonal element of A when the UE is near to the transmitter.

To illustrate this point, let us take an example of a simple VLC network where two transmitters are

located at T1 = (2.5, 0) and T2 = (−2.5, 0) in an 8 × 8 m2 square room. The center of the room is located

at the origin of our coordinate system. Figs. 2(a) and (b) show the average SNR of EDs according to a

different set of beamformer weights when the UE is located at (0, 1) and (2, 1), respectively. The required

SNR of the UE is ρU = 40 dB. In Fig. 2(a), since the UE is located at the exact middle point of the two

transmitters, the weight values for the two transmitters that minimize the average SNR of the EDs are



Fig. 3. The room configuration for LED selection.

equivalent, i.e., w
∗ ≈ (0.3, 0.3). However, when the UE is nearer to T1 as in Fig. 2(b), we can see that

the optimal beamformer resembles LED selection. More specifically, w
∗ ≈ (0.24, 0.02) in this example.

We can thus surmise that secrecy performance will be similar for optimal beamforming and transmitter

selection when the UE is located close to a transmitter5.

With regard to practicalities of implementation, the complexity of the beamforming scheme can be

reasonably high due to the use of multiple transmitters. Even though we can efficiently find an eigenvector

related to the maximum eigenvalue by using the power method or the Rayleigh quotient method, the

computational complexity still can be significant since complexity grows with N2. Additionally, it might

not be practical to accurately estimate the intensity function that describes ED locations. These arguments

motivate further investigation of the performance of LED selection in the context of VLC systems with

randomly distributed EDs.

IV. LED SELECTION

We turn our attention to the simple, but suboptimal method of LED selection. In the LED selection

scheme, the nearest transmitter to the UE is selected to transmit the information bearing signal. In this

section, we first investigate the SNR and capacity performance metrics with LED selection. We then

analyze the SOP. Closed-form expressions for the upper and lower bounds of the SOP with the LED

selection are derived.

The room configuration in Fig. 3 is used for our analysis, where multiple transmitters are attached to

the ceiling such that the coverage area is identical (but translated in the work plane) for each of them.

The parameters â and k̂ in the figure denote the half length of the rectangular coverage area’s width and

5We will further explore the secrecy performance for both schemes later in Section V.



the ratio of length to width of the coverage area. We assume that the UE can be located only within the

coverage area6, i.e., the shaded area, while multiple EDs can (randomly) position themselves anywhere

in the entire area of the room. By defining the number of rows and columns of the LED arrangement

as Nr and Nc, respectively, the relations â = (L/2 − g)/Nr and k̂ = (W/2 − g)/(Ncâ) can be deduced,

where g denotes the thickness of the edge zone. The UE and the EDs are assumed to be uniformly

distributed according to homogeneous BPP (with one point) and a homogeneous PPP ΦE with intensity

λE , respectively.

A. SNR and Capacity Analysis

Since only the nearest transmitter is selected to transmit a signal to the UE, the vector representing

LED selection ws can be described by

ws = ω ei (29)

where ω is the weight of the selected transmitter and ei is the ith column of the identity matrix

corresponding to the maximum diagonal element of A, i.e., the ith transmitter is the nearest. Therefore,

the average SNR of the EDs when LED selection is employed is given by

γE = ϕw
T

s Bws. (30)

If there exists a required SNR for the UE (ρU , as in (15)), ω should satisfy ω2 A2
i,i

≥ ρU , where Ai,i

denotes the maximum diagonal element of A. Similarly, the SNR of the UE can be described by

γU = ϕw
T

s Aws. (31)

Also, if there exists a constraint on the average SNR of the EDs (ρE , as in (22)), ω should satisfy

ω2B
2

i,i ≤ ρE , where Bi,i is the ith diagonal element of B.

Moreover, the average upper bound on the capacity of the ED channel with LED selection can be

written as

C
upper

E = E

[
1

2
log

(
1 + ϕω2h2

i,Ee

)]
(32)

6One may think of this restriction as a policy instigated to guarantee the security of UE, through the restriction of the UE to a “safety

zone”. On the other hand, it is fairly easy to see that this model reflects many realistic scenarios.



FγU (y) =




1 −
(
K4

(
(y/ζ )

−1
m+3 − Z2

)
+ K3

(
(y/ζ )

−1
m+3 − Z2

)3/2
)
/(4k̂ â2) for y1 < y ≤ y2

1 −
(
K2

(
(y/ζ )

−1
m+3 − Z2

)
+ K1

(
(y/ζ )

−1
m+3 − Z2

)3/2
)
/(4k̂ â2) for y2 < y ≤ y3

1 − π
(
(y/ζ )

−1
m+3 − Z2

)
/(4k̂ â2) for y3 < y ≤ y4

(34)

fγU (y) =




(y/ζ )−
1

m+3

(
3K3

√
(y/ζ )−

1
m+3 − Z2

+ 2K4

)
/(8â2 k̂(m + 3)y) for y1 < y ≤ y2

(y/ζ )−
1

m+3

(
3K1

√
(y/ζ )−

1
m+3 − Z2

+ 2K2

)
/(8â2 k̂(m + 3)y) for y2 < y ≤ y3

π (y/ζ )−
1

m+3 /(4â2 k̂(m + 3)y) for y3 < y ≤ y4

(35)

where hi,Ee
is the channel gain from the ith (i.e., the optimal) transmitter to eavesdropper Ee. Also, the

lower bound on the capacity of the UE is given by

Clower
U =

1

2
log

(
1 +

2ϕw
T
s Aws

πe

)
. (33)

B. Secrecy Outage Probability

Here, we calculate upper and lower bounds on the SOP for the LED selection scheme. To this end,

we necessarily must know something about the SNR statistics for the UE and the nearest ED, hence, the

worst case ED. Thus, we begin by providing results for the probability density function (PDF) and the

cumulative distribution function (CDF) for these random variables. To simplify the calculation of the SOP,

we assume the weight of the selected transmitter’s beamforming vector is always one. This assumption is

justified since, as we will see, the beamforming weight itself does not significantly affect the SOP when

LED selection is adopted.

Lemma 1. The CDF and PDF of the received UE SNR γU are given by (34) and (35) at the top of this

page, respectively, where ζ = (α2I2
DC

K2)/σ2, and yi and Ki for i ∈ {1, 2, 3, 4} are given by



y1 = ζ (â2(1 + k̂2) + Z2)−3−m,

y2 = ζ (â2 k̂2
+ Z2)−3−m,

y3 = ζ (â2
+ Z2)−3−m,

y4 = ζZ−2(3+m)

(36)

and

K1 =

(
2
√

k̂2 − 1/k̂2 − 2 arccos
(

1

k̂

))
a(k̂ − 1)

,

K2 = π − âK1,

K3 = 2

(
arccos

(
1

k̂

)
− arccos

(
1√

k̂2
+ 1

)
− arccos

(
k̂√

k̂2
+ 1

)

+

2k̂

k̂2
+ 1

−
√

k̂2 − 1

k̂2

)
/
(
â(

√
k̂2
+ 1 − k̂)

)
,

K4 = π − 2

(
arccos

(
1

k̂

)
−

√
k̂2 − 1

k̂2

)
− k̂ âK3.

(37)

Proof. See Appendix A. �

Lemma 2. The CDF and PDF of the received SNR for the nearest ED relative to the selected transmitter

γ∗
E

are given by

Fγ∗
E
(x) = e

λEπ

(
Z2−

(
x
ζ

)− 1
m+3

)
, (38a)

fγ∗
E
(x) =

λEπ

(
x
ζ

)− 1
m+3

x(m + 3) e
λEπ

((
x
ζ

)− 1
m+3 −Z2

)
(38b)

for 0 ≤ x ≤ ζZ−2(m+3).

Proof. See Appendix B. �

According to (10), the upper and lower bounds of the SOP can be written as

P
upper

SO
= P(Clower

s ≤ Cth)

= P

(
6γU + 3πe

πeγ∗
E
+ 3πe

≤ 22Cth

)

= P(γU ≤ aγ∗E + 3a − πe/2) (39)



and

Plower
SO = P(Cupper

s ≤ Cth)

= P

(
γU + 1

γ∗
E
+ 1

≤ 22Cth

)

= P(γU ≤ bγ∗E + b − 1) (40)

respectively, where a = πe22Cth/6 and b = 22Cth . Thus, the upper and lower bounds on the SOP can be

calculated by appropriately integrating over the PDFs of γU and γ∗
E

.

Firstly, the upper bound on the SOP can be calculated to yield

P
upper

SO
=

∫
y4

y1

∫ y4−3a+πe/2
a

y−3a+πe/2
a

fγ∗
E
(x) fγU (y) dx dy

︸                                         ︷︷                                         ︸
U1

+

∫
y4

y1

∫
y4

y4−3a+πe/2
a

fγ∗
E
(x) fγU (y) dx dy

︸                                       ︷︷                                       ︸
U2

.
(41)

Here, we ignore the (−3a + πe/2)/a term in the integration limits, because it is small enough7 not to

meaningfully affect our calculation. Thus, we calculate the first term U1 to yield (42) at the top of the

next page. Then, the closed-form expressions for J1, J2, and J3 in (42) can be calculated according to

(43a), (43b), and (43c). Finally, the second term U2 in (41) can be written as

U2 ≈ Fγ∗
E
(y4) − Fγ∗

E

(
y4

a

)
. (44)

The lower bound on the SOP can be calculated to yield

Plower
SO =

∫
y4

y1

∫ y4−b+1

b

y−b+1
b

fγ∗
E
(x) fγU (y) dx dy +

∫
y4

y1

∫
y4

y4−b+1

b

fγ∗
E
(x) fγU (y) dx dy. (45)

Here, we ignore the (−b+1)/b term in a similar manner as in (41). Therefore, since (45) has an identical

expression to (41), we have the closed-form of the lower bound on SOP by simply changing the variable

a to b in the closed-form expression of the upper bound.

From the closed-form expressions for the upper and lower bounds on the SOP, we note that the SOP is

inversely proportional to 4â2 k̂ (see (43)), which is the coverage area of each transmitter. In other words, if

the room size is fixed, then the SOP can be decreased by increasing the number of transmitters to reduce

the coverage area.

7The absolute value of this term is less than 3 for Cth = 1 bit/Hz/s, while y1/a is larger than 5 × 103 with the parameters used in

Section V.
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(42)

TABLE II. Simulation Parameters

Room configuration

Length (L) × Width (W) 10 × 10 m2

Height from the work plane (Z) 3 m

Number of light fixtures 4

Number of LEDs per fixture 9

LED electrical and optical characteristics

Average optical power per LED 8 W

Optical power / current η 5

Nominal half-intensity angle Φ1/2 60◦

Modulation index α 0.5

Optical receiver characteristics

Photodetector’s responsivity 0.54 mA/mW

Photodetector’s physical area APD 1 cm2

Lens refractive index κ 1.5

Noise power σ2 −98.35 dBm

V. NUMERICAL RESULTS

In this section, we provide numerical results to verify our analysis. The room configuration and

simulation parameters are provided in Table II. We use the Cartesian coordinate system to identify

positions of transmitters and receivers, where the center of the room is located at the origin. We consider

a VLC network where four transmitters are symmetrically located, i.e., their locations can be described

by (±d0,±d0). A homogeneous PPP describes the ED locations.
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A. Signal-to-Noise Ratio

Figs. 4 and 5 show the comparison of the average SNR of EDs by using the beamforming and LED

selection schemes for the different locations of transmitters, where λE = 0.05 and ρU = 20 dB. Since

four transmitters are symmetrically located, we only show the results for the UE locations within the

first quadrant. The bottom and top surfaces denote the average SNR of an ED as a function of the

UE location when using the beamforming and LED selection schemes, respectively. Firstly, when four

transmitters are located closely to each other in the center area of the room as in Fig. 4, the transmitters

emit a signal with high power to the UE, which is located in the outer area to satisfy ρU . Due to the

broadcasting characteristic of light, the EDs can eavesdrop the signal easily; thus their average SNR also

increases as shown in Fig. 4(a). In this case, the EDs can achieve a higher average SNR than ρU if the

UE is away from the transmitter. On the contrary, when the distance between the transmitter and the

UE decreases, one can see that the average SNR of the EDs also decreases because of the decrease in

transmitted power. Furthermore, in Fig. 4(b), it is shown that the difference in the average SNR of EDs

between optimal beamforming and LED selection is small when the UE is located near to the transmitter.

However, beamforming can outperform LED selection when the UE is located in the outer area. On the
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Fig. 4. The average SNR of EDs as a function of the UE location. The bottom surface denotes the result for the optimal

beamformer and the top one denotes LED selection. Four transmitters are located at (±1,±1). The numerical result for the

locations of the UE within the 1st quadrant are given. The intensity of the ED process is λE = 0.05 and the required SNR of

the UE is ρU = 20 dB.

5

5 5

10

4 4

3 3

y x

15

2 2

A
ve

ra
ge

 S
N

R
 o

f 
E

D
s 

(d
B

)

20

1 1

0 0

25

30

10

12

14

16

18

20

22

24

26

28

(a) The average SNR of EDs

0

5 5

4 4

1

3 3

y x

2

2 2

T
he

 d
if

fe
re

nc
e 

of
 S

N
R

 (
dB

)

1 1

3

0 0

4

5

0.5

1

1.5

2

2.5

3

3.5

4

(b) The difference in the average SNRs for EDs

Fig. 5. The average SNR of EDs as a function of the UE location. The bottom surface denotes the result for the optimal

beamformer and the top one denotes LED selection. Four transmitters are located at (±3,±3). The numerical result for the

locations of the UE within the 1st quadrant are given. The intensity of the ED process is λE = 0.05 and the required SNR of

the UE is ρU = 20 dB.

other hand, we see that when the four transmitters are adequately separated from each other as in Fig. 5,

both beamforming and LED selection exploit the spatial advantage to decrease the average SNR of EDs.

The average SNR of EDs is less than ρU for most of the area except for around the center point of the

transmitters.
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Fig. 7. The average SNR of the UE as a function of the UE location. The top surface denotes the result for the optimal

beamformer and the bottom one denotes LED selection. Four transmitters are located at (±3,±3). The numerical results for

the locations of the UE within the 1st quadrant are given. The intensity of the ED process is λE = 0.05 and the constraint on

the average SNR of EDs is ρE = 20 dB.

Figs. 6 and 7 show a comparison of the SNR of the UE using beamforming and LED selection schemes

for different locations of transmitters, where λE = 0.05 and ρE = 20 dB. The top and bottom surfaces

denote the SNR of the UE as a function of the UE location when using beamforming and LED selection,

respectively. Firstly, when the transmitters are located closely together as in Fig. 6, the SNR of the UE
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Fig. 8. The upper and lower bounds on the SOP with LED selection for different Cth according to different intensities of EDs

λE , where N = 4 × 4, g = 1 m, â = 1 m, k̂ = 1.25, L = 10 m, and W = 12 m.

can be high when the UE is located near to the transmitter as shown in Fig. 6(a). However, when the

UE moves away from the transmitter, it is difficult for the UE to achieve an SNR higher than ρE . This is

because the transmitter should convey the signal with high enough power to reach the UE, which enables

the EDs to overhear the signal easily. In addition, we see from Fig. 6(b) that the SNR difference for

beamforming and selection is not significant for the UE located near the transmitter, but it increases as

the distance between the transmitter and the UE grows. In contrast, when the transmitters are sufficiently

separated as in Fig. 7, we note that the UE can achieve a higher SNR than ρE over almost the entire

area of the room except for at the center point of the room as shown in Fig. 7(a). This can be possible

by selectively transmitting a signal to the UE without excessively increasing the signal power of other

transmitters, thus exploiting the spatial benefit. Similarly, from Fig. 7(b), we note that the SNR difference

for the UE is not significant when the UE is close to the transmitter.

These results show that optimal beamforming effectively transmits a signal to the UE trying not to

expose the signal to EDs when the transmitters are adequately separated. Moreover, it is shown that

beamforming has better performance than LED selection in all cases. However, when the transmitters are

adequately separated, and the UE is near to the transmitters, it is shown that the difference in secrecy

performance between the two schemes is small. Therefore, considering the computational complexity and

feasibility of optimal beamforming, we conclude that LED selection may be an attractive option in some

scenarios.
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B. Secrecy Outage Probability

Fig. 8 shows the upper and lower bounds on the SOP with LED selection for different intensities of

EDs and different values of Cth, where N = 4×4, g = 1 m, â = 1 m, k̂ = 1.25, L = 10 m, and W = 12 m.

Both simulated results and theoretical results are presented, which are shown to perfectly match. As can be

seen from the figure, both the SOP upper and lower bounds increase as λE and Cth increase, as expected.

Fig. 9 shows a comparison of the upper bound on SOP between beamforming and LED selection for

different numbers of transmitters and different values of λE , where Cth = 0.5 bit/Hz/s, g = 1 m, L = 10 m,

and W = 12 m. It can be seen that as the number of transmitters increases, the upper bound on SOP

decreases. Furthermore, when the number of transmitters is small, i.e., N = 2 × 2, the difference in the

SOP for beamforming and LED selection is small. However, when N is large, we can see that the upper

bound on the SOP with beamforming is less than for LED selection. Since a large number of transmitters

can exploit the excessive spatial degrees of freedom to steer the signal toward the UE, the transmitters can

significantly increase the SNR of the UE while suppressing the signal everywhere else inside the room.

However, we need to consider that finding the maximum eigenvalue and its associated eigenvector with a

large number of transmitters requires high computation complexity, which increases proportionally to N2.



Fig. 10. An example of D̂(d) for â = 4 m, k̂ = 1.5. Note âk̂ = 6 m and â
√

k̂2
+ 1 = 7.21 m. âk̂ = 6 m and â

√
k̂2
+ 1 = 7.21 m

VI. CONCLUSION

In this paper, we studied optimal MISO beamforming schemes and a suboptimal LED selection

scheme to enhance the secrecy performance in VLC systems when multiple EDs are randomly distributed

throughout the communication region. By using the MISO beamforming scheme, we can minimize the

average SNR of EDs (or indeed the worst case SNR of EDs) and maximize the SNR of the UE with

only statistical information about ED locations. The LED selection scheme is not superior to the optimal

beamformer in the respect of secrecy performance; however, when the UE is located near to one of the

transmitters, LED selection provides a good practical solution to enhancing secrecy performance without

high computational complexity. Based on LED selection, closed-form approximations for the upper and

lower bounds on the SOP were derived. Our results provide useful insight and analytic tools that can be

used to enhance the secrecy in VLC systems and give a solid basis for further study.

APPENDIX A

PROOF OF THE LEMMA 1

The UE is randomly located according to a homogeneous BPP in the shaded area. Therefore, the

distance in the work plane between the transmitter and the UE dU cannot exceed â
√

k̂2
+ 1. Thus, the

CDF of dU is given by

FdU (d) =
A(d)
4k̂ â2

for 0 < d ≤ â
√

k̂2
+ 1 (46)



A(d) =




πd2 for 0 < d ≤ â

πd2 − 2

(
d2 arccos

(
â

d

)
− â

√
d2 − â2

)
for â < d ≤ k̂ â

πd2 − 2

(
d2 arccos

(
â

d

)
− â

√
d2 − â2

)
−2

(
d2 arccos

(
âk̂

d

)
− âk̂

√
d2 − (âk̂)2

)
for k̂ â < d ≤ â

√
k̂2
+ 1

(47)

where A(d) denotes the area of the circle bounded by the rectangle as shown in Fig. 3. A(d) is described

as (47) at the top of the this page.

Thus, A(d) can be described as A(d) = D(d) · d2, where D(d) can be approximated by applying a

piecewise approximation with a linear function of d, i.e.,

D̂(d) =




π for 0 < d ≤ â

K1d + K2 for â < d ≤ k̂ â

K3d + K4 for k̂ â < d ≤ â
√

k̂2
+ 1.

(48)

To find the optimal Ki for i ∈ {1, 2, 3, 4}, we evaluate three coordinates D(â), D(â k̂), and D(â
√

k̂2
+ 1)

as shown in Fig. 10. Using these values, we can easily calculate the approximation constants as shown

in (37).

Finally, from (3) and (5a), the SNR of the UE can be described as a function of d according to

γU(d) =
α2I2

DC
K2(d2

+ Z2)−(m+3)

σ2
= ζ (d2

+ Z2)−(m+3) (49)

where ζ = (α2I2
DC

K2)/σ2. Thus, the CDF and PDF of γU can be written as (34) and (35), respectively.

APPENDIX B

PROOF OF THE LEMMA 2

Since the EDs are randomly distributed according to a homogeneous PPP ΦE with intensity λE on the

work plane, the PDF of the minimum distance in the work plane between the selected transmitter and

the nearest ED, i.e., d∗
E
= min

e∈ΦE

dEe
, where dEe

is the distance in the work plane between the selected

transmitter and Ee, is given by

Fd∗
E
(d) = 1 − exp(−λEπd2) (50)



for 0 ≤ d ≤ ∞. This follows from contact distance distribution to the nearest point of the PPP [23]. Here,

the unbounded upper limit implies that the number of EDs can be zero. The PDF of d∗
E

can be calculated

as fd∗
E
(d) = 2λEπd exp(−λEπd2) for 0 ≤ d ≤ ∞. Therefore, since γ∗

E
also has the same relation with d∗

E

as (49), the PDF and CDF of γ∗
E

can be calculated as below.

fγ∗
E
(x) =

λEπ

(
x
ζ

)− 1
m+3

x(m + 3) e
−λEπ

(
−Z2
+

(
x
ζ

)− 1
m+3

)
, (51)

Fγ∗
E
(x) =

∫ x

0

fγ∗
E
(u) du

=

∫ x

0

λEπ

(
u
ζ

)− 1
m+3

u(m + 3) e
−λE π

(
−Z2
+

(
u
ζ

)− 1
m+3

)
du

=

∫ ∞
(
x
ζ

)− 1
m+3

λEπe−λEπ(v−Z2) dv

= e
λEπ

(
Z2−

(
x
ζ

)− 1
m+3

)
(52)

for 0 ≤ x ≤ ζZ−2(m+3), respectively, where v =

(
u
ζ

)− 1
m+3

.
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