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Abstract

In a heterogeneous cellular network (HetNet), consider that a base station in the HetNet is able

to simultaneously schedule and serve K users in the downlink by performing the power-domain non-

orthogonal multiple access (NOMA) scheme. This paper aims at the preliminary study on the downlink

coverage and throughput performances of the HetNet with the non-coordinated NOMA and the proposed

coordinated joint transmission NOMA (JT-NOMA) schemes. First, the coverage probability and link

throughput of K users in each cell are studied and their accurate expressions are derived for the non-

coordinated NOMA scheme in which no BSs are coordinated to jointly transmit the NOMA signals for a

particular user. We show that the coverage and link throughput can be largely reduced if transmit power

allocations among the K users do not satisfy the constraint derived. Next, we analyze the coverage and

link throughput of K users for the coordinated JT-NOMA scheme in which the void BSs without users

are coordinated to enhance the farthest NOMA user in a cell. The derived accurate results show that

coordinated JT-NOMA can significantly improve the coverage and link throughput of all users. Finally,

we show that there exist optimal power allocation schemes that maximize the average cell coverage and

throughput under some derived power allocation constraints and numerical results validate our analytical

findings.
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I. INTRODUCTION

In traditional cellular networks, orthogonal multiple access (OMA) schemes, such as frequency

division multiple access (FDMA), time division multiple access (TDMA) and code division

multiple access (CDMA), are able to successfully suppress a large amount of co-channel inter-

ferences so that the signal-to-interference power ratio (SIR) on the receiver side can be enhanced

remarkably. However, enhancing SIR via OMA is not the most efficient/effective method to

improve the spectrum efficiency of a wireless link in an interference-limited network according

to the fundamental result of the multiuser capacity region [2] [3]. To meet the huge throughput

need anticipated in 5G cellular networks under the pressing pressure of spectrum crunch, non-

orthogonal multiple access (NOMA) has gained a lot of attentions recently [3]–[6] in that it is

able to make the scarce spectrum resource be utilized and shared in a more efficient fashion as

well as reduce the complexity in resource allocation and user scheduling.

It is well known that in a downlink cellular network the power-multiplexing NOMA scheme1

that adopts successive interference cancellation (SIC) to perfectly cancel the multiuser interfer-

ence always achieves a larger sum throughput (achievable rate) than the OMA schemes. However,

the SIR performance of each individual (NOMA) user is definitely degraded due to power sharing

among multiple users. In a heterogeneous cellular network (HetNet), the coverage (probability),

i.e., the probability that the SIR of users in the network is higher than some predesignated

threshold, actually dominates the performances of all SIR-related metrics so that the link capacity

of each user cannot be improved provided users’ coverage is severely degraded. The coverage-

degraded problem for the users turns out to be even much worse in an interference-limited

HetNet using NOMA where a large amount of interference is generated by many different kinds

of densely-deployed base stations (BSs) and users have to share the transmit power of a BS.

Accordingly, how the SIR of users behaves in a HetNet using NOMA is an important topic that

needs to be studied thoroughly.

A. Motivation and Related Prior Work

The prior works on the study of the coverage/outage, link throughput and power allocation

problems in a large-scale NOMA HetNet with multicell interferences are still minimal. Few

1The NOMA scheme in this paper is a multiplexing superposition coding scheme in the power domain [3], [5], [6], i.e., different

downlink users are allocated different powers based on their channel gain conditions, whereas other code-domain-multiplexing

NOMA schemes are beyond the scope of this work.
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current works have studied the transmission performance of the NOMA scheme in a cellular

network based on a single cell model. For example, reference [7] studied the performance of

the outage and ergodic rate of the NOMA scheme in a single cell and showed that NOMA can

achieve a higher sum rate whereas its rate gain in the low SNR region is not significant. In

[8], a cooperative NOMA scheme was proposed to simultaneously transfer wireless information

and power for users in a single cell and the outage probabilities for different user selection

schemes were analyzed. The idea of achieving cooperative NOMA transmission is to let the

users that are close to their BS and have good channel conditions relay the weak signals of

the users that are fairly far away from their BS. Some other prior works, such as [9]–[11], also

adopted the similar idea of exploiting the collaboration between users to achieve cooperative

NOMA. Reference [12] looked into the energy-efficient power allocation problem for NOMA

and reference [13] studied how to enhance the spectrum efficiency and security in a multiuser

network with mixed multicasting and unicasting traffic.

These aforementioned works are not studied in a large-scale multicell HetNet and thus gen-

erally they are unable to project how the coverage and throughput of users are impacted by

multicell interferences. There are few prior NOMA works that are developed based on a large-

scale multicell network model. In [14], for example, the outage probability was studied in a

large-scale cognitive radio network. Similarly, reference [15] analyzed the outage and achievable

rate of users in a single-tier cellular network. In [16], the NOMA scheme was considered to be

performed in a HeNet, and then the coverage, ergodic rate and energy efficiency performances

were analyzed. The cooperative multicast problem in a NOMA mmWave HetNet was considered

in [17] and the multicast rate was shown to be significantly improved by NOMA in this work.

These prior works do not address the problem of how power allocations among the users affect

the outage and rate performances in a large-scale network environment. Accordingly, while using

power-domain NOMA in a HetNet, how to appropriately allocate different powers to different

users in order to improve the coverage and link throughput performances of the users are still

not very much clear.

B. Contributions

To investigate the fundamental interactions among coverage, link throughput and power al-

location of NOMA transmissions in a large-scale HetNet, in this paper we consider a HetNet

in which BSs that are associated with multiple users can perform the NOMA scheme to serve
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their scheduled users. Our first contribution is to construct a stochastic-geometry-based HetNet

model in which users associate with their BS using a biased nearest BS association scheme

and each BS with multiple tagged users is able to schedule at most K users for downlink

NOMA transmission. We propose the “desired” SIR model for the K-user NOMA scheme. This

model considers the impact of the void BSs that are not associated with any users so that it is

more accurate especially when the HetNet is dense (i.e., the user intensity is not significantly

smaller than the total BS intensity.) [18], [19]. Under this HetNet model, we first consider that

each BS which can arbitrarily schedule K users adopts the non-coordinated NOMA scheme in

which no void BSs in the network are coordinated to help a non-void BS jointly transmit its

NOMA signals. For this non-coordinated NOMA scheme, we derive the explicit expressions

of the coverage probability and link throughput of a user associating with a tier-m BS by

successfully characterizing the channel ordering statistics of the scheduled NOMA users. They

are in general very accurate and approach to their theoretical exact expressions as the user

intensity goes to infinity. According to the derived results, we characterize some fundamental

power allocation constraints for successfully performing the non-coordinated NOMA scheme

and facilitating the derivations of the analytical results. We also show that the coverage and link

throughput performances are dominated by power allocations among the K users and the sum

of the link throughputs of all NOMA users is strictly higher than the link throughput of a sole

user that uses the full transmit power of its tagged BS. This is our second contribution.

To alleviate the impact of the power allocations among all NOMA users, our third contribution

is to propose the coordinated JT-NOMA scheme in which all void BSs are coordinated to do joint

transmission of the farthest user in a particular cell. This coordinated JT-NOMA scheme not only

helps the near users do SIC but also helps the farthest user decode its own signals. Therefore, the

SIR performances of the NOMA users are all improved. Note that the coordinated JT-NOMA

scheme which is a BS-level cooperative scheme is essentially different from the cooperative

NOMA schemes in the literature that are a user-level cooperative scheme [8]–[11]. The accurate

expressions of the coverage and link throughput of each user associating with a tier-m BS are

found. They clearly indicate how the coordinated JT-NOMA scheme achieves higher coverage

as well as link throughput and how power allocations among the users influence the coverage

and link throughput. Most importantly, they characterize some fundamental power allocation

constraints that make coordinated JT-NOMA perform well and facilitate the analyses.

Afterwards we analyze how to optimally allocate the powers among the K NOMA users



5

for the non-coordinated NOMA and coordinated JT-NOMA schemes in order to maximize the

cell coverage and the cell throughput of each BS. The optimization problems of the tier-m cell

coverage and cell throughput are formulated based on the power allocation constraints found

while analyzing coverage and link throughput. We show that an optimal power allocation scheme

indeed exists for the two formulated optimization problems that are not convex in general and it

can be found by some heuristic optimization algorithms. Note that the power allocation problems

studied are network-based optimization problems since they are formulated based on a large-

scale multicell HetNet, which are different from the single-cell-based power allocation problems

in almost all the prior works (typically see [20]–[22]). This summarizes our fourth contribution.

Finally, some numerical results are provided to validate our analytical findings and observations.

C. Paper Organization

The rest of this paper is organized as follows. Section II introduces a multi-tier heterogeneous

network model as well as some important assumptions. In Section III, the downlink coverage

and link throughput are analyzed for the scenario that no void BSs are coordinated to do joint

NOMA transmission. For the scenario that all void BSs are coordinated to do joint NOMA

transmission, the downlink coverage and link throughput are studied in Section IV. The optimal

power allocation problem is formulated and investigated in Section V. In Section VI, some

numerical results are provided to validate our analytical findings in coverage, link throughput

and power allocation. Finally, Section VII briefly summarizes our analytical achievements and

observations for a HetNet using NOMA transmission.

II. NETWORK MODEL AND ASSUMPTIONS

Consider a large-scale interference-limited HetNet on the plane R2 in which there are M

different types of base stations BSs (e.g., macrocell, microcell, picocell BSs, etc.) and the BSs

of each type are referred as a tier of the HetNet. Specifically, we assume that the BSs in the

mth tier form an independent homogeneous Poisson point process (PPP) of intensity λm and

they are denoted by set Φm that can be explicitly written as

Φm , {Xm,i ∈ R2 : i ∈ N+}, m ∈M , {1, 2, . . . ,M}, (1)
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where Xm,i denotes BS i in the mth tier and its location. All users are also assumed to form an

independent PPP of intensity µ and they are denoted by set U ⊆ R2. Let Um,i denote the set of

the users associating with BS Xm,i and it can be expressed as

Um,i ,

{
Un ∈ U : Xm,i = arg sup

l,j:Xl,j∈Φ

{
ωl‖Xl,j − Un‖−α

}
, n, j ∈ N+, l ∈M

}
, (2)

where Φ ,
⋃M
m=1 Φm is the set of all BSs in the HetNet, α > 2 is the pathloss exponent,

ωl > 0 is the (constant) user association bias for the tier-l BSs2. Note that the biased nearest BS

association (BNBA) scheme is adopted in (2), i.e., this BNBA scheme makes users select their

nearest BS with a particular bias for each tier3.

A. User Association and Downlink NOMA Transmission

Let |Um,i| denote the cardinality of set Um,i, i.e., the number of the users associating with

BS Xm,i. The probability mass function (pmf) of |Um,i|, based on our previous work in [23], is

approximately found as

pm,n , P[|Um,i| = n] ≈
Γ(n+ 7

2
)

n!Γ(7
2
)

(
2

7
ξm

)n(
1 +

2

7
ξm

)−(n+ 7
2

)

, (3)

where ξm , µω
2
α
m∑M

l=1 ω
2
α
l λl

is called the cell load of a tier-m BS for the BNBA scheme and it

represents the mean number of users associating with a tier-m BS. According to (3), we know

pm,0 ≈ (1 + 2
7
ξm)−

7
2 , which is called the tier-m void (cell) probability, i.e., the probability that a

tier-m BS is not associated with any users. In other words, the non-void probability of a tier-m

BS in the HetNet can be readily written as

νm , 1− pm,0 ≈ 1−
(

1 +
2

7
ξm

)− 7
2

. (4)

Note that the non-void probability νm is small as the user intensity is not much smaller than the

total intensity of BSs, for example, the intensity of a dense HetNet is close to or even larger

2The function of the user association bias (ωl) for every tier is used for traffic offloading/loading or cell range expansion in

order to make the cell load of each BS achieve a certain level of balancing.
3To make the following analysis much more tractable, in this paper a constant bias is used for each tier so that the BSs in

each tier have a weighted Voronoi-tessellated cell. More general user association schemes with a random bias for each tier, such

as maximum received-power association and energy-efficient user association, can be referred to our previous works in [19],

[23].
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than the user intensity4. As a result, the intensity of the void BSs,
∑M

m=1 pm,0λm, is not small

in a dense HetNet, which means the void cell phenomenon that is usually overlooked in the

literature should be carefully considered in the interference model of a dense HetNet in that

those void BSs are actually idle and do not generate interference [18], [19].

For the BSs having at least two users, they can use the NOMA scheme with superposition

coding to simultaneously transmit different data streams to different users over the same fre-

quency band. The NOMA scheme considered in this paper is performed in the power domain,

i.e., the BSs allocate different transmit powers to different users while transmitting according to

the channel conditions of their users [3], and then users are able to perform SIC to decode their

own data. To tractably and simply analyze the downlink SIR of a user, we specifically consider

that each BS is able to arbitrarily schedule at most K NOMA users even if it is associated with

more than K users. For a BS only having a single user, it just transmits data to its sole user with

full transmit power. In this paper, we will study two NOMA schemes: coordinated JT-NOMA and

non-coordinated NOMA schemes. For the coordinated JT-NOMA scheme, we assume that the

void BSs can be coordinated to help other non-void BSs to simultaneously transmit the signals

of the non-void BSs to their NOMA users, whereas for the non-coordinated NOMA scheme no

void BSs are coordinated to do joint transmission. Hence, coordinated JT-NOMA is essentially

a scheme of joint-transmission coordinated multipoint (JT-CoMP) [24]. The non-coordinated

NOMA and coordinated JT-NOMA schemes will be investigated and discussed in Sections III

and IV, respectively.

B. The Desired SIR Model for Downlink NOMA transmission

Suppose BS Xm,i is associated with at least K users so that it is able to schedule K users for

downlink NOMA transmission in each time slot. Without loss of generality, consider BS Xm,i

located at the origin5 and let Uk ∈ Um,i be the kth nearest user among the K users scheduled

by BS Xm,i. The “desired” SIR at Uk can be written as6

γm,k ,
βkPmHm,i,k

‖Uk‖αIm,k
, k ∈ K , {1, 2, . . . , K}, (5)

4In this paper, our study will focus on the scenario of a “dense” HetNet in which small cell BSs, such as picocell and femtocell

BSs, are deployed with a high intensity and their intensities may not be smaller than the user intensity.
5According to the Slivnyak theorem [25]–[27], the statistical properties evaluated at any particular point in homogeneous PPPs

are the same.
6This desired SIR of user Uk is the SIR of user Uk without considering the interferences from other NOMA users.
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where Pm is the total transmit power of a tier-m BS, βkPm is the transmit power allocated to

user Uk, βk ∈ (0, 1) is the power allocation fraction for Uk associating with a tier-m BS and thus∑K
k=1 βk = 1, Hm,i,k is the Rayleigh fading channel gain from BS Xm,i to user Uk, ‖Y ′i − Y ′j ‖

denotes the Euclidean distance between nodes Y ′i and Y ′j , Im,k is the interference received by

Uk and it is given by

Im,k ,
∑

l,j:Xl,j∈Φ\Xm,i

Vl,jPlHl,j,k‖Xl,j − Uk‖−α

in which Vl,j ∈ {0, 1} is a Bernoulli random variable that is one if BS Xl,j is non-void and zero

otherwise. Throughout this paper, all fading channel gains are assumed to be i.i.d. exponential

random variables with unit mean and variance, i.e., Hm,i,k ∼ Exp(1) for all m ∈M, i ∈ N+ and

k ∈ K, and the shadowing effect on all channels is ignored to facilitate the following analysis.

Moreover, since ‖Uk‖ ≤ ‖Uk+1‖ for all k ∈ K, we have to let power allocation fractions of

the K users follow by the constraint β1 < · · · < βk < · · · < βK such that the farther users

are allocated more transmit power. Such a power allocation constraint not only facilitates the

SIC performed by the nearer users but also characterizes the resource allocation fairness among

users.

The complementary cumulative density function (CCDF) of γm,k in (5) has a tight and explicit

lower bound, as shown in the following proposition.

Proposition 1. For a given x > 0, the CCDF of the desired SIR of user Uk ∈ Um,i in (5), i.e.,

F c
γm,k

(x) , P [γm,k ≥ x], has a tight lower bound given by

F c
γm,k

(x) '
k−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 νl`m,l(x/βk)

, k ∈ K, (6)

where x ' y denotes that y is a tight lower bound on x and `m,l(·) is defined as

`m,l(x) , ϕl

(
xωmPl
ωlPm

) 2
α

 1

sinc(2/α)
−
∫ (

ωlPm
xωmPl

) 2
α

0

dt
1 + t

α
2

 (7)

in which ϕl , ω
2
α
l λl/

∑M
m=1 ω

2
α
mλm represents the probability that a user associates with a tier-l

BS by using the BNBA scheme and sinc(x) , sin(πx)
πx

is the (normalized) sinc function.

Proof: See Appendix A.

In general, the lower bound in (6) is very tight since it is derived by using the fact that the

location correlations among all non-void BSs are in general pretty low, as pointed out in the proof
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of Proposition 1. As the user intensity becomes larger and larger (i.e., the location correlations

among the non-void BSs become weaker and weaker), F c
γm,k

(x) gradually and eventually reduces

to the lower bound given by

lim
µ→∞

F c
γm,k

(x) =
k−1∏
j=0

(K − j)
[(K − j) +

∑M
l=1 `m,l(x/βk)]

(8)

because no void BSs exist in the HetNet (i.e., νl = 1 for all l ∈ M). This indicates that (8)

is the lowest limit on F c
γm,k

(x). Also, F c
γm,k

(x) in (6) is valid for the CCDF results of other

specific BNBA schemes since it is derived based on the BNBA scheme with general biases. In

the unbiased NBA scheme, for instance, all ωm’s are the same (and they can be set as one) and

thus (7) becomes

`m,l(x) = ϕl

(
xPl
Pm

) 2
α

 1

sinc(2/α)
−
∫ (

Pm
xPl

)α
2

0

dt
1 + t

α
2

 (9)

and ϕl = λl/
∑M

m=1 λm. Substituting (9) into (6) yields the CCDF of γm,k for the unbiased NBA

scheme. Another example is to designate ωm = Pm for all m ∈ M and the BNBA scheme is

essentially to make users associate with the BS that offers the average maximum received power

to them. Such a scheme is called the maximum received power association (MRPA) and (7) for

this scheme becomes

`m,l(x) = ϕlx
2
α

(
1

sinc(2/α)
−
∫ x−

α
2

0

dt
1 + t

α
2

)
,

where ϕl = P
2
α
l λl/

∑M
m=1 P

2
α
mλm. In addition, the result in (6) reveals a pivotal phenomenon: the

farther user, the lower CCDF of its desired SIR even though the farther users are allocated more

powers. As we will show in the following analyses, this phenomenon dominates the properties

of the coverage and link throughput of each NOMA user.

III. DOWNLINK COVERAGE AND THROUGHPUT ANALYSIS FOR NON-COORDINATED NOMA

In this section, we would like to study the downlink coverage and link throughput of a user

associating with a tier-m BS that adopts the non-coordinated NOMA scheme to simultaneously

transmit multiple data streams to its multiple users. Understanding the coverage performance of

each (NOMA) user is quiet important in that each user is only allocated with some fraction of

the total transmit power and thus the coverage performance of each user must degrade under the

NOMA scheme if compared with the coverage performance of single user (OMA) transmission.
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The coverage analysis provides us with some insight into how many users should be served

by NOMA provided there is a coverage constraint that needs to be satisfied. Likewise, the

link throughput performance of a user is also very crucial because it reflects how much (sum)

throughput a BS using NOMA could achieve and how many users should be appropriately

scheduled at the same time so as to efficiently improve the sum throughput of a BS. We start

with the coverage analysis in the following subsection and then the link throughput analysis

afterwards.

A. Coverage Analysis for non-coordinated NOMA

Suppose BS Xm,i is able to schedule K users in its tagged user set Um,i for non-coordinated

NOMA transmission. The coverage (probability) ρm,k of the kth nearest scheduled user to BS

Xm,i is defined as

ρm,k , P

[
βkPmHm,i,k‖Uk‖−α

(
∑k−1

n=0 βn)Pm
Hm,i,k
‖Uk‖α

+ Im,k
≥ θ, · · · , βKPmHm,i,k‖Uk‖−α

(
∑K−1

n=0 βn)Pm
Hm,i,k
‖Uk‖α

+ Im,k
≥ θ

]

= P

[
βkγm,k

(
∑k−1

n=0 βn)γm,k + βk
≥ θ, · · · , βKγm,k

(
∑K−1

n=0 βn)γm,k + βk
≥ θ

]
, (10)

where θ > 0 is the SIR threshold for successful decoding and β0 , 0. The definition of ρm,k

has to include the event of successfully decoding the signals of the K − k users farther than Uk

by using SIC before Uk can successfully decode its own signal. The explicit result of ρm,k is

found in the following proposition.

Proposition 2. If a tier-m BS is able to arbitrarily schedule K NOMA users and the tier-m

power allocation fraction βl ∈ (θ
∑l−1

n=0 βn, 1) holds for all l ∈ {k, . . . , K}, then the coverage

of the kth nearest user to the tier-m BS among the K users, i.e., ρm,k defined in (10), has a

tight lower bound given by

ρm,k '
k−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 νl`m,l (ϑk,K)

, ∀k ∈ K, (11)

where `m,l(·) can be found in (7) and ϑk,K is defined as

ϑk,K , max
l∈{k,...,K}

{
θ

βl − θ
∑l−1

n=0 βn
, 0

}
. (12)

Moreover, as the user intensity goes to infinity, ρm,k reduces to the following limit

lim
µ→∞

ρm,k =
k−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 `m,l (ϑk,K)

. (13)
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Proof: See Appendix B.

The coverage in Proposition 2 has some important implications regarding how power al-

locations among the K NOMA users significantly impact the coverage performance of each

user and they are elaborated as follows. First, as shown in the proof of Proposition 2, user

Uk cannot decode its own signals almost surely if βl ≤ θ
∑l−1

n=0 βn for l ∈ [k, . . . , K] because

the signals of the users farther than the kth user cannot be decoded even when there is no

interference (i.e., decoding the desired signals of each user directly fails due to the NOMA

interferences from other K − 1 users.). Hence, the condition θ
∑l−1

n=0 βn < βl < 1 for l ∈ K is

called “the fundamental constraint on the power allocation for K-user (non-coordinated) NOMA

transmission”. As such, βk needs to be properly chosen so that the advantage of NOMA is able

to be exploited effectively. Second, ϑk,K in (12) indicates θ

βl−θ
∑l−1
n=0 βn

≤ ϑk,K and ρm,k must

decrease as k increases if θ

βk−θ
∑k−1
n=0 βn

= ϑk,K , which means the farther users might have a worse

coverage than the nearer users even though these farther users are allocated more power. For

example, if a certain power allocation scheme that allocates enough power to the Kth (farthest)

user gives rise to θ

βK−θ
∑K−1
n=0 βn

= ϑk,K , then all ϑk,K’s are the same and equal to θ

βK−θ
∑K−1
n=0 βn

so that ρm,k monotonically decreases as k increases. In other words, a user that is farther from

its BS has a worse coverage whereas in this case the performance of decoding the signals of

the Kth user dominates the coverage performance of each user.

B. Throughput Analysis for non-coordinated NOMA

Since the kth user associating with BS Xm,i needs to successively cancel the interference

signals of the K − k users farther than it before decoding its own signals, its link throughput

(achievable rate, nats/Hz) based on the result in (10) can be defined as

cm,k , E

[
log

(
1 +

γm,k

(
∑k−1

n=0 βn)γm,k/βk + 1

)∣∣∣∣γm,k ≥ βkϑk+1,K

]
, (14)

where k ∈ {1, . . . , K − 1} and ϑk+1,K is already defined in (12). The way of defining cm,k is

due to the fact that the achievable link throughput of user Uk should be evaluated whenever user

Uk is able to decode the signals of the K − k users farther than it and subtract them from the

interference by SIC, i.e., the condition γm,k ≥ βkϑk+1,K is necessary since it is the condition that

user Uk successfully cancels all the signals of the K−k users farther than it (See the explanation
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for this condition in the proof of Proposition 2). Similarly, for the Kth user, its link throughput

can be defined as

cm,K , E

[
log

(
1 +

γm,K

(
∑K−1

n=0 βn)γm,K/βK + 1

)]
, (15)

which does not have any condition on γm,K since the Kth user does not need to cancel any

signals of any other NOMA users. The accurate tight lower bounds on cm,k and cm,K are found

and shown in the following proposition.

Proposition 3. Suppose βl ∈ (θ
∑l−1

n=0 βn, 1) holds for all m ∈ M and l ∈ {k, . . . , K}. For a

tier-m BS that is able to arbitrarily schedule K users in its user set, the link throughput of the

kth nearest user among the K scheduled users is tightly lower bounded by

cm,k '
∫ ∞
ϑk+1,K

k−1∏
j=0

(K − j) +
∑M

l=1 νl`m,l(ϑk+1,K)

(K − j) +
∑M

l=1 νl`m,l(y)

[
βk

(1 + y
∑k

n=1 βn)(1 + y
∑k−1

n=0 βn)

]
dy

+ log

(
1 +

βkϑk+1,K

ϑk+1,K

∑k−1
n=0 βn + 1

)
, k ∈ {1, 2, . . . , K − 1}. (16)

Whereas the link throughput of the Kth user has an accurate tight lower bound given by

cm,K '
∫ ∞

0

K−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 νl`m,l(y)

(
1−

K−1∏
j=0

(K − j) +
∑M

l=1 νl`m,l(y)

(K − j) +
∑M

l=1 νl`m,l(
y

1−βK
)

)
dy

(1 + y)
.

(17)

Proof: See Appendix C.

Remark 1. When K →∞, we have βk → 0 and ϑk+1,K →∞ for all k ∈ K. In this case, the

result in (16) asymptotically reduces to cm,k ' log(1+βk/
∑k−1

n=0 βn+ϑ−1
k+1,K) whereas the result

in (17) asymptotically approaches to zero. These asymptotic results indicate that the SIR of the

farthest user is very small and other nearer K − 1 users cannot improve their link throughputs

too much by performing SIC. The sum throughput of the NOMA users would be largely degraded

if too many users are scheduled. Hence, choosing an appropriate number of the scheduled users

for NOMA transmission is important.

The results in (16) and (17) present a very disparate nature in throughput owing to SIC, i.e.,

the kth user that successfully performs SIC can achieve a link throughput no less than the first

term at the right side of (16) whereas the Kth user that does not perform SIC cannot achieve a

non-zero minimum link throughput. This indicates that cm,k’s and cm,K all augment as long as
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a power allocation scheme is able to increase βkϑk+1,K and βK simultaneously. Also, the link

throughput results in (16) and (17) both imply the following asymptotic result:

lim
βk→1

cm,k = E
[
log

(
1 +

γm,k
βk

)]
'
∫ ∞

0

dy

(1 + y)
[
1 +

∑M
l=1 νl`m,l(y)

] , (18)

which is exactly the tight lower bound on the link throughput of a tier-m BS serving a sole user

and it is the upper bound on cm,k for all k ∈ K since the full transmit power is only allocated to

a user. This obviously means that the results in (16) and (17) all reduce to the link throughput of

a single user as βk goes to one. More importantly, using the results in (35) and (36) in Appendix

C we are able to show that the sum throughput of the K NOMA users is strictly larger than the

link throughput of a single user in (18), that is,
K∑
k=1

cm,k >

∫ ∞
0

dy

(1 + y)
[
1 +

∑M
l=1 νl`m,l(y)

] , (19)

and this manifests the fact that the NOMA scheme is always able to achieve higher throughput

than the OMA schemes as long as SIC performs well. Although this fact somewhat may not be

very surprised, to the best of our knowledge it is firstly shown here for a large-scale HetNet

model with fading channels. In addition, note that all cm,k’s asymptotically reduce to their lowest

limits that are equal to the lower bound in (16) with νl = 1 for all l ∈ M as the user intensity

goes to infinity since no void BSs exist in the network in this scenario.

IV. DOWNLINK COVERAGE AND THROUGHPUT ANALYSIS FOR COORDINATED JT-NOMA

In Section III, the coverage probability and link throughput of the users for the non-coordinated

NOMA scheme are investigated and shown to be severely impacted by the power allocation

scheme among NOMA users as well as the SIC performance. To alleviate the impact on the

coverage and link throughput due to imperfect power allocation as well as SIC, in this section we

propose a coordinated JT-NOMA scheme that is able to significantly improve the coverage and

link throughput of all the NOMA users. The fundamental idea behind this coordinated JT-NOMA

scheme is to coordinate some void BSs to jointly transmit the signals of the furthest user among

the K users scheduled by a tier-m BS in that enhancing the signal strength of the Kth user

benefits the performance of decoding the signals of all these users. For this proposed coordinated

JT-NOMA scheme, in the following we will analyze the coverage and the link throughput for

each of the K users scheduled by a tier-m BS. According to the analytical results, we will be

able to see how much the NOMA transmission performance can be improved by the proposed
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coordinated JT-NOMA scheme in terms of the average cell coverage and cell throughput of each

BS.

A. Coverage Analysis for coordinated JT-NOMA

By following the similar analytical approach in Section III-A, consider BS Xm,i located at

the origin and it is able to arbitrarily schedule K users among all its tagged users for downlink

NOMA transmission. Also, we assume that all void BSs are coordinated to jointly transmit the

signals of the farthest user (the Kth user)7. Since all the void BSs are coordinated to transmit the

signals of the Kth user, the coverage probability of the kth user for the coordinated JT-NOMA

scheme, based on the desired SIR γm,k defined in (5), can be defined as

ρm,k , P

[
βkPmHm,i,k‖Uk‖−α

(
∑k−1

n=0 βn)Pm
Hm,i,k
‖Uk‖α

+ Im,k
≥ θ, . . . ,

βKPmHm,i,k‖Uk‖−α + Sm,k

(
∑K−1

n=0 βn)Pm
Hm,i,k
‖Uk‖α

+ Im,k
≥ θ

]

= P

[
γm,k

(
∑k−1

n=0 βn)γm,k/βk + 1
≥ θ, . . . ,

βKγm,k/βk + Sm,k/Im,k

(
∑K−1

n=0 βn)γm,k/βk + 1
≥ θ

]
, (20)

where Sm,k ,
∑

l,j:Xl,j∈Φ(1 − Vl,j)PlHl,j,k‖Xl,j − Uk‖−α denotes the sum of the signal powers

of user UK ∈ Cm,i coming from all coordinated void BSs that are used to jointly transmit the

signals of UK . The tight lower bound on ρm,k in (20) is derived and shown in the following.

Proposition 4. If the coordinated JT-NOMA scheme is performed in the HetNet, the coverage

ρm,k of the kth user in (20) with the power allocation constraint on βl ∈ (θ
∑l−1

n=0 βn, βK −

θ
∑K−1

n=l βn) with βK ∈ (θ
∑K−1

n=0 βn, 1) for all l ∈ {k, . . . , K − 1} is tightly lower bounded by

ρm,k '
k−1∏
j=0

(K − j)
(K − j) +

∑K
l=1 νl`m,l (ϑk,K−1)

, k ∈ {1, . . . , K − 1} (21)

where `m,l(·) and ϑk,K−1 are already defined in (7) and (12), respectively. The coverage of the

Kth user can be accurately approximated by

ρm,K ≈
K−1∏
j=0

(K − j)

(K − j) +
[∑M

l=1 νl`m,l (ϑK,K) + (1− νl)˜̀m,l (ϑK,Kθ )]+ , (22)

7The reason of making such an assumption that “all” void BSs can be coordinated to do joint transmission is two-fold: First,

such an assumption leads to very much tractable analyses in the coverage and link throughput, as shown in our previous work in

[28]. Second, under this assumption we can study the fundamental limits on the coverage and link throughput achieved by the

proposed coordinated JT-NOMA scheme. Note that all coordinated void BSs do not need to know the channel ordering status

between the K scheduled users. They just need to know the signals of the farthest user, which can be accomplished by the BS

coordination techniques.



15

where (x)+ , max{y, 0} and ˜̀m,l(·) is defined as

˜̀
m,l(x) , ϕl

(
xωmPl
ωlPm

) 2
α
∫ ∞
(
ωlPm
xωmPl

) 2
α
E
[
1− et

−α2 H
]

dt, (23)

where H ∼ Exp(1). Furthermore, we have the following asymptotic result of ρm,k

lim
µ→∞

ρm,k =
k−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 `m,l (ϑk,K)

, k ∈ {1, . . . , K} (24)

as the user intensity µ goes to infinity.

Proof: See Appendix D.

The coverage results in Proposition 4 clearly indicate how the coordinated JT-NOMA scheme

improves the coverage probabilities of the K users. If we compare (21) with (11) for k ∈

{1, . . . , K−1}, we can see the coverage probability of the kth user in (21) is higher than that in

(11) since `m,l(x) is a monotonically increasing function of x and ϑk,K−1 in (21) cannot be greater

than ϑk,K in (11). This is because coordinated JT-NOMA with appropriate power allocation

schemes is able to make the SIR of the Kth user higher than the SIRs of the other K− 1 users.

Thus, the coverage probability of the first K− 1 users does not depend on the SIR performance

of the Kth user. Obviously, the coverage probability of the Kth user is enhanced as well if

comparing (22) with (11) for k = K since the term ˜̀
m,l(ϑK,K/θ) in (22) is negative and it is not

in (11) for k = K. Note that the coverage probabilities of the K users achieved by coordinated JT-

NOMA increase as the user intensity reduces since more void BSs can be coordinated to improve

the signal strength of the Kth user. On the contrary, the coverage performance of coordinated

JT-NOMA degrades as the user intensity increases. Thus, an interesting and important problem

that can be further studied is about how to maintain an appropriate cell load of the BSs in each

tier (see (3)) so that there exists a good number of the void BSs that can be coordinated to

perform the proposed coordinated JT-NOMA scheme for a given user intensity.

Note that the power allocation in Proposition 4 has a sticker constraint on βl, (i.e., βl ∈

(θ
∑l−1

n=0 βn, βK − θ
∑K−1

n=l βl)) than that on βl in Proposition 2. This sticker constraint on βm is

obtained by facilitating the derivations of the coverage probabilities in the proof of Proposition 4

when the coordinated JT-NOMA scheme is adopted. In fact, the coverage probabilities essentially

can be improved by coordinated JT-NOMA for any βl ∈ (θ
∑l−1

n=0 βn, 1). Most importantly, this

constraint βl ∈ (θ
∑l−1

n=0 βn, βK − θ
∑K−1

n=l βl) lets us realize that coordinated JT-NOMA can

achieve a higher coverage of each user with a less power allocated to the first K − 1 users.
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B. Throughput Analysis for coordinated JT-NOMA

In this subsection, we turn our attention on the downlink throughput achieved by a tier-m

BS for the proposed coordinated JT-NOMA scheme. Since all void BSs are assumed to jointly

transmit the signals of the Kth NOMA user of the tier-m BS only, the link throughput of the

kth user for k ∈ {1, . . . , K − 2} in this case based on (20) can be defined as

cm,k , E

[
log

(
1 +

γm,k

(
∑k−1

n=0 βn)
γm,k
βk

+ 1

)∣∣∣∣γm,k ≥ βkϑk+1,K−1

]
. (25)

For the K − 1th user, its link throughput is defined as

cm,K−1 , E

log

(
1 +

γm,K−1

(
∑K−2

n=0 βn)
γm,K−1

βK−1
+ 1

)∣∣∣∣γm,K−1 ≥
βK−1θ − Sm,K−1

Im,K−1

βK − θ
∑K−1

n=0 βn

 . (26)

These two definitions are based on the same idea of defining cm,k in (14) for non-coordinated

NOMA and the proof of Proposition 4. Whereas the link throughput of the Kth user can be

defined as

cm,K , E

log

1 +
γm,K +

Sm,K
Im,K

(
∑K−1

n=0 βn)
γm,K
βK

+ 1

 (27)

based on the resulting SIR of the Kth user in (20). The approximated and accurate results of

cm,k and cm,K are found in the following proposition.

Proposition 5. Let βl ∈ (θ
∑l−1

n=0 βn, βK − θ
∑K−1

n=l βn) with βK ∈ (θ
∑K−1

n=0 βn, 1) hold for all

m ∈M, l ∈ [k, . . . , K − 1] and k ∈ {1, . . . , K − 1}. The tier-m link throughput of the kth user

in (25) for k ∈ {1, . . . , K − 2} has a tight lower bound given by

cm,k '
∫ ∞
ϑk+1,K−1

k−1∏
j=0

(K − j − 1) +
∑M

l=1 νl`m,l(ϑk+1,K−1)

(K − j − 1) +
∑M

l=1 νl`m,l(y)

[
βk

(1 + y
∑k

n=1 βn)(1 + y
∑k−1

n=0 βn)

]
dy

+ log

(
1 +

βkϑk+1,K−1

ϑk+1,K−1

∑k−1
n=0 βn + 1

)
. (28)

Whereas the link throughput of the (K − 1)th user has a tight lower bound given by

cm,K−1 '
∫ ∞

0

(
1−

K−2∏
j=0

(K − j − 1) +
∑M

l=1 νl`m,l(y)

(K − j − 1) +
∑M

l=1 νl`m,l(
y

1−βK−1
)

)

×

(
K−2∏
j=0

(K − j − 1)

(K − j − 1) +
∑M

l=1 νl`m,l(y)

)
dy

(1 + y)
. (29)
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For the Kth user, its link throughput is given by

cm,K ≈
∫ βK∑K−1

l=0
βl

0

K−1∏
j=0

(K − j)

(K − j) +
[∑M

l=1 νl`m,l (yK) + (1− νl)˜̀m,l (yKθ )]+

dy
(1 + y)

. (30)

Proof: See Appendix E.

Remark 2. When K → ∞, we have βk → 0 and ϑk+1,K−1 → ∞ for all k ∈ K. In this

case, the result in (28) asymptotically reduces to cm,k ' log(1 + βk/
∑k−1

n=0 βn + ϑ−1
k+1,K−1) for

k ∈ {1, . . . , K − 2} whereas the results in (29) and (30) asymptotically approach to zero. This

is similar to the fact pointed out in Remark 1 that scheduling too many users at the same time

would significantly degrade the sum throughput of the users even in the case of the coordinated

JT-NOMA scheme.

According to the link throughput results found in Proposition 5, we can easily realize that

the coordinated JT-NOMA scheme indeed improves the link throughput of each NOMA user

since the coordinated void BSs directly enhance the SIR of the Kth user and make the SIR

performance of the other K−1 users not significantly impacted by the SIR of the Kth (because

the SIC performance of the K− 1 users is significantly improved by the coordinated void BSs).

As a result, when there are a large number of viod BSs in the network and coordinated JT-NOMA

is used, we can reduce the power allocation of the Kth user so that the rest of the K − 1 users

can acquire more power so as to improve their coverage and throughput. Furthermore, the results

found in Proposition 5 are the throughput limits achieved by arbitrarily scheduling K NOMA

users and coordinating all void BSs so that they highly depend on the user and BS intensities

and they all reduce to their corresponding results in Proposition 3 as the user intensity goes to

infinity.

V. OPTIMAL POWER ALLOCATION ANALYSIS

In Sections III and IV, we have analyzed the coverage probability and link throughput of a

user for the non-coordinated and coordinated JT-NOMA schemes and pointed out that an appro-

priate power allocation scheme for the K NOMA users significantly benefits the coverage and

throughput performances of these users. In the following, we will investigate how to optimally

allocate transmit powers to the K users in order to maximize the (average) cell coverage and

cell throughput.
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A. Optimal Power Allocation for Maximizing Cell Coverage

Let vector vβ , [β1, . . . , βK ]T ∈ [0, 1]K (where T denotes the “transpose” operator) be a K×1

power allocation vector for the K users associating with a tier-m BS and we can formulate the

optimization problem of vβ in order to maximize the average of the coverage probabilities in a

tier-m cell with a given θ > 0 as followsmaxvβ
1
K

∑K
k=1 ρm,k

s.t. vβ ∈ Vβ(θ)
, (31)

in which the objective function is called the (average) tier-m cell coverage for K-user NOMA

and Vβ(θ) is the feasible set of power allocation vector vβ for a given θ.

Since the explicit results of ρm,k have been found in Propositions 2 and 4, there exists an

optimal power allocation vector v?β , [β?1 , . . . , β
?
K ]T that maximizes the tier-m cell coverage in

(31), as shown in the following proposition.

Proposition 6. For the non-coordinated NOMA scheme, the optimization problem in (31) with

the feasible set Vβ(θ) for a given θ > 0 given by

Vβ(θ) ,

{
vβ ∈ [0, 1]K :

K∑
k=1

βk = 1, 0 < θ
l−1∑
k=1

βk < βl ≤ 1, l ∈ K

}
, (32)

has an optimal vector v?β ∈ Vβ(θ) that maximizes the tier-m cell coverage in (31). Similarly, for

the coordinated JT-NOMA scheme, the following set

Vβ(θ) ,

{
vβ ∈ [0, 1]K :

K∑
k=1

βk = 1, 0 < βl + θ
K−1∑
k=l

βk < βK ≤ 1, l ∈ K

}
, (33)

is a feasible set of the optimization problem in (31) and there exists an optimal vector vβ ∈ Vβ
that maximizes the tier-m cell coverage.

Proof: See Appendix F.

Accordingly, an optimal power allocation vector for the K NOMA users indeed exists in the

feasible set specified in (33). Due to the complexity of ρm,k for vβ , the optimization problem in

(31) in general is not convex and thus v?β may not be unique. Nevertheless, the optimal power

allocation vector can be numerically found by some existing heuristic algorithms (such as genetic

algorithms, simulated annealing algorithms and ant colony algorithms, etc. [29]) once θ and

other necessary parameters in (33) are designated. Note that for some special case with a small

number of users, such as K = 2, a unique optimal v?β can be found (This will be numerically
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verified in Section VI.). Note that the upper bound on θ for non-coordinated NOMA is θ <

minl∈{k,...,K}{βl/
∑l−1

n=0 βn} by inferring from the K − k + 1 conditions θ
∑l−1

n=0 βn < βl for all

l ∈ {k, . . . , K}, whereas the upper bound on θ for coordinated JT-NOMA is (βK−βl)/
∑K

k=l βk.

Once θ is determined, these two bounds pose a constraint on power allocation of performing

NOMA. Moreover, we can expect that v?β for coordinated JT-NOMA may be element-wisely

higher than that for non-coordinated NOMA since joint transmission enhances the signal power

of the Kth user so that allocating less power to the Kth user and more power to the other K−1

users would not degrade the optimal value of the tier-m cell coverage.

B. Optimal Power Allocation for Maximizing Cell Throughput

Since the explicit expressions of the link throughputs of the K NOMA users are already found

in Propositions 3 and 5, we also can formulate an optimization problem of power allocation that

maximizes the sum link throughput of a tier-m BS serving K NOMA users as followsmaxvβ

∑K
k=1 cm,k

s.t. vβ ∈ Vβ(θ)
, (34)

where the objective function is called the tier-m cell throughput of K NOMA users. The

optimal power allocation vector vβ for (34) as stated in the following proposition.

Proposition 7. For the non-coordinated NOMA scheme, the optimization problem in (34) with

the feasible set Vβ(θ) defined in (32) has an optimal solution v?β ∈ Vβ(θ) that maximizes the

tier-m cell throughput8. Likewise, for the coordinated JT-NOMA scheme, an optimal vector vβ

that is able to maximize the tier-m cell throughput can be found in set Vβ(θ) defined in (33).

Proof: The proof is omitted here since it is similar to the proof of Proposition 6.

Generally speaking, the optimization problem in (34) is not convex as well and its optimal

solution can only be found by numerical techniques due to the complicate expression of cm,k.

However, similar to the case of the tier-m coverage with a small number of the NOMA users,

the optimal solution to (34) is analytically much tractable and might be found uniquely. Finally,

it is worth pointing out that the optimal value of the tier-m cell throughput must be greater than

the link throughput of a sole user since the sum of the link throughputs for any power allocations

8The optimal power allocation vector found in this proposition may be different from that found in Proposition 6 since the

two optimization problems in (31) and (34) have distinct objective functions.
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TABLE I

NETWORK PARAMETERS FOR SIMULATION

Parameter \ BS Type (Tier m) Macrocell BS (1) Picocell BS (2)

Power Pm (W) 20 5

User Intensity µ (users/m2) 5× 10−4

Intensity λm (BSs/m2) 1.0× 10−6 [µ
3
, 2µ]

Number of NOMA Users Scheduled K 2

Power Allocation Vector vβ (if applicable) [ 1
4
, 3

4
]T

SIR Threshold θ 1

Pathloss Exponent α 4

User Association Bias ωm (Nearest BS Association) 1

is no less than the link throughput of a sole user as indicated in (18). We will validate this issue

by numerical simulations in Section VI.

VI. NUMERICAL RESULTS

Some numerical results are provided in this section to validate the coverage and link throughput

analyses with non-coordinated and coordinated JT-NOMA schemes in the previous sections. Here

we consider a two-tier HetNet consisting a tier of macrocell BSs and a tier of picocell BSs.

Each BS can at most schedule two NOMA users, i.e., K = 2. The network parameters for

simulation are listed in Table I. We first present the numerical results of the coverage and link

throughput with a specific power allocation between the two NOMA users and then we present

how the numerical results of the cell coverages and the cell throughputs change with the power

allocations between the two users.

A. Numerical Results for Coverage and Link Throughput

Fig. 1 shows the simulation results of the coverage probabilities and link throughputs of the

two users for the non-coordinated NOMA scheme. As can be seen in the figure, all the analytical

results are pretty close to their corresponding simulated results, which validates the correctness

and accuracy of our previous analyses. Also, we can see that the coverage probabilities of the

user in picocells are significantly smaller than those in the marcocells owing to the large transmit

power of the marcocell BSs. The coverage probabilities and link throughputs essentially decrease

as the user intensity increases since the interference increases due to the increase in the non-void
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Coverage Probability Link Throughput

(b)(a)

Fig. 1. Numerical results of the non-coordinated NOMA scheme with a fixed power allocation vβ = [ 1
4

3
4
]T: (a) Coverage

Probability, (b) Link Throughput.

probability and thus the intensity of the non-void BSs in the network increases. Accordingly, all

coverage probabilities and link throughputs eventually coverage to a constant value as the user

intensity goes to infinity. The simulation results of the coordinated JT-NOMA scheme are shown

in Fig. 2 and we also can see that all analytical results are very close to their corresponding

simulated results. In addition, all results in Fig. 2 are better than those in Fig. 1, especially for

the users associating with a picocell BS. Thus, coordinated JT-NOMA indeed improves the SIR

performance of all users. For example, for µ/λ2 ≈ 1.25, ρ2,2 in Fig. 2 is about 56% higher than

ρ2,2 in Fig. 1. Note that the coverage and link throughput performances of the users associating

with a macrocell BS seem not improved very much by coordinated JT-NOMA and this is because

the transmit power of the macrocell BSs is much higher than that of the picocell BSs and the

intensity of the macrocell BSs is much smaller than that of the picocell BSs (i.e., λ2 � λl).

B. Numerical Results for Cell Coverage and Cell Throughput

In this subsection, we would like to show how the cell coverage and cell throughput of the

BSs in each tier change with the power allocation schemes of the two users. According to the

discussions in Section III-A, for the non-coordinated NOMA scheme the constraint β1 < θβ2
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Coverage Probability Link Throughput

(b)(a)

Fig. 2. Numerical results of the coordinated JT-NOMA scheme with a fixed power allocation vβ = [ 1
4

3
4
]T: (a) Coverage

Probability, (b) Link Throughput.

must hold9 so that the two users do not fail to decode their signals merely due to the NOMA

interference. This point can be verified by the simulation results in Fig. 3 where the numerical

results of the tier-m cell coverage and cell throughput for the non-coordinated NOMA scheme

are presented. As shown in Fig. 3, for β1 = β2 = 0.5 the cell coverages are zero since the two

users cannot decode their own signals just because of the NOMA interference from the other

user. When β2 starts to increase from 0.5, the tier-m cell coverage initially increases, achieves

to a maximum and then decreases. As indicated in Proposition 6, there exists an optimal power

allocation vector v?β = [β?1 β
?
2 ]T that maximizes the tier-m cell coverage. For example, we have

v?β = [0.2 0.8]T for the tier-1 cell coverage as shown in Fig. 3 (a).

A similar phenomenon can also be observed in the case of the tier-m cell throughput in Fig.

3 (b), i.e., the cell throughput for each tier can be largely reduced if β2 ≤ 0.5 and there exists

an optimal power allocation scheme that maximizes the tier-m cell throughput, e.g., the tier-2

cell throughput maximizes when v?β = [0.35 0.65]T. Most importantly, Fig. 3 (b) indeed shows

that NOMA outperforms TDMA for 0.5 < β2 < 1, which validates our previous discussion that

9This constraint is equivalent to the constraints β2 >
1

1+θ
and β1 <

θ
1+θ

or β2 >
1
2

and β1 <
1
2

for θ = 1.



23

Cell Coverage Cell Throughput

(a) (b)

Fig. 3. Numerical results of the tier-m cell coverage and cell throughput for the non-coordinated NOMA scheme with µ = λ2

: (a) Tier-m Cell Coverage ρm,1+ρm,2

2
, (b) Tier-m Cell Throughput cm,1 + cm,2.

Cell Coverage Cell Throughput

(a) (b)

Fig. 4. Numerical results of the tier-m cell coverage and cell throughput for the coordinated JT-NOMA scheme with µ = λ2 :

(a) Tier-m cell coverage ρm,1+ρm,2

2
, (b) Tier-m cell throughput cm,1 + cm,2.
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the sum of the link throughputs of the users is always strictly greater than the link throughput

of the single user (OMA) scheme if the powers of the NOMA users are properly allocated.

Consequently, NOMA is able to achieve a large throughput gain if the transmit powers are

properly allocated among the users10. In Fig. 4, we show the simulation results of the tier-m

coverage and cell throughput for the coordinated JT-NOMA scheme. As expected, the results in

Fig. 4 are better than those in Fig. 3 and they also can be maximized by optimizing the power

allocation scheme between the two users.

VII. CONCLUSIONS

In the downlink transmission, a BS that performs the NOMA scheme to simultaneously serve

multiple users can improve the SIR of the users if SIC is perfect. However, due to channel

fading and inter-cell co-channel interference, SIC may fail at the user side so that NOMA may

not provide a good SIR performance to all users at the same time. In this paper, the accurate

explicit results of the coverage and link throughput of the K users associating with a BS in

each tier for the non-coordinated NOMA scheme are firstly found and they show that non-

coordinated NOMA can significantly degrade the coverage and the link throughput provided the

transmit powers for the users are not allocated by following some fundamental constraints. In

order to significantly improve the SIC and NOMA, we propose a coordinated JT-NOMA scheme

in which all void BSs can do joint transmission to enhance the signal power of the farthest user

in a cell. This coordinated JT-NOMA scheme is shown to significantly enhance the coverage

and throughput performances of the users, especially in a dense network with a moderate user

intensity. We finally show that the optimal power allocations for maximizing the tier-m cell

coverage and throughput indeed exist and they can be found by numerical techniques.

10Actually, we can show that optimization problems (31) and (34) are convex for K = 2 so that their optimal solutions are

unique.
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APPENDIX

PROOFS OF PROPOSITIONS

A. Proof of Proposition 1

Due to the assumption of Hm,i,k ∼ Exp(1), the CCDF of γm,k in (5) for a given x > 0 can

be written as

F c
γm,k

(x) = E
[
exp

(
−xIm,k‖Uk‖

α

βkPm

)]
= E‖Uk‖2

{
EIm,k

[
exp

(
−xIm,k‖Uk‖

α

βkPm

) ∣∣∣∣‖Uk‖2

]}

= E‖Uk‖2


M∏
l=1

E

exp

−xωm‖Uk‖α
βkωmPm

∑
l,i:Xl,i∈Φl\Xm,i

ωl
ωl
PlVl,iHl,i,k‖Xl,i‖−α


(a)
= E‖Uk‖2


M∏
l=1

E

exp

− xωm
βkPm

∑
l,i:X̃l,i∈Φ̃l\X̃m,i

PlVl,i
ωl

Hl,i,k

(
‖Ũk‖2

‖X̃l,i‖2

)α
2


(b)

' E‖Ũk‖2

exp

−π‖Ũk‖2

M∑
l=1

νlλl

(
xωmPl
βkωlPm

) 2
α

 1

sinc( 2
α

)
−
∫ (

βkωlPm
xωmPl

)α
2

0

dt
1 + t

α
2


(c)
= E‖Ũk‖2

{
exp

[
−πλ̃Σ‖Ũk‖2

M∑
l=1

νl`m,l

(
x

βk

)]}
,

where (a) follows from X̃l,i , ω
− 1
α

l Xl,i, Ũk , ω
− 1
α

m Uk, Φ̃l , {X̃l,i ∈ R2 : X̃l,i = ω
− 1
α

l Xl,i, i ∈

N+}, and λ̃Σ ,
∑M

m=1 ω
2
α
mλm, (b) follows from the fact that the non-void BSs in the lth tier still

can be accurately approximated by an independent PPP of intensity νlλl and this approximation

leads to a tight lower bound result [18], [19], ‖Ũk‖ is the distance from Ũk to X̃m,i and the derived

result in the proof of Theorem 4 in our previous work [23] for the case of Hl,i,k ∼ Exp(1), and

(c) is directly obtained by the definition of `m,l(·) in (7).

Since user Uk adopts the BNBA scheme to associate with BS Xm,i and it is the kth nearest

user to Xm,i among the K scheduled users, the distribution of ‖Ũ1‖2 can be equivalently written

as ‖Ũ1‖2 d
= Dmin

K where d
= means the equivalence in distribution and Dmin

K is the minimum

RV among K i.i.d. exponential RVs with parameter πλ̃Σ. Due to the memoryless property of

exponential RVs, the distribution of ‖Ũ2‖2 can be equivalently written as ‖Ũ2‖2 d
= ‖U1‖2 +Dmin

K−1

where Dmin
K−1 represents the minimum RV among K − 1 i.i.d. RVs with parameter πλ̃Σ [19],

[26], and note that Dmin
K and Dmin

K−1 are independent. Accordingly, ‖Ũk‖2 can be equivalently

written as

‖Ũk‖2 d
=

k−j∑
j=0

Dmin
K−j,
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where all Dmin
K−j’s are independent and Dmin

K−j ∼ Exp((K− j)πλ̃Σ). Thus, for any s > 0 we have

E
[
e−s‖Uk‖

2
]

=

k−j∏
j=0

E
[
e−sD

min
K−j

]
, for j ≤ k,

where E
[
e−sD

min
K−j

]
can be found as follows

E
[
e−sD

min
K−j

]
=

∫ ∞
0

e−sxfDmin
K−j

(s)dx =

∫ ∞
0

π(K − j)λ̃Σe
−[s+(K−j)πλ̃Σ]x

=
(K − j)πλ̃Σ

s+ (K − j)πλ̃Σ

.

Hence, we further have

E
[
e−s‖Uk‖

2
]

=

k−j∏
j=0

(
(K − j)πλ̃Σ

s+ (K − j)πλ̃Σ

)

Then F c
γm,k

(x) in (6) is acquired by substituting s = πλ̃Σ

∑M
l=1 νl`m,l

(
x
βk

)
into the result of

E
[
e−s‖Uk‖

2
]

found in above.

B. Proof of Proposition 2

According to (10), we can rewrite ρm,k as

ρm,k = P

[(
βk − θ

k−1∑
n=0

βn

)
γm,k ≥ θβk, · · · ,

(
βK − θ

K−1∑
n=0

βn

)
γm,k ≥ θβk

]

= P

[
γm,k ≥ βk max

l∈{k,...,K}

{
θ

βl − θ
∑l−1

n=0 βn

}]
= P [γm,k ≥ βkϑk,K ] ,

where the last equality follows from the condition βl > θ
∑l−1

n=0 βn for l ∈ {k, . . . , K} and the

definition of ϑk,K in (12). According to Proposition 1, ρm,k can be written as

ρm,k = F c
γm,k

(βkϑk,K)

and then substituting βkϑk,K into (6) leads to the tight lower bound in (11). Also, as µ → ∞,

all νl’s converge to one so that all BSs are not void and thus the location correlations among the

non-void BSs no longer exist. Therefore, limµ→∞ ρm,k is equal to (13) that is the lower bound

in (11) with νl = 1 for all l ∈M according to the proof of Proposition 1.
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C. Proof of Proposition 3

First note that for any x, y, z > 0 we have the following identity:

log

(
1 +

x

y + z

)
= log

(
1 +

x+ y

z

)
− log

(
1 +

y

z

)
.

Accordingly, cm,k in (14) can be rewritten as

cm,k = E

[
log

(
1 +

∑k
n=1 βn
βk

γm,k

)
− log

(
1 +

∑k−1
n=0 βn
βk

γm,k

)∣∣∣∣γm,k ≥ βkϑk+1,K

]
, (35)

and for a, b > 0 we have the following

E [log(1 + aγm,k)|γm,k ≥ b] =

∫ ∞
0

P [log(1 + aγm,k) ≥ x|γm,k ≥ b] dx

=

∫ ∞
0

P
[
γm,k ≥ y

a
, γm,k ≥ b

]
P[γm,k ≥ b]

dy
1 + y

= log (1 + ab) +

∫ ∞
ab

F c
γm,k

(y/a)

F c
γm,k

(b)

dy
1 + y

.

Then using Proposition 1 and letting a =
∑k
n=1 βn
βk

and b = βkϑk+1,K lead to the following results

of cm,k:

cm,k = log

(
1 + ϑk+1,K

k∑
n=1

βn

)
+

∫ ∞
ϑk+1,K

∑k
n=1 βn

F c
γm,k

(yβk/
∑k

n=1 βn)dy

F c
γm,k

(βkϑk+1,K)(1 + y)

− log

(
1 + ϑk+1,K

k−1∑
n=0

βn

)
−
∫ ∞
ϑk+1,K

∑k−1
n=0 βn

F c
γm,k

(yβk/
∑k−1

n=0 βn)dy

F c
γm,k

(βkϑk+1,K)(1 + y)

= log

(
1 +

βkϑk+1,K

ϑk+1,K

∑k−1
n=0 βn + 1

)
+

∫ ∞
βkϑk+1,K

[
η2
kF

c
γm,k

(z)/F c
γm,k

(βkϑk+1,K)

(βk + z
∑k

n=1 βn)(βk + z
∑k−1

n=0 βn)

]
dz.

Thus, the tight lower bound in (16) can be readily acquired by using the bound in (6) to find

the results of F c
γm,k

(βkϑk+1,K) and F c
γm,k

(z). Now consider k = K and cm,K can be found as

cm,K = E

[
log

(
1 +

∑K
n=1 βn
βK

γm,K

)
− log

(
1 +

∑K−1
n=0 βn
βK

γm,K

)]

= E
[
log

(
1 +

γm,K
βK

)]
− E

[
log

(
1 +

(1− βK)

βK
γm,K

)]
(36)

=

∫ ∞
0

F c
γm,K

(yβK)− F c
γm,K

(yβK/(1− βK))

(1 + y)
dy.

Then the tight lower bound in (17) can be readily obtained by substituting the tight lower bounds

on F c
γm,K

(x) in (6) with x = y/βK and x = yβK/(1−βK) into the expression of cm,K in above.
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D. Proof of Proposition 4

According to the proof of Proposition 2, ρm,k for k ∈ {1, 2, . . . , K − 1} defined in (20), and

assuming all void BSs in the lth tier to be an independent PPP of intensity νlλl we have

ρm,k = P

[(
βk − θ

k−1∑
n=0

βn

)
γm,k ≥ θβk, . . . ,

(
βK − θ

K−1∑
n=0

βn

)
γm,k ≥ θβk −

Sm,k
Im,k

]
(a)
= P

[
γm,k ≥ max

l∈{k,...,K}

{
βk

(βl − θ
∑l−1

n=0 βn)

[
θ − Sm,k

βkIm,k
1(l = K)

]}]
(b)
= P

[
γm,k ≥ max

l∈{k,...,K−1}

{
βkθ

(βl − θ
∑l−1

n=0 βn)

}]
= F c

γm,k
(βkϑk,K−1)

(c)

'
k−1∏
j=0

(K − j)
(K − j) +

∑M
l=1 νl`m,l (ϑk,K−1)

,

where (a) is due to the constraint θ
∑l−1

n=0 βn < βl < 1 for l ∈ {k, . . . , K}, (b) is due to the

constraint that βl− θ
∑l−1

n=0 βn < βK − θ
∑K−1

n=0 βn (i.e., βl < βK − θ
∑K−1

n=l βn), and (c) follows

from the result in (11). Hence, the tight lower bound in (21) is obtained.

For the Kth user, its coverage probability can be expressed as

ρm,K = P

[
βKPmHm,i,K‖UK‖−α + Sm,K

(
∑K−1

l=0 βl)PmHm,i,K‖UK‖−α + Im,K
≥ θ

]
= P

Hm,i,K ≥
‖UK‖α (θIm,K − Sm,K)

Pm

(
βK − θ

∑K−1
l=0 βl

)


= E
[
exp

(
−‖UK‖

αϑK,K
Pm

(
Im,K −

Sm,K
θ

))]

= E

exp

−ωm‖UK‖αϑK,K
ωmPm

∑
l,j:Xl,j∈Φ\Xm,i

V ′l,jωlPlHl,j,K

ωl‖Xl,j − UK‖α

 ,
where V ′l,j , Vl,j

(
1 + 1

θ

)
− 1

θ
. Since location correlations among the non-void and void BSs

induced by user association are fairly weak [18], we can find the approximated ρm,K by assuming

all V ′l,j’s are independent so that we can have the following approximation:

ρm,K
(c)
≈E

[
exp

(
−π‖ŨK‖2

M∑
l=1

λl

∫ ∞
1

E

[
1− e

−
ϑK,KωmPlV

′
l,jHl,j,K

ωlPmr
α
2

]
dr

)]

=E
[

exp

(
− π‖ŨK‖2

M∑
l=1

(
ωmPl
ωlPm

) 2
α

λl

∫ ∞
(
ωlPm
ωmPl

)
2
α

{
νlE
[
1− e

−
ϑK,KH

x
α
2

]

+ (1− νl)E
[
1− e

ϑK,KH

θx
α
2

]}
dx
)]
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(d)
=E‖ŨK‖2

exp

−πλ̃Σ‖ŨK‖2

[
M∑
l=1

νl`m,l (ϑK,K) + (1− νl)˜̀m,l(ϑK,K
θ

)]+
 ,

where (c) follows the proof technique introduced in the proof of Proposition 1 and (d) is obtained

by the definitions of `m,l(·) and ˜̀m,l(·). Then the result in (22) can be obtained by applying the

results in the proof of Proposition 1. Finally, (22) reduces to (24) since all νl’s converge to 1 as

µ goes to infinity.

E. Proof of Proposition 5

For βl ∈ (θ
∑l−1

n=0 βn, βK − θ
∑K−1

n=0 βn) with βK ∈ (θ
∑K−1

n=0 βn, 1), using the result of

Appendix C we can rewrite cm,k in (25) for k ∈ {1, 2, . . . , K − 2} as follows

cm,k , E

[
log

(
1 +

∑k
n=1 βn
βk

γm,k

)
− log

(
1 +

∑k−1
n=0 βn
βk

γm,k

)∣∣∣∣γm,k ≥ βkϑk+1,K−1

]
,

which is similar to cm,k found in (35). For the (K−1)th user, its link throughput can be written

as

cm,K−1 = E

[
log

(
1 +

∑K−1
n=0 βn
βK−1

γm,K−1

)
− log

(
1 +

∑K−2
n=0 βn
βK−1

γm,K−1

)]
for βl ∈ [θ

∑l−1
n=0 βn, βK−θ

∑K−1
n=0 βn] with βK ∈ [θ

∑K−1
n=0 βn, 1] and it is similar to cm,K defined

in (15). Hence, the result in (28) can be readily obtained from (16) by changing K to K − 1,

and the result in (29) can be found directly from the result in (17) by replacing K with K − 1.

Finally, the link throughput of the Kth user can be expressed as

cm,K = E

log

1 +
γm,K +

Sm,K
Im,K

(
∑K−1

n=0 βn)
γm,K
βK

+ 1

 =

∫ ∞
0

P

 γm,K +
Sm,K
Im,K

(
∑K−1

n=0 βn)
γm,K
βK

+ 1
≥ θ

 dθ
1 + θ

=

∫ βK∑K−1
n=0 βn

0

P

γm,K ≥ θ − Sm,K
Im,K

1− (
∑K−1

n=0 βn) θ
βK

 dθ =

∫ βK∑K−1
n=0 βn

0

ρm,K(θ)

1 + θ
dθ,

where ρm,K(θ) is the coverage probability of the Kth user already given in (22). Thus, substi-

tuting (22) into cm,K above yields the approximated result in (30).

F. Proof of Proposition 6

According to ϑk,K defined in (12), we readily know ϑk+1,K ≤ ϑk,K ≤ ϑk−1,K and this follows

ρm,k (ϑk−1,K) ≤ ρm,k (ϑk,K) ≤ ρm,k (ϑk+1,K) since `m,l(x) is a monotonically increasing function

of x as shown in (7) and thus ρm,k(x) is monotonically decreasing along x. In other words,
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we must have ρm,k (ϑ1,K) ≤ · · · ≤ ρm,k (ϑk,K) ≤ · · · ≤ ρm,k (ϑK,K) and this follows that∑K
k=1 ρm,k (ϑk,K) ≤

∑K
k=1 ρm,k (ϑK,K). Thus, 1

K

∑K
k=1 ρm,k is continuous and bounded for all

vβ ∈ (0, 1)K because 1
K

∑K
k=1 ρm,k (ϑK,K) is bounded for any ϑK,K that is determined by θ and

vβ . In other words, 1
K

∑K
k=1 ρm,k is also continuous and bounded for any vβ ∈ Vβ(θ) ⊂ (0, 1)K .

Also, note that Vβ(θ) in (32) and Vβ(θ) in (33) are both a polyhedron so that they are compact.

Accordingly, there must exist an optimal vector v?β ∈ Vβ(θ) that maximizes 1
K

∑K
k=1 ρm,k based

on the Weierstrass theorem [30].
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