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Abstract

Caching popular files at user equipments (UEs) provides an effective way to alleviate the burden

of the backhaul networks. Generally, popularity-based caching is not a system-wide optimal strategy,

especially for user mobility scenarios. Motivated by this observation, we consider optimal caching with

presence of mobility. A cost-optimal caching problem (COCP) for device-to-device (D2D) networks

is modelled, in which the impact of user mobility, cache size, and total number of encoded segments

are all accounted for. Compared with the related studies, our investigation guarantees that the collected

segments are non-overlapping, takes into account the cost of downloading from the network, and provides

a rigorous problem complexity analysis. The hardness of the problem is proved via a reduction from

the satisfiability problem. Next, a lower-bounding function of the objective function is derived. By the

function, an approximation of COCP (ACOCP) achieving linearization is obtained, which features two

advantages. First, the ACOCP approach can use an off-the-shelf integer linear programming algorithm to

obtain the global optimal solution, and it can effectively deliver solutions for small-scale and medium-

scale system scenarios. Second, and more importantly, based on the ACOCP approach, one can derive

the lower bound of global optimum of COCP, thus enabling performance benchmarking of any sub-

optimal algorithm. To tackle large scenarios with low complexity, we first prove that the optimal caching

placement of one user, giving other users’ caching placements, can be derived in polynomial time. Then,

based on this proof, a mobility aware user-by-user (MAUU) algorithm is developed. Simulation results

verify the effectivenesses of the two approaches by comparing them to the lower bound of global

optimum and conventional caching algorithms.

The paper is a significant extension of a previous work submitted to IEEE Globecom [1].
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I. INTRODUCTION

A. Motivations

With rapid emergence of new services and application scenarios, such as social networks (e.g.,

Twitter and Facebook), multimedia contents (e.g., YouTube), and Internet of things (IoT) etc.,

explosive growth in mobile data traffic and massive device connectivity are becoming two main

challenges for existing cellular networks. Hyper-dense small cell networks have been recognized

as a promising technology to achieve higher network capacity in fifth-generation (5G) wireless

networks [2], [3]. However, due to a large number of connections between the base stations

(BSs) and core network (CN), the backhaul networks will face a heavy burden [4], calling for

research from both the academia and industry. Caching is a promising technology to alleviate

the burden of the backhaul networks by storing the required files or contents in advance at the

edge devices [5]–[7], e.g., small cells and user equipments (UEs).

With caching, users can obtain their requested files from the edge devices so as to improve

the network performance in terms of energy efficiency and file downloaded delay, and at the

same time reduce the burden of backhaul [8]. The caching performance depends heavily on

the cache placement strategy. Although the conventional strategy of caching popular files can

improve the probability that the users will find the files of interest in their local caches, it is not

a system-wide optimal solution, especially for user mobility scenarios. Therefore, it is necessary

to revisit the caching problem with user mobility and investigate the following questions:

• How to make the best use of user mobility to design approaches for optimizing content

caching?

• How much will mobility help?

To address the two questions, we consider caching at mobile users and investigate cost-optimal

caching for device-to-device (D2D) networks. More specifically, the inter-contact model is used

to describe the mobility pattern of mobile users. The mobile users can collect segments of files

when they meet each other. If the total number of collected data segments is not enough to recover

the requested content within a given period, the user has to download additional segments from

the network.



3

B. Existing Studies

A number studies have investigated caching placement optimization. The existing studies can

be categorized into two groups.

The investigations in [9]–[15] considered caching at small cells. The works in [9]–[13] jointly

considered the caching and multicast technologies to optimize system performance. In [9],

the work investigated a multicast-aware caching problem. The hardness of this problem was

proved, and an algorithm with approximation ratio was proposed. In [10], the study developed

a random caching design with multicasting in a large-scale cache-enabled wireless network.

An iterative algorithm was proposed to derive a local optimal solution. In order to reduce the

computation complexity, an asymptotical optimal design was obtained. Based on [10], [11]

further investigated caching and multicast design with backhaul constraints in heterogeneous

networks (HetNets). In [12], the work considered a scenario with content-centric BS clustering

and multicast beamforming. The authors target optimizing the weighted sum of backhaul cost

and transmit power. In [13], a stochastic content multicast problem, originated from a Markov

decision process, was formulated and a low-complexity algorithm was proposed. An assumption

in [12] and [13] is that the content placement was given. Relaxing the assumption, [14] optimized

the caching placement and proposed a mesh adaptive direct search algorithm.

Compared with caching at the small cells, the investigations in [16]–[22] considered caching at

the UEs, e.g., D2D caching networks. The studies in [16]–[19] analyzed and investigated caching

problems by using stochastic geometry tools. In [16], the study investigated the optimal caching

placements to maximize the average successful receptions’ density. In [17], the performance

between caching at the small cells and UEs were analyzed and compared. Numerical results

manifested that the performance varies by the user density and the content popularity distribution.

In [18] and [19], the works investigated optimization problems with respect to probabilistic

caching placement and average caching failure probability for each content. In [20], the study

addressed a two-tier caching network in which a subset of UEs and small cells have cache

capability. In [21] and [22], the authors proposed an accurate simulation model taking into

account a holistic system design and investigated information theoretic bounds for D2D caching

networks, respectively.

Although the above studies focused on the cache placement design to optimize network

performance, they neglected the impact of user mobility on caching performance. This issue was
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recognized in [23]. In [24] and [25], the authors investigated the caching placement problem

taking into account user mobility in HetNets, with the objective of minimizing the probability

that the macrocell has to serve a request. The intractability of this problem was proved, and the

problem is then reformulated using mixed integer programming (MIP). Moreover, the authors

derived an upper bound for the objective function and proposed a distributed algorithm. In [26]

and [27], the studies investigated a mobility and popularity-based caching strategy (MPCS) and

a seamless radio access network cache handover framework based on a mobility prediction

algorithm (MPA), respectively. In [28], assuming that the trajectories of mobile users are known

in advance, the authors investigated mobility-aware content caching and proposed an algorithm

with approximation ratio. In [29], the work optimized caching placement to maximize the data

offloading ratio. A dynamic programming algorithm was proposed to obtain the optimal solution

in small-scale scenarios. Since the algorithm complexity increases exponentially, the authors

first proved that the objective function is a monotone submodular function, and then proposed

a greedy algorithm which can achieve an 1/2 approximation.

The investigations in [25] and [29] are the most related works to our study. However, the system

setup in [25] addresses caching at base stations, which is different from our study where we

investigate caching at mobile users with mobility. In comparison to [29], our problem formulation

takes into account the cost of downloading from network and guarantees that the collected

segments are non-overlapping, along with giving a rigorous problem complexity analysis. In

addition, our computational approach provides performance benchmarking of any sub-optimal

algorithm for up to medium-size system scenarios.

C. Our Contributions

We investigate the cost-optimal caching problem with user mobility for D2D networks. Our

objective is to optimize caching placement so as to minimize the expected cost of obtaining

files of interest by collecting file segments. The main contributions are summarized as follows.

First, a cost-optimal caching problem (COCP) is modelled, taking into account the impact

of user mobility, cache size, and the total number of encoded segments. Accounting for this

number is important in order to ensure no duplicates in the collected segments. Second, the

hardness of the problem is proved. To the best of our knowledge, this is the first mathematical

proof for the complexity of this type of problems. The proof is based on a reduction from the

3-satisfiability (3-SAT) problem [30]. Moreover, for problem-solving, due to the nonlinearity



5

and high complexity of the objective function in COCP, a linear lower-bounding function is

derived, yielding an approximation of COCP (ACOCP). The ACOCP approach brings two

advantages. On one hand, it enables the global optimal solution by using an off-the-shelf

integer linear programming algorithm that can deliver solutions for small-scale and medium-scale

system scenarios effectively. Second, and more importantly, it serves the purpose of performance

benchmarking of any sub-optimal algorithm. To be specific, by this approach, the lower bound

of global optimum of COCP can be obtained. We are hence able to gauge the deviation from

optimum for any sub-optimal algorithm, whereas pure heuristics algorithm cannot be used for

such a purpose. To tackle large-scale scenarios, it is proved that the optimal caching placement

of one user, giving other users’ caching placements, can be derived in polynomial time. Then,

based on this proof, a mobility aware user-by-user (MAUU) algorithm is developed. Finally,

Simulations are conducted to verify the effectivenesses of the ACOCP approach and the MAUU

algorithm by comparing them to the lower bound of global optimum and conventional caching

algorithms. Simulation results manifest that solving ACOCP leads to an effective approximation

scheme – the solution of ACOCP does not deviate more than 4.4% from the global optimum of

COCP. The true performance figure is likely to be better because the performance evaluation is

derived using the lower bounds. For the MAUU algorithm, the gap value to global optimum is

less than 9%. Thus, the algorithm achieves excellent balance between complexity and accuracy. In

addition, the proposed algorithms also significantly outperform conventional caching algorithms,

especially for large-scale scenarios.

The remainder of this paper is organized as follows. Section II introduces the system sce-

nario, assumptions for caching placement, and cost model. Section III first derives the problem

formulation, and then provides a rigorous complexity analysis. Section IV presents the lower

bound approximation approach of COCP. Section V develops an fast yet effective mobility aware

user-by-user algorithm. Performance evaluation is presented in Section VI. Finally, Section VII

concludes this paper.

II. SYSTEM MODEL

A. System Scenario

There are a total of U mobile users in a network, whose index set is represented by U =

{1, 2, . . . , U}. Each user i, i ∈ U , is equipped with a cache of size Ci. Fig. 1 shows the system
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Figure 1. System scenario.

scenario in which mobile users are able to collect the content when they meet each other, e.g.,

user 1 and user 2.

The inter-contact model has been widely used to describe the mobility pattern of mobile users

[31], [32]. In this model, the mobile users can communicate with each other when they meet.

The contact process between any two mobile users is characterized by points along a timeline.

Each point represents a time that the two users meet, and the inter-contact time represents

the time between two consecutive points. The inter-contact time for any two users follows

an exponential distribution. Moreover, it is assumed that the processes for the user pairs are

independent. Hereafter, the term contact is used to refer to the event that two users meet each

other.

B. Caching Placement

There are a total of F files, whose index set is represented by F = {1, 2, . . . , F}. Each file

f , f ∈ F , is encoded into Sf
max segments through a coding technique [25], [33]. File f can

be recovered by collecting at least Sf
rec distinct segments. To describe the caching solution, we

define a caching placement vector x:

x = {xfi ∈ N, f ∈ F , i ∈ U},
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where xfi represents the number of segments of file f stored at the user i. Denote by Pfi the

probability that user i requests file f , with
∑F

f=1 Pfi = 1. When user i requests file f , it will

collect the segments of the file from its own cache and from the encountered users through D2D

communications. The latter is subject to a time period TD. For example, in Fig. 1, user 1 will

collect one segment of file 4 from user 2. At the same time, user 2 will collect one segment of

file 1 from user 1. But user 4 cannot collect the content of file 3 from user 3, because the latter

does not store any segment of file 3.

Each user will check the total number of collected segments of the requested file at the end of

TD. If the total number of collected segments of file f is at least Sf
rec, user i can recover this file.

Otherwise, user i will have to download additional segments from the network in order to reach

Sf
rec segments, e.g., user 5 in the figure. The file recovering process considers only segments that

are distinct from each other in the cache. For example, user 4 stores two distinct segments of

file 2.

C. Cost Model

Up to B segments can be collected by each user when two users meet. Denote by Mij the

number of contacts for users i and j. Here, Mij follows a Poisson distribution with mean λijTD,

where λij represents the average number of contacts per unit time. The number of segments

of file f collected by user i from user j within TD, denoted by Sfij , is min(BMij , xfj). The

number of segments of file f collected by user i from itself and all the other users via contacts

within TD, denoted by Sfi, is given as

Sfi =
∑

j∈U ,j 6=i

min(BMij , xfj) + xfi.

If Sfi < Sf
rec, user i will download Sf

rec − Sfi segments from the network. This entity for file f

and user i, denoted by SN
fi , is thus max(Sf

rec−Sfi, 0). Denote by δD and δN the costs of obtaining

one segment from a user and the network, respectively. The cost for user i to recover file f ,

denoted by ∆fi, is (Sfi − xfi)δD + SN
fiδN. Taking into account the distribution of file request

probabilities, the cost for user i to recover its requested files, denoted by ∆i, is
∑

f∈F

Pfi∆fi. Thus,

the expected average cost per user can be expressed as

∆ =E{
1

U

∑

i∈U

∆i}

=E{
1

U

∑

i∈U

∑

f∈F

Pfi[(Sfi − xfi)δD +max(Sf
rec − Sfi, 0)δN]}.
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III. PROBLEM FORMULATION AND COMPLEXITY ANALYSIS

A. Problem Formulation

Our problem is to minimize ∆ by optimizing x. Thus, the cost-optimal caching problem

(COCP) can be formulated as

min
x

E{
1

U

∑

i∈U

∑

f∈F

Pfi[(Sfi − xfi)δD +max(Sf
rec − Sfi, 0)δN]} (1a)

s.t.
∑

f∈F

xfi ≤ Ci, i ∈ U (1b)

∑

i∈U

xfi ≤ Sf
max, f ∈ F (1c)

xfi ∈ N, i ∈ U , f ∈ F (1d)

Eq. (1b) requires the total number of cached segments to adhere to cache capacity limit. By

Eq. (1c), the total number of segments of a file, cached by all users, does not exceed the number

of encoded segments. This constraint guarantees that the collected segments of any file will be

distinct from each other.

B. Complexity Analysis

Theorem 1. COCP is NP-hard.

Proof: We adopt a polynomial-time reduction from the 3-satisfiability (3-SAT) problem that

is NP-complete. Consider any 3-SAT instance with m Boolean variables z1, z2, . . . , zm, and

n clauses. A variable or its negation is called a literal. Denote by ẑi the negation of zi, i =

1, 2, . . . , m. Each clause consists of a disjunction of exactly three different literals, e.g., ẑ1∨z2∨

z3. The 3-SAT problem amounts to determining whether or not there exists an assignment of

true/false values to the variables, such that all clauses are satisfied (i.e., at least one literal has

value true in every clause). It is assumed that no clause contains both a variable and its negation;

such clauses become always satisfied, thus they can be eliminated by preprocessing. Moreover,

a literal appears in at least one clause as otherwise the corresponding value assignment is trivial.

For the same reason, a literal is present in at most n− 1 clauses.

We construct a reduction from the 3-SAT instance as follows. The number of users is U =

2m+ n, referred to as literal and clause users, respectively, i.e., U = {1, 2, . . . , 2m+ n}. There
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are two files a and b, i.e., F = {a, b}, each of them has m segments, i.e., Sa
max = Sb

max = m. File

a or b can be recovered by collecting one segment, i.e., Sa
rec = Sb

rec = 1. The cache size of literal

and clause users are one (Ci = 1, i = 1, 2, . . . , 2m) and zero (Cj = 0, j = 2m+1, . . . , 2m+n),

respectively.

The literal users are formed into m pairs. Denote by ǫ a small positive number. We set

δN > 3n + nǫ(m−3)
(1−ǫ)m−2 δD, and λij = ln(1

ǫ
) for users i and j in each of the m pairs. Then these

users meet at least once with probability 1 − ǫ. We set λij = ln 1
1−ǫ

for the other literal users

where i and j are from different pairs, so that these users meet at least once with probability

ǫ. Each literal user is interested in downloading both files a and b with equal probability, i.e.,

Pai = Pbi = 1/2, i = 1, . . . , 2m. First, suppose one of the users in each pair caches file a, and

the other caches file b, or vice versa. It means that for any pair, the caching content is either

ab or ba. This corresponds to the Boolean value assignment in the original 3-SAT instance. In

such a case, the expected cost that both users of a pair recover both files a and b, denoted by

∆1, is given as

∆1 = (1− ǫ)δD + 2ǫ(m− 1)δD + ǫ(1− ǫ)m−1δN .

Consequently, the total cost for all the literal users, denoted by ∆l
1, is m∆1.

Each clause user is interested in downloading file a with probability one, i.e., Pai = 1,

i = 2m+1, . . . , 2m+n. If users i and j are clause users, λij can be anything as their all have a

cache size of zero. For a clause user i, if j is one of the three literal users in the corresponding

clause in the 3-SAT instance, we set λij = ln(1
ǫ
). Otherwise, we set λij = ln( 1

1−ǫ
). If at least

one of the three literal users caches file a, then the expected cost for a clause user is at most

3(1 − ǫ)δD + ǫ(m − 3)δD + ǫ3(1 − ǫ)m−3δN. The corresponding values for the n clause users

together, denoted by ∆c
1, is n(3(1− ǫ)δD + ǫ(m− 3)δD + ǫ3(1− ǫ)m−3δN).

By the construction above, which is polynomial, the cost is no more than ∆l
1 + ∆c

1 if the

3-SAT instance is satisfiable. Otherwise, at least one clause user has virtually no other option,

than downloading from the network and the expected total cost is at least m∆1 + (n− 1)∆′ +

ǫ(m− 3)δD + (1 − ǫ)m−3δN > ∆l
1 +∆c

1, where ∆′ = (1− ǫ)δD + ǫ(m− 3)δD + ǫ(1− ǫ)m−3δN.

Thus, whether or not there exists a caching placement strategy with a total expected cost of no

more than ∆l
1 +∆c

1 gives the correct answer to 3-SAT.

Now, let’s consider the case where some of the literal user pairs cache the same file. If there is

one pair caching file a, i.e., the caching content is aa, another pair cache bb, and the remaining
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pairs cache either ab or ba. The total literal users’ cost, denoted by ∆l
2, is given as

∆l
2 = 2((1− ǫ)δD + 2ǫδD + 2(m− 2)ǫδD + (1− ǫ)mδN) + (m− 2)∆1.

If all the clause users can obtain file a from the literal users, the total clause users cost, denoted

by ∆c
2, is no less than n∆′. The corresponding values for all the users together is ∆l

2 +∆c
2, and

∆l
2 +∆c

2 > ∆l
1 +∆c

1. If there is more than one pair caching the same file, e.g., two pairs cache

aa, the cost becomes even higher. Thus, the previous conclusion remains valid, namely whether

or not there is an assignment with no more than ∆l
1 +∆c

1 gives the right answer even this case

included.

Therefore, the recognition versions of COCP is NP-complete and its optimization version is

NP-hard. �

IV. LOWER BOUND APPROXIMATION APPROACH

Due to the COCP’s intractability, generally it is difficult to obtain the global optimal solution.

For problem-solving, we linearize the first part of objective function and derive a lower bound

for the second part. These together give us a linear lower-bounding function, as an approximation

to the original function. As a result, the problem can be reformulated as a mixed linear integer

program.

Define

∆lb ,
1

U

∑

i∈U

∑

f∈F

Pfi[∆
d
fi +max(∆n

fi, 0)], (2)

and


















∆d
fi = E(

∑

j∈U ,j 6=i

min(BMij , xfj))δD,

∆n
fi = Sf

recδN − E[
∑

j∈U ,j 6=i

min(BMij , xfj) + xfi]δN.
(3)

Theorem 2. ∆lb is a lower-bounding function of ∆, i.e.,

∆ ≥ ∆lb.

Proof: See Appendix A. �

Using ∆lb, an approximation of COCP (ACOCP) can be formulated as
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min
x

1

U

∑

i∈U

∑

f∈F

Pfi[∆
d
fi +max(∆n

fi, 0)] (4a)

s.t.
∑

f∈F

xfi ≤ Ci, i ∈ U (4b)

∑

i∈U

xfi ≤ Sf
max, f ∈ F (4c)

xfi ∈ N, i ∈ U , f ∈ F (4d)

To obtain the above problem’s global optimal solution, we introduce binary variable ykfi that

is one if and only if user i caches k segments of file f . Denote by y the vector consisting of

ykfi:

y = {ykfi, i ∈ U , f ∈ F , k ∈ [0, Sf
rec]}.

By definition, if xfi = k, then ykfi = 1. For example, if xfi = 3, then y3fi = 1 and ykfi = 0 for

the case that k 6= 3. Thus, the relationship between the optimization variables xfi and ykfi can

be expressed as






























xfi =

S
f
rec

∑

k=0

kykfi, i ∈ U , f ∈ F ,

S
f
rec

∑

k=0

ykfi = 1, i ∈ U , f ∈ F .

(5)

Define

ekfij ,E(min(BMij , k))

=

k
∑

t=0

tPr(BMij = t) + kPr(BMij > k),
(6)

where

Pr(BMij = t) =















(λijTD)
t
B e−λijTD

t
B

, if (t mod B) = 0,

0, else.

(7)

Thus, for any xfj , E(min(BMij , xfj)) can be expressed as

E(min(BMij , xfj)) =

S
f
rec

∑

k=0

ekfijy
k
fj .

Moreover, by the proof in Appendix A, it follows that

∆n2
fi = max(∆n

fi, 0).
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Therefore, through the above mathematical analysis, ACOCP can be reformulated as

min
y

1

U

∑

i∈U

∑

f∈F

Pfi(∆
d
fi +∆n2

fi) (8a)

s.t. ∆n2
fi ≥ ∆n

fi, i ∈ U , f ∈ F (8b)

∆n2
fi ≥ 0, i ∈ U , f ∈ F (8c)

S
f
rec

∑

k=0

ykfi = 1, i ∈ U , f ∈ F (8d)

∑

f∈F

S
f
rec

∑

k=0

kykfi ≤ Ci, i ∈ U (8e)

∑

i∈U

S
f
rec

∑

k=0

kykfi ≤ Sf
max, f ∈ F (8f)

ykfi ∈ {0, 1}, i ∈ U , f ∈ F , k ∈ [0, Sf
rec] (8g)

where






























∆d
fi =

∑

j∈U ,j 6=i

S
f
rec

∑

k=0

(ekfijy
k
fj)δD,

∆n
fi = Sf

recδN −
∑

j∈U ,j 6=i

S
f
rec

∑

k=0

(ekfijy
k
fj)δN −

S
f
rec

∑

k=0

(kykfi)δN.

(9)

Note that the definitions of ∆d
fi and ∆n

fi are the reformulations of that in (3).

The above objective function and constraints are linear with respect to y. Thus, the ACOCP

approach can use an off-the-shelf integer programming algorithm from optimization packages,

e.g., Gurobi [34], to obtain the global optimal solution. Generally, it can deliver optimal solutions

for the small-scale and medium-scale system scenarios effectively. What’s more, it serves the

purpose of performance benchmarking of any sub-optimal algorithm. Denote by y
∗ the global

optimal solution of ACOCP. By (5), y
∗ can be converted into an approximation solution of

COCP, referred to as x
lb. Denote by x

∗ the global optimal solution of COCP. By Theorem 2, it

follows that






















∆(xlb) ≥ ∆(x∗),

∆(x∗) ≥ ∆lb(x∗),

∆lb(x∗) ≥ ∆lb(xlb).

(10)
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Therefore,

∆(xlb) ≥ ∆(x∗) ≥ ∆lb(xlb). (11)

Eq. (11) indicates that if x
lb is derived, a lower bound, ∆lb(xlb), of global optimum of COCP

is obtained. The lower bound can be used to evaluate the optimality deviation of the solution of

ACOCP. Namely, the gap between the approximation solution and the global optimal solution

of COCP does not exceed ∆(xlb)−∆lb(xlb), while heuristic algorithms cannot provide this type

of performance assessment. More importantly, it can evaluate the solution of any sub-optimal

algorithm, such as the one presented in the next section, because the gap to the global optimum

does not exceed the gap to the lower bound.

V. MOBILITY AWARE USER-BY-USER ALGORITHM

Although the ACOCP approach can obtain solutions for up to medium-size scenarios, the

computation complexity does not scale well. Thus, we propose a fast yet effective algorithm, i.e.,

mobility aware user-by-user (MAUU) algorithm. A general description of MAUU is as follows.

The users are treated one by one starting with the first user. Initially, the caching content of all

the users are set to be empty. The algorithm optimizes the caching content of the first user, and

then keeps this content fixed for this user in later iterations while performing the optimization

for the other users. Once the cache content allocation of one user is optimized, the remaining

segments of each file, denoted by Sf
rem, f ∈ F , will be updated accordingly. The same process

repeats for the next user.

A. Optimal Caching for One User

Theorem 3. Optimizing the caching placement of one user can be derived in polynomial time

when the caching placements of the other users are given.

Proof: We compute a matrix, called cost matrix and denoted by V, in which entry v(f, k)

represents the current expected total cost if this user caches k segments of file f . The entries of

this matrix can be computed using Eq. (20) in Appendix B.

Below a recursive function is introduced to derive the optimal caching placement for the user.

We define a second matrix, called the optimal cost matrix, and denote it by W, in which w(q, k′)

represents the cost of the optimal solution from considering the first q files using a cache size
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Algorithm 1: The MAUU algorithm for COCP

Input: Srem, Srec, x, x1, C, U , F , B, δD, δN.

Output: x

1: for i = 1 : U do

2: g ← ∅, V← [0]F×Ci
, and W← [0]Ci×F

3: for f = 1 : F do

4: for k = 0 : min(Ci,Srec(f),Srem(f)) do

5: x1(f, i)← k

6: v(f, k)← ∆(x1)

7: x1(f, i)← 0

8: for q = 1 : F do

9: if q < F then

10: for k′ = 0 : Ci do

11: if q = 1 then

12: w(1, k′)← v(1,min(k′,Srec(1),Srem(1)))

13: g1k′ ← {min(k′,Srec(1),Srem(1))}

14: else

15: w(q, k′)← argmin{v(q, rq) + w(q − 1, k′ − rq), rq =

0, 1, . . . ,min(k′,Srec(q),Srem(q))}

16: gqk′ ← gq−1,k′−r∗q
∪ {r∗q}

17: else

18: w(F,Ci)← argmin{v(F, rF ) + w(F − 1, Ci − rF ), rF =

0, 1, . . . ,min(Ci,Srec(F ),Srem(F ))}

19: gFCi
← gF−1,Ci−r∗

F
∪ {r∗F}

20: Srem ← Srem − gFCi

21: x
i ← gFCi

22: x1 ← x

23: return x
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of k′, k′ = 0, 1, . . . , C; here C denotes the cache size of the user under consideration. The value

of w(q, k′) is given by the following recursion:

w(q, k′) = argmin
r

{v(q, r) + w(q − 1, k′ − r)}, (12)

where r can vary from 0 to at most min{k′, Sq
rec, S

q
rem} due to cache size k′, file recovery threshold

Sq
rec, and the number of remaining segments Sq

rem of file q. Using Eq. (12), the optimal cost for

file q is computed when the optimal cost of the first q − 1 files is given.

For the overall solution, the optimal cost can be computed using the above recursion for cache

size of C and F files. We prove it by mathematical induction. First, when q = 1, obviously

w(1, k′) = argmin
r

{v(1, r)} for all k′. There are min{k′, Sq
rec, S

q
rem}+1 possible values of r, and

considering these values one by one gives the optimum r∗. Now, assume w(l, k′) is optimal for

some l. We prove that w(l + 1, k′) is optimal. According to the recursive function,

w(l + 1, k′) = argmin
r

{v(l + 1, r) + w(l, k′ − r)}.

The possible values for r is from 0 to min{k′, Sq
rec, S

q
rem}, and for each of the possible values of

r, w(l, k′− r) is optimal. This together gives the conclusion that the minimum will be obtained

indeed by the argmin operation. Thus, w(q, k′) is optimal.

Finally, we show that w(F,C) can be computed in polynomial time. By Appendix B, the

complexity of computing V is of O(CF 2U2S ′2
rec). By the above, the computational complexity

of W is of O(FC2). Thus, optimizing the cache content of one user runs in O(CF 2U2S ′2
rec) +

O(FC2) = O(CF 2U2S ′2
rec) because generally FU2S ′2

rec > C. �

B. Algorithm Summary

The algorithmic flow is presented in Algorithm 1. The input parameters consist of Srem, Srec,

x, x1, C, U , F , B, δD, and δN. Here, Srem is a vector consisting of the remaining segments of

all the files. The initialization step is to set Srem = {S1
max, . . . , S

F
max}, Srec = {S

1
rec, . . . , S

F
rec}, and

C = {C1, . . . , CU}. The final caching placement solution is again denoted by x. However, for

the convenience of description, our algorithm treats it as a matrix of size F ×U . We also define

x1 as an auxiliary matrix with the same size as x. Initially, the algorithm sets all the entries of

x and x
′ to zero, i.e., x = [0]F×U and x1 = [0]F×U .

For a generic iteration for one user, denote by r∗q the optimal number of segments cached for

file q, and denote by vector gqk′ the optimal caching placement for the user under consideration
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with cache size of k′ and first q files. By Line 1, the users are processed one by one. Line 2

initializes V, W, and g. Lines 3-7 compute matrix V. Lines 8-19 compute W and g. Lines

20-22 update Srem, the ith column of x denoted by x
i, and x1, respectively.

VI. PERFORMANCE EVALUATIONS

We have developed two approaches that lead to solutions of COCP, i.e., the ACOCP approach

and the MAUU algorithm. Next, simulations are conducted to evaluate the effectivenesses of

the two approaches by comparing them to the lower bound of global optimum and conventional

caching algorithms, i.e., random caching [35] and popular caching [36]. The two conventional

algorithms consider users one by one. In the former, each user will cache files randomly with

respect to the files’ request probabilities. That is, the higher the request probability of a file is, the

more likely this file will be cached. In the latter, each user will cache the files according to the

popularity in terms of the files’ request probabilities of this user. Besides, in implementing the

two algorithms, to ensure that the collected segments are non-overlapping, the total number of

cached segments of each file, for all the users together, does not exceed the number of available

segments.

The file request probability follows a Zipf distribution [18], [24], i.e., Pfi =
f−γi

∑

k∈F

k−γi
, where

γi is the Zipf parameter for user i. The number of segments for recovering a file f , Sf
rec, is

randomly selected in [1, S∗], where S∗ will vary in the simulations, and each file has the same

α = Sf
max/S

f
rec. The average number of contacts per unit time for users i and j, i 6= j, λij , is

generated according to a Gamma distribution Γ(4.43, 1/1088) [32]. In the simulations, γi and

Ci are uniform, namely, γi = γ and Ci = C for all i.

A. Performance Comparison

The performance of the ACOCP and the MAUU are shown in Figs. 2-6. The line in green

and the line in blue denote the costs by using the MAUU algorithm and the solution of ACOCP

(i.e., xlb), respectively. The line in red represents the cost of the lower bound of global optimum,

i.e., ∆lb(xlb) in (11).

In general, the true optimality gaps of ACOCP approach and MAUU algorithm (or any sub-

optimal algorithm) are hard to get, because it is difficult to know the value of global optimum.

However, by Section IV, the ACOCP approach provides an effective bound for performance

evaluation, because the gap to the global optimum does not exceed the gap to the lower bound.
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Figure 2. Impact of C on ∆ when U = 8, F = 80, B = 1, δD = 1, δN = 30, γ = 0.8, S∗
= 4, α = 3, and TD = 600s.
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Figure 3. Impact of U on ∆ when F = 80, C = 5, B = 1, δD = 1, δN = 30, γ = 0.8, S∗
= 4, α = 3, and TD = 600s.

Fig. 2 and Fig. 3 show the impact of C and U , respectively. Overall, the cost linearly decreases

with respect to C and U . This is expected, because the users can store more contents with the

increase of cache size, and they have more choices and consequently more possibility to collect

the needed segments when the number of users grows. In addition, when C and U increase, for

the ACOCP approach, the solution is close to the lower bound of global optimum overall, but

the gap to the bound increases slightly. For example, by increasing C from 3 to 7, the gap grows

from 0.91% to 2.83%. The reason is that, although the global optimal solution of ACOCP can

be derived, it is a sub-optimal solution for COCP. Increasing C and U leads to larger solution
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Figure 4. Impact of F on ∆ when U = 8, B = 2, δD = 1, δN = 30, C = 5, γ = 0.8, α = 3, and TD = 600s.

space and may make the bound weaker. However, the worsening is not significant. Similarly,

for the MAUU algorithm, the gap increases with the increase of the two parameters. This is

because that, giving other users’ caching placements, the MAUU algorithm achieves the optimal

solution of one user under consideration, whereas this solution is sub-optimal for the system.

However, although increasing C and U may slightly decrease the accuracy, the MAUU algorithm

remains promising, as the gap is lower than 9%. Finally, the MAUU algorithm outperforms the

conventional algorithms consistently in the two figures, especially for big U and C. When C = 7,

it outperforms the popular caching algorithm by 23.5%, and outperforms the random caching

algorithm by 27.8%. Note that U and C represent the system size. Thus, the MAUU algorithm

is useful for large-scale system scenarios.

The effect of F is analyzed in Fig. 4. This figure shows results for which the number of

segments for recovering a file f is uniform, namely, Sf
rec = 4 for any f . It can be observed that

the cost first grows with the increase of F . If F becomes excessively big, the impact becomes

insignificant due to the limit of cache size and the number of users. Besides, when F increases,

the performance difference between the solution of ACOCP and the solution by using MAUU

is fairly constant, but the popular caching algorithm outperforms the random caching algorithm

significantly. Obviously, increasing F directly leads to higher diversity of files. Thus, for the

random caching algorithm, the users are more likely to store the infrequently requested files.

The user average contact rate is proportional to the user average speed [29]. Thus, examining
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Figure 5. Impact of user average speed on ∆ when U = 8, F = 80, B = 1, δD = 1, δN = 30, C = 5, S∗
= 4, α = 3,

γ = 0.8, θ = 1/1088, and TD = 600s.
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Figure 6. Impact of TD on ∆ when U = 8, F = 80, C = 5, B = 2, δD = 1, δN = 30, γ = 0.8, S∗
= 4, and α = 3.

the impact of the former reflects also that of the latter. We generate the contact rate for users

i and j, λij , i 6= j, according to a Gamma distribution Γ(β, θ). Thus, the average contact rate

is βθ. Fig. 5 fixs θ, and analyzes the impact of β on ∆. A large average contact rate means

more frequent contacts among users, resulted from high mobility. The impact of TD is shown

in Fig. 6. A greater TD indicates that the users have more time to collect the needed segments.

There are two common insights for the two figures. First, the MAUU algorithm outperforms the

popular caching algorithm. When the values of the two parameters increase, the improvement

is significant. This is because the caching placement by MAUU can be dynamically adapted to
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Figure 7. Impact of γ on ∆ when U = 20, F = 200, B = 1, δD = 1, δN = 30, C = 4, S∗
= 3, α = 3, and TD = 600s.

the variations in the parameters, whereas the caching placement by popular caching is fixed.

Moreover, for the ACOCP approach, the gap to the lower bound progressively decreases. In

particular, when β = 1, the gap is 4.39%. While β = 6, the gap decreases to 0.28%, indicating

that the solution of ACOCP is very close to optimum. The reason is that in such cases, ∆lb

approaches ∆.

B. Algorithm Scalability

In Fig. 7, we show additional results for large-scale scenarios via increasing the number of

users and files. Specifically, U = 20 and F = 200. For this case, we compare our scalable MAUU

algorithm with the two conventional algorithms. Overall, the costs of the caching solution from

the MAUU algorithm and conventional caching algorithms exhibit the same decreasing trend

with respect to γ. The MAUU algorithm outperforms the two conventional caching algorithms

as the latter algorithms neglect the effect of user mobility. However, there is an additional insight

that the improvement of MAUU becomes smaller by increasing γ. The reason is that for high

γ, the files’ request probability has a large variation. As a result, the users are more inclined to

request the popular files.

A general observation is that the ACOCP approach is more accurate than the MAUU algorithm

– the cost by using the solution of ACOCP is always less than that of MAUU. Intuitively, this

is expected, because the former pays the price of higher complexity due to the use of integer

programming. In contrast, the latter is a polynomial time algorithm which is useful for large-scale
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scenarios. Therefore, the MAUU algorithm illustrates excellent tradeoff between complexity and

accuracy.

VII. CONCLUSIONS

This paper has investigated the caching problem with presence of user mobility, for which the

inter-contact model is used to describe the mobility pattern of mobile users. An optimization

problem, COCP, has been modelled, analyzed and formulated. The hardness of the problem

has been thoroughly proved via a reduction from the 3-SAT problem. For problem-solving,

two computational approaches, namely, the ACOCP approach and the MAUU algorithm, have

been developed. Performance evaluation shows that the two approaches result in significant

improvement in comparison to conventional caching algorithms. Moreover, solving ACOCP leads

to an effective approximation scheme, and the MAUU algorithm achieves excellent balance

between complexity and accuracy.

An extension of the work is the consideration of a more complicated hierarchical caching

architecture with presence of mobility, i.e., caching at both users and base stations. This can be

formulated as to minimize the expected delay for recovering one file, with constraints on the

total number of encoded segments and cache capacity.

APPENDIX A

To facilitate presentation, define

∆n1
fi , E{max[Sf

rec − (
∑

j∈U ,j 6=i

min(BMij , xfj) + xfi), 0]}, (13)

and

∆n2
fi ,



































Sf
rec − [E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi],

if Sf
rec > E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi,

0, else.

(14)

Given x, we will prove the relationship between ∆n1
fi and ∆n2

fi.

(i) When Sf
rec > E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi, it follows that

Sf
rec − [E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi]

=E[Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi)].
(15)
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Due to the fact that

Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi)

≤max[Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi), 0],
(16)

it follows that

E{Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi)}

≤E{max[Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi), 0]}.
(17)

Combining (15), (16), with (17), we obtain

Sf
rec − [E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi]

≤E{max[Sf
rec − (

∑

j∈U ,j 6=i

min(BMij , xfj) + xfi), 0]}.
(18)

Thus, ∆n1
fi ≥ ∆n2

fi.

(ii) When Sf
rec ≤ E(

∑

j∈U ,j 6=i

min(BMij , xfj)) + xfi, ∆n2
fi = 0. Assume that m experiments

are conducted. Denote by Sr
fi the number of segments of file f collected by user i in the rth

experiment, r = 1, 2, . . . , m, and Sf
rec ≤

1
m

∑m

r=1 S
r
fi. There are two cases. The first case is that

user i can successfully recover the file f in each experiment, i.e., Sr
fi ≥ Sf

rec, r = 1, 2, . . . , m. In

this case, ∆n1
fi = ∆n2

fi. The second case is that user i unsuccessfully recovers the file f at least

one experiment. For the second case, ∆n1
fi > 0. Thus, ∆n1

fi > ∆n2
fi.

Combining (i) with (ii), it follows that

∆n1
fi ≥ ∆n2

fi. (19)

Therefore, ∆ ≥ ∆lb.

APPENDIX B

∆ can be simplified as

∆ =
1

U

∑

i∈U

∑

f∈F

Pfi[
∑

j∈U ,j 6=i

E(Sfi − xfi)δD

+

S
f
rec−1
∑

k=xfi

(Sf
rec − k)Pr(Sfi = k)δN],

(20)
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where

Pr(Sfi = k) = Pr(
∑

j∈U ,j 6=i

min(BMij , xfj) + xfi = k).

Computing Pr(Sfi = k) directly by using multiple summations, the computational complexity

exponentially increases with U . However, we can use a recursive function with polynomial-time

complexity. Define

Pr(U, k) , Pr(Sfi = k)

= Pr(
∑

j∈U ,j 6=i

min(BMij , xfj) + xfi = k).
(21)

After some mathematical manipulations, the recursive function can reformulated as

Pr(U, k) =

k
∑

t=0

[Pr(min(BMi,U , xf,U) = t)

∗ Pr(U − 1, k − t)].

(22)

The above function manifests that if t segments are collected from user U , then user i will obtain

k − t segments from the other U − 1 users including itself. In general, Pr(U − τ, .) depends on

Pr(U − τ − 1, .), τ = 0, 1, . . . , U − 2, leading to a recursive process. The overall complexity of

computing ∆ is O(FU2S ′2
rec), where S ′

rec = max
j∈F

Sj
rec.
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