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Abstract—In millimeter wave (mmWave) massive multiple-
input multiple-output (MIMO) systems, acquiring accurate chan-
nel state information is essential for efficient beamforming (BF)
and multiuser interference cancellation, which is a challenging
task since a low signal-to-noise ratio is encountered before BF
in large antenna arrays. The mmWave channel exhibits a 3-D
clustered structure in the virtual angle of arrival (AOA), angle of
departure (AOD) and delay domain that is imposed by the effect
of power leakage, angular spread and cluster duration. We extend
the approximate message passing (AMP) with nearest neighbor
pattern learning algorithm for improving the attainable channel
estimation performance, which adaptively learns and exploits the
clustered structure in the 3-D virtual AOA-AOD-delay domain.
The proposed method is capable of approaching the performance
bound described by the state evolution based on vector AMP
framework, and our simulation results verify its superiority in
mmWave systems associated with a broad bandwidth.

Index Terms—Approximate message passing, broadband,
channel estimation, mmWave, OFDM, sparse structure

I. INTRODUCTION

Communications at millimeter wave (mmWave) frequencies
are regarded as a key enabling technique for 5G by exploiting
their broad bandwidth. However, mmWave frequencies suffer
from a high propagation loss. In order to mitigate the path
loss, numerous antenna elements are packed for beamforming
(BF). Conventional multiple-input multiple-output (MIMO)
BF relies on digital processing which result in extremely high-
energy consumption. Hybrid analog / digital precoding [1]–[4]
is able to reduce the cost.

Accurate channel estimates are essential for designing ana-
log and digital beamformers [4]. Experiments conducted in
indoor [5] and outdoor [6] environments have shown that
mmWave channels exhibit sparsity in the angle of arrival /
departure (AOA / AOD) domain and delay domain due to
their high path loss and sensitivity to blockage. It has been
corroborated by experiments that the limited path components

This work was supported by the National Nature Science Foundation of
China with Grant Nos. 91438206 and 91638205. Corresponding author:
Linling Kuang.

Xincong Lin is with the Department of Aerospace Engineering, Tsinghua
University, Beijing 100084, China (e-mail: linxc15@mails.tsinghua.edu.cn).

Sheng Wu, Chunxiao Jiang, Linling Kuang and Jian Yan are with the
Tsinghua Space Center, Tsinghua University, Beijing 100084, China (e-mail:
{thuraya, jchx, kll, yanjian_ee}@tsinghua.edu.cn).

Lajos Hanzo is with the School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, United Kingdom (e-
mail: lh@ecs.soton.ac.uk).

typically arrive in 1 ∼ 4 ’clusters’ [5]–[7]. In the litera-
ture, by exploiting the distinct lack of scattering experienced
by mmWave channels, several advanced channel estimation
schemes have been proposed in [1], [8]–[11]. Codebook based
BF methods have been conceived in [1], [8], [9], where
the core idea is to search through the predefined BF-weight
codebook in order to find the best BF-vector pair for transmis-
sion / reception. However, their contribution did not conceive
explicit channel estimation schemes for multiuser interference
cancellation. As a further development, it was shown that
random compressive sensing (CS) using pseudo random phase
shifters [10], [11] is more suitable for multiuser systems, since
all users can simultaneously estimate their channels thanks to
the random nature of the transmitted beams [12].

Beyond the above-mentioned sparsity, mmWave channels
also exhibit additional subtle features [13], [14], which can be
further exploited for improving the attainable channel estima-
tion performance, especially for the low signal-to-noise ratios
(SNRs) routinely encountered in mmWave communications
before BF. To elaborate a little further, mmWave channels
exhibit a clustered structure in the virtual AOA / AOD domain,
which several large coefficients are grouped together due
to the effect of power leakage (See Fig. 1 (a)) [13], [15].
By exploiting their clustered structure, the support detection
(SD)-based channel estimation scheme proposed for narrow-
band flat-fading channels in [13] outperformed the orthogonal
matching pursuit algorithm [16]. Furthermore, by exploiting
the subtle changes between the adjacent channel elements, the
algorithm of [17] outperformed the SD scheme of [13]. For
estimating broadband frequency-selective fading channels, an
efficient algorithm was proposed in [14] based on the assump-
tion that the subchannels of orthogonal frequency division
multiplexing (OFDM) systems have the same sparse common
support (SCS) [18]. However, the angular spread exhibited
in the AOA /AOD domain [7] and the cluster duration [19]
exhibited in the delay domain were not considered in [13] and
[14], which would enhance the clustered structure (See Fig.
1 (b), (c) and (d) ). The work [20] exploited the sparsity in
angular and delay domains that was designed for mmWave
MIMO systems with few-bit analog-to-digital conversion. To
the best of our knowledge, jointly exploiting the 3-D clustered
structure of channels in the virtual AOA-AOD-delay domain
for improving the channel estimation in mmWave systems with
hybrid analog / digital precoding has not been proposed in the
literature.
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(a) Power leakage without angular spread.
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(b) Power leakage and an angular spread of 15 degrees.
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(c) Clustered structure in the virtual AOA-AOD domain. (d) Clustered structure in the virtual AOA-delay domain

Figure 1: (a) and (b) show 2-D clustered structure in the virtual AOA-AOD domain of channels in frequency domain. (c) and
(d) show 3-D clustered structure in the virtual AOA-AOD-delay domain of channels in delay domain. The base station has 64
antennas and user equipment has 16 antennas. There are 4 physical clusters with one LOS path and three NLOS paths.

In our earlier work [21], the approximate message passing
with nearest neighbor pattern learning (AMP-NNSPL) algo-
rithm is proposed for learning the sparse clustered structure
in the virtual angular domain of a conventional massive
MIMO-OFDM system operating at the carrier frequency of
2 GHz. In this paper, to fully exploit the sparse 3-D clustered
structure exhibited in the virtual angular and delay domain,
which is deterministic but unknown for a specific propa-
gation environment, we extend the AMP-NNSPL algorithm
to adaptively learn the 3-D clustered structure for the sake
of accurately estimating the channel of broadband mmWave
massive MIMO-OFDM systems with multiuser hybrid precod-
ing. Specifically, we develop a Delay-Domain (DD) algorithm
based on the AMP framework, which is termed as AMP-
NNSPL-DD, and then the state evolution (SE) of the AMP-
NNSPL-DD algorithm is derived for our ensuring performance
analysis. Since the vector AMP (VAMP) algorithm is more
robust with respect to general measurement matrix and its
SE eminently characterizes the attainable performance bound
when the measurement matrix is large and right-rotationally
invariant [22], we also developed a VAMP-NNSPL-DD algo-
rithm and quantified its SE based on the VAMP framework.
However, compared to the AMP-NNSPL-DD, the VAMP-

NNSPL-DD requires more storage space and imposes a higher
complexity. Our simulation results demonstrate that jointly
exploiting the sparse clustered structure in the angular and
delay domain is capable of attaining considerable performance
gains, over the algorithms of [13], [16], [17], [21], [23]–[26],
which only exploit the sparse clustered structure in the angular
domain. In particular, for obtaining a performance gain at a
low complexity, switching back and forth between the delay-
domain and frequency-domain is efficiently carried out by
the fast Fourier transform (FFT). Furthermore, our VAMP-
NNSPL-DD solution implies that passing messages from the
frequency domain to the delay domain is equivalent to a
multiple-measurement-vector (MMV) problem of [25]. How-
ever, the SE need make an idealized simplifying assumption
which results in a generalized MMV (GMMV) problem [25].
As a result, the AMP-NNSPL-DD and its SE do not match
well with short measuring time, but match better with long
measuring time. By contrast, the SE of the VAMP-NNSPL-DD
characterizes the performance bound of the (V)AMP-NNSPL-
DD algorithm more accurately.

Notation: The transpose, complex conjugate and conjugate
transpose operators are given by (· )T , (· )∗ and (· )H , respec-
tively. E [· ] denotes the statistical expectation. ‖A‖F is the
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Frobenius norm of matrix A. ‖a‖2 is the `2 norm of vector
a. bxc is the largest integer n that n ≤ x.dxe is the smallest
integer n that n ≥ x. Φ (g,m) is the gth-row and mth-column
element of the matrix Φ. ln (· ) and lg (· ) denotes the natural
logarithm and logarithm to ten, respectively. vec (A) denotes
vectorizing a matrix as a vector. ⊗ denotes the Kronecker
product. Finally, NC (h; µ, ν) denotes the Gaussian distribution
function of h with mean µ and variance ν. And IN is unit
matrix with size N . ei ∈ R

N×1 or ei ∈ R
1×N being the

standard basis vector with the unique one in the ith entry, and
with size being N . Tr (A) is the trace of a matrix. 〈a〉 is the
empirical averaging of a vector a ∈ RN×1, i.e., 〈a〉 = 1

N

∑
n an .

II. SYSTEM MODEL

A. Signal Transmission at the UEs

Let us consider the general family of hybrid analog-digital
precoding and combining architectures invoked for mmWave
communications [1], [12], [27]. The base station (BS) having
NBS antennas and NRF

BS = K RF chains serves K user
equipment (UE) having NUE antennas and NRF

UE = 1 RF chain
[14]. In this paper, we focus our attention on the uplink chan-
nels’ estimation. The transmitter employs OFDM modulation,
where P pilots are uniformly allocated across a total of N
subcarriers and the set of pilot subcarriers is denoted by P =
{1∆, 2∆, · · · , P∆} , where we have ∆ = bN/Pc . Furthermore,{
skgp | k = 1, · · · , K, g = 1, · · · ,G, p ∈ P

}
denotes the pilots

associated with the pth subcarrier of the gth OFDM symbol of
the kth user. After precoding by baseband transmit precoder
fBBkgp followed by an RF precoder f RFkg ∈ C

NUE×1, the
transmitted signal xkgp ∈ C

NUE×1 can be written as

xkgp = f kgp skgp, (1)

where f kgp = f RFkg fBBkgp ∈ C
NUE×1 is the UE’s combined

transmit precoder matrix.

B. MmWave Channel Model

The mmWave channel can be modeled as a sum of Ncl
scattered clusters, each of which contributes Lncl propagation
paths [27]. For a uniform linear array, the baseband frequency
response of a quasi-static physical channel H ( f ) can be
modeled as [28]–[30]

H ( f ) =
Lpath∑
i=1

βi aR (θRi ) aH
T (θTi ) e− j2πτi f , (2)

where −B/2 ≤ f ≤ B/2 with B is the two-sided bandwidth,
Lpath =

∑Ncl
ncl=1 Lncl is the total number of physical paths, βi

denotes the complex-valued path gain, τi is the path-delay,
while

aR(θ) =
[
1, e− j2πθ, · · · , e− j2π (NBS−1)θ

]T
, (3)

aT(θ) =
[
1, e− j2πθ, · · · , e− j2π (NUE−1)θ

]T
, (4)

denotes the receive and transmit steering vector with θ being
the normalized angle, respectively. The normalized angles
θRi ∈ (−1/2, 1/2) and θTi ∈ (−1/2, 1/2) are related to the
AOA φRi ∈ (−π/2, π/2) by θRi =

1
2 sin (φRi ) and the AOD

φTi ∈ (−π/2, π/2) by θTi =
1
2 sin (φTi ), respectively. For

notational simplicity, the user index k in the channel model
(2) is omitted.

The physical channel H ( f ) is related to the channel W ( f )
in virtual AOA-AOD-frequency domain by [28]–[30]

H ( f ) = ARW ( f ) AH
T, (5)

where

AR =
[
aR

(
θ1

R

)
, aR

(
θ2

R

)
, · · · , aR

(
θ
NBS
R

)]
/
√

NBS, (6)

AT =
[
aT

(
θ1

T

)
, aT

(
θ2

T

)
, · · · , aT

(
θ
NUE
T

)]
/
√

NUE, (7)

is a version of discrete Fourier transform (DFT) matrix with
phase shift, and

θnR
R =

1
NBS

[
nR − N̄BS

]
, θnT

T =
1

NUE

[
nT − N̄UE

]
, (8)

are the virtual AOA and AOD, respectively, with N̄BS =

(NBS + 1) /2, N̄UE = (NUE + 1) /2, nR = 1, · · · , NBS and
nT = 1, · · · NUE. nR and nT is referred to virtual AOA index
and virtual AOD index, respectively, in Fig. 1. Furthermore,
the channel W ( f ) is related to the channel H l in virtual AOA-
AOD-delay domain by [28]–[30]

W p = W
(

f p
)
=

1
√

L̄

L̄∑
l=1

H le
− j2π (l−1)

(
− 1

2+
P
N

)
, (9)

where f p = − B
2 +

p
N B is pth subcarrier frequency, and L̄ =

L + 1 with L = dBτmaxe , where B and τmax is the bandwidth
and maximum path delay, respectively. The elements in H l is
[28]–[30]

HnRnTl =
√

L̄
Lpath∑
i=1

βi fNBS

(
θRi − θ

nR
R

)
f ∗NUE

(
θTi − θ

nT
T

)
× sinc (Bτi − (l − 1)) , (10)

where fN (θ) = 1√
N

e− jπθ (N−1) sin(πNθ)
sin(πθ) and sinc (x) = sin(πx)

πx .

Let us consider Ncl = 4 physical clusters associated with
a line of sight (LOS) cluster and three non-LOS (NLOS)
clusters, which is a common scenario in mmWave channels
[5]–[7]. Since the power of LOS cluster may 20 dB higher than
that of the NLOS cluster [5], [13], [14], the complex path gains
are drawn from NC

(
βi ; 0, 10power/10

)
, with the path-power

being 0 dBm for the LOS component and −5 ∼ −20 dBm
for the NLOS component. The maximum path delay is about
τmax = 600 ns [6], therefore, the path delays τi are uniformly
selected from 0 ∼ 600 ns. Other parameters are set as f0 = 28
GHz, B = 800 MHz [6], L = dBτmaxe = 480, NBS = 64,
NUE = 16,

[
φR1, φR2, φR3, φR4

]
= [70, 20,−20,−70]/180π

and
[
φT1, φT2, φT3, φT4

]
= [60, 30,−30,−60]/180π. With these

parameters, the channel H l can be generated from (10), and
the channel W p can be generated from (9). The normalized
amplitude of W 1 is shown in Fig. 1 (a), from which we
can observe the so-called power leakage effect, namely that
the signal power is not concentrated to a single rectangle,
as demonstrated in [13] and [15]. Furthermore, each cluster
exhibits an angular spread of about 15 degrees in the physical
AOA / AOD [7], and also has cluster duration of about 9 ns
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in delay domain [19], which is shown in Fig. 1 (b). Fig. 1
(c) shows the channel H1, and Fig. 1 (d) shows the channel
[H1e1, · · · ,H481e1] ∈ C64×481 with e1 ∈ R

16×1. Generally
speaking, due to the effect of power leakage, angular spread
and cluster duration, the channels

[
H1, · · · ,H L̄

]
exhibit 3-D

clustered structure, which constitutes the motivation for the
proposed algorithm.

C. Signal Receiving at the BS
From (1) and (5), the BS receives the uplink signal

rgp∈ C
NBS×1 at the pth subcarrier of the gth OFDM symbol

from multiple users formulated as

rgp =
K∑
k=1

ARW k pA
H
T xkgp + wgp, (11)

where wgp ∼ NC

(
wgp ; 0, σ

)
is the additive noise. The SNR is

defined as SNR=1/σ under the condition that E
[
skgp s∗

kgp

]
=

1, 


 f kgp





2

F
= 1 and E

[


W k p





2

F

]
= NBSNUE [27]. Then

the received signal rgp is further processed by the combined
matrix Zgp = ZRFgZBBgp∈ C

NBS×K as follows

ygp = ZH
gp rgp = ZH

gp

K∑
k=1

ARW k pA
H
T xkgp + ZH

gpwgp . (12)

By stacking K users’ quantities from (12) with (1), we arrive
at

ygp = ZH
gpARW̄ p Ā

H
T f̄ gp + ngp, (13)

where W̄ p =
[
W 1p,W 2p, · · · ,WKp

]
∈ CNBS×KNUE ,

ĀT = diag [AT, AT, · · · , AT] ∈ CKNUE×KNUE , f̄ gp =[(
f 1gp s1gp

)T
,
(
f 2gp s2gp

)T
, · · · ,

(
f Kgp sKgp

)T
]T
∈ CKNUE×1

and ngp = ZH
gpwgp∈ C

K×1. By vectorizing W̄ p , we have
[1], [14]

ygp = vec
(
ZH
gpARW̄ p Ā

H
T f̄ gp

)
+ ngp

=

((
Ā

H
T f̄ gp

)T
⊗ ZH

gpAR

)
vec

(
W̄ p

)
+ ngp

= Φgpwp + ngp . (14)

By stacking G successive received signals ygp , we get the
system model in the virtual AOA-AOD-frequency domain as

yp = Φpwp + np, (15)

where we have yp =
[
yT

1p, y
T
2p, · · · , y

T
Gp

]T
∈ CKG×1,

Φp =
[
ΦT

1p,Φ
T
2p, · · · ,Φ

T
Gp

]T
∈ CKG×KNBSNUE, and np =[

nT
1p, n

T
2p, · · · , n

T
Gp

]T
∈ CKG×1.

Denote

H =
[
vec

(
H̄1

)
, · · · , vec

(
H̄ L̄

)]
∈ CM×L̄, (16)

W = [w1, · · · , wP] ∈ CM×P, (17)

where H̄ l = [H1l,H2l, · · · ,HKl ] ∈ CNBS×KNUE , and M =

K NBSNUE, then we have

W = HφT , (18)

where φ ∈ CP×L̄ with elements being φpl =
1√
L̄

e− j2π (l−1)
(
− 1

2+
P
N

)
. From (15), (18), and by vectorizing H ,

we have

yp = vec
(
ΦpHφ

T ep
)
+ np

=

((
φT ep

)T
⊗ Φp

)
vec (H ) + np

= Ψp h̄ + np, (19)

where Ψp ∈ C
KG×KNBSNUE L̄, h̄ ∈ CKNBSNUE L̄×1, and ep ∈

RP×1. By stacking P subchannel received signals yp , we get
the system model in the virtual AOA-AOD-delay domain as

y = Ψh̄ + n, (20)

where y =
[
yT

1, y
T
2, · · · , y

T
P

]T
∈ CKGP×1,

Ψ =
[
ΨT

1,Ψ
T
2, · · · ,Ψ

T
P

]T
∈ CKGP×KNBSNUE L̄ and

n =
[
nT

1, n
T
2, · · · , n

T
P

]T
∈ CKGP×1.

The AMP-NNSPL proposed in [21] can be readily applied
on model (15), which is termed as AMP-NNSPL-FD (fre-
quency domain) in the following. The complexity of AMP-
NNSPL-FD is dominated by matrix-vector multiplies with
Φp∈ C

KG×KNBSNUE, i.e., the scale of O
(
K2GPNBSNUE

)
.

However, directly applying the AMP-NNSPL to the model
(20) would lead to high complexity of O

(
K2GPNBSNUE L̄

)
,

as the term L̄ is usually huge in broadband mmWave systems.
Given the model of (15) and (18), we extend our low-
complexity AMP-NNSPL solution based on the (vector) AMP
framework of [22], [31]–[33] to estimate the channel in the
virtual AOA-AOD-delay domain in the next section.

III. PROPOSED MMWAVE CHANNEL ESTIMATION
ALGORITHM

A. The AMP-NNSPL-DD Algorithm

Our goal is to infer the channel H in the virtual AOA-
AOD-delay domain from the measurements y under the model
(15) and the constraint (18). In particular, the aposteriori
probability can be computed according to Bayesian rule as

p (H | y) =
p (y | W ) p (W | H ) p (H )

p (y)
, (21)

where p (y) =
∫ ∫

p (y | W ) p (W | H ) p (H ) dWdH . The
numerator in (21) can be factored into

p (H ) p (W | H ) p (y | W ) =
M∏

m=1

p (hm ) p (wm · | hm )

×
∏
p∈P

f p
(
yp | w ·p

)
. (22)

where hm ∈ C
L̄×1 is the mth row of channels H ∈ CM×L̄,

wm · ∈ C
P×1 and w ·p ∈ C

M×1 are the mth row and pth
column of channels W ∈ CM×P, respectively. To exploit the
3-D clustered structure in the virtual AOA-AOD-delay domain
as shown in Fig. 1 (c) and (d), we apply a flexible spike and
slab priori model to the channels H ∈ CM×L̄,

p
(
H ; ξ

)
=

M∏
m=1

p (hm )
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Figure 2: The factor graph representation of broadband
mmWave massive MIMO-OFDM Systems.

=

M∏
m=1

L̄∏
l=1

p (hml )

=

M∏
m=1

L̄∏
l=1

[
(1 − ρml ) δ (hml ) + ρmlNC (hml ; 0, ηml )

]
,

(23)

where ξ ,
{
ρml, ηml, σ | m = 1, 2, · · · , M, l = 1, 2, · · · , L̄

}

represents the system parameters. Specifically, ρml ∈ (0, 1)
denotes the sparsity ratio, while ηml and σ are the apriori
variance of channel coefficient and noise, respectively, and
δ (hml ) is the Dirac delta function. The conditional probability
p (W | H ) reads

p (W | H ) =
M∏

m=1

p (wm · | hm )

=

M∏
m=1

δ (wm · − φhm )

=

M∏
m=1

∏
p∈P

δ
*.
,
wmp −

L̄∑
l=1

φpl hml
+/
-
, (24)

and the channel transition function p (y | W ) is factorized into

p (y | W ) =
∏
p∈P

f p
(
yp | w ·p

)
=

∏
p∈P

KG∏
g=1

fgp
(
ygp | w ·p

)
,

(25)

where

f p
(
yp | w ·p

)
= NC

(
yp ;Φpw ·p, σ

)
, (26)

fgp
(
ygp | w ·p

)
= NC

(
ygp ; egΦpw ·p, σ

)
. (27)

The factorization described by (22)-(25) can be represented
by the factor graph of Fig. 2, where δ

(
wmp −

∑L̄
l=1 φpl hml

)
appears as a function node gmp . Fig. 2 includes two parts. In
the left part, the message passing is carried by the approxi-
mate message passing (AMP) algorithm [31]–[33], while the

message passing in the right part is efficiently implemented
by the Gaussian message passing (GMP) algorithm proposed
in [34], [35]. Passing messages from the left part to the
right part is achieved by passing messages from the variable
node wmp to the factor node gmp, and vice versa. Again, we
term the proposed message-passing scheme as AMP-NNSPL-
DD algorithm. Additionally, the SE is derived as part of our
performance analysis.

1) The AMP-NNSPL-DD Algorithm: The channels H, W
and the parameters ξ can be iteratively estimated by message
passing and by minimizing the Bethe free energy under a
neighborhood constraint [21]. By fixing the parameters ξ to
the values estimated at the previous iteration, the terms κtgp,
ztgp, ϑ

t
mp and ωt

mp defined at each node, i.e., fgp and wmp ,
are calculated by AMP as shown in lines 6 and 7 of table I.
In the right part of factor graph, denote

εtml =
∑
p∈P

(
φpl

)−1
ẑt
gmp→hml

vtgmp

, (28)

ζ tmp =

L̄∑
l=1

vt
hml

ẑt
gmp→hml

vtgmp

, (29)

where vtgmp
and vt

hml
are the variance defined at the function

node gmp and the variable node hml, respectively, and

ẑtgmk→hml
= ŵt

wmp→gmp
−

L̄∑
l′,l

φpl′ ĥt−1
hml′→gmp

, (30)

with ŵt
wmp→gmp

being the mean of the message
ut
wmp→gmp

(
wmp

)
= NC

(
wmp ; ŵt

wmp→gmp
, vtwmp→gmp

)
passed from the variable node wmp to the factor node gmp,
and ĥt−1

hml′→gmp
being the mean of the message passed from

the variable node hml′ to the factor node gmp . ε
t
ml

and ζ tmp

are calculated recursively by GMP as shown in lines 10 and
17 of table I, respectively.

By the sum-product message passing rule [36], the message
ut
wmp→gmp

(
wmp

)
is calculated by

ut
wmp→gmp

(
wmp

)
=

KG∏
g=1

ut
fgp→wmp

(
wmp

)
(a)
≈ NC

(
wmp ;ωt

mp, ϑ
t
mp

)
, (31)

where step
(a)
≈ is shown in [37]. Hence, we have

ŵt
wmp→gmp

= ωt
mp . (32)

Then the variance vtgmp
and mean ẑtgmp

defined at the factor
node gmp, and the variance ε tm and mean µt

ml
defined at the

variable node hml are calculated by GMP as shown in lines
9 and 11 of table I. The aposteriori distributions of hml are
obtained as follows

p
(
hml | y; ξ t−1

)
=

1∫
p (hml )NC

(
hml ; µtml

, ε tm
)

dhml

×p (hml )NC
(
hml ; µtml, ε

t
m

)
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=
(
1 − πtml

)
δ (hml ) + πtmlNC

(
hml ; h̃t

ml, ṽ
t
ml

)
,

(33)

where πt
ml
, ṽt

ml
and h̃t

ml
are shown in lines 13 and 14 of table

I. The aposteriori mean and variance of hml are calculated as

gmean
(
µtml, ε

t
m ; ξ t−1

)
=

∫
hml p

(
hml | y; ξ t−1

)
dhml, (34)

gvar
(
µtml, ε

t
m ; ξ t−1

)
=

∫
|hml |

2 p
(
hml | y; ξ t−1

)
dhml

−
���gmean

(
µtml, ε

t
m ; ξ t−1

) ���
2
, (35)

and they are shown in line 15 of table I. According to the sum-
product message passing rule, the aposteriori distributions of
wmp are obtained by

p
(
wmp | yp

)
= ut

wmp→gmp

(
wmp

)
ut
gmp→wmp

(
wmp

)
= NC

(
wmp ;ωt

mp, ϑ
t
mp

)
NC

(
wmp ; ŵt

gmp→wmp
, vtgmp→wmp

)
∝ NC

(
wmp ; ŵt

mp, ν
t
wmp

)
,

(36)

where ŵt
gmp→wmp

and vtgmp→wmp
are calculated by GMP as

shown in line 18 of table I, νtwmp
and ŵt

mp are calculated as
shown in line 19 of table I.

As shown in Fig. 1 (c) and (d), the channel H of (16)
exhibits 3-D clustered structure in virtual AOA-AOD-delay do-
main. For notational convenience, let m = (k−1)NBSNUE+(i−
1)NBS + j, where m = 1, · · · , M, k = 1, · · · , K, i = 1, · · · , NBS
and j = 1, · · · , NUE. Then we denote hki jl , hml, where i,
j and l being the index in the 3-D virtual AOA-AOD-delay
domain. In the following, the user index k is dropped for
notational simplicity, and we reuse the user index k when we
summarize the proposed algorithm in the following table I. It
is observed from Fig. 1 (c) and (d) that hi jl and its neighbors{

hqr s∈Ni j l

}
tend to be either simultaneously small value or

large value, where Nni j denotes the set of neighbor indices of
element hi jl , and is defined as follows1

Ni jl = {(i − 1, j, l), (i + 1, j, l), (i, j − 1, l),
(i, j + 1, l), (i, j, l − 1), (i, j, l + 1)}. (37)

Hence, the sparsity ratio ρi jl and the apriori variance ηi jl of
hi jl should be close to

{
ρqr s∈Nni j

}
and

{
ηqr s∈Nni j

}
, which

can be described by minimizing
∑

qr s∈Nni j

(
ρi jl − ρqr s

)2
and∑

qr s∈Nni j

(
ηi jl − ηqr s

)2
, respectively. By fixing the apos-

teriori distribution of hml , the parameters ξ are updated
by minimizing the Bethe free energy under a neighborhood
constraint [21] as follows,

ξ t = arg min
ξ

Q(ξ ), (38)

Q(ξ ) = B(ξ )+

w
∑
i

∑
j

∑
l

∑
qr s∈Ni j l

[(
ρi jl − ρqr s

)2
+

(
ηi jl − ηqr s

)2
]
,

(39)

1In 3-D domain, each rectangle (i, j, l ) has 6 neighbors, i.e., in the location
of top, bottom, left, right, front and back.

B(ξ ) = −
∑
p∈P

KG∑
g=1

∫
wp

p
(
egΦpw ·p |yp ; ξ t−1

)
lnp

(
ygp |w ·p ; ξ

)
−

∫
H

p
(
H | y; ξ t−1

)
lnp

(
H ; ξ

)
+ Const, (40)

where p
(
ygp |w ·p ; ξ

)
= NC

(
ygp ; egΦpw ·p, σ

)
,

the aposteriori distribution p
(
egΦpw ·p |yp ; ξ t−1

)
and p

(
H | y; ξ t−1

)
are obtained by AMP as

p
(
egΦpw ·p |yp ; ξ t−1

)
= NC

(
egΦpw ·p ; mt

gp, v
t
gp

)
and

p
(
H |y; ξ t−1

)
=

∏
m

∏
l p

(
hml | y; ξ t−1

)
, respectively,

with mt
gp =

(
ztgpσ

t−1 + ygp κ
t
gp

)
/
(
σt−1 + κtgp

)
and

vtgp = σt−1κtgp/
(
σt−1 + κtgp

)
. Other items that are

independent of the parameters ξ are absorbed into Const.
By taking a derivative of Q(ξ ) with respect to ρi jl , ηi jl and
σ, respectively, and setting the three derivatives to zero with
w → ∞, ρi jl, ηi jl and σ are updated as in lines 23 and 26,
respectively [21].

The proposed algorithm is summarized in table I. The
initialization of the parameters ξ is consistent with [21] and are
shown in line 2 of table I. Note that ẑtgmp

, ζ tmp, ŵ
t
gmp→wmp

and
εt
ml

in lines 9, 17, 18 and 10 of table I, respectively, can be effi-
ciently calculated by FFT and inverse FFT. The complexity of
proposed algorithm is O(K2GPNBSNUE+K NBSNUEPlog2P),
while the orthogonal matching pursuit (OMP) algorithm
[16], the support detection (SD)-based channel estimation
scheme [13], the distributed sparsity adaptive matching pursuit
(DSAMP) algorithm [25] and the expectation-maximization
Bernoulli-Gaussian AMP (EM-BG-AMP) algorithm [26] have
a complexity order of O(K2GPNBSNUE).

2) State Evolution of the AMP-NNSPL-DD Algorithm : We
can use the SE to characterize the normalized mean square
error (NMSE) performance of the proposed algorithm. The
NMSE and average variance of W and H are defined as

etw =
1

MP

M∑
m=1

∑
p∈P

(
ŵt
mp − wmp

)2
, vtw =

1
MP

M∑
m=1

∑
p∈P

νtwmp
,

(41)

eth =
1

ML̄

M∑
m=1

L̄∑
l=1

(
ĥt
ml − hml

)2
, vth =

1
ML̄

M∑
m=1

L̄∑
l=1

vthml
,

(42)

respectively. It is shown in [31] that in the large M limit and
when the elements of the measuring matrix Φp are drawn
from NC (x; 0, 1/M), ϑt

mp and ωt
mp can be expressed as

ϑt =
σt−1 + vt−1

w

KG/M
, ωt

mp = wmp +

√
σ0 + et−1

w

KG/M
z, (43)

respectively, where σ0 = 1/SNR with SNR being the signal-
to-noise ratio and z admits the distribution NC (z; 0, 1) . From
(42), (43) and line 9 of table I, vtgmp

is calculated as

vtgmp
= vt

4
= L

(
ϑt + vth

)
. (44)
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Table I: The AMP-NNSPL-DD algorithm.

1: Input : yp, Φp .

2: Initialization : ∀m, l : ρ0
ml
= 0.5, σ0 =

∑
p∈P




yp





2

2
PKG , η0

ml
= 1

Pρ0
ml

∑
p∈P

(


yp





2

2
−KGσ0

)
‖Φp ‖

2
F

3: ∀m, l : ĥ0
ml
= 0, ν0

ml
= 1. ∀g, p : κ0

gp = 1,z0
gp = ygp .

4: for t = 1, · · ·T , where T is the number of iterations
5: // AMP: passing message wmp → fgp → wmp

6: ∀g, p : κtgp =
∑
m

���Φp
(
g,m

) ���
2
νt−1
wmp

, ztgp =
∑
m
Φp

(
g,m

)
ŵt−1
mp −

κ tgp

σ t−1+κ t−1
gp

(
ygp − zt−1

gp

)
7: ∀m, p : ϑtmp =

(∑
g
|Φp(g,m) |2
σ t−1+κ tgp

)−1
, ωt

mp = ŵt−1
mp + ϑ

t
mp

∑
g

(Φp(g,m))∗
(
ygp−z

t
gp

)
σ t−1+κ tgp

8: // GMP: passing message wmp → gmp → hml

9: ∀m, p : vtgmp
= L̄ϑtmp +

∑L̄
l=1 v

t−1
hml

, ẑtgmp
= ωt

mp −
∑L

l=1 φpl ĥt−1
ml
+ ζ t−1

mp

10: ∀m, l : εt
ml
=

∑
p

(
φpl

)−1 ẑ tgmp

v tgmp
+ ĥt−1

ml

∑
p

1
v tgmp

− P
ε t−1
ml

v t−1
hml∑

p v tgmp

11: ∀m, l : ε tm =
1∑

p
1

vtgmp

, µt
ml
= ε tmε

t
ml

12: // The aposteriori: passing message hml → p
(
hml

)
→ hml

13: ∀m, l : κml = ln ε tm
ε tm+η

t−1 +
���µ

t
ml

���
2

ε tm
−

���µ
t
ml

���
2

ε tm+η
t−1
ml

, πt
ml
=

ρt−1
ml

ρt−1
ml
+
(
1−ρt−1

ml

)
exp(−κml )

14: ∀m, l : ṽt
ml
=

η t−1
ml
ε tm

ε tm+η
t−1
ml

, h̃t
ml
=
η t−1
ml

µt
ml

ε tm+η
t−1
ml

15: ∀m, l : vt
hml
= πt

ml

((
h̃t
ml

)2 (
1 − πt

ml

)
+ ṽt

ml

)
, ĥt

ml
= πt

ml
h̃t
ml

16: // GMP: passing message hml → gmp → wmp

17: ∀m, p : ζ tmp =
ẑ (i)
gmp

∑
l v

t
hml
+
∑

l v
t
hml

φpl ĥ
t−1
ml
− 1

L̄
ζ t−1
gmp

∑
l v

t
hml

v tgmp

18: ∀m, p : vtgmp→wmp
= 1

L̄

∑L
l=1 v

t
hml

, ŵt
gmp→wmp

=
∑L

l=1 φpl ĥt
ml
− ζ tmp

19: ∀m, p : νtwmp
= 1

1
ϑt
mp
+ 1

vtgmp→wmp

, ŵt
mp = ν

t
wmp

(
ω t

mp

ϑt
mp
+

ŵ t
gmp→wmp

v tgmp→wmp

)
20: //Simultaneously upadte ρml and ηml as
21: Denote: m 4

= (k − 1)NBSNUE + (i − 1)NBS + j .
22: ∀k, i, j, l : πt

k i jl
= πt

ml
, $ki jl =

���h̃
t
ml

���
2
+ ṽt

ml

23: ∀k, i, j, l : ρt
k i jl
= 1

6
∑

kqr s,qr s∈Ni j l
πt
kqr s

, η t
k i jl
= 1

6
∑

kqr s,qr s∈Ni j l
$kqr s

24: ∀m, l : ρt
ml
= ρt

k i jl
, η t

ml
= ηt

k i jl
25: Update σ as
26: σt = 1

PKG

∑KG
g=1

∑
p∈P

(���ygp − mt
gp

���
2
+ vtgp

)
27: end
28: Output : ∀m, l : ĥt

ml

From (30), (32), (43) and (18), we have

ẑtgmk→hml
= φpl hml +

√
σ0 + etw
KG/M

z

+

L̄∑
l′,l

φpl′
(
hml − ĥt−1

hml′→gmp

)
(45)

(a)
≈ φpl hml +

√
σ0 + etw
KG/M

z +
√

et−1
h

r, (46)

where step (
(a)
≈ ) is by the assumption that φpl′ are drawn from

NC

(
φpl′ ; 0, 1/L̄

)
, then in the large L̄ limit, the third term of

(45) admits a Gaussian random with zero mean and variance
et−1
h

according to the central limit theorem, and the variable
r in (46 ) admits the distribution NC (r; 0, 1). From (28) and

(46), we have

εtml =
1
vt

*.
,
Phml +

∑
p∈P

(
φpl

)−1 *.
,

√
σ0 + etw
KG/M

z +
√

et−1
h

r+/
-

+/
-
.

(47)

Similarly, from (29), (46) and (18), we have

ζ tmp =
vt
h

vt
*.
,
wmp + L̄ *.

,

√
σ0 + etw
KG/M

z +
√

et−1
h

r+/
-

+/
-
. (48)

With (43), (44), (47) and (48), the mean ĥt
ml

and variance
vt
hml

of hml, and the mean ŵt
mp and variance νtwmp

of wmp

are calculate by the AMP-NNSPL-DD algorithm as shown in
lines 12 and 17 of table II, respectively. Then the NMSE and
average variance of W and H are updated as in lines 13 and
18, where Dwmp = p

(
wmp

)
dwmp, Dhml = p (hml ) dhml ,

Dz = NC (z; 0, 1) dz and Dr = NC (r; 0, 1) dr . Dwmp and



8

Table II: The State Evolution of AMP-NNSPL-DD algorithm.

1: Initialization : ∀m, l : ρ0
ml
= 0.5, σ0 = 1, η0

ml
= 1.

2: for t = 1, · · ·T
3: // AMP: passing message wmp → fgp → wmp

4: ϑt =
σ t−1+v t−1

w
KG/M , ∀m, p : ωt

mp = wmp +

√
σ0+e

t−1
w

KG/M z
5: // GMP: passing message wmp → gmp → hml

6: vt = L
(
ϑt + vt−1

h

)
,

7: ∀m, l : εt
ml
=

Phml+
∑

p∈P

(
φpl

)−1*
,

√
σ0+e

t
w

KG/M z+
√
et−1
h

r+
-

v t

8: ε t = v t

P , ∀m, l : µt
ml
= ε tεt

ml
9: // The aposteriori: passing message hml → p

(
hml

)
→ hml

10: ∀m, l : κml = ln ε t

ε t+η t−1 +
���µ

t
ml

���
2

ε t
−

���µ
t
ml

���
2

ε t+η t−1
ml

, πt
ml
=

ρt−1
ml

ρt−1
ml
+
(
1−ρt−1

ml

)
exp(−κml )

11: ṽt
ml
=

η t−1
ml
ε t

ε t+η t−1
ml

, ∀m, l : h̃t
ml
=
η t−1
ml

µt
ml

ε t+η t−1
ml

12: ∀m, l : vt
hml
= πt

ml

((
h̃t
ml

)2 (
1 − πt

ml

)
+ ṽt

ml

)
, ĥt

ml
= πt

ml
h̃t
ml

13: vt
h
=
∫

Dhml

∫
Dz

∫
Drvt

hml
, et

h
=
∫

Dhml

∫
Dz

∫
Dr

(
ĥt
ml
− hml

)2

14: // GMP: passing message hml → gmp → wmp

15: ∀m, p : ζ tmp =
v t
h

v t

(
wmp + L̄

(√
σ0+e

t
w

KG/M z +
√

et−1
h

r
))

16: ∀m, p : vtgmp→wmp
= vt

h
, ŵt

gmp→wmp
=

∑L
l=1 φpl ĥt

ml
− ζ tmp,

17: ∀m, p : νtwmp
= 1

1
ϑt +

1
vtgmp→wmp

, ŵt
mp = ν

t
wmp

(
ω t

mp

ϑt +
ŵ t

gmp→wmp

v tgmp→wmp

)
18: vtw =

∫
Dwmp

∫
Dz

∫
Drνtwmp

, etw =
∫

Dwmp
∫

Dz
∫

Dr
(
ŵt
mp − wmp

)2

19: //Simultaneously upadte ρml and ηml as
20: Denote: m 4

= (k − 1)NBSNUE + (i − 1)NBS + j .
21: ∀k, i, j, l : πt

k i jl
= πt

ml
, $ki jl =

���h̃
t
ml

���
2
+ ṽt

ml

22: ∀k, i, j, l : ρt
k i jl

(z, r) = 1
6
∑

kqr s,qr s∈Ni j l
πt
kqr s

, η t
k i jl

(z, r) = 1
6
∑

kqr s,qr s∈Ni j l
$ki jl

23: ∀k, i, j, l : ρt
k i jl
=
∫

Dz
∫

Dr ρt
k i jl

(z, r) , ηt
k i jl
=
∫

Dz
∫

Drηt
k i jl

(z, r)
24: ∀m, l : ρt

ml
= ρt

k i jl
, η t

ml
= ηt

k i jl
25: Update σ as
26: σt =

σ0+e
t
w

(1+v tw/σ t−1)2 +
σ t−1v tw
σ t−1+v tw

27: end
28: Output : et

h
.

Dhml are implemented by Monte Carlo method with wmp and
hml generated from (18) and (10), respectively. The parameters
ρt
i jl

(z, r) and η t
ml

(z, r) are calculated by the AMP-NNSPL-
DD algorithm as shown in line 22 of table II. Then ρt

i jl
and

η t
ml

are updated as in line 23. The noise variance is updated
as in line 26 [21]. The SE of the AMP-NNSPL-DD algorithm
is summarized in Table II.

B. The VAMP-NNSPL-DD algorithm

The factorization described by (22) can be represented
by the vector-valued factor graph of Fig. 3, where δ1 (·) =
δ2 (·) = δ (·) is the Dirac delta function and the node
with “=” represents w ·p =

[
w1p,w2p, · · · ,wMp

]T
or wm · =

[wm1,wm2, · · · ,wmP]T . The channel W ∈ CM×P in the virtual
AOA-AOD-frequency domain is represented by a matrix;
the factor of

∏
p∈P f p

(
yp | w ·p

)
represents P independent

measurements along the column of the matrix W ∈ CM×P ,
and the factor of

∏M
m=1 p (wm · | hm ) describes the M relation-

ships among the channels in the delay-domain and frequency-
domain along the row of the matrix. Passing messages between
the factor node f p and the variable node w ·p of Fig. 3
obeys the vector AMP (VAMP) algorithm of [22]. Passing
messages between wm · and hm is also based on the VAMP
framework. We term these procedures of message passing as
the VAMP-NNSPL-DD algorithm and the corresponding its
SE, as follows.

1) The VAMP-NNSPL-DD algorithm: The VAMP-NNSPL-
DD algorithm is formally stated in Table III. Please refer
to the Appendix for a detailed derivation of the algorithm.
As presented in Table III, lines 6-13 describe three similar
modules. Consider the first module for example, where lines 6-
7 perform the LMMSE estimation at the factor node f p , where
the function g (·) is the LMMSE estimator defined in the Ap-
pendix. Specifically, providing the apriori information of w ·p
by NC

(
w ·p ;ωt

·p, γ
t IM

)
(intput information), and measure-

ments of yp = Φpw ·p + np with np ∼ NC

(
np ; 0, σt−1IKG

)
,
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Table III: The VAMP-NNSPL-DD algorithm.

1: Input : yp, Φp .

2: Initialization : ∀m, l : ρ0
ml
= 0.5, σ0 =

∑
p∈P




yp





2

2
PKG , η0

ml
= 1

Pρ0
ml

∑
p∈P

(


yp





2

2
−KGσ0

)
‖Φp ‖

2
F

3: ∀p : ω1
·p = 0. ∀m : s̆0

m = 0. γ1 = 100, κ̆0 = 100.
4: for t = 1, · · ·T , where T is the number of iterations
5: //LMMSE: transform message w ·p → fp → w ·p
6: ∀p : vtw ·p =

1
M Tr

[
γtg′

(
ωt
·p, γ

t, yp,Φp, σ
t−1

)]
, ûtw ·p = g

(
ωt
·p, γ

t, yp,Φp, σ
t−1

)
7: ∀p : ζ tp =

(
1/vtw ·p − 1/γt

)−1
, r t·p = ζ

t
(
ûtw ·p /v

t
w ·p − ω

t
·p/γ

t
)

8: //LMMSE: transform message wm · → δ2 → h̆m → hm
9: vt

h̆
= 1

L̄
Tr

[
κt−1
m g′

(
s̆t−1
m , κ̆t−1, r tm ·,φ,

1
P

∑
p ζ

t
p

)]
, ∀m : ût

h̆m
= g

(
s̆t−1
m , κ̆t−1, r tm ·,φ,

1
P

∑
p ζ

t
p

)
10: κt =

(
1/vt

h̆
− 1/κ̆t−1

)−1
, ∀m : stm = κ

t
(
ût
hm

/vt
h̆
− s̆t−1

m /κ̆t−1
)

11: //The aposteriori: transform message hm → p (hm ) → hm → h̆m
12: vt

h
= 1

M

∑
m < gvar

(
stm, κ

t ; ξ t−1
)
>, ∀m : ût

hm
= gmean

(
stm, κ

t ; ξ t−1
)

13: κ̆t =
(
1/vt

h
− 1/κt

)−1
, ∀m : s̆tm = κ̆

t
(
ût
hm

/vt
h
− stm/κ

t
)

14: //transform message h̆m → wm ·

15: γt+1 = κ̆t, ∀m : ωt+1
m · = φ s̆

t
m

16: Updating ρml and ηml similar to lines 21-24 of Table I, respectively.
17: //Updating σ as
18: σt = 1

P

∑
p

[〈���yp −Φp û
t
w ·p

���
2
〉
+ 1

KGTr
(
ΦpΦ

H
p

)]

19: end
20: Output : ∀m : ût

hm

=

( )Mp h

Mh w ×MMh

1 M Md æ ö
ç ÷
è ø

-æ öæ öæ öh h

=

( )y w×P PPf

=

( )y w×pp pf

=

( )1 11
y w×f

1p
w

1P
w11

w

Mpw MPw1M
w

1
w× w×p w×P

mpw mPw1m
w
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Figure 3: Vector-valued factor graph representation of the
broadband mmWave massive MIMO-OFDM Systems.

the refined information NC
(
w ·p ; ût

w ·p , v
t
w ·p IM

)
(ouput infor-

mation) is obtained for w ·p by LMMSE estimation. Next, the
extrinsic information2 of w ·p is given by NC

(
w ·p ; r t·p, ζ

t
p IM

)
(line 7), which is fed into the next module as the apriori
information. The first module (lines 6-7) corresponds to pass-

2Suppose NC (x; a, b) and NC (x; c, d) is the intput information and ouput
information of a estimator, respectively. Then the extrinsic information of the
estimator is defined as NC

(
x; e, f

)
∝ NC (x; c, d) /NC (x; a, b). Generally,

the extrinsic information is fed into the other module as a intput information
[38].

ing the messages gleaned from measurements to channels in
the virtual AOA-AOD-frequency domain. The second module
of Table III (line 9-10) corresponds to passing the messages
from channels in the virtual AOA-AOD-frequency domain
to those in the virtual AOA-AOD-delay domain. The third
module of Table III (lines 12-13) corresponds to refining the
messages of channels in the virtual AOA-AOD-delay domain
by taking the apriori distribution into consideration. Line 15
passes the messages backward from the virtual AOA-AOD-
delay domain to the virtual AOA-AOD-frequency domain un-
der the constraint δ

(
wm · − φh̆m

)
, which updates the apriori

information in the first module (lines 6-7). Lines 16-18 update
the parameter ξ by minimizing the Bethe free energy under
neighborhood constraint, which is similar to (38). Line 9
implies that passing the message NC

(
wm ·; r tm ·,

1
P

∑
pζ

t
p IP

)
of

wm · to h̆m corresponds to applying the LMMSE estimation
on the following model

r tm · = φh̆m + nm, (49)

where nm ∼ NC

(
nm ; 0, 1

P

∑
pζ

t
p IP

)
. For m = 1, · · · , M, (49)

is a multiple-measurement-vector (MMV) problem [25], which
represents simultaneously recovering multiple vectors

{
h̆m

}

from multiple measurements
{
r tm ·

}
with the aid of a common

measurement matrix φ. The MMV is helpful for interpreting
the mismatch between the AMP-NNSPL-DD and its SE, as
we will discuss in Section IV.

Matrix inversion in the LMMSE estimator can be avoided
by invoking the singular value decomposition (SVD) of Φp =

U pdiag
(
sp

)
VH

p and φ = Uφdiag
(
sφ

)
VH
φ . For more details,

we refer the motivated reader to [22]. The SVD is pre-
computed off-line and corresponding results are saved. The
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Table IV: The SE of the VAMP-NNSPL-DD algorithm.

1: Input : yp, Φp .
2: Initialization : the same as that of lines 2-3 of Table III.
3: for t = 1, · · ·T , where T is the number of iterations
4: //LMMSE: transform message wp → fp → wp

5: ∀p : dp =
1

σt−1 s
2
p

1
γt
+ 1
σt−1 s

2
p
, ζ tp = γ

t M−Rp〈dp〉
Rp〈dp〉

, r t·p = w ·p +
√
ζ tp z1

6: ∀p : vtw ·p = γ
t

[
1 − 1

M Rp

〈
dp

〉]
, ûtw ·p =

∫
Dz1v

t
w ·p

(
r t·p
ζ tp
+
ω t
·p

γt

)
,

7: ζ t = 1
P

∑
p ζ

t
p,

8: //LMMSE: transform message w̆m → δ2 → h̆m → hm

9: d =
1
ζ t

s2
φ

1
κ̆t−1 +

1
ζ t

s2
φ

, κt = κ̆t−1 L̄−Rφ 〈d〉
Rφ 〈d〉

, ∀m : stm = hm +
√
κt z2

10: //The aposteriori: transform message hm → p (hm ) → hm → h̆m
11: vt

h
= 1

M

∑
m < gvar

(
stm, κ

t ; ξ t−1
)
>, ∀m : ût

hm
= gmean

(
stm, κ

t ; ξ t−1
)

12: κ̆t =
∫

Dz2
(
1/vt

h
− 1/κt

)−1
, ∀m : s̆tm =

∫
Dz2 κ̆

t
(
ût
hm

/vt
h
− stm/κ

t
)

13: et
H
=
∫

DH
∫

Dz2
1

ML̄

( [
ût
h1
, ût

h2
, · · · , ût

hM

]T
− H

)2

14: //transform message h̆m → wm ·

15: γt+1 = κ̆t, ∀m : ωt+1
m · = φ s̆

t
m

16: Updating ρml and ηml similar to lines 20-24 of Table II, respectively.
17: //Updating σ as
18: σt = 1

P

∑
p

[〈���yp −Φp û
t
w ·p

���
2
〉
+ 1

KG vtw ·p Rp

〈
s2
p

〉]

19: end
20: Output : et

H

complexity of the proposed algorithm is on the order of
O(K2RpPNBSNUE + K NBSNUERφ L̄), where Rp and Rφ are
the rank of Φp and φ, respectively. Hence, compared with the
AMP-NNSPL-DD algorithm, the VAMP-NNSPL-DD requires
more storage space and has a higher complexity.

2) State Evolution of the VAMP-NNSPL-DD Algorithm
: It is shown in [22] that when Φp is large and right-
rotationally invariant, r t·p in line 7 of Table III appears as
the true component w ·p corrupted by Gaussian noise with
a variance of ζ tp, which is shown in line 5 of Table IV.
In line 5 of Table IV, ζ tp is calculated by substituting the
SVD of Φp = U pdiag

(
sp

)
VH

p into lines 6-7 of Table
III, where the equation for calculating dp refers to the
element-wise division between two vectors. And z1 admits
the distribution of NC (z1; 0, IM ) . Similarly, line 9 of table
IV is obtained from lines 9-10 of Table III, where z2 obeys
the distribution of NC

(
z2; 0, IL̄

)
. Next, other quantities are

calculated by the VAMP-NNSPL-DD and are shown in Table
IV. The operations

∫
Dz1 and

∫
Dz2 in lines 6 and 12 refer

to
∫
NC (z1; 0, IM ) d z1 and

∫
NC

(
z2; 0, IL̄

)
d z2, respectively.

Furthermore,
∫

DH =
∫

p (H) dH in line 13 is implemented
by the classic Monte Carlo method with H generated from
(10). The quantities of vtw ·p , û

t
w ·p (line 6 of Table IV), s̆tm , and

ωt+1
m · (right part of lines 12 and 15, respectively) are used for

updating the noise variance σt (line 18). But if noise variance
σ is known, these quantities could be removed. In such a case,
the SE is not dependent on yp , Φp and φ, but dependent
on sp and sφ (lines 5 and 10, respectively). In other words,
the SE of VAMP-NNSPL-DD takes the specific character of
the measurement matrix into considered. By contrast, the SE

based on AMP assumes that the elements of the measurement
matrix obey the independent and identically distributed (i.i.d.)
Gaussian distribution. Hence, it is expected that the SE based
on VAMP is capable of characterizing the performance bound
better than that based on AMP.

IV. EXPERIMENTAL RESULTS

Let us consider a broadband mmWave system, where the
downlink transmissions are organized in N = 8192 OFDM
symbols in a bandwidth of B = 800 MHz at the carrier fre-
quency of f0 = 28 GHz. We compare the NMSE performance
of as many as ten CS algorithms, i.e. of the Basis Pursuit
(BP) [23], of the group LASSO3 [24], of the OMP algorithm
[16], of the SD-based channel estimation scheme [13], of
the DSAMP algorithm4 [25], of the EM-BG-AMP algorithm
[26], of the sparse non-informative parameter estimator-based
cosparse analysis AMP for imaging (SCAMPI) algorithm
[17], of the AMP-NNSPL-FD algorithm , and finally of the
(V)AMP-NNSPL-DD algorithm, with various measuring time
durations G, SNRs, angular spreads and cluster durations. The
NMSE is defined as

NMSE[dB] = 10lg


E

*..
,




vec
(
Ĥ − H

)



2

2

‖vec (H )‖22

+//
-


, (50)

3A version of LASSO that can learn clustered structure of signals.
4Another version of the algorithm [14] that can exploit the SCS. In the

simulation, only the DSAMP is compared with other CS algorithms, since
the algorithm [14] was mainly designed for the mmWave system without
angular spread.
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Figure 4: NMSE performance versus measuring time duration
G for 4 clusters with angular spread 15 degrees and cluster
duration 9 ns. Simulation setting: NBS = 64, NUE = 16, P =
512, SNR= 10 dB, K = 4 and B = 800 MHz.

where Ĥ is the output of channel estimation, or it is trans-
formed according to (18) when the channel of the virtual AOA-
AOD-frequency domain is estimated.

In the simulations, we use a relatively large number of
pilots of P = 512 given the broadband of mmWave systems.
Assuming that the number of users is K = 4, the number
of clusters is 4, each cluster has 1 ∼ 10 physical paths, where
the complex path gains are drawn from NC

(
βi ; 0, 10power/10

)
,

with the path-power being 0 dBm for the LOS component and
−5 ∼ −20 dBm for the NLOS component. The number of
antennas at BS and user is set as NBS = 64 and NUE = 16,
respectively. The elements of the precoders

(
f RFtk, fBBntk

)
and combiners (WRF,WBB) are of the form of e jφ, where φ
is randomly and uniformly selected from the set of quantized
angles {45, 135, 225, 315} /180 × π [11], [13], [14], [17].

Consider the scenario of having 4 clusters, an angular spread
of 15 degrees [7] and a cluster duration of about 9 ns [19]. Fig.
4 (a) compares the NMSE performance of these CS algorithms
versus measuring time durations recorded at SNR=10 dB. It
is clearly seen that the group LASSO performs slightly better

than the BP, since it partially exploits the clustered structure.
By contrast, the SD and the DSAMP algorithm outperform the
OMP algorithm with short measuring time. This is because
that the SD and the DSAMP algorithm exploit the clustered
structure in the virtual angular and subchannel dimension,
respectively. The SD and the DSAMP algorithm perform no
better than the OMP algorithm with long measuring time.
This is because both the SD and the DSAMP algorithm only
recover those channel coefficients that are in the vicinity of
the cluster center, while neglecting those small coefficients
which are far away from the cluster center. The SCAMPI
algorithm outperforms many other algorithms, since it exploits
the subtle changes between the adjacent channel elements. By
exploiting the clustered structure in the virtual AOA-AOD-
frequency domain, the AMP-NNSPL-FD performs slightly
better than the SCAMPI. The SCAMPI is derived in a rigorous
way in terms of exploiting the subtle changes. Although our
proposed algorithm is indeed heuristic in terms of exploiting
the clustered structure under the neighborhood constraint, we
characterize the performance bound of the AMP-NNSPL-
FD by the SE derived in [21]. For improving the attainable
channel estimation performance, the (V)AMP-NNSPL-DD
jointly exploit the 3-D clustered structure in virtual AOA-
AOD-delay domain, and obtain a 7.6 dB NMSE performance
gain compared with the AMP-NNSPL-FD at G = 550.

Let us analyze the performance of the AMP-NNSPL-DD by
SE. The performance of the AMP-NNSPL-DD is quite accu-
rately predicted by its SE with long measuring time, but not so
well with short measuring time. We interpret these phenomena
as follows. Model (49) implies that passing message from
channels in the virtual AOA-AOD-frequency domain to those
in the virtual AOA-AOD-delay domain by the proposed algo-
rithm is equivalent to a MMV problem. However, the deriva-
tion of SE need make an idealized simplifying assumption that
elements of measurement matrix are i.i.d. random variables,
which results in a generalized MMV (GMMV) problem [25]
of r tm · = Am h̆m + nm, where the M measurement matrices
{Am } are not expected to be the same, since they are random
matrices. The GMMV represents simultaneously recovering
multiple vectors from multiple measurements with the aid
of different measurement matrices, where the diversity nature
of the different measurement matrices provides performance
gains5 [25]. Experimented results of [25] show that the MMV
recovers multiple vectors less reliably than the GMMV with
short measuring time, but achieves the same performance as
that of GMMV with long measuring time. Therefore, it is
reasonable to expect that that the AMP-NNSPL-DD and its SE
do not match well with short measuring time, but match better
with long measuring time. On the other hand, it is observed
from Fig. 4 (a) that the SE of AMP-NNSPL-DD performs the
same as the SE [21] applied to the model (20). This means

5This can be readily verified by simulations with synthetic data. Specif-
ically, Fig. 3 is helpful for describing the generation of the synthetic data.
One can generate each row of the matrix W ∈ CM×P by different partial
DFT matrices from hm , then obtain P measurements along the column of
W ∈ CM×P . Next, hm can be recover by the AMP-NNSPL-DD with those
measurements. In such synthetic case, the performance of the AMP-NNSPL-
DD would approach the performance bound characterized by its SE according
to our simulation, although it is not presented here.
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that both of them characterize the performance bound when
elements of Ψ obey i.i.d. Gaussian distribution. However, the
MMV problem results in elements in the equivalent measure-
ment matrix Ψ of (20) that do not obey the i.i.d. Gaussian
distribution. These also explains the mismatch between the
AMP-NNSPL-DD and the corresponding SE. Comparing with
the SE of AMP-NNSPL-FD, the SE of AMP-NNSPL-DD
provide an insight that if elements of measurement matrix obey
i.i.d. Gaussian distribution, estimating channels in angular-
delay domain would also attain a considerable performance
gain with short measuring time. Hence, it is beneficial to
design a measurement matrix, whose elements obey the i.i.d.
Gaussian distribution, for obtaining the potential performance
gain with short measuring time. Additionally, it is observed
from Fig. 4 (a) that the SE of VAMP-NNSPL-DD characterizes
the performance bound more accurately.

The oracle LS associated with known support6 is usually
considered as the performance bound. However, mmWave
channels in the virtual domain are approximate sparse, i.e.,
none of elements are expected to be exactly zero. Therefore,
we define a threshold α ∈ (0, 1) 7, and assume that the support
only includes the location of those elements whose amplitudes
are higher than the threshold α, but not the other elements
whose amplitudes are lower than the threshold α. In this case,
given different thresholds, one can obtain different supports,
which corresponds to different location information of clusters.
The performance of the oracle LS with different thresholds is
shown in Fig. 4 (b). When α = 0, i.e., none cluster location
information, the performance of LS is poor as it respects to
an under-determined problem (G < M). When α > 0, the
oracle LS significantly outperforms the LS which implies that
the location information of clusters is critical for achieving
accurate channel estimation. Furthermore, it is observed in
Fig. 4 (b) that with different measuring time durations, LS
requires different cluster location information to acquire at-
tainable channel estimation performance. However, the cluster
location information is cite-specific and typically unknown. By
contrast, the proposed AMP-NNSPL-FD algorithm is capable
of adaptively learning the cluster location information under a
neighborhood constraint, which makes the proposed algorithm
well estimating the channel.

Fig. 5 (a) characterizes the convergence of the proposed
algorithms. The SE of AMP-NNSPL-FD accurately charac-
terizes the corresponding performance bound, and the AMP-
NNSPL-FD converges within 20 iterations. The SE of AMP-
NNSPL-DD also converges within 20 iterations, which charac-
terizes the performance bound when elements of measurement
matrix obey i.i.d. Gaussian distribution. However, the AMP-
NNSPL-DD converges in about 60 iterations, while the SE of
the VAMP-NNSPL-DD matches the corresponding algorithm
more accurately.

The NMSE performance of these CS algorithms versus the
SNR recorded for a measuring time duration of G = 500
is shown in Fig. 5 (b), where we can see that the Group
Lasso performs slightly better than the BP. By contrast, the

6The location of non-zero values in a sparse vector.
7Without loss of generality, supposing that the largest amplitude of the

channel elements is normalized to 1.
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Figure 5: NMSE performance for 4 clusters with angular
spread 15 degrees and cluster duration 9 ns. Simulation setting:
NBS = 64, NUE = 16, P = 512, G = 500 and B = 800 MHz.

SD and the DSAMP algorithm are capable of outperforming
the OMP algorithm for SNRs below 5 dB. The SCAMPI and
the AMP-NNSPL-FD outperform the EM-BG-AMP, and the
performance of the AMP-NNSPL-FD is well predicted by
the SE [21]. The proposed (V)AMP-NNSPL-DD algorithm
outperforms other CS algorithms.

Fig. 6 (a) compares the NMSE versus angular spread
performance of all these algorithms at SNR=10 dB with a
measuring time duration of G = 500. It is shown that the
angular spread obeys a near-exponential distribution with a
mean of 15 degrees [7]. When the angular spread appears to
be at its maximum value of about 40 degrees [7], each CS
algorithm still works well, comparing to that of at an angular
spread of 10 degrees.

Fig. 6 (b) compares the NMSE versus cluster duration
performance of all these algorithms at SNR=10 dB for a
measuring time duration of G = 500. It is shown that
the cluster duration of a cluster obeys a near-exponential
distribution with a mean of 9 ns [19]. It is observed that the
performance of each CS algorithm remains similar, when the
cluster duration is within 45 ns.
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Figure 6: Simulation setting: NBS = 64, NUE = 16, P = 512,
G = 500, SNR= 10 dB, K = 4 and B = 800 MHz.

V. CONCLUSIONS

By exploiting the 3-D clustered structure exhibited in
the virtual AOA-AOD-delay domain with the aid of neigh-
borhood parameter constraint, we proposed an algorithm
termed as (V)AMP-NNSPL-DD for estimating broadband
mmWave massive MIMO-OFDM channels. Our simulation
results demonstrate that the proposed algorithm is capable of
attaining a considerable performance gain, over the algorithms
that only exploit the sparse clustered structure in the angular
domain. The AMP-NNSPL-DD requires less storage space
and has a lower complexity. The VAMP-NNSPL-DD provided
an insight into interpreting the mismatch between the AMP-
NNSPL-DD and its SE, while the SE of VAMP-NNSPL-DD
characterizes the performance bound more accurately. How to
attain potential performance gains with shorter measuring time
will be investigated in our future work.

Appendix
We fixed the parameters ξ to the values estimated at the

previous iteration, i.e., ξ = ξ t−1. We pass messages on the
factor graph that is shown in Fig. 3 as follows. At the tth

iteration, by setting the message passed from the variable node
w ·p to the factor node f p as

ut
w ·p→ fp

(
w ·p

)
= NC

(
w ·p ;ωt

·p, γ
t IM

)
, (51)

then the belief of w ·p at the factor node f p is formulated as

βt
(
w ·p

)
= ut

w ·p→ fp

(
w ·p

)
NC

(
yp ;Φpw ·p, σ

t−1
)

∝ NC

(
w ·p ; ût

w ·p , v
t
w ·p IP

)
, (52)

with

ût
w ·p =

(
1

σt−1Φ
H
pΦp +

1
γt

IP

)−1
*
,

1
σt−1Φ

H
p yp +

ωt
·p

γt
+
-

, g
(
ωt
·p, γ

t, yp,Φp, σ
t−1

)
, (53)

vtw ·p =
1
M

Tr


(
1

σt−1Φ
H
pΦp +

1
γt

IP

)−1
,

1
M

Tr
[
γtg′

(
ωt
·p, γ

t, yp,Φp, σ
t−1

)]
, (54)

where g
(
ωt
·p, γ

t, yp,Φp, σ
t−1

)
denotes the LMMSE estima-

tor, and g′
(
ωt
·p, γ

t, yp,Φp, σ
t−1

)
is the derivative of g with

respect to ωt
·p . This yields line 6 of Table III. According to

the sum-product message passing rule of [36], the message
passed from the factor node f p to the variable node w ·p is
calculated by ut

fp→w ·p

(
w ·p

)
= βt

(
w ·p

)
/ut

w ·p→ fp

(
w ·p

)
∝

NC

(
w ·p ; r t·p, ζ

t
p IM

)
, where the variance and mean are shown

in line 7 of Table III. Again, according to the sum-product
message passing rule, the message ut

fp→w ·p

(
w ·p

)
flows

through the variable node W ∈ CM×P, and manifests itself
as ut

wm·→δ2
(wm ·) = NC

(
wm ·; r tm ·, ζ

t IP
)

with ζ t = 1
P

∑
p ζ

t
p .

Let us suppose that at the (t − 1)th iteration, the message
passed from the variable node h̆m to the factor node δ2 is
given by

ut−1
h̆m→δ2

(
h̆m

)
= NC

(
h̆m ; s̆t−1

m , κ̆t−1IL
)
, (55)

then the belief of h̆m at the factor node δ2 reads

βt
(
h̆m

)
=

∫
ut−1
h̆m→δ2

(
h̆m

)
δ
(
wm · − φh̆m

)
ut
wm·→δ2

(wm ·) dwm ·

∝ NC

(
h̆m ; ût

h̆m
, vt

h̆
IL

)
,

(56)

where the variance and mean are shown in line 9 of Ta-
ble III. The message passed from the factor node δ2 to
the variable node h̆m is calculated as ut

δ2→h̆m

(
h̆m

)
=

βt
(
h̆m

)
/ut−1

h̆m→δ2

(
h̆m

)
∝ NC

(
h̆m ; stm, κ

t IL
)
. In a sequel, the

message ut

δ2→h̆m

(
h̆m

)
flows leftward, and manifests itself as

ut
δ1→hm

(hm ) = NC
(
hm ; stm, κ

t IL
)
, where the variance and

mean are shown in line 10 of Table III. Similar to (33)-(35),
the aposteriori distribution of hm reads

p
(
hm |y; ξ t−1

)
=

1∫
p (hm ) ut

δ1→hm
(hm ) dhm

× p (hm ) ut
δ1→hm

(hm ) , (57)
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and the aposteriori variance vt
h

and mean ût
hm

of hm

are shown in line 12 of Table III, where the function
gmean

(
stm, κ

t ; ξ t−1
)

and gvar
(
stm, κ

t ; ξ t−1
)

are defined in (34)
and (35), respectively, which are the element-wise functions of
vector stm . Next, the message passed from the variable node
hm to the factor node δ1 is calculated by ut

hm→δ1
(hm ) =

NC

(
hm ; ût

hm
, vt

h

)
/ut
δ1→hm

(hm ) ∝ NC
(
hm ; s̆tm, κ̆

t IL
)
. Then

the message ut
hm→δ1

passes rightward, and manifests itself as
ut

h̆m→δ2

(
h̆m

)
= NC

(
h̆m ; s̆tm, κ̆

t IL
)
, where the variance and

mean are shown in line 13 of Table III, which updates the
message defined in (55). Next, the belief of wm · at the factor
node δ2 is calculated as

βt (wm ·)

=

∫
ut

h̆m→δ2

(
h̆m

)
δ
(
wm · − φh̆m

)
ut
wm·→δ2

(wm ·) dh̆m,

(58)

and then the message passed from the factor node
δ2 to the variable node wm · reads ut

δ2→wm·
(wm ·) =

βt (wm ·) /ut
wm·→δ2

(wm ·) = NC
(
wm ·;ωt+1

m · , γ
t+1IP

)
, where

the variance and mean are shown in line 15 of Table III, which
updates the message initialized in (51).

Given the aposteriori distribution of p
(
hm |y; ξ t−1

)
and

p
(
Φpw ·p |yp ; ξ t−1

)
, parameters ξ are updated by minimizing

the Bethe free energy under a neighborhood constraint, which
is similar to (38). From (52), the aposteriori distributions of
Φpw ·p are obtained as follows

p
(
Φpw ·p |yp ; ξ t−1

)
= NC

(
Φpw ·p ;Φp û

t
w ·p , v

t
w ·p

1
KG

Tr
(
ΦpΦ

H
p

)
IKG

)
. (59)

Hence, the variance of noise is updated in line 18 of Table
III, where ���yp −Φp û

t
w ·p

���
2
refers to the element-wise square

of a vector. The sparsity ratio and the apriori variance of the
channel coefficients are updated similar to line 23 of Table I.
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