
1

A Learning Approach for Low-Complexity
Optimization of Energy Efficiency in Multi-Carrier

Wireless Networks
Salvatore D’Oro, Member, IEEE, Alessio Zappone, Senior Member, IEEE,
Sergio Palazzo, Senior Member, IEEE, Marco Lops, Senior Member, IEEE

Abstract—This paper proposes computationally efficient algo-
rithms to maximize the energy efficiency in multi-carrier wireless
interference networks, by a suitable allocation of the system
radio resources, namely the transmit powers and subcarrier
assignment. The problem is formulated as the maximization
of the system global energy efficiency (GEE) subject to both
maximum power and minimum rate constraints. This leads to
a challenging non-convex fractional problem, which is tackled
through an interplay of fractional programming, learning, and
game theory. The proposed algorithmic framework is provably
convergent and has a complexity linear in both the number of
users and subcarriers, whereas other available solutions can only
guarantee a polynomial complexity in the number of users and
subcarriers. Numerical results show that the proposed method
performs similarly as other, more complex, algorithms.

I. INTRODUCTION

The next generation of cellular networks will have to
serve an unprecedented amount of wireless devices, which is
forecast to reach 50 billions by 2020 [1]. This poses serious
sustainable growth concerns, because in order to support
these many devices, future networks will have to increase the
supported data-rate by a factor 1000 as compared to current
networks [2]. However, simply scaling up the transmit powers
would lead to unmanageable energy demands and alarming
levels of greenhouse gas emissions and electromagnetic pol-
lution. Instead, it is widely accepted by the mobile community
that the next generation of cellular networks will have to
fulfill the 1000x data-rate requirement, while at the same
time halving the energy consumption of today’s networks [2].
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This requires a 2000x increase of the bit-per-Joule energy
efficiency.

A recent survey [3] identifies and discusses the more
promising approaches to improve the energy efficiency of
future 5G networks. Among others, one anticipated technique
is to maximize the energy efficiency through a suitable al-
location of the network radio resources. Otherwise stated,
the traditional paradigm according to which communication
networks are designed for data-rate maximization, should be
rethought and the system radio resources must be allocated
to maximize the global energy efficiency, defined as the ratio
between the system throughput, and the total consumed power
[4]. In the context of multi-carrier communications, the leading
communication technology in current LTE networks, the radio
resources to allocate are the transmit powers and subcarriers.
First contributions in this direction have considered the sim-
plifying assumption of orthogonal transmissions, which nulls
out multi-user interference and leads to a problem that can
be globally and efficiently solved by fractional programming
theory [5]. However, exclusive subcarrier assignment does not
appear a viable choice for future networks, as it is difficult
to implement in multi-cell and heterogeneous scenarios, and
because of the exponentially increasing spectrum demands
[6]. Nevertheless, if multi-user interference is present, energy
efficiency maximization becomes more complex, being in
general an NP-hard problem. Hence, low-complexity solutions
are required for practical applications.

One widely used approach to reduce complexity makes
use of non-cooperative game theory [7]–[9]. In this context,
instead of directly tackling the maximization of the system-
wide energy efficiency with respect to all of the available
network radio resources, the problem is formulated modeling
the network nodes as rational agents that compete for individ-
ual energy efficiency maximization. Such an approach tackles
the system-wide energy efficiency maximization problem by
solving a set of user-dependent, convex or pseudo-convex
problems, with a reduced set of optimization variables. This
leads to a practical resource allocation algorithm, but typically
suffers from a significant performance gap in terms of global
network performance. In [10], energy-efficient power control
in multi-carrier CDMA networks is studied, while in [11]
the problem of non-cooperative power control in OFDMA
networks is addressed. In [12] non-cooperative energy-efficient
power control and receiver design is performed in relay-
assisted networks.In [13], [14] the non-cooperative, energy-
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efficient power control problem is extended to account for
minimum rate constraints. This problem is analyzed by em-
ploying the tool of generalized non-cooperative games [15].
In [13] the focus is on small-cell networks, whereas in [14]
a more general setup is considered and a framework for
non-cooperative energy efficiency maximization is provided,
encompassing several 5G candidate technologies.

More recently, a more sophisticated, although still afford-
able, approach proposes to maximize the global energy ef-
ficiency of wireless interference networks, by merging frac-
tional programming and sequential optimization theory [14],
[16]. Again, the energy efficiency maximization problem is
decomposed into a sequence of convex or pseudo-convex
sub-problems. However, unlike game-theoretic approaches, the
sub-problems considered in [14], [16] are not local problems
aiming at maximizing the users’ individual energy efficiency,
but are instead network-wide problems in which all avail-
able radio resources are jointly optimized. This significantly
improves the performance compared to game-theoretic ap-
proaches, but comes at the expense of a higher complexity,
which becomes challenging in very large networks with many
users and subcarriers.

Motivated by this scenario, the aim of this work is to
develop a new centralized framework for energy efficiency
optimization in wireless interference networks, which exhibits
a comparable or lower complexity than available approaches,
but near-optimal global energy efficiency performance. This is
hereby achieved borrowing tools from machine learning [17]–
[23]. Regarding this point, we stress that machine learning
is typically used to develop online algorithms in dynamic
environments in which the network nodes decide their re-
source allocation policy mainly based on past experience.
This approach has been proved especially useful in fast-
fading scenarios wherein a long-term performance measure
is to be optimized. Contributions in this sense are [24],
where a learning-based stochastic power control algorithm is
proposed for non-cooperative energy efficiency in cognitive
mesh networks, [25], that considers relay-based networks and
employs a learning approach to determine mixed strategy Nash
equilibrium (NE) points for the problem of non-cooperative
energy-efficient power control. Energy-efficient learning-based
power control is analyzed in [26] for femto-cell indoor scenar-
ios. In [27] an exponential learning framework to maximize the
system ergodic capacity in multi-carrier systems is proposed,
whereas [28], [29] consider ergodic rate and sum energy
efficiency maximization.

Nevertheless, while the main application of learning tools
for radio resource allocation is in fast-fading environments,
it was observed very recently in [30] that specific tools from
learning theory can be successfully used also in slow-fading
settings to reduce the complexity of the resource allocation
process. Specifically, [30] shows that stochastic learning with
exponential mappings can reduce the complexity of the rate
optimization problem in a single-cell cognitive radio system.
This work extends the approach in [30] considering energy
efficiency optimization in multi-cell networks. Specifically, the
following major contributions are made:
• A provably convergent power and subcarrier allocation al-

gorithm for energy efficiency maximization is developed,
merging tools from fractional programming, game the-
ory, and learning theory. Similarly to available methods,
the proposed algorithm operates by solving a sequence
of convex sub-problems. However, we solve each sub-
problem by an efficient fixed-point learning scheme, in
which all update formulas are given in closed-form. This
ensures a linear complexity in the number of subcarriers
and users, whereas other available methods guarantee
a polynomial complexity in the users and subcarriers
number.

• Unlike many previous works, the developed optimization
framework is able to handle not only maximum power
constraints, but also minimum rate constraints, preserving
all its salient properties. Moreover, despite the reduced
complexity, an extensive numerical analysis shows that
the proposed method suffers a negligible performance
loss compared to more complex solutions based on se-
quential fractional programming theory.

• Unlike [30], the proposed method does not focus on
only one specific communication system, but rather
considers generic interference network topologies, with
a more general signal to interference plus noise ratio
(SINR) expression than that typically used in previous
works. This allows modeling several relevant instances
of communication systems, such as heterogeneous net-
works, multi-cell networks, massive MIMO systems with
imperfect CSI and hardware-impairments, relay-assisted
communications.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the uplink of an interference network with a
set K of K users communicating with J receivers over
N subcarriers. User k’s SINR at its intended receiver, over
subcarrier n, is:

γk,n =
pk,nαk,n

σ2
n + ξk,npk,n +

∑
` 6=k p`,nβ

(k)
`,n

, (1)

with pk,n and σ2
n the k-th user’s transmit power and the receive

noise power over subcarrier n; {αk,n, ξk,n}k,n, {β(k)
`,n}k,`,n

coefficients fulfilling the following two assumptions, for any
k, `, n:
• they are non-negative real numbers which depend on

global system parameters and channel gains, but not on
the users’ transmit powers.

• αk,n and ξk,n only depend on user k’s channel over
resource block n, and possibly on system global pa-
rameters, while {β(k)

`,n}` depend on the channel from
transmitter ` to receiver k, over resource block n, and
possibly on system global parameters.

The particular expressions of {αk,n}k,n, {ξk,n}k,n, and
{β(k)

`,n}k,`,n depend on the specific network under analysis,
and we hasten to stress that many relevant instances of
communication systems are modeled by (1), by suitably
specifying {αk,n}k,n, {ξk,n}k,n, and {β(k)

`,n}k,`,n. Besides the
simpler case in which ξk,n = 0 for all k, n, leading to the
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familiar SINR expression encountered in wireless commu-
nication systems, the presence of non-zero {ξk,n}k,n allows
modeling several 5G candidate technologies. Examples in this
sense include: practical massive MIMO networks subject to
hardware impairments and/or imperfect channel estimation at
the receiver [14]; relay-assisted networks [12], [31]; device-
to-device (D2D) communications [32]. A detailed description
of these case-studies is reported in [14]. In addition, other
scenarios leading to the SINR in (1) are systems affected
by inter-symbol interference and/or frequency-selective fading
[33], [34].

The network GEE is the ratio of the achievable sum-rate
over the total consumed power [4]:

GEE =
W
∑K
k=1

∑N
n=1 log2(1 + γk,n)

∑K
k=1 Pc,k +

∑K
k=1

∑N
n=1 µk,npk,n

, (2)

wherein W is the subcarrier bandwidth, µk,n is the inverse
of the efficiency of the k-th user’s power amplifier over
subcarrier n (if a single amplifier is used for all the subcarriers,
µk,n = µk), and

∑K
k=1 Pc,k = Pc is the total static hardware

power dissipated to operate all of the network communication
links, where Pc,k is the static hardware power dissipated
by the transceiver of user k. It should be noted that (2)
is measured in bit-per-Joule, thus naturally representing the
amount of information that can be reliably transmitted per
Joule of consumed energy.

In this context, the aim of this work is to analyze the
problem of power control and subcarrier allocation for GEE
maximization, subject to both maximum power and minimum
rate constraints. Considering full frequency reuse (i.e. all
subcarriers can be assigned to all users), and stacking all the
users’ powers into the vector p = {pk,n}k,n, the problem is
mathematically stated as

max
p

∑K
k=1

∑N
n=1 log2(1 + γk,n)

Pc +
∑K
k=1

∑N
n=1 µk,npk,n

(3a)

s.t.
∑N
n=1 pk,n ≤ Pmax,k , ∀ k = 1, . . . ,K (3b)

pk,n ≥ 0 , ∀ k = 1, . . . ,K , n = 1, . . . , N (3c)
∑N
n=1 log2(1 + γk,n) ≥ Rmin,k , ∀ k = 1, . . . ,K (3d)

where Rmin,k is a minimum data-rate requirement which has
to be guaranteed to each served user. Such a parameter is in
general application and/or network-specific, but can not ex-
ceed the upper-bound Rmax,k =

∑N
n=1 limpk,n→+∞ log2(1 +

γk,n) =
∑N
n=1 log2(1+αk,n/ξk,n). Thus, in the following we

assume that Rmin,k ≤ Rmax,k for all k ∈ K, since otherwise
Problem (3) would be unfeasible. It is also to be observed that
Problem (3) performs joint power and subcarrier allocation.
Indeed, given that full frequency reuse is considered, the use
of a subcarrier is determined by the fact that a non-zero power
is allocated over it. Problem (3) is a non-convex fractional
problem, and even testing its feasibility would require solving
a non-convex feasibility test. However, a sufficient feasibility
condition can be obtained by first relaxing (3d) into the per-
subcarrier constraint log2(1+γk,n) ≥ R(n)

min,k for all k and n,
with

∑N
n=1R

(n)
min,k = Rmin,k for all k. Clearly, any power

allocation fulfilling the per-subcarrier constraint above also

fulfills (3d). Also, the per-subcarrier constraints effectively
allow reformulating the feasible set of the relaxed version
of (3) into a set of linear inequalities, which enables to
derive sufficient feasibility conditions for (3) applying the
derivations from [14] to all subcarriers n = 1, . . . , N . The
non-convexity of Problem (3) prevents the use of standard con-
vex optimization methods and calls for tailored optimization
tools. Fractional programming is the branch of optimization
theory which specifically handles fractional problems, and
the most widely used fractional programming approach is
the Dinkelbach’s algorithm [4], [35]. For the case at hand,
Dinkelbach’s algorithm is stated as shown in Algorithm 1,
where P denotes the feasible set of Problem (3).

Algorithm 1 Dinkelbach’s algorithm for GEE
Set j = 0; λj = 0; ε > 0;
while F (λj) ≥ ε do

p? = arg max
p∈P

{
∑K

k=1

∑N
n=1 log2(1 + γk,n)

− λj

(
Pc +

K∑

k=1

N∑

n=1

µk,npk,n

)}
; (4)

F (λj)=
∑K

k=1

∑N
n=1 log2(1 + γk,n(p?))

− λj

(
Pc+

K∑

k=1

N∑

n=1

µk,np
?
k,n

)
; (5)

λj+1 =

∑K
k=1

∑N
n=1 log2(1 + γk,n(p?))

Pc +
∑K

k=1

∑N
n=1 µk,np?k,n

; j = j + 1;

end while

It is worth noting that Dinkelbach’s algorithm tackles
the original fractional problem by solving a sequence of
non-fractional problems of the form of Problem (4), whose
objective is the numerator of (3a) minus the denominator
of (3a), weighted by a parameter λ. Like any instance of
Dinkelbach’s algorithm, Algorithm 1 enjoys the following two
main properties:
P1: Assuming Problem (3) is feasible, then Algorithm 1

yields the global solution of (3) with super-linear con-
vergence rate [35], [36].

P2: The sequence {F (λj)}j is decreasing and global opti-
mality is attained when F = 0.

Remark 1. Properties P1 and P2 hold provided that Problem
(4) is globally solved in each iteration of Algorithm 1. This
requirement could be easily fulfilled if (3a) had a concave nu-
merator and a convex denominator, as in this case (4) would be
a convex problem. Unfortunately, due to the presence of multi-
user interference, (3a) does not possess the concave/convex
structure. Furthermore, if (3) is not feasible, then an optimal
solution does not exist and Algorithm 1 will stop in the first
iteration, declaring the unfeasibility of (3).

Thus, the exact implementation of Algorithm 1 would re-
quire an exponential complexity [16]. Even simply testing
the feasibility of (3) would lead to a non-convex feasibility
test, due to the non-concavity of the QoS constraints in (3d).
A more practical approach for GEE maximization has been
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proposed in [16], by merging sequential optimization and
fractional programming. The resulting algorithm, although not
being theoretically guaranteed to be globally optimal, has been
numerically shown to achieve global optimality in several
relevant problem instances. Nevertheless, it still requires to
numerically solve a sequence of convex problems, each one
having KN optimization variables. In large networks with
many users and/or subcarriers, the resulting complexity might
still be not practical. Instead, this work will present a new
method to tackle (3), which enjoys lower complexity but
equal performance as the method in [16]. The approach will
be based on a joint use of fractional programming, game
theory, and learning theory. First, Section III will address
the case in which the rate constraints (3d) are relaxed, and
then Section IV will extend the proposed approach to the
general case in which rate constraints are enforced. It is worth
mentioning that the convergence criterion used in Algorithm
1 is F (λj) ≥ ε, with ε > 0. The optimal solution is
obtained when ε = 0, but in general this can be achieved
only asymptotically. However, ε > 0 allows approaching the
optimal solution within any desired accuracy level. Also, the
convergence rule in Algorithm 1 is in terms of the auxiliary
function F (λ), rather than in terms of the variable x, as it
is done in other contexts [37]. This is typical in iterative
algorithms monotonically increasing (decreasing) an objective
(cost) function.

Remark 2. The model developed in this section assumes
that {αk,n}k,n, {ξk,n}k,n, and {β(k)

`,n}k,`,n are known to the
resource allocator. This holds in a block-fading channel sce-
nario, in which perfect channel estimation is performed at the
receiver side. Nevertheless, in real-world scenarios it is possi-
ble that the interference coefficients {ξk,n}k,n, and {β(k)

`,n}k,`,n
are only partially known. In this case, the algorithms to be
developed in the sequel can still be applied in conjunction
with robust optimization methods. A viable approach is to
reformulate (3a) and (3d) by considering their expected value
with respect to the variables {φk,n, β(k)

`,n}. Since the argument
of the expectation is convex in {φk,n, β(k)

`,n}, we can obtain
a lower-bound of (3a) and (3d) by moving the expectations
inside their argument, thus maximizing its lower-bound. This
yields a formally equivalent problem as (3), with {ξk,n}k,n
and {β(k)

`,n}k,`,n are replaced by their mean value. Similarly,
if the channels are known up to a maximum estimation error,
a robust, max-min approach is to solve (3) after replacing
{ξk,n}k,n and {β(k)

`,n}k,`,n by their worst-case values.

III. GLOBAL ENERGY EFFICIENCY MAXIMIZATION
WITHOUT MINIMUM RATE CONSTRAINTS

In this section, we tackle (3) when (3d) are removed from
the optimization problem. Our departing point is Dinkelback’s
procedure in Algorithm 1, and we propose to tackle the inner
problem (4) modeling it as a potential game, and developing
an iterative method which improves the GEE at each iteration
and eventually converges towards an efficient solution of (4).

Define the objective of Problem (4) as the function:

V (p) =

K∑

i=1

N∑

n=1

log2(1 + γi,n)−λj
(
Pc +

K∑

i=1

N∑

n=1

µi,npi,n

)

(6)
Since finding the global maximum of (6) is in general
computationally prohibitive, the approach will be to pro-
vide a computationally efficient method to derive (possibly
suboptimal) power allocation vectors p. To this end, let us
introduce the non-cooperative game in normal form G =
{K, {Sk}Kk=1, {uk}Kk=1}, wherein K is the players’ set,

Sk =
{
pk = [pk,1, . . . , pk,N ]T : pk,n ≥ 0, ∀n = 1, . . . , N,

N∑

n=1

pk,n ≤ Pmax,k
}
, (7)

is the k-th player’s strategy set, and uk is the k-th player’s
utility function defined as

uk(pk,p−k) = V (pk,p−k) = V (p) (8)

where p−k = {pj}j∈K,j 6=k. In particular, it can be seen that
every player has the same utility function V (p), which makes
G a potential game [38], and specifically a so-called identical
interest game [39]. Potential games enjoy several pleasant
properties, which makes them attractive for wireless resource
allocation [40], [41]. In particular, potential games guarantee
the existence of at least one pure-strategy NE, under the mild
assumptions that the potential function is continuos and the
strategy sets are compact [38]. Moreover, pure-strategy NE can
be reached by implementing the game best-response dynamics,
i.e. letting each player k iteratively maximize the common
utility function V (p) with respect to their own strategy pk,
assuming all other players’ power vectors {p`}` 6=k are fixed.
Unfortunately, implementing the best-response dynamics of
G is no easy task, since the common utility V (p) is not
concave even with respect to only a single power vector pk.
To circumvent this problem, in the following we replace the
concept of best-response, with the milder notion of better
response [42]:

Definition 1 (Better-Response Strategy). p∗k is a better-
response strategy for user k ∈ K to (pk,p−k), if
uk(p∗k,p−k) ≥ uk(pk,p−k), i.e. p∗k dominates pk when other
players choose p−k.

Otherwise stated, each player k does not aim at computing
the strategy which maximizes its utility function uk given the
strategies of the other players. Instead, the goal is just to find
a strategy p∗k which increases uk compared to the present
strategy pk, and given the strategies of the other players p−k.
This introduces the notion of better-response dynamics [42]:

Definition 2 (Better-Response Dynamics (BRD)). Let p(i)
denote the KN × 1 vector [pT1 (i), . . . ,pTK(i)]T collecting
the strategies played by the K players at time i. Then,
a Better-Response Dynamics is a sequence of strategies
{p∗(i)}i, wherein, at each time instant i, and for all k,
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p∗k(i) is a better response of player k, to the strategies1

[pT1 (i), . . . ,pTk−1(i),pTk+1(i− 1), . . . ,pTK(i)]T .

Proposition 1. Let {p∗(i)}i be a better-response dynamics for
the game G. Then, the sequence {V (p∗(i))}i is monotonically
convergent, i.e. limi→∞ (V (p∗(i))− V (p∗(i− 1))) = 0.

Proof: According to the definition of better-response
strategy, any unilateral strategy update performed by user
k ∈ K improves the utility function, and thus the poten-
tial function. So, V (p∗(i)) ≥ V (p∗(i − 1) for any i =
1, 2, . . . ,∞, which shows how V (p∗(i)) is monotonically
increasing. Moreover, V (p) admits a finite maximum over
the set S = S1 ∩ S2 . . . ∩ SK , due to Weierstrass extreme
value theorem. Indeed, V (p) is continuous and Sk is compact
for each k. Hence, V (p) can not grow indefinitively over the
feasible set, and this shows the thesis.
We stress that Proposition 1 holds without requiring any
concavity/convexity property for the potential V (p) and for
the strategy sets Sk. Moreover, it is important to remark that
while the condition limi→∞ (V (p∗(i))− V (p∗(i− 1))) = 0
can only be achieved asymptotically, the monotonic increasing
behavior of V (p(i)) enables to approach it within any desired
tolerance ε. Practically speaking, convergence is declared
when no further significant improvement can be obtained after
two consecutive iterations, i.e. when V (p∗(i))−V (p∗(i−1) ≤
ε, which is achieved in a finite amount of iterations for
any ε > 0. Finally, we would like to remark that, though
convergence of the BRD to an efficient solution is guaranteed
by Proposition 1, convergence towards a NE is possible but
cannot be guaranteed in our case. This is because the NE
concept relies on the definition of best response functions
which, in our case, cannot be computed due to the non-
convexity of the best-response problems.

Next, being guaranteed that the better-response dynamics
will converge, it remains to devise an efficient method to
compute the players’ better responses. To this end, let us
observe that, after some elaborations, the utility function of
player k can be rewritten as follows:

uk(pk,p−k) =
N∑

n=1

uk,n(pk,n,p−k) (9)

where

uk,n(pk,n,p−k) = log2(1 + γk,n) (10)

+
∑

i 6=k
log2


σ2

n+(αi,n+ξi,n)pi,n+β
(i)
k,npk,n+

∑

` 6=i,l 6=k
β

(i)
`,np`,n




−
∑

i 6=k
log2


σ2

n+ξi,npi,n+β
(i)
k,npk,n+

∑

` 6=i,l 6=k
β

(i)
`,np`,n




−λj
(
Pc
N

+ µk,npk,n

)
−λj

∑

6̀=k
µ`,np`,n

1Without loss of generality, we assume that the players play one after
the other and are indexed in the order in which they play. Nevertheless, the
analysis and convergence results to follow can be straightforwardly extended
to the scenario in which the users perform asynchronous power updates.

Let us now denote by p̄k the current strategy of player k,
and observe that the non-concavity of (10) emerges from the
third term in (10). Thus, a convenient way of finding a better
response for player k is to consider a concave lower-bound
of (10) for all n = 1, . . . , N , obtained by replacing the non-
concave part by its first-order Taylor expansion around p̄k,
namely2:

ûk(pk,n,p−k, p̄k) =
∑N
n=1 ûk,n(pk,n,p−k, p̄k,n) (11)

with

ûk,n(pk,n,p−k,p̄k,n)=log2(1+γk,n)+φk,n(pk,n−p̄k,n) (12)

+
∑

i6=k
log2


σ2

n+ηi,npi,n+β
(i)
k,npk,n+

∑

` 6=i, 6̀=k
β

(i)
`,np`,n




−∑i6=klog2

(
σ2
n+ξi,npi,n+β

(i)
k,np̄k,n+

∑
` 6=i, 6̀=kβ

(i)
`,np`,n

)

− λj
(
Pc
N

+µk,npk,n−
∑
6̀=k µ`,np`,n

)

and

ηk,n = αk,n + ξk,n (13)

φk,n = −
∑

i 6=k

β
(i)
k,n/ log(2)

σ2
n + ξi,npi,n + β

(i)
k,np̄k,n +

∑
` 6=i, 6̀=k β

(i)
`,np`,n

(14)

The approximate function ûk allows determining a better
response for player k, as proved by the following Proposition
2.

Proposition 2. Consider the concave optimization problem:

max
pk∈Sk

ûk(pk,p−k, p̄k) (15)

Problem (15) admits a unique solution, which is also a better-
response strategy for user k ∈ K.

Proof: See Appendix VIII-A.
So far, we have shown that the better response dynamics

of G converges, and we have derived a convex problem that
enables computing the better response for each player k. Nev-
ertheless, employing standard convex optimization methods to
solve (15) would require polynomial complexity in the number
of subcarriers N , since (15) has N optimization variables. This
might still be impractical for high N . Instead, a faster approach
with guaranteed linear complexity is obtained resorting to
learning theory, as shown in the following proposition.

Proposition 3. Consider the following iterative learning
mechanism with exponential mappings:
{
yk,n(t+ 1) = yk,n(t) + δtv̂k,n(pk,n(t),p−k, p̄k)

pk,n(t+ 1) = Pmax,k
eyk,n(t)

1+
∑N

m=1 e
yk,m(t)

(16)

where t is the iteration index of the learning procedure, δt
is the step-size, p̄k is the strategy of user k at the previous

2From the necessary and sufficient first-order convexity condition [43], for
any x, y in the domain of f , it holds: f(x) ≥ f(y) + (∇f(y))T (x− y),
and thus f(x) is lower-bounded by its first-order Taylor expansion around y.
The term that is linearized in (10) is convex, and therefore it is lower-bounded
by its Taylor expansion around any point.
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iteration of the BRD. If
∑+∞
t=1 δ

2
t <

∑+∞
t=1 δt = +∞, Iteration

(16) is such that limt→∞ ‖pk(t) − pk(t − 1)‖ = 0, with
pk(t) = {pk,n(t)}Nn=1, and the limit point p̃k obtained upon
convergence is the unique solution of Problem (15).

Proof: See Appendix VIII-B.
The proposed learning mechanism in (16) enjoys several

interesting properties. First, it is reinforcing as the so-called
scores yk,n are updated according to the marginal utility v̂k,n,
defined as the first order derivative of (12) with respect to
pk,n(i), namely:

v̂k,n(pk,n(t),p−k, p̄k) =
1

log(2)

[
(17)

ηk,n

σ2
n+ηk,npk,n(t)+

∑

i6=k
β

(k)
i,n pi,n

− ξk,n

σ2
n+ξk,npk,n(t)+

∑

i 6=k
β

(k)
i,n pi,n

+
∑

i 6=k

β
(i)
k,n

σ2
n+ηi,npi,n+β

(i)
k,npk,n(t)+

∑
l 6=i,l 6=k β

(i)
l,npl,n

]
−νk,n,

(18)

where νk,n = λjµk,n − φk,n. Also, the exponential mapping
relates each score yk,n to a feasible power level pk,n, and al-
ways generate solutions simultaneously satisfying all problem
constraints. In fact, the power levels generated by (16) satisfy∑
n∈N

pk,n(t)≤Pmax,k for all t and k.

Based on the derived results, a better response for player k
can be computed as shown in Algorithm 2, while the overall
GEE maximization procedure can be stated as in Algorithm
3.

Algorithm 2 Unilateral better-response for User k
Set t = 0; yk,n = 0;
while Convergence is not achieved do

t = t+ 1;
for each n = 1, . . . , N do simultaneously

pk,n = Pmax,k
e
yk,n

1+
∑N

m=1 e
yk,m ;

yk,n = yk,n + δtv̂k,n;
end for

end while

Algorithm 3 GEE maximization without QoS constraints
Set j = 0; λj = 0; ε > 0;
while F̄ (λj) ≥ ε || |λj − λj−1| ≥ ε do

while Convergence has not been reached do
for each k = 1, . . . ,K do

p∗k ← The solution of Algorithm 2;
p̄ = (p∗k,p−k);

end for
end while

F̄ (λj)=
K∑

k=1

N∑

n=1

log2(1+γk,n(p̄))−λj

(
K∑

k=1

Pc,k+
N∑

n=1

µk,np̄k,n

)

(19)

λj+1 =

∑K
k=1

∑N
n=1 log2(1 + γk,n(p̄))

∑K
k=1 Pc,k +

∑N
n=1 µk,np̄k,n

; j = j + 1

end while

Let us note that Algorithm 3 is a low-complexity imple-
mentation of Algorithm 1 in which the convergence point of

the better-response dynamics is used in place of the optimal
solution of the auxiliary NP-hard Problem (4). In Algorithm 3,
the notation F (λ) is used to stress the difference with respect
to F (λ). Specifically, F (λ) denotes the value of the objective
of (4) evaluated for p = p̄, with p̄ being the power allocation
obtained upon convergence of the better response dynamics.
Instead, F (λ) is the maximum value of the objective of (4).
In general it must hold F ≤ F . Thus, recalling the discussion
in Section II, the convergence and optimality of Algorithm
3 do not follow from the known properties of Dinkelbach’s
algorithm. Nevertheless, while Algorithm 3 is not guaranteed
to be optimal, its convergence can be theoretically guaranteed.
To this end, it is important to observe that the convergence rule
of Algorithm 3 is slightly different from that of Algorithm 1,
checking the convergence both in terms of {F̄ (λj)} and {λj}j .
Keeping this in mind, the following result holds.

Proposition 4. Algorithm 3 converges in a finite number of
iterations. Moreover, one of the following two cases occurs:

1) Algorithm 3 monotonically increases the value of (3a)
after each iteration and converges. In addition, if upon
convergence it holds F (λ) = 0, then global optimality
is attained.

2) Let j̄ be the index of the first iteration for which F̄ (λj) <
0. In this case, Algorithm 3 stops at iteration j̄, after
having monotonically increased the value of (3a) for all
0 ≤ j ≤ j̄.

Proof: See Appendix VIII-C.
To execute Algorithm 3, the coefficients {αk,n}k,n,
{ξk,n}k,n, and {β(k)

`,n}k,`,n must be available, which re-
quires information sharing among the J receivers, e.g., the
base stations (BSs). This can be achieved through different
approaches, but here we identify Cooperative Multi-Point
(CoMP) [44]–[46] as a suitable and effective paradigm to
implement Algorithm 3 in a centralized fashion. According
to the CoMP paradigm, all base stations share CSI with one
base station, which acts as head of the cluster. Then, Algorithm
3 is locally executed at the cluster head, and then the resulting
resource allocation is shared with the other base stations,
which in turn inform their respective mobile users.

IV. GEE MAXIMIZATION WITH MINIMUM RATE
CONSTRAINTS.

This section tackles the general case of Problem (3), in
which also the minimum rate constraints in (3d) are enforced.
The main difficulty of this scenario lies in the fact that the
presence at the same time of maximum power constraints
and minimum rate requirements might make the problem
unfeasible. In the rest of this section two approaches will be
developed. The former will employ a barrier-based reformu-
lation of (3d), whereas the latter will resort to the theory of
generalized game theory. In both cases, our departure point is
again Algorithm 1, where now the set P denotes the feasible
set of (3), also including the rate constraints in (3d).

A. Barrier method
The idea of the barrier method is to reformulate the auxiliary

problem (4) in Algorithm 1, embedding the rate constraints
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φIk,n =
ρ

log2
2




ηk,n

σ2
n+ηk,np∗k,n+

∑
i6=k β

(k)
i,npi,n

− ξk,n

σ2
n+ξk,np∗k,n+

∑
i6=k β

(k)
i,npi,n

∑N
m=1 log2

(
1 +

p∗k,nαk,n

σ2
n+ξk,np∗k,n+

∑
` 6=k p`,nβ

(k)
`,n

)
−Rmin,k


 (20)

φIIk,n =
ρ

log2
2

∑

i 6=k




βi
k,n

σ2
n+ηi,npi,n+

∑
l 6=k,l 6=i pl,nβ

(i)
l,n+β

(i)
k,np

∗
k,n

− βi
k,n

σ2
n+ξi,npi,n+

∑
l 6=k,l 6=i pl,nβ

(i)
l,n+β

(i)
k,np

∗
k,n

∑N
m=1 log2

(
1 +

pi,mαi,m

σ2
m+ξi,mpi,m+

∑
l 6=k,l 6=i pl,mβ

(i)
l,m+β

(i)
k,mp

∗
k,m

)
−Rmin,i


 (21)

into the objective function. To this end, let us define the
logarithmic barrier function

%(p)=ρ
K∑

k=1

%k(p)=ρ
K∑

k=1

log2

(
N∑

n=1

log2(1 + γk,n)−Rmin,k
)

(22)
with ρ a positive cost parameter, and then reformulate (4) as

max
S

V (p) + %(p) , (23)

wherein V (p) is given by (6), and S = S1×. . .×SK , with Sk
given by (7) for all k = 1, . . . ,K. Thus, (23) has been obtained
from the original auxiliary problem (4) by relaxing the QoS
constraints, but adding the penalty term %(p) to the objective
function, which ensures that the QoS constraints are satisfied.
Indeed, %(p)→ −∞ whenever a user’s rate tends towards its
minimum acceptable rate. Moreover, the pricing parameter ρ
weighs the relative importance between the original objective
V (p) and the barrier term %(p). It is also interesting to observe
that such a parametric logarithmic barrier method is the typical
approach used by the popular interior-point method to solve
constrained convex optimization problems [43].

Next, we proceed as in Section III to tackle (23), introducing
the potential function

V R(p) = V (p) + %(p) , (24)

and defining an identical interest game GR, where the shared
utility function is given by the potential V R(p) in (24). A
better response for any k ∈ K can be found by following
the same steps as in Section III. However, a major difference
compared to Section III is that the original problem might
not be feasible, i..e, it is possible that no pk exists that
guarantees a finite value of the barrier function %(p). This
can be determined by solving the following feasibility test:

max
pk

1 (25)

s.t.
N∑

n=1

pk,n ≤ Pmax,k (26)

N∑

n=1

log2

(
1+

pk,nαk,n

σ2
n+ξk,npk,n+

∑
` 6=k p`,nβ

(k)
`,n

)
≥Rmin,k .

(27)

The test in (25) is convex since the rate function can be seen
to be concave with respect to the powers {pk,n}Nn=1, and thus
can be efficiently solved. If the test result is negative, no
better response for user k exists since its rate constraint can

not be fulfilled3, and user k must either accept a lower rate,
or refrain from transmitting in the present channel coherence
block. If instead, the test result is positive, then, following
similar steps as in Section III, a better response of player k
can be determined as the solution of the problem

max
pk∈Sk

ûRk (pk,p−k,p
∗
k) (28)

wherein

ûRk (pk,p−k,p
∗
k) = ûk(pk,p−k,p

∗
k) +

N∑

n=1

(φIk,n + φIIk,n)pk,n

(29)

with ûk(pk,p−k,p
∗
k),φIk,n and φIIk,n being defined in (11), (20)

and (21), respectively.
Problem (28) can be solved by means of the learning

mechanism (16). Thus, in the case in which all better responses
are feasible, an implementation of Algorithm 1 can be obtained
by considering the solution obtained upon convergence of the
better-response dynamics in place of the exact solution of
the auxiliary problem in each iteration of Algorithm 1. The
resulting algorithm is formulated below as Algorithm 4, and
enjoys similar properties as Algorithm 3.

Algorithm 4 GEE maximization with QoS: Barrier method
Set j = 0; λj = 0; ε > 0;
while F̄ (λj) ≥ ε || |λj − λj−1| ≥ ε do

while Better response dynamics has not converged do
for each k = 1, . . . ,K do

p∗k ← The solution of Problem (28) through Algorithm
2;

p̄ = (p∗k,p−k);
end for

end while

F̄ (λj) =
K∑

k=1

N∑

n=1

log2(1 + γk,n(p̄))− λj

(
K∑

k=1

Pc,k +
N∑

n=1

µk,np̄k,n

)

λj+1 =

∑K
k=1

∑N
n=1 log2(1 + γk,n(p̄))

∑K
k=1 Pc,k +

∑N
n=1 µk,np̄k,n

; j = j + 1;

end while

3We stress that such circumstance is not related to the radio resource
allocation policy, but rather to the deployment of the system, to the contingent
channel conditions, and to the parameters Pmax,k and Rmin,k .
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B. Generalized games method

The approach from Section IV-A requires to solve the
feasibility test (25) before computing each player’s better re-
sponse. Although convex, solving (25) produces an additional
complexity which might not be desirable, especially for large
K and N . In order to further reduce the complexity burden,
here we propose to reformulate the per-user constraints in (3d),
into per-subcarrier QoS constraints, namely considering, for all
k = 1, . . . ,K, the set of N constraints

log2 (1 + γk,n) ≥ R(n)
min,k , ∀ n = 1, . . . , N , (30)

with
∑N
n=1R

(n)
min,k = Rmin,k. Clearly, every power allocation

that fulfills (30), also satisfies (3d) but the reverse statement
is not true. As a consequence, the reformulation in (30) might
cause a slight performance degradation, but, as shown in the
sequel, it allows for a much less complex power allocation
algorithm. Before addressing this point and delving into the
mathematical details of the allocation procedure, it is worth
stressing that a per-subcarrier power constraint is in line with
the IEEE 802.11 standard for WiFi systems, which enforces
equal target rates over each subcarrier, as also mentioned in the
recent work [47]. Moreover, as for the choice of each R(n)

min,k

in (30) we make the following remark.

Remark 3. In order to avoid unfeasibility due to the presence
of only a few subcarriers with poor channel conditions,
R

(n)
min,k should be chosen in a subcarrier-dependent way.

In particular, since the rate over each subcarrier is upper-
bounded by R(n)

max,k = log2

(
1 +

αk,n

ξk,n

)
, it is natural to choose

R
(n)
min,k as a fraction of R(n)

max,k for each n = 1, . . . , N .

Next, having reformulated the QoS as in (30) for all
k = 1, . . . ,K, we again consider the potential function in
(6), and define the non-cooperative potential game GQoS =
{K, {Sk}Kk=1, {uk}Kk=1}, wherein K is the players’ set, uk is
the k-th player’s utility function defined as uk = V (p), and
Sk is the k-th player’s strategy set, which is now defined to
account for the presence of minimum rate constraints, namely:

Sk(p−k) =
{
pk∈Sk : log2

(
1 + γk,n(pk,p−k)

)

≥ R(n)
min,k, ∀n = 1, . . . , N

}
. (31)

In (31), the notation Sk(p−k) is used to stress the fundamental
fact that when QoS requirements are enforced, the strategy
set of player k depends on the strategies of the other players
p−k. Otherwise stated, in the considered game, not only the
utility functions, but also the players’ strategy sets are coupled.
This is the defining property of the so-called generalized
non-cooperative games [13]–[15], whose analysis is more
involved than for regular non-cooperative games. In particular,
the convergence of the best/better-response dynamics is more
difficult to prove, mainly due to the fact that the generic
best/better-response problem might be unfeasible.

To elaborate, for the case at hand it is still convenient
to consider the better response dynamics of GQoS , as in
the case without QoS constraints. Following similar steps as
in Section III, we obtain that a better response for player

k can be computed as the solution of a problem that is
formally equivalent to Problem (15), with the addition of QoS
constraints, namely

max
pk∈Sk

ûk(pk,p−k, p̄k) (32a)

s.t. log2(1 + γk,n) ≥ R(n)
min,k ,∀ n = 1, . . . , N (32b)

At this point we exploit the fact that per-subcarrier QoS
constraints have been enforced. Indeed, unlike Section IV-A
where the feasibility of a user’s rate requirement had to be
determined by solving the test (25), here a closed-form feasi-
bility condition can be derived to test the feasibility of (32).
Also, observe that (32b) can be equivalently reformulated, for
all n = 1, . . . , N , as

pk,n ≥
(2R

(n)
min,k − 1)

(
σ2 +

∑
` 6=k p`,nβ

(k)
`,n

)

αk,n − ξk,n(2R
(n)
min,k − 1)

= P
(n)
min,k ,

(33)

and therefore (32) is feasible if and only if the following
condition holds:

N∑

n=1

P
(n)
min,k ≤ Pmax,k . (34)

Let ∆k = Pmax,k −
∑N
n=1 P

(n)
min,k be the residual power for

each player k. Then, assuming the problem is feasible, i.e.,
∆k > 0, and exploiting the fact that (32b) is equivalent to the
linear constraint (33), it is possible to solve (32) as shown in
the next proposition.

Proposition 5. Consider the following iterative learning
mechanism with exponential mappings:




yk,n(t+ 1) = yk,n(t) + δtv̂k,n(pk,n(t),p−k, p̄k)

p′k,n(t+ 1) = ∆k
eyk,n(t)

1+
∑N

m=1 e
yk,m(t)

pk,n(t+ 1) = p′k,n(t+ 1) + P
(n)
min,k

(35)

where t is the iteration index of the learning procedure, δt
is the step-size, p̄k is the strategy of user k at the previous
iteration of the BRD, and v̂k,n(pk,n(t),p−k, p̄k) is defined in
(17). If

∑+∞
t=1 δ

2
t <

∑+∞
t=1 δt = +∞, (35) converges to the

unique solution of Problem (32).

Proof: See Appendix VIII-D.
It is worth remarking that the learning mechanism (35) is

similar to that in (16). The only difference between the two
mechanisms is that (35) is defined over the shrunken feasible
set
∏N
n=1[0,∆k], and thus requires an additional equation to

guarantee the feasibility of the solutions.
Finally, an implementation of Algorithm 1 can be developed

as shown in Algorithm 5.
It is worth noting that if the feasibility condition in (33)

does not hold for some users and subcarriers, the fact that
per-subcarrier QoS constraints have been considered, enables
to relax the rate requirement only for the specific subcarriers
which experience poor channel conditions. That is, the min-
imum transmission power constraint is enforced on a subset
NF
k ⊆ N such that

∑
n∈NF

k
P

(n)
min,k ≤ Pmax,k, while the
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Algorithm 5 GEE maximization with QoS: Generalized
games method

Set j = 0; λj = 0; ε > 0; ∆k = Pmax,k −
∑N

n=1 P
(n)
min,k,∀k ∈

K
while F̄ (λj) ≥ ε || |λj − λj−1| ≥ ε do

while Better response dynamics has not converged do
for each k = 1, . . . ,K do

p′k ← The solution of Algorithm 2 with Pmax,k = ∆k;
p∗k ← {p′k,n + P

(n)
min,k}n;

p̄ = (p∗k,p−k);
end for

end while

F̄ (λj)=
K∑

k=1

N∑

n=1

log2(1+γk,n(p̄))−λj

(
K∑

k=1

Pc,k+
N∑

n=1

µk,np̄k,n

)

(36)

λj+1 =

∑K
k=1

∑N
n=1 log2(1 + γk,n(p̄))

∑K
k=1 Pc,k +

∑N
n=1 µk,np̄k,n

; j = j + 1;

end while

constraint is removed from the remaining subcarriers, i.e.,
P

(n)
min,k = 0 if n /∈ NF

k . This is in line with the well-known
water-filling solution for a set of parallel channels, in which
low power is allocated to channels with poor propagation
conditions.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

A. Asymptotic complexity of Algorithm 3

Algorithm 3 is composed of three nested loops. The inner
loop is Algorithm 2, which is used to compute the users’
better responses. The middle loop is the better response
dynamics, while the outer loop is the update of λ according
to Dinkelbach’s rule.

Algorithm 2 requires to implement the learning scheme
(16) until convergence. In each iteration of Algorithm 2,
the variables pk,n and yk,n are simultaneously updated for
each of the N subcarriers. Each update requires computing
formula (16), which has complexity O(1). Thus, the per-
iteration complexity of Algorithm 2 is O(N). On the other
hand, no closed-form result is available for the number IL
of iterations before Algorithm 2 converges, even though the
numerical analysis presented in Section VI shows that a few
tens of iterations are required.

As for the middle loop, the number of better responses
to compute until convergence will be equal to the number
of users K, times the per-user amount of iterations, say IB .
Unfortunately, a closed-form expression which quantifies IB
is not available, even though related works on game-theoretic
resource allocation algorithms show that typically IB is of the
order of a few units [7], [14], [48]. This behavior has been
confirmed by our numerical analysis, too.

As for the number of iterations required for the convergence
of the outer loop, say ID, again no closed-form result is
available in general, even though, as observed in Section
II, the convergence rate of Dinkelbach’s algorithm is super-
linear. This argument is corroborated by our numerical results,
which shows how ID is of the order of a few units. Also,

assuming upper and lower bounds of the maximum GEE
value are available, say U and L, we could find the zero
of F (λ) by updating λ according to the bisection method,
instead of using Dinkelbach’s update rule. Although bisection
converges typically slower than Dinkelbach’s method [47], it
provides an estimate of ID. Upon using the bisection method,
the zero of F (λ) can be found within a tolerance ε with
ID = log2

(⌈
U−L
ε

⌉)
iterations.

Finally, we can obtain the overall asypmtotic complexity of
Algorithm 3 as O(NKIDIBIL). Under the assumption that
ID, IB , IL are fixed numbers4 that do not depend on K and
N , then the complexity of Algorithm 3 is linear in K, and
above all in the number of subcarriers N . On the other hand,
other methods which do not exploit learning theory have a
complexity which is either polynomial (typically cubic) in both
N and K, or linear in K but polynomial in N .

B. Asymptotic complexity of Algorithm 4

The barrier method is similar to Algorithm 3, except for the
fact that the feasibility of the generic best-response problem
needs to be tested, which is accomplished by solving the
convex feasibility test in (25). Since the test is convex, it
can be solved with standard convex tools with polynomial
complexity in the number of variables in the test, which is
N . In particular, an upper-bound to the complexity of any
convex problem is known to scale with the fourth power
of the number of variables [49]. Keeping this in mind, and
observing that the number of better responses before reaching
convergence is proportional to KIBID, the asymptotic com-
plexity related to testing the feasibility of the better-responses
problem is upper-bounded by O(N4KIBID). So, the overall
complexity of the barrier method can be upper-bounded as
O(NKIBIDIL) + O(N4KIBID), where the first term can
be derived by a similar analysis as for the case without QoS.
So, enforcing QoS constraints causes a relevant complexity
increase.

C. Asymptotic complexity of Algorithm 5

As anticipated in Section IV-B, the goal of Algorithm 5
is to reduce the complexity due to testing the feasibility of
the QoS constraints. To this end, Algorithm 5 considers per-
carrier QoS constraints, thus causing a possible performance
loss, but enabling to evaluate the feasibility of each better-
response problem by simply checking the condition in (34).
This has complexity proportional to N , since it requires
to compute (33) for all N subcarriers. As a result, the
asymptotic complexity of Algorithm 5 can be written as
O(NKIBIDIL)+O(NKIBID) ≈ O(NKIBIDIL), wherein
the approximation stems from the fact that IL is typically
of the order of a few tens. In any case, the complexity of
Algorithm 5 is linear in N .

4In line with previous works on radio resource allocation, we assume that
the number of iterations ID , IB , IL does not depend on the problem size,
i.e. on K and N . This approximation is typically made in related literature
since the dependency between the iteration number and the problem size is a
very implicit one, and it appears prohibitive to model it mathematically.
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VI. NUMERICAL RESULTS

In this section we assess the performance of the proposed
solutions through numerical simulation. We assume that N =
4 subcarriers are available for transmission, and K = 12 users
are uniformly distributed over a square area of edge L =
200 m. The subcarrier bandwidth is set to W = 10.93 kHz,
and the noise power spectral density is N0 = −173 dBm/Hz
for all n ∈ N . Also, we assume that the total static hardware
power dissipated by each transmitter is Pc,k = −20 dBW
for all k ∈ K. Channel gain coefficients αk,n and βk,n are
generated according to the path-loss model for Jakes fading
[50], and the path-loss coefficient is set to d = 4. For each
k ∈ K and n ∈ N , we assume that ξk,n = ξ · αk,n
where, unless stated otherwise, ξ = 0.01 represents a self-
interference coefficient which reflects hardware impairments
and/or imperfect channel estimation at the receiver. Finally, we
assume that the inefficiency of the power amplifier is constant
for all users and over all subcarriers, and it is set to µ = 1.02.

The results presented in the following are averaged over
1000 independent simulation runs.

First, we investigate the effect of self-interference on the
system achievable performance. Accordingly, in Fig. 1(a) and
Fig. 1(b) we show the system GEE and achievable rate versus
the maximum transmission power Pmax, computed for the
power allocation output by Algorithm 3, for different values
of the self-interference coefficient ξ. It is shown that both
the GEE and the rate increase as the maximum transmis-
sion power level Pmax increases, and both asymptotically
converge towards a saturation point while increasing Pmax.
This behavior is expected, since the GEE admits a finite
maximum, which is obtained with no need of using all
the available power transmission. Thus, when Pmax is large
enough to attain such global maximizer, the transmit power
is not increased anymore, as this would lead to a decrease
of the GEE value. Moreover, both figures show that self-
interference might drastically affect the performance of the
network. As an example, Fig. 1(a) shows that the GEE of the
system when ξ = 0 is twice larger than the GEE achieved
when ξ = 0.1. Accordingly, Fig. 1(a) and Fig. 1(b) show that
the performance of the network are better when the effect of
the self-interference is small and limited.

In Fig. 2, we show the average number of iterations needed
by each nested loop in Algorithm 3 to reach convergence.
Specifically, Fig. 2 reports the average number of times the
parameter λj was updated (Dinkelback Algorithm), the aver-
age number of better responses per-user to be computed before
the better response dynamics converges (Better Response Dy-
namics Per-User), and the average number of iterations needed
by Algorithm 2 to compute each better-response (Learning
Mechanism). For any given Pmax, multiplying the values of
the three curves shown in Fig. 2 gives the average number
of total iterations (i.e. accounting for all three nested loops)
required for convergence. It is shown that the number of
iterations is in general low and only a few iterations are
needed to reach convergence in Algorithm 3. The number
of iterations needed by the learning mechanism is higher
than the other two loops, but it is worth noting that each

TABLE I
RATIO BETWEEN THE ASYMPTOTIC COMPLEXITY OF THE METHOD FROM

[16] AND OUR PROPOSED METHOD.

−20dBW −10dBW 0dBW 10dBW

Complexity Ratio 3.025*103 2.875*103 1.053*103 767.778

iteration of Algorithm 2 requires only a closed-form variable
update. Finally, we observe that the number of iterations of the
learning mechanism increases with Pmax, since higher Pmax
produce larger feasible sets over which the optimization is
performed.

Next, Table I shows the ratio between the asymptotic
complexity of the approach from [16], which does not use
learning methods5, and that of the proposed method, as de-
rived in Section V. As for the evaluation of the asymptotic
complexity of the method from [16], from [49] we have that a
general upper-bound for the complexity of the convex problem
solution scales with the fourth power of the total number of
variables, that is KN in our case. Then, denoting by IS and ID
the number of approximate fractional problems to solve and
the number of Dinkelbach’s iterations for each approximate
fractional problem, the complexity of the method from [16]
can be evaluated as O(ISIDK

4N4). Nevertheless, accounting
for the fact that the complexity result from [49] is an upper-
bound, in Table I we have considered a cubic complexity for
the method from [16], namely O(ISIDK

3N3), motivated by
the fact that a cubic complexity is what is required to solve a
KKT system in the case of linear problems, which is a simpler
scenario as the one at hand here. Despite this conservative
choice, Table I clearly shows that the proposed method has a
much lower complexity than the method from [16]. This result
is particularly relevant when taken together with the results in
Fig. 5, which will show how the proposed method performs
very closely to the method from [16].

Next, we focus on the case when a minimum data-rate
requirement Rmin,k is introduced in the GEE maximization
problem. Specifically, we assess the performance of the barrier
and generalized games methods for GEE maximization under
minimum data-rate requirements proposed in Sections IV-A
and IV-B, respectively. Furthermore, we compare them with
the algorithm proposed in Section III which does not consider
any QoS constraint. Unless otherwise stated, we assume that
the barrier cost parameter in (22) used to execute the barrier
method is ρ = 1. Note that the maximum achievable rate
for each user is Rmax,k =

∑N
n=1 log2(1 + αk,n/ξk,n). Since

αk,n/ξk,n = 1/ξ = 100, the maximum achievable rate each
user can obtain in the ideal condition in which no multi-user
interference is present and infinite transmit power is available
is Rmax,k = N log2(1 + 1/ξ) = 26.63 bit/s/Hz. Also, we
assume Rmin,k = Rmin for all k ∈ K.

As already discussed in Sections IV-A and IV-B, GEE
maximization subject to QoS constraints might be unfeasible.
However, to provide a fair comparison between the scenarios
with and without QoS, if an unfeasibility is detected, in our

5This method merges Dinkelbach’s algorithm and sequential optimization,
solving a sequence of approximate fractional problems, refining the approxi-
mation after each iteration.
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Fig. 1. GEE and achievable rate as a function of the maximum transmission power Pmax for different values of the self-interference coefficient ξ.
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Fig. 2. Average number of iterations needed by each nested loop in Algorithm
3 to reach convergence.

simulations we slightly relax the QoS requirements. In partic-
ular, as for the barrier method, we relax the barrier function
by assuming %k(p) = C if

∑N
n=1 log2(1 + γk,n) < Rmin,k,

where C is a sufficiently large negative real valued number. In
order to set the value of C, note that the asymptotic achievable
rate of the system is equal to Rmax =

∑K
k=1Rmax,k ≈ 320

bit/s/Hz. Also, the first term in (6), which represents the actual
data-rate of the system, is always upper-bounded by Rmax,
which implies that, to generate a strong penalty term in (24),
the absolute value of C should be larger than Rmax. Accord-
ingly, in our simulations we assume that |C| = 103 >> Rmax.
As for the generalized games method, when an unfeasibility
is detected, as discussed in Section IV-B, we enforce the
minimum power constraint (33) only on a subset NF

k ⊆ N of
subcarriers such that

∑
n∈NF

k
P

(n)
min,k ≤ Pmax,k.

In Fig. 3, we present a comparison between the different
proposed algorithms for GEE maximization under minimum
QoS requirements as a function of the maximum transmission
power Pmax for different values of the minimum data-rate
requirement Rmin. It is worth noting that the algorithm to
solve the GEE maximization problem proposed in Section III

has not been designed to satisfy any QoS constraints. As a
result, Fig. 3(a) shows that the percentage of satisfied users for
this algorithm (triangle markers) is low and decreases as the
value of Pmax increases. On the contrary, Fig. 3(a) also shows
that the generalized games (circle markers) and barrier (square
markers) methods guarantee a higher percentage of satisfied
users. Observe that these two methods do not fully meet all the
users’ QoS requirements, since, as discussed above, the QoS
requirements have been slightly relaxed if a feasible solution
does not exist.

It is worth noting that the barrier method outperforms all the
other algorithms in any of the considered cases as it satisfies
a higher number of users, and the percentage of satisfied
users with the generalized games method is not considerably
impacted by the maximum transmission power level. The GEE
and the achievable rate of the system under the three proposed
methods are shown in Fig. 3(b) and Fig. 3(c), respectively.
The highest value of the GEE is achieved when the algorithm
without QoS requirements is considered, since enforcing QoS
restricts the problem feasible set. As already shown in Fig. 1(a)
and Fig. 1(b), when the value of Pmax increases, the GEE and
the data-rate in this case increase as well. Instead, the GEE
in the case of the generalized games method decreases when
larger maximum transmission power levels are allowed, while
the achievable data-rate remains almost constant. A similar
behavior is exhibited by the barrier method, which however
results in better performance if compared to the generalized
games method. Interestingly, the average per-user achievable
rate is almost constant for the two algorithms proposed in
Section IV. In conclusion, the obtained results show that the
introduction of minimum data-rate requirements decreases the
performance of the system in terms of GEE. Actually, in order
to provide a minimum QoS level, even those users which
experience poor channel conditions have to be scheduled,
which inevitably leads to performance degradation in terms
of global network energy efficiency.

In Fig. 4, we assess the performance of the barrier method
as a function of the barrier cost parameter ρ for different values
of the minimum transmission rate Rmin when Pmax = −20
dBW. From (22), we have that the cost introduced by the
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Fig. 3. Satisfied users ratio, GEE, and average per-user achievable rate as a function of the maximum transmission power Pmax for different values of the
minimum rate Rmin (Solid lines: Rmin = 0.026 bit/s/Hz; Dashed lines: Rmin = 0.266 bit/s/Hz).

barrier method increases when large values of ρ are con-
sidered. Accordingly, Fig. 4(a) shows that the percentage of
satisfied users increases with the value of ρ. As expected,
the percentage of satisfied users is higher when the minimum
required achievable rate is low. Instead, Fig. 4(b) and Fig. 4(c)
show that the GEE and the achievable rate decrease as the cost
parameter ρ increases. This stems from the fact that larger
values of ρ lead to higher barrier costs, which encourages the
system to fulfill the users’ rate requirements, at the expense
of the system global performance.

Finally, to assess the performance of the proposed low-
complexity solution in Algorithm 3, we compare it with the
more sophisticated solution proposed in [16], which enjoys
strong optimality properties and has been shown to attain
global optimality is several practical scenarios. Let GEED

and GEEC be the GEE obtained by Algorithm 3 and the
approach from [16], respectively, and let the GEE efficiency
be defined as the ratio GEED/GEEC . The closer to one
the value of the ratio, the better the performance of the
obtained solution. In Fig. 5, we show both the GEE value
achieved by the two approaches and the GEE efficiency as a
function of Pmax for different values of the self-interference
parameter ξ, and with K = 20 active users in the system.
Remarkably, it is seen that the proposed method performs very
close to the approach from [16], despite being less complex.
In particular, Algorithm 3 provides the same performance as
the method from [16] in almost all considered cases, with the
GEE efficiency being lower than one only for small values of
the maximum transmission power level.

VII. CONCLUSIONS

This paper has introduced an algorithmic framework for
energy-efficient radio resource allocation in multi-carrier wire-
less interference networks. The maximization of the system
GEE subject to both maximum power and minimum rate con-
straints has been tackled by merging fractional programming,
game theory, and learning tools. The resulting framework is
provably convergent and strikes a better optimality-complexity
trade-off than available alternatives. The merits of the devel-
oped framework have been assessed by an extensive numerical
analysis, showing that enforcing minimum rate constraints can

lead to quite lower GEE values, although enabling supporting
minimum communication rates for all users.

VIII. APPENDIX

A. Proof of Proposition 2

Proof: To begin with, we observe that many terms in
(12) do not depend on p−k, and thus are inessential as far as
Problem (15) is concerned. Neglecting these terms, Problem
(15) can be equivalently restated as follows:

max
pk∈Sk

N∑

n=1

[
log2(1 + γk,n)− νk,npk,n

+
∑

i 6=k
log2


σ2

n + ηi,npi,n + β
(i)
k,npk,n +

∑

6̀=i,` 6=k
β

(i)
`,np`,n






(37)

with νk,n = λjµk,n − φk,n. Next, we show the uniqueness of
the solution by proving that (37) is a strictly concave problem.
To this end, let V̂k(pk,p−k, p̄k) be the objective function in
(37), and let Hk be its Hessian matrix with respect to pk. It
is easy to show that Hk is a N × N diagonal matrix whose
n-th diagonal element Hn,n

k is defined as

Hn,n
k =

1

log(2)




ξ2
k,n(

σ2
n + ξk,npk,n +

∑
i 6=k β

(k)
i,n pi,n

)2 (38)

−
η2
k,n(

σ2
n + ηk,npk,n +

∑
i 6=k β

(k)
i,n pi,n

)2

−
∑

i 6=k

β
(i)
k,n

2

(
σ2
n+ηi,npi,n+β

(i)
k,npk,n+

∑
l 6=i,l 6=k β

(i)
l,npl,n

)2




Recalling (13), it follows that the difference of the first two
terms in (38) is strictly negative if αk,n > 0. Similarly, the
third term in (38) is strictly negative if

∑
i 6=k β

(i)
k,n ≥ 0, i.e. if

β
(i)
k,n > 0 for at least one i. Hence, unless αk,n+

∑
i 6=k β

(i)
k,n =
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Fig. 4. Satisfied users ratio, GEE, and average per-user achievable rate as a function of the barrier cost parameter ρ for different values of the minimum rate
Rmin.
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0, Hn,n
k is always negative6. It follows that the eigenvalues are

negative, and Hk is definite negative. Thus V̂k(pk,p−k, p̄k)
is strictly concave in pk, and it admits a unique (global)
maximizer, i.e., Problem (37) has a unique solution.

Finally, let us show that the unique solution of (37) is a
better response for player k. Let πk = {πk,n}n be a strategy
profile for user k. By definition, the approximated utility
function ûk(πk,p−k,πk) in (12) represents the value of the
function uk(πk,p−k) in (8) being evaluated at πk. Therefore,
we have that uk(πk,p−k) = ûk(πk,p−k,πk). Let pk be the
solution of Problem (37) when maximizing V̂k(pk,p−k,πk).
We have that ûk(πk,p−k,πk) ≤ ûk(pk,p−k,πk), and
thus uk(πk,p−k) ≤ ûk(pk,p−k,πk). Also, we have that
ûk(pk,p−k,πk) ≤ uk(pk,p−k) by construction. Thus, it
follows that uk(πk,p−k) ≤ uk(pk,p−k), which implies that
pk is a better-response to p−k for user k, and concludes the
proof.

6It is worth noting that αk,n +
∑

i 6=k β
(i)
k,n = 0 implies that no useful

signal can be transmitted by user k on channel n, and pn,k = 0 is the
only feasible strategy for k on these channels. Therefore, these strategies are
constant, i.e., they can be removed from the strategy space, and the problem
still remains strictly concave in the remaining strategies.

B. Proof of Proposition 3

Proof: We first derive the corresponding ordinary differ-
ential equation (ODE) for (16) as:

{
ẏk,n = v̂k,n(pk,n,p−k, p̄k)

pk,n = Pmax,k
eyk,n

1+
∑N

m=1 e
yk,m

(39)

where ẏk,n is the first-order time derivative of yk,n, and
v̂k,n(pk,n) is defined in (17).

Since v̂k,n is bounded by definition, it can be easily shown
that it is also Lipschitz. Furthermore, from Proposition 2, ûk is
strictly concave and admits a unique maximizer p∗k = {p∗n,k}.
For the sake of readability, here we denote the maximum
transmission power Pmax,k of user k as Pk.

Let us consider the function L(pk)

L(pk) = Pk

N∑

n=1

log

(
Pk − p∗k,n
Pk − pk,n

)

+ p∗k,n log

(
p∗k,n
pk,n

· Pk − pk,n
Pk − p∗k,n

)
(40)

The first-order time derivative of L(pk) is L̇ =
dL(pk)

dt =∑N
n=1 v̂k,n(pk,n)(pk,n − p∗k,n), and the strict concavity of ûk

implies L̇ < 0. Furthermore, it can be easily shown that
L(p∗k) = 0, and L(pk) > 0 for all pk 6= p∗k. Therefore
L(pk) is a strict Lyapunov function for the ODE in (39). Also,
L(pk) is radially unbounded, which implies that the unique
equilibrium of the system, i.e., the unique maximizer p∗k, is
also globally asymptotically stable. Let pk(t) be a solution
orbit of (39). The above results guarantee that the ODE in (39)
converges towards p∗k with probability 1, i.e., pk(t)→ p∗k as
t→ +∞. By decoupling (39) w.r.t. pk,n and yk,n, we obtain

ṗk,n =
dpk,n
dt

= pk,n

(
1− pk,n

Pk

)
v̂k,n(pk,n) (41)

A second-order Taylor expansion of (39) gives us

pk,n(t+ 1) = pk,n(t) +
1

2
Γγ2

t

+ γtpk,n(t)

(
1− pk,n(t)

Pk

)
v̂k,n(pk,n(t)) (42)

where Γ is bounded due to the strict concavity of ûk. Observe
that (42) can be seen as a discretized version of (41), up to a
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bounded error. Since
∑
t γ

2
t <

∑
t γt = +∞ by assumption,

pk(t) is an asymptotic pseudo-trajectory for (39) [51].
Next, we prove that pk,n(t) converges towards p∗k,n for all

n ∈ N . By rewriting (40) in terms of yk = {yk,n}, and by
performing a second-order Taylor expansion of L(yk(t+ 1)),
we obtain

L(yk(t+ 1)) = L(yk(t))

+ γt

N∑

n=1

v̂k,n(pk,n(t))(pk,n(t)− p∗k,n) +
1

2
Γ′γ2

t (43)

for some bounded Γ′ > 0. Recall that∑N
n=1 v̂k,n(pk,n(t))(pk,n(t) − p∗k,n) < 0 by strict concavity,

and that p∗k is globally asymptotically stable. Therefore, there
exists a compact set L which is also a basin of attraction for
p∗k ∈ L. Then, assume ad absurdum that pk,n(t) does not
converge towards p∗k,n. If pk(t) does not converge, it must
stay at a bounded distance from p∗k,n. That is, there must exist
a > 0 such that

∑N
n=1 v̂k,n(pk,n(t))(pk,n(t) − p∗k,n) ≤ −a

for all t. Accordingly, (43) can be approximated as
L(yk(t+1)) ≤ L(yk(t))−γta+ 1

2Γ′γ2
t , which, by telescoping,

leads to L(yk(t + 1)) ≤ L(yk(0)) − a
∑
t γt + 1

2Γ′
∑
t γ

2
t .

Thus, since by assumption
∑
t γ

2
t <

∑
t γt = +∞, we

have that L(yk(t + 1)) ≤ −∞, which is a contradiction as
L(yk) is lower bounded by construction. Therefore, there
must exist a large enough t′ such that pk(t′) ∈ L and
limt→+∞ pk(t) = p∗k [51], which concludes the proof.

C. Proof of Proposition 4

Proof: The first step of the proof is to show that whenever
F̄ (λj) ≥ 0, it holds λj+1 ≥ λj . To see this, denote by p̄j the
equilibrium of the better-response dynamics played at iteration
j of Algorithm 3, and define fj(p) =

∑K
k=1

∑N
n=1 log2(1 +

γk,n(p)), and gj(p) = Pc +
∑K
k=1

∑N
n=1 µk,npk,n. Then,

recalling that gj(p) ≥ 0 for all p ∈ P , it holds:

0 ≤ F̄ (λj) = f(p̄j)− λjg(p̄j) (44)

⇔ F̄ (λj)

g(p̄j)
=
f(p̄j)

g(p̄j)
− λj = λj+1 − λj ≥ 0 . (45)

Hence, the sequence {λj}j is monotonically increasing as long
as F̄ (λj) > 0. Moreover, {λj}j is upper-bounded, since λj
is the GEE value (3a) achieved after the j-th iteration. Thus,
if F̄ (λj) > 0 holds until {λj}j converges, we are in the first
case of Proposition 4. Also, as the sequence {λj}j increases,
the sequence {F (λj)}j decreases. Therefore, it holds:

F (λj+1) = max
p∈P
{f(p)− λj+1g(p)}

≤ max
p∈P
{f(p)− λjg(p)} = F (λj) , (46)

Upon convergence, if F (λ) = 0, Algorithm 3 has achieved
global optimality; otherwise, if F (λ) = c, a suboptimal
solution has been attained.

If instead we are in the second case of Proposition 4, the
algorithm clearly terminates at iteration j̄, since F̄ (λj) < 0 <
ε. Moreover, by the same steps used to show the first part, it
follows that {λj}j is monotonically increasing for all 0 ≤ j ≤
j̄, whereas λj̄ ≥ λj̄+1.

D. Proof of Proposition 5

Proof: From (35), it is straightforward to verify that∑N
n=1 p

′
k,n(t+1) ≤ ∆k. Also, from (38) and Proposition 2, we

have that Hn,n
k (pk,n(t+1)) = Hn,n

k (p′k,n(t+1)+P
(n)
min,k) ≤ 0.

That is, ûk(p′k(t),p−k, p̄k) is strictly concave w.r.t. p′k(t) =

{p′k,n(t)}n over the shrunken feasible set
∏N
n=1[0,∆k], and

Problem (32) admits a unique solution w.r.t. p′k(t). The
convergence of (35) towards the solution of Problem (32) can
be proved by following the same steps used in the proof of
Proposition 3, where Pmax,k is replaced by ∆k.
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