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Abstract

In this work, we consider a scenario where two multiple-aperture legitimate nodes (Alice and Bob)

communicate by means of Free-Space Optical (FSO) communication in the presence of a multiple-

aperture eavesdropper (Eve), which is subject to pointing errors. Two different schemes are considered

depending on the availability of channel state information (CSI) at Alice: i) the adaptive scheme,

where Alice possesses the instantaneous CSI with respect to Bob; ii) the fixed-rate scheme, where such

information is not available at Alice. The performance of the aforementioned schemes is evaluated in

terms of a recently proposed metric named effective secrecy throughput (EST), which encompasses both

the reliability and secrecy constraints. By constraining the system to operate below a given maximum

allowed secrecy outage probability, we evaluate the EST analytically and through numerical results,

showing that the use of multiple apertures at Alice is very important towards achieving the optimal

EST.
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I. INTRODUCTION

Secrecy in the presence of an eavesdropper is a classical problem in communication theory,

which was first analyzed in the context of the wiretap channel in [1], and received renewed

interest in radio-frequency (RF) wireless applications in the past few years due to their broadcast

nature. Recently, physical layer security has appeared as a complement to the cryptographic

techniques [2], showing that the fading, usually a negative factor in terms of reliability, can be

used to increase the data security. In the case of free-space optical (FSO) transmissions, security is

intrinsically higher than in RF scenarios due to the high directionality of optical beams. However,

the interception of optical signals is also possible and efforts must be expended aiming to avoid

it.

In order to intercept the legitimate link, the eavesdropper (Eve) may either approach the

legitimate transmitter (Alice) and try to block the laser beam in order to collect a large amount

of power, or approach the legitimate receiver (Bob) and take advantage of the beam radiation

being reflected by small particles, receiving part of the signal intended for Bob. The second case

is more reasonable as a real threat scenario since, if Eve is close to Alice, she will not be able

to intercept the beam without blocking the line of sight, which could allow Alice to detect its

presence visually or based on the variation of the received power experienced by Bob [3].

The use of wiretap codes [4] is the usual assumption to achieve secrecy capacity, for which

a redundancy rate is defined as RE = RB −R, where R represents the target secrecy rate and

RB corresponds to the rate of transmitted codewords. Then, reliable and secure communication

requires that: i) RB ≤ CB (reliability constraint), where CB is the instantaneous channel capacity

of the legitimate link; ii) RE > CE (secrecy constraint), where CE is the instantaneous channel

capacity between Alice and Eve. However, it is very unlikely that Alice has knowledge about the

instantaneous channel state information (CSI) with respect to Eve [5] and, thus, the condition

RE > CE cannot be guaranteed at all times. In this particular case, one must resort a probabilistic

analysis through the secrecy outage probability (SOP) [2].

For instance, the effective secrecy throughput (EST) was proposed in [6] as a way to encompass

both reliability and secrecy in a single metric. The EST is adopted in order to evaluate the

performance of a RF-based single-input single-output multiple-antenna eavesdropper scenario

considering the so-called adaptive and fixed-rate schemes. For the adaptive scheme, CB is

required to allow Alice to adapt RE and R accordingly, guaranteeing the reliability constraint.
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On the other hand, only the expected value of CB is assumed at Alice for the fixed-rate scheme.

Moreover, the optimal secrecy rate that maximizes the EST is also investigated in [6]. However,

such optimization is not constrained with respect to the SOP, which means that the optimal EST

provided by [6] may lead to an outage probability that might be above an acceptable security

threshold. Aiming at avoiding this possible security issue, the EST was extended in [7] with the

addition of a constraint on the maximum allowed SOP. Such constrained EST was then adopted

to evaluate the performance of a RF-based multiple-input multiple-output (MIMO) multiple-

antenna eavesdropper system, subjected to Rayleigh fading and operating under the adaptive

scheme from [6].

It is also worthy mentioning that the secrecy can be improved by using techniques such

as orbital angular momentum (OAM) multiplexing, scintillation reciprocity and acousto-optic

deflectors. The use of orbital angular momentum multiplexing (OAM) is studied in [8] to increase

the aggregate secrecy capacity1, and it is demonstrated that the performance can be improved for

weak and medium turbulence regimes. In [9], the use of acousto-optic deflectors are proposed to

further increase the data security. In such approach, optical messages are sent through different

beam paths between Alice and Bob, while it is shown that the radius of the beam, and the intensity

of the received beam from different beam paths, directly affects the data transmission security.

Moreover, an air-to-ground FSO communication system is investigated in [10], demonstrating

that, for any FSO system where the scintillation reciprocity holds, the communication can be

further improved through the use of a cryptosystem relying on the securely generated keys. While

each of the aforementioned methods can be used to further improve the FSO communication

in its own way, none of them are based on wiretap codes (i.e., do not use the redundancy rate)

and, thus, does not give any insight about the optimum value of RE .

In this work, we consider a multiple-input multiple-output multi-apertures eavesdropper (MI-

MOME) coherent FSO scenario. We assume that Alice adopts a transmit laser selection (TLS)

scheme, which was shown to improve reliability when adding more apertures between the

transmitter and the receiver [11], while Bob and Eve operate under the optimal maximum ratio

combining (MRC) scheme [12]. By adopting the constrained EST metric from [7] and considering

gamma-gamma distribution to model the fading of the FSO channel, we evaluate the performance

of the adaptive and fixed-rate transmission schemes from [6]. Furthermore, we also assume that

1The aggregate secrecy capacity is defined as the summation of the secrecy capacity for all multiplexed channels [8].
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the legitimate link between Alice and Bob experiences no misalignment issues, which generally

holds in scenarios when the receiving apertures are located fairly close to each other [13]. As

a consequence, the fraction of the power received by Eve also encompasses the existence of

pointing errors, which generally depends on the distance between Bob and Eve [13]–[15]. The

main contributions of this paper are described as follows:

1) We obtain closed form EST expressions for both adaptive and fixed-rate schemes in a

coherent FSO scenario where the eavesdropper is subject to pointing errors, which are

verified by numerical results;

2) The rates RE and RB that maximize the EST for both adaptive and fixed-rate schemes

are analytically obtained, respecting the constraint of a maximum allowed SOP;

3) We demonstrate that, when operating under the fixed-rate scheme, including additional

apertures can lead to a larger EST than that obtained using the adaptive scheme.

The rest of this paper is structured as follows. Section II presents the system model, the

adaptive and fixed-rate transmission schemes, and the EST performance metric. Considering a

MIMOME FSO communication, Sections III and IV present the performance analysis of the

adaptive and the fixed-rate transmission schemes, respectively. Section V presents numerical

results, while Section VI concludes the paper.

II. PRELIMINARIES

A. System Model

The model adopted in this work is composed of one legitimate transmitter, Alice (A), commu-

nicating with a legitimate receiver, Bob (B), in the presence of an eavesdropper, Eve (E). Alice

is equipped with NA transmit apertures working under transmit laser selection (TLS) scheme,

while Bob and Eve are provided with, respectively, NB and NE receive apertures, using the

optimum MRC scheme. This scenario, referred to as MIMOME, is illustrated in Fig. 1.

Depending on the detection type, FSO communication systems can be separated in two main

categories, namely coherent and direct detection (DD) systems [16]. While the maximum capacity

bounds of DD systems have been studied in a number of works such as [17], [18], in [19], it is

shown that coherent detection outperforms direct detection at the cost of a higher complexity.

Furthermore, the extraction of phase information for coherent FSO systems allows a greater

variety of modulation formats in comparison with direct detection [20].
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Fig. 1. MIMOME point-to-point FSO communication, composed of a legitimate transmitter (Alice, provided with NA transmit

apertures) and a legitimate receiver (Bob, provided with NB receive apertures), communicating in the presence of an eavesdropper

(Eve, with NE apertures).

The transmission in FSO communication is affected by a large number of phenomena, among

which the most harmful is the scintillation, defined as the random fading characteristic of

the received optical intensity [3]. As a consequence, the received optical irradiance in FSO

communication, regardless the detection type, is commonly modeled by means of more complex

(and difficult to manipulate) statistical distributions such as gamma-gamma [21]–[23]. Apart

from scintillation effect, pointing errors must also be taken into account when there is a non-

negligible misalignment between the transmitter and receiver nodes [14]. While in the legitimate

link perfect alignment is commonly assumed [13], such assumption is not realistic to the link

between Alice and Eve, since Eve cannot be too close to Bob in order not to be detected.

Following [16], [24], [25], we employ coherent detection, which, despite being more complex

than direct detection, provides flexibility since either amplitude, frequency or phase can be used.

In such systems, even though the capacity initially increases with the increase in the diameter

of the receiver aperture, it tends to saturate, justifying the use of multiple apertures at the

receiver [26]. We also consider that the irradiance received at apertures in Bob and Eve are

independent, i.e., the large-scale and small-scale effects experienced by Bob are independent

from that seen at Eve, which holds in a scenario where the distance between Bob and Eve are

greater than the correlation length d0 ≈
√
λdk [27], where λ is the wave length and dk is the

distance between the transmit and receive k ∈ {B,E} nodes [11]. In FSO communications

through the turbulent atmosphere, the maximum achievable rate per unit of bandwidth is given

by log2(1 + γk) bits/s/Hz, where γk is the signal to noise ratio (SNR) at the receiver, which is

random due to the nature of the channel [28]. If the noise is dominated by local oscillator shot
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noise, the SNR at Bob or Eve, after a transmission from Alice, can be expressed as [20], [29],

[30]

γk =
A0ηeEsA

hfo∆f

Ik, (1)

where ηe is the quantum efficiency of the photodetector, Es is the symbol energy, A is the beam

waist area, h denotes the Planck’s constant, fo denotes the frequency of the received optical

signal, ∆f is the is the noise equivalent bandwidth, A0 = erf2(ν) represents the fraction of

the available power received at node k for the photodetector area when there is no misalignment

between the transmitter and the receiver, erf(·) is the error function, ν =
√
π2ρ/ωb, ρ is the

radius of the receive aperture and ωb is the received beam size.

Finally, Ik represents the irradiance associated with the link between Alice and receiver k.

For a given i-th transmit aperture of Alice and j-th receive aperture of node k, Ik can be

expressed as Ii,j
k = I i,jl,k I i,ja,k I i,jp,k, where I i,ja,k is the fading caused by atmospheric turbulence, I i,jp,k

is the pointing error and I i,jl,k represents the attenuation due to path-loss. Similarly to RF wireless

channels [31], since large-scale fluctuations in the irradiance are generated due to turbulent

eddies, we follow [32] and assume that, for a given receiver node k, the large-scale effects are

fully correlated among the receiving apertures, which holds when the received signal in each

photodetector propagates through the same large-scale eddies2. Thus, without loss of generality,

in the rest of this paper we assume that I i,jl,k = 1.

The pointing errors in the legitimate link are assumed to be negligible, such that I i,jp,B = 1.

This can be achieved in practice, for example, by means of perfect alignment [13]. However,

the same does not hold to Eve, which is subjected to pointing errors. We also consider that the

receiving apertures of Eve are close enough such that all of them are affected in the occurrence

of a pointing error.

Thus, for the MIMOME model adopted in this work, Ik can be written as [20], [29], [33],

2The assumptions of perfect alignment between Alice and Bob and the fully correlated large-scale fluctuations require that

the number of transmitting and receiving apertures is not large, which is justified, respectively, by the space necessary to place

each aperture and by the fact that large-scale fluctuations are produced by turbulent eddies with limited sizes, ranging from the

scattering disk to the outer scale [32].
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[34]

Ik =







Ip,E

NE∑

j=1

I i,ja,E , Eve;

max
i=1,...,NA

NB∑

j=1

I i,ja,B. Bob-TLS.

(2)

Note that, although the eavesdropper is capable of accessing the feedback channel from Bob

to Alice, the selected aperture is optimum to the legitimate channel only so that the aperture

index alone cannot be exploited by the eavesdropper [35]. This behavior is represented by the

maxi=1,...,NA
term in (2). Following [11], [23], [36], [37], we also adopt the gamma-gamma fading

model to represent the turbulence induced by scintillation, in which the pdf of the turbulence in

a single link (I i,ja,k, which we refer to as I in order to ease the notation) for (I ≥ 0) is given by

f γγ(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I(α+β)/2−1Kα−β(2

√

αβI), (3)

where Kc(·) is the modified Bessel function of the second kind and order c, and Γ(·) is the

gamma function.

From [11], the parameters α and β are given by

α(dk) =

[

exp

(

0.49σ2
R(dk)

(1 + 1.11σ
12/5
R (dk))7/6

)

− 1

]−1

, (4a)

β(dk) =

[

exp

(

0.51σ2
R(dk)

(1 + 0.69σ
12/5
R (dk))5/6

)

− 1

]−1

, (4b)

where σ2
R(dk) = 1.23C2

nw
7/6d

11/6
k is the Rytov variance [38], w is the wave number3 and C2

n =

1.7×10−14 m−2/3 denotes the refractive index structure parameter, which is used to characterize

the atmospheric turbulence. From [15], the pointing loss is given by Ip,E = exp(−2τ2

ω2
e
),

with ωe = (
√
πω2

b erf(ν)/(2ν exp (−ν2)))1/2 as the equivalent beamwaist and τ as the radial

displacement at the receiver. Considering that Eve’s displacement follows an independent and

identical Gaussian distribution with standard deviation σs for both vertical and horizontal axis,

the pdf of the pointing errors can be then expressed as [13]

f p(Ip,E) = ξ2Iξ
2
−1

p,E , (5)

3The wave number is defined as the spatial frequency of a wave and, in this work, we use it as the number of radians per

unit distance.
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where ξ = ωe/(2σs). The SNR from (1) can be rewritten as

γk = A0γ0Ik =
A0Ik

N0
, (6)

where γ0 =
1
N0

= ηeEsA
hfo∆f

, is the turbulence and pointing error free SNR which does not take into

account Ik and the fraction of the available power A0 received by node k. Note that the worst

case of a pointing errors-free eavesdropper can be obtained by setting σs = 0 in (5).

Since the laser beam emitted by Alice suffers divergence due to optical diffraction, following

the approach described in [3], we assume that Eve is located in the divergence region, implying

that Eve is close to Bob [39] and is able to obtain part of the laser beam not captured by Bob,

as shown in Fig. 1. In such approach, communication is inherently secure for small divergence

angles but, for long distances, Eve has a better chance to eavesdrop.

From [40], we have that when both pointing error and atmospheric turbulence are considered,

i.e., Ii,j
E = I i,ja,E I i,jp,E, the irradiance distribution is given by

f γγp(I) =

(αβξ2)G3,0
1,3



(αβ)I

∣
∣
∣
∣
∣
∣

ξ2

ξ2 − 1, α− 1, β − 1





Γ(α)Γ(β)
, (7)

where Gp,q
m,n (·) is the Meijer-G function. Finally, it is worthy mentioning that we assume the

phase distortion to be negligible, which can be achieved in practice through the use of modal

compensation techniques such as, e.g., Zernike polynomials [41].

B. Transmission Schemes

The MIMOME FSO scenario adopted in this work employs two transmission techniques

from [6], namely adaptive and fixed-rate transmission schemes. Then, in order to asses the

performance of such schemes, the average CSI of the eavesdropper channel must be assumed at

Alice, which is the strategy commonly adopted by the literature (c.f., [3], [6], [42]). Noting that

Eve is usually close to Bob in these scenarios, large-scale and small-scale parameters experienced

by Bob and Eve can be assumed similar [3]. Therefore, although the average CSI with respect

to Eve is very unlikely to be known in practice, the system can still be designed to be secure

for a worst-case scenario.

1) Adaptive Transmission Scheme: In the case when Alice possesses instantaneous CSI with

respect to Bob, and average SNR about Eve, Alice is able to calculate the instantaneous channel

capacity CB and consequently adjust RE and R according to CB , subject to the constraint
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0 ≤ RB ≤ CB. This guarantees the reliability constraint. In turn, the violation of the secrecy

constraint is defined as the probability that the equivocation rate RE is less than the capacity of

the eavesdropper channel (CE).

2) Fixed-Rate Transmission Scheme: Differently from the adaptive scheme, for the fixed-

rate transmission scheme both instantaneous CB and CE are unavailable at Alice, meaning that

Alice has only the average SNR of the main and eavesdropper’s channels. This scheme is more

practical (and less complex) than the Adaptive scheme since it requires no feedback from Bob

to Alice. Note also that, in this scheme, both the reliability and the secrecy constraints are not

guaranteed, and one must determine RB and RE that jointly maximize the EST.

Note that the performance of both schemes rely on the assumption that Alice possess the

average CSI with respect to Eve, not having any information about its instantaneous CSI. This

is an assumption commonly adopted in the literature and supported by the fact that a worst-case

scenario can be established based on large-scale and small-scale parameters experienced by Bob

(assumed to be similar to Eve), while the turbulence and pointing error-free average value can

be obtained directly from (6).

C. Effective Secrecy Throughput with Eavesdropper Outage Constraints

The EST is a metric proposed in [42] that uses both reliability and secrecy constraints to

determine the throughput of the wiretap channel, being defined as [6]

Ψ(RE ,RB) = (RB −RE)

reliability
︷ ︸︸ ︷

[1− T (RB)]

secrecy
︷ ︸︸ ︷

[1− S(RE)], (8)

where T (RB) = Pr{RB > CB} corresponds to the outage probability (in terms of reliability)

and S(RE) = Pr{RE ≤ CE} represents the SOP.

Even though the EST presented in [42] is a useful performance metric, it does not impose

any constraint regarding the SOP, which means that Eve might operate at a very low outage

probability, acquiring a confidential information and, thus, compromising secrecy. In [7], the

authors circumvent this problem by imposing a constraint and defining the EST as

Ψm(RE ,RB) =







Ψ(RE ,RB), if S(RE) ≤ S th;

0, if S(RE) > S th,
(9)

where Ψ(RE ,RB) and S(RE) represent respectively the constrained EST and the SOP, and S th

is the maximum allowed value of S(RE). For simplicity, in the rest of this work we drop the



10

index m in the EST from (9) and consider the EST with no constraints as the particular case

where S th = 1.

III. EST OF ADAPTIVE MIMOME FSO COMMUNICATION

Since Alice possesses the instantaneous CSI regarding the legitimate channel, the reliability

constraint is always guaranteed (i.e., T a(RB) = 0) in the adaptive scheme. The EST from (8)

can then be adjusted to the adaptive scheme as:

Ψa(RE) = (CB −RE) [1− S(RE)] . (10)

In order to obtain a closed-form expression to the EST of the adaptive scheme, one needs to

evaluate the SOP:

S(RE) = Pr{CE > RE} = Pr
{
γE > 2RE − 1

}

= Pr

{IEA0

N0
> 2RE − 1

}

.
(11)

Note that solving (11) is not a straightforward task since the irradiance is composed of the tur-

bulence (which is modeled as the summation of random variables due to the diversity combining

technique), and another random variable that represents the pointing errors.

Lemma 1. The SOP of the adaptive scheme4 is given by

S(RE) = 1− F γγp
E (XE), (12)

where XE =
N0(2RE−1)

NEA0

, and F γγp
E (·) represents the cdf when both pointing errors and atmo-

spheric turbulence are considered, which is given by

F γγp
E (XE) =

π

Γ (αE) Γ (βE)

(

− csc (π (αE − βE))

2∑

u=1

2∑

v=1

cucvX bu
E (αEβE)

bu
(

Γ (av)1F̃2 (av; dv, ev;XEαEβE)
)

+
πX ξ2

E (αEβE)
ξ2 csc (π (αE − ξ2)) csc (π (βE − ξ2))

Γ (ξ2 − αE + 1)Γ (ξ2 − βE + 1)

)

,

(13)

where αk = α(dk) and βk = β(dk)Nk represent, respectively, the large-scale and the small-

scale parameters related to the number of cells in the scattering process [23], 1F̃2(·) denotes

4The SOP presented in Lemma 1 is also valid for the fixed-rate scheme since only the average SNR is assumed at Alice for

both schemes.



11

the regularized hypergeometric function, and ax, x ∈ {u, v} represents the x-th element

of vector a = [bu, bu − ξ2], which is also valid for vectors b = [α, β], c = [−1, 1], d =

[bu + 1, (β − α) cu + 1] and e = [(β − α) cu + 1, bu − ξ2 + 1].

Proof: Please refer to Appendix A.

The EST is then obtained by placing (12) in (10).

A. Optimal Target Secrecy Rate

In order to maximize the EST, the optimal value of the secrecy rate R must be obtained.

Noting that R = RB −RE and, for the adaptive scheme, Alice has the instantaneous capacity

of the legitimate channel such that RB = CB, following [6] we choose to obtain the optimal

value of the rate of redundancy RE , which can be used directly to obtain R. When evaluating

the EST from (10), one can see that while a larger RE leads to a smaller value of (CB −RE),

it simultaneously increases 1−Pr{CE > RE}. Thus, one could expect to exist an optimal value

of RE that maximizes the EST. When considering an outage constrained scenario, however, one

needs to check whether such optimal value meets the outage constraint or not. In this sense, we

have the following result.

Theorem 1. The value of RE that maximizes the outage-constrained EST for the MIMOME

FSO adaptive scheme is

Ra⋆

E = max
(
Ra⋆

E,u,Rth⋆

E

)
, (14)

where Ra⋆

E,u is the unconstrained optimal value of RE given by the solution of the fixed-point

equation

Ra⋆

E,u = (CB − CB2
Ra∗

E,u + 2R
a∗

E,uRa∗

E,u)+

4σ2
s

(

2R
a∗

E,u − 1
)2

log(2)ω2
E2

Ra∗

E,u

+
A0NEθ

AP
E

N0 log(2)ω2
E2

Ra∗

E,uEϑ−1

(
XE

θAP
E

)





{

2R
a∗

E,u

[
log(2)ω2

E

(
CB − Ra∗

E,u

)
− 4σ2

s

]
+ 4σ2

s

}

exp
(

XE

θAP
E

)

−

(
XE

θAP
E

)−k (
ω2
E − 4kAP

E σ2
s

) [

Γ
(
kAP
E

)
− Γ

(

kAP
E , XE

θAP
E

)]

(

2R
a∗

E,u − 1
)−1




 ,

(15)
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and Rth⋆

E is the constrained optimal value of RE for a given maximum allowed S th, which is

given by

Rth⋆

E =

log2




1 +

A0NEθ
AP
E

N0




Γ
(

kAP
E , XE

θAP
E

)

− S thΓ
(
kAP
E

)

Eϑ

(
XE

θAP
E

)





1

kAP
E




 .

(16)

In (15) and (16), E·(·) is the exponential integral function, ϑ = − kAP
E +

ω2

E

4σ2
s
+ 1, Γ(·, ·) is

the incomplete gamma function, while θAP
k and kAP

k are the scale and shape parameters of the

approximated gamma variable5, which are respectively given by

kAP
k =

[
(βk+1)(αk+1)

βkαk
− (1 + ǫ)

]−1

, (17a)

θAP
k =

[
(βk+1)(αk+1)

βkαk
− (1 + ǫ)

]

Ω, (17b)

where ǫ and Ω are adjustment parameters [43].

Proof: Please refer to Appendix B.

IV. EST OF FIXED-RATE MIMOME FSO COMMUNICATION

In the fixed-rate scheme, both reliability and secrecy cannot be guaranteed, and the EST is

obtained as

Ψf(RE,RB) = (RB −RE)
[
1− T f (RB)

]
[1− S(RE)] . (18)

The SOP in (18) is obtained from (12). The reliability probability, in turn, is

1− T f(RB) = Pr{CB > RB}

= Pr{γB > 2RB − 1}

= Pr

{IBA0

N0

> 2RB − 1

}

.

(19)

Having in mind that the turbulence IB in (19) encompasses the effects of both TLS and MRC,

one has that (19) is given as follows.

Lemma 2. The outage probability in terms of reliability for the fixed-rate scheme is given by

T f(RB) = F γγ
B (XB)

NA , (20)

5Note that, to obtain (15), the gamma-gamma variable in (11) is approximated as a gamma variable as described in Appendix B.
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where XB =
N0(2RB−1)

NBA0
and F γγ

B (·), represents the cdf of a single gamma-gamma random

variable for the SNR for Bob, and is given by [23]

F γγ
B (XB) =

π

Γ (αB) Γ (βB) sin (π (αB − βB))
[

(XBαBβB)
βB

1F2 (βB; βB + 1,−αB + βB + 1;αBβBXB)

βBΓ (−αB + βB + 1)

−(XBαBβB)
αB

1F2 (αB;αB + 1, αB − βB + 1;αBβBXB)

αBΓ (αB − βB + 1)

]

,

(21)

where 1F2(·) denotes the generalized hypergeometric function.

Proof: In order to obtain (20), the same approach used in Lemma 1 has been adopted, with

the difference that (20) does not take into account the pointing errors and it presents the effect

of TLS, noting that it is related to the legitimate channel.

The EST of the fixed-rate scheme is finally obtained after replacing (12) and (20) in (18).

A. Optimal Target Secrecy Rate

Differently from the adaptive scheme, in the fixed-rate scheme the EST is a function of both

RE and RB . Thus, in order to obtain the optimal values of such parameters (i.e., Rf⋆

E and Rf⋆

B ),

one must first identify the optimal values of RE and RB without secrecy constraints, which is

presented in what follows.

Lemma 3. The unconstrained optimal values of RE and RB that jointly achieve a locally

maximum EST are given, respectively, by

Rf⋆

E,u = Rf⋆

B,u +
1

log(2)NA
×

[

(
1− 2−RB

)
e

XB

θAP
B Γ

(
kAP
B

)
(XB

θAP
B

)−kAP
B (

C1 − C1
1−NA

)

]

,

(22a)

Rf⋆

B,u = Rf⋆

E,u +

(

−1 + 2R
f∗
E,u

)

2R
f∗
E,uω2

e log(2)

(

4σ2
s

2−Rf∗
E,uω2

e log(2)
+

(
XRE

θAP
E

)−kAP
E (

ω2
e − 4kAP

E σ2
s

) [

Γ
(
kAP
E

)
− Γ

(

kAP
E ,

XRE

θAP
E

)]

−

(

−1+2
R
f∗
E,u

)

Eϑ−1

(

XRE

θAP
E

)

N0

θAP
E

A0NE
+ exp

(

−XRE

θAP
E

)








,

(22b)

where C1 = Q
(

kAP
B , 0, XB

θAP
B

)

, being Q(·, 0, ·) the generalized regularized incomplete gamma

function.
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Fig. 2. Ψa(RE) versus RE for adaptive transmission scheme with NA = NE = 2, NB = 1, S th ∈ {1, 0.6, 0.4, 0.2} and

σs ∈ {1, 2, 3}.

Proof: Please refer to Appendix C.

The optimal values of RE and RB for the EST with secrecy constraints are then presented

in whats follows.

Theorem 2. The optimal constrained values of RE and RB that maximize the EST with secrecy

constraints for the fixed-rate scheme are given, respectively, by

Rf⋆

E = max
(

Rf⋆

E,u,Rth⋆

E

)

, (23a)

Rf⋆

B =







Rf⋆

B,u, if RE,u ≥ Rth⋆

E ;

Rf⋆

B,c, otherwise.
(23b)

where Rf⋆

B,c is the constrained optimal value of RB and is given by

Rf⋆

B,c = log2

(

− A0NBθ
AP
B

N0

W






(
C1 − C11−NA

)
Γ
(
kAP
B

) (XRB

θAP
B

)1−kAP
B

exp
(

N0

A0NBθAP
B

)(

Rf∗
B,c − Rf∗

E

)

log(2)NA









 ,

(24)

where W(·) corresponds to the Lambert W -function.

Proof: Please refer to Appendix D.
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V. NUMERICAL RESULTS

In this section, we present some numerical results in order to evaluate the previous analysis,

adopting the same turbulence-free SNR γ0 for both Eve and Bob, with dk = dB = dE = 1 km,

λ = 1550 nm [11], and using the adjustment ǫ = 0 and Ω = 0.97 for the approximated gamma

variable6, unless stated otherwise. Following [15], we also use ωb = 2.5 and ρ = 0.1.

Fig. 2 presents the EST with secrecy constraints versus the redundancy rate for the adaptive

transmission scheme with σs ∈ {1, 2, 3} and NA = NE = 2, for different values of S th. One

can see that, as the standard deviation of pointing error displacement increases, the maximum

allowed SOP is also increased, meaning that, depending on σs, the system might have to operate

with a lower value of Ψa(RE) in order to ensure that the maximum allowed SOP is feasible. Note

that this is in accordance with the proposed system model, since the increase of σs decreases

the fraction of the power received by Eve, provided that it increases the probability of the

eavesdropper being outside the received beam radius ωb. From Fig. 2, we can also see that the

approximated theoretic values (represented by the red circles) of Ra⋆

E,u (unconstrained) and Rth⋆

E

(for S th ∈ {0.6, 0.4, 0.2}) from, respectively, (15) and (16), and represented by red dots are in

good agreement with the optimal numerical results for different values of σs, demonstrating an

approximation error below 2%. Note also that, as stated in Appendix B and similar to that seen

in [6], [7], [42], the stationary points obtained from (15) represent the local maximum for all

the scenarios evaluated in this work.

In order to validate the analytical derivations of Lemmas 1 and 2, Fig. 3 presents the EST

versus the redundancy rate RE and the rate of transmitted codewords RB for NA = NE = 2,

NB = 1 and σs = 2 in an unconstrained scenario (S th = 1.0). We can see that the results

using (12) and (20) match exactly the simulation results, confirming the usefulness of such

equations. Moreover, note that the SOP derivation in (12) is applied for both adaptive and fixed-

rate schemes7, such that Fig. 3 also validates the obtained SOP expression for the adaptive

scheme.

Fig. 4(a) presents the unconstrained value (S th = 1.0) of the EST versus the redundancy

rate RE and the rate of transmitted codewords RB , for the fixed-rate transmission scheme with

6Using the approximation proposed in [43], ǫ and Ω must be chosen in order to minimize the difference between the results

obtained by the cdf of gamma-gamma and gamma random variables.

7While the EST obtained for the fixed-rate scheme requires both the SOP and the reliability probability, for the adaptive

scheme only the SOP is required.
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Fig. 3. Ψf (RE ,RB) versus RE , RB for fixed-rate transmission scheme with NA = NE = 2, NB = 1, σs = 2 and

S th = 1.0.

NA = NE = 2, NB = 1 and σs = 2. One can see that there is an optimal value of RB for each

value of RE (and vice versa), and that there is a stationary point of Ψf(RE ,RB) that results

in the optimal EST, as stated in Appendix D. We can also see that the approximated theoretic

values of Rf⋆

E,u = 1.250 bpcu and Rf⋆

B,u = 3.401 bpcu from, respectively, (22a) and (22b), are

in good agreement with the optimal numerical rates RE = 1.257 bpcu and RB = 3.400 bpcu,

which results in Ψf(RE ,RB) = 0.621 bpcu.

In Fig. 4(b) we present a similar analysis, but imposing a secrecy constraint S th = 0.5. The

threshold value Rth⋆

E , for which any value lower than that will result in an SOP greater than

the threshold Sth, can be obtained directly from (16). Note that, in agreement to Theorem 2,

the optimal value of Rf⋆

E is the maximum between Rf⋆

E,u and Rth⋆

E , and that the optimal value

Rf⋆

B can be obtained from (24). Finally, the optimal value of the Ψf(Rth⋆

E ,Rf⋆

B,c) is presented

using (18), (16) and (24), confirming the accuracy of the mathematical derivations.

In Fig. 5 we present the EST versus S th for the adaptive and fixed-rate schemes for NE = 2,

NA = NB ∈ {1, 2, 4} and σs = 2. One can see that, for different values of (NA, NB), the results

using (9), (10) and (18) are in perfect agreement with simulations. We can also see that, as the

maximum allowed SOP increases, the maximum EST obtained by both schemes also increases,

and that a higher number of apertures in the legitimate channel allows the system to achieve a

lower SOP even in the unconstrained scenario. Furthermore, it is shown that the adaptive scheme

is able to obtain a higher EST than that obtained using the fixed-rate scheme, which is expected
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Fig. 4. Ψf (RE ,RB) versus RE , RB for fixed-rate transmission scheme with NA = NE = 2, NB = 1 and σs = 2.

since, when using the adaptive scheme, Alice has the instantaneous CSI about the legitimate

channel.

Fig. 6 presents the EST versus NA = NB = NE for the adaptive and fixed-rate schemes for

S th ∈ {1, 0.3, 0.1}. We can see that, as the number of apertures increases for all nodes, the

maximum obtained EST also increases. This can be explained by the fact that the diversity order

in the legitimate channel increases faster than that seen in the eavesdropper channel. Curiously,

the EST is approximately the same for the adaptive scheme with NA = NB = NE = 5 and

S th = 0.3, and for the fixed-rate scheme with NA = NB = NE = 10 and S th = 1.0. This implies

that, in a scenario with five apertures per node, the adaptive scheme allows to restrict the SOP
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S th ∈ {1, 0.3, 0.1}.

to be as low as 30%, while still achieving the same EST performance as the unconstrained

fixed-rate scheme with ten apertures per node.

Finally, in Fig. 7 we present the EST versus σs for the adaptive and fixed-rate schemes, with

S th = 0.2. One can see that, as the standard deviation of pointing error displacement increases,

the EST for both schemes increases. As seen in Fig. 2, this is due to the fact that the increase

in σs decreases the capacity of the eavesdropper channel.

VI. FINAL COMMENTS

In this work, we characterized the MIMOME performance for coherent FSO transmissions.

A threat scenario where Eve is near Bob was investigated, meaning that the difference of SNR
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seen at Bob and Eve is affected not only by NA, NB and NE, but also by the pointing errors

due to misalignment between Alice and Eve. By adopting the EST with secrecy constraints

as the performance metric, the optimal rates for the adaptive and fixed-rate schemes were

obtained. Numerical results confirmed the accuracy of the mathematical derivations. Moreover,

our analytical and simulation results demonstrated that, independent of the maximum allowed

SOP, the EST for the adaptive scheme outperforms that obtained using the fixed-rate transmission

scheme for coherent FSO communications. Finally, we also show that a significant gain is

achieved when adding multiple apertures, and that the overall EST is also dependent on the

distance between Eve and Bob. Future works include the analysis of the EST with secrecy

constraints using non-coherent reception, in which the channel capacity changes significantly,

and the use of relays.

APPENDIX A

PROOF OF LEMMA 1

In order to obtain (12), we first resort to the fact that the probability from (11) can be rewritten

as

S(RE) = Pr

{

Z

NE∑

n=1

XnYn >
N0

(
2RE − 1

)

A0

}

, (25)

where X, Y ∼ Γ (·) are, respectively, the large-scale and small-scale parameters of the gamma-

gamma random variable, both of which are gamma distributed with shape parameter k inversely

proportional to the scale parameter θ, i.e, θ = 1
k
, and Z represents the random variable due to

pointing error which the pdf is given by (5). Due to the spatial proximity of the apertures and
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the inherent LOS nature of FSO systems, the large-scale can be assumed equal to all receive

apertures [32], such that (25) can be rewritten as

S(RE) = Pr

{

ZX

NE∑

n=1

Yn >
N0

(
2RE − 1

)

A0

}

. (26)

Using the summation property, where the summation of a gamma variable with shape k and

scale θ can be expressed as a single gamma variable, where the shape parameter is the sum of

all shape parameters [44], i.e.,
∑NE

n=1Xn ∼ Γ
(
∑NE

n=1 kn, θ
)

, (26) can be rewritten as

S(RE) = Pr

{

ZXα
1

NE
Yβ >

N0

(
2RE − 1

)

NEA0

}

, (27)

where Xα ∼ Γ
(
α, 1

α

)
and Yβ ∼ Γ

(

NEβ,
1
β

)

. In order to obtain θ = 1
k

as proposed in [23] and

used in (3), we resort to the scale property, where the product of a gamma variable by a constant

can be rewritten as a gamma variable where the scale parameter θ is the product of the original

scale by the constant, i.e., cX ∼ Γ(k, cθ) and, thus

S(RE) = Pr

{

ZXαYβE
>

N0

(
2RE − 1

)

NEA0

}

, (28)

where YβE
∼ Γ

(

NEβ,
1

NEβ

)

. The pdf of ZXαYβE
is given by (7), such that the correspondent

CDF can be obtained as

F γγp
k (x) =

∫ x

0

f γγp(I)dI, (29)

which results in (13) and can be used directly to obtain (12), concluding the proof.

APPENDIX B

PROOF OF THEOREM 1

In order to obtain (14), we first resort to the fact that, according to [43], a gamma-gamma

random variable can be approximated by a gamma variable XAP
k with shape kAP

k and scale θAP
k

parameters given, respectively, by (17a) and (17b). Thus, (28) can be approximated as

S(RE) ≈ Pr

{

ZXAP
E >

N0

(
2RE − 1

)

NEA0

}

≈ 1− F γγp
k,AP

(

N0

(
2RE − 1

)

NEA0

)

,

(30)
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where F γγp
k,AP (·) can be easily obtained as

F γγp
k,AP (x) =

(
x
θAP
E

)kAP
E

E
−kAP

E
+

ω2
e

4σ2
s
+1

(
x
θAP
E

)

− Γ
(

kAP
E , x

θAP
E

)

+ Γ
(
kAP
E

)

Γ (kAP
E )

.

(31)

By setting δΨa(RE)/δRE = 0 and solving to RE , we obtain the stationary point of Ψa(RE),

which is given by (15). We have that, similarly to [6], an analysis of identifying stationary

points via (15) and δ2Ψa(RE)/δR2
E is not tractable. Noting that the probability from (30) is a

monotonically decreasing function of RE (for RE < CB) and following a similar approach as

presented in [6], we instead investigate through simulations and numerical calculations the nature

of the stationary points, finding that (10) is concave or semi-concave with only one stationary

point for all tested simulations. This is in agreement with the monotonically decreasing behavior

of (30). Thus, we find that the stationary points given by (15) always identify the local maximum

in the simulations, as presented in Section V.

Resorting to the fact that S(RE) is a monotonically decreasing function of RE
8, one can

see that the redundancy rate at a given threshold S th is the minimum redundancy rate allowed.

Using (30), one can find the inverse function with respect to S th, which is given by (16). Noting

that Ψa(RE) increases for RE < Ra⋆

E,u and decreases for RE > Ra⋆

E,u, we have that, without

constraints, Ra⋆

E,u represents the maximum redundancy rate, in the sense that any value different

than Ra⋆

E,u will result in a lower value of Ψa(RE). Noting that Ra⋆

E cannot be smaller than (16)

(due to the SOP constraint), one can conclude that Ra⋆

E,u is the maximum value between (15)

and (16), which is given by (14).

APPENDIX C

PROOF OF LEMMA 3

Using (18), the values of (RE ,RB) that that jointly maximize the EST for the fixed-rate

scheme can be written as

(Rf⋆

E ,Rf⋆

B ) = argmax
0<RB

0<RE<RB

Ψf(RE ,RB). (32)

8 This can be easily proved by showing that ∂S(R)/∂R > 0, ∀R < CB .
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Replacing (12) and (20) in (18), and using the approximation of a gamma-gamma variable by

a gamma variable described in Appendix B, (18) can be approximated as

Ψf(RE ,RB) ≈

(RB −RE)

[

1−Q

(

kAP
B , 0,

XB

θAP
B

)]

F γγp
k,AP (XE) ,

(33)

and, setting the first-order partial derivative of (33) with respect of RB to zero, we have that

0 = C2

(
1− CNA

1

)
−

C2N02
RB log(2)NAR e

−
XB

θAP
B

(
XB

θAP
B

)kAP
B

−1

CNA−1
1

θAP
B NbA0Γ (kAP

B )
,

(34)

where C2 = Q
(

kAP
E , 0, XE

θAP
E

)

and R = RB −RE . Solving (34) for RE , we obtain (22a). Using

a similar approach, by setting the first-order partial derivative of (33) with respect of RE to

zero and solving to RB , we obtain (22b). Based on Young’s theorem [45], similarly to that used

in [6], the Hessian matrix of (33) is symmetric, and can be expressed as

Hess =





∂2Ψf (RE ,RB)

∂R2

B

∂2Ψf (RE ,RB)
∂RB∂RE

∂2Ψf (RE ,RB)
∂RE∂RB

∂2Ψf (RE ,RB)
∂R2

E



 =




A B
B C



 . (35)

For A < 0 and A · C − B2 > 0, then (Rf⋆

E,u,Rf⋆

B,u) can be used to obtain the local maximum

of Ψf(RE ,RB).

APPENDIX D

PROOF OF THEOREM 2

First, one must note that S(RE) is a monotonically decreasing function of RE , which means

that, if Rf⋆

E,u < Rth⋆

E , then using Rf⋆

E,u will result in a SOP greater than the maximum allowed

S th. Following a similar approach as described in Appendix B, one can conclude that the optimal

value of RE in a constrained scenario is given by the maximum between Rf⋆

E,u and Rth⋆

E , which

results in (23a).

Noting that Rf⋆

B,u does not represent the optimal value of RB when Rf⋆

E,u < Rth⋆

E , one must

find the optimal value of RB for a fixed value of RE = Rth⋆

E . Similar to that presented in [6]

and described in Appendix B, we have that the value of RB that achieves the stationary point

of Ψf(RE ,RB) is the optimal RB for a fixed value of RE , which is obtained by replacing (12)
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and (20) in (18), equating the first derivative to zero and solving for RB . It follows that the first

derivative is given by

0 = (1− S th)
(
1− CNA

1

)
−

N02
RB(1− S th) log(2)NAR CNA−1

1

(
XB

θAP
B

)kAP
B

−1

exp
(

−XB

θAP
B

)

θAP
B NbA0Γ (kAP

B )
,

(36)

yielding (24) and concluding the proof.
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