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Abstract

Uplink/downlink (UL/DL) decoupling promises more flexible cell association and higher throughput

in heterogeneous networks (HetNets), however, it hampers the acquisition of DL channel state infor-

mation (CSI) in time-division-duplex (TDD) systems due to different base stations (BSs) connected

in UL/DL. In this paper, we propose a novel data-aided (DA) channel estimation scheme to address

this problem by utilizing decoded UL data to exploit CSI from received UL data signal in decoupled

HetNets where a massive multiple-input multiple-output BS and dense small cell BSs are deployed. We

analytically estimate BER performance of UL decoded data, which are used to derive an approximated

normalized mean square error (NMSE) expression of the DA minimum mean square error (MMSE)

estimator. Compared with the conventional least square (LS) and MMSE, it is shown that NMSE

performances of all estimators are determined by their signal-to-noise ratio (SNR)-like terms and there

is an increment consisting of UL data power, UL data length and BER values in the SNR-like term of

DA method, which suggests DA method outperforms the conventional ones in any scenarios. Higher

UL data power, longer UL data length and better BER performance lead to more accurate estimated

channels with DA method. Numerical results verify that the analytical BER and NMSE results are close

to the simulated ones and a remarkable gain in both NMSE and DL rate can be achieved by DA method

in multiple scenarios with different modulations.
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I. INTRODUCTION

Heterogeneous networks (HetNets) and massive multiple-input multiple-output (MIMO) are

regarded as two key technologies for 5G, promising higher coverage and spectral efficiency [1]–

[4]. To meet the demands of 1000× increase of throughput and 1000× less energy consumption

at the same time [5], [6], massive MIMO base station (BS) is recently introduced to HetNets,

where small cells such as pico- or femto-cells are densely deployed. Such model is referred to as

massive MIMO HetNets [7]–[10]. It is anticipated that the massive MIMO HetNet architecture

will greatly improve throughput and regional coverage, and is also desirable for interference

management and energy efficiency [11], [12].

Different from homogeneous networks, cell association in HetNets is a tricky business to deal

with. From the perspective of user equipment (UE), the BS with maximum downlink (DL) power

is probably not the one with maximum uplink (UL) power. In [7], the notion of decoupling UL

and DL was first introduced and UEs can connect to the BSs with highest signal-to-noise ratio

(SNR) in both directions separately. With such flexible cell association policy, throughput and

coverage probability are found to be much improved especially for cell edge UEs by theoretical

analysis and simulation results in [13]. Similar positive results of load balancing and energy

efficiency were presented in [14]–[16]. Hence, prior literature has adopted decoupling access

as a strong candidate in the next generation network, though there are still major problems to

be solved before facilitating this structure, for instance, channel estimation at the DL BS, DL

precoding, signal synchronization, offloading techniques and so on [17].

Channel estimation is an important issue in wireless communication and also considered

as a major bottleneck for massive MIMO systems [1], [18], [19]. A standard approach in

time-division-duplex (TDD) massive MIMO systems is to exploit channel reciprocity such that

channels are estimated by pilot-based training in UL and then treated as the real channels for DL

beamforming. Unfortunately, channel reciprocity cannot be used directly in decoupled HetNets

since UEs may associate with different BSs in UL/DL. Although DL BS can estimate DL

channels of decoupled UEs from the received UL training signal, but it should be noted that

unlike coupled UEs, decoupled UEs are those who are neither close to its UL BS nor DL BS,

and can hardly have sound channel estimation performance.

This motivates us to propose a data-aided channel estimation scheme to enable decoupling

access in TDD systems, especially for massive MIMO where a large number of channel elements
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have to be estimated. Using decoded data to aid channel estimation has been studied in [20]–

[27] before. In [24], [25], the mutual information and a capacity lower bound for data-aided

single-user MIMO systems were investigated and it was shown that data-aided methods permit

the use of a very small number of pilots to achieve high spectral efficiency. An iterative joint

channel estimation and data detection process was also investigated in [20], [22], [26], [27],

fidning that data-aided methods can effectively suppress the contamination effect in large-scale

antenna systems [20], [22]. Nevertheless, prior works mainly focused on homogeneous networks

and it is of significant importance to bring this idea into UL/DL decoupled HetNets for more

efficient and reliable channel acquisition. To the best of authors’ knowledge, it is the first time

that channel estimation problem is discussed in cellular HetNets with decoupling access.

In this paper, we consider a single-cell HetNet with decoupling access where a macro base

station (MBS) is in the center and small cell BSs (SBSs) are randomly but densely populated

within the cell. A novel three-stage data-aided scheme is proposed to solve the DL channel

acquisition problem of decoupled UEs at MBS1. To implement the data-aided scheme, once data

detection is finished at SBSs, the decoded data sequences and estimated bit error ratio (BER)

values are supposed to be sent to the MBS via wired backhaul which is assumed to be error-free

and latency-free. Then, the MBS utilizes known training sequences along with these decoded

sequences and BER values to recover channels of decoupled UEs from received training and

UL data signals. The core idea is to employ the decoded data as extended training sequences

to exploit the most channel information from received UL signals although the decoded data is

not orthogonal and subject to unknown errors. Different from the multi-cell model with one UE

in each cell discussed in [20], [22], we consider a single-cell model2 with dense small cells and

multiple UEs where interference is much more severe. Furthermore, in [20], [22], Gaussian data

was assumed to be received at the least-square (LS) data estimator and the data estimation error

was modelled as a Gaussian variable while in our scheme, coded data is detected by a minimum

mean-square-error (MMSE) data estimator and the BER is estimated by analytical derivation.

However, similar conclusions are drawn that estimation performance can be greatly improved

and both co-channel interference and detection error could seriously compromise performance.

More specifically, our main contribution is to develop a novel data-aided channel estimation

1In two-tier HetNets, decoupled UEs always connect to an SBS in UL and an MBS in DL due to the user association policy.
2Here, single-cell represents single macro-cell, yet there are multiple overlapping small cells actually. This model can be

generalized to multi-cell scenarios straightforwardly.
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scheme for decoupled UEs in cellular decoupled HetNets by using decoded UL data with

consideration of BER. We calculate the BER of BPSK-modulated UL data after the MMSE

decoder with imperfect channel state information (CSI) and use this estimated BER to derive a

closed-form approximated normalized mean-square-error (NMSE) expression for the proposed

data-aided scheme. We further compare NMSE performance between conventional LS, MMSE

and data-aided MMSE and find NMSE expressions of all estimators have the same structure and

are commonly determined by an similar SNR-like term, however, compared with conventional es-

timators, there is an additional part consisting of UL data power, UL data length and BER values

in the SNR-like term of data-aided scheme, which explicitly explains how NMSE performance

benefits from the data-aided method. Average DL rate performance is also analyzed numerically

with NLoS and NLoS/LoS models to verify the improvement in final DL performance and

4QAM/16QAM are utilized to suggest that the proposed scheme can be applied in multiple

scenarios with different modulations.

The reminder of this paper is organized as follows. Section II introduces the system model of

decoupled HetNets. A novel data-aided scheme is proposed and elaborated in Section III. The

proposed scheme is compared with conventional channel estimation methods under the evaluation

criteria of NMSE in Section IV. The theoretical results and some insights into this scheme are

also discussed. Numerical results are presented in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a single-cell scenario deployed with an MBS in the center and S SBSs along with

K UEs scattering in the range of the cell randomly as shown in Fig. 1. For ease of geometric

analysis, we assume the single cell as a circular area with radius of RM. Meanwhile, the MBS

equipped with M antennas and all SBSs with N antennas provide services to all single-antenna

UEs in the cell coverage by fully utilizing the whole frequency band without any partitions,

meaning that this model is interference limited. All communication links in the system are

operating in TDD mode. Note that in this paper, we assume that there exist capacity-abundant

fibers for backhaul between all SBSs and the MBS, which allows decoded data to be transmitted

to the MBS without any latency nor error.

We assume that the channel coherence time is T , within which channel estimation and UL/DL

transmission are processed. The channel from UEs to the MBS is denoted by H ∈ CM×K while
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Fig. 1. Diagram for cellular HetNets with decoupled access.

the channel from UEs to the sth SBS is represented by Gs ∈ CN×K . Also, hk, gsk are the kth

columns of H and Gs, respectively, which are of the forms:

hk =
√
βM
k hW

k ,

gsk =
√
βS
skg

W
sk ,

(1)

where each element of hW
k ∈ CM×1 and gW

sk ∈ CN×1 follows CN (0, 1), βM
k and βS

sk represent

the large scale fading from the kth UE to the MBS and the sth SBS, respectively, by neglecting

shadowing effect and differences among antennas. The large scale fading between the kth UE

to the MBS is modelled as βM
k =

(
dM
k

)−α, where dM
k is the distance with attenuation exponent

α, and βS
sk is defined similarly.

Unlike maximum average downlink receive power (MARP) [13], [16], [28] and biased cell

association [14], [29] policies, due to the spectacular disparity between MBS and SBS, a new

association strategy taking beamforming gain and transmit power into account is adopted in this

paper. In particular, UEs perform a modified MARP policy in UL and DL respectively to achieve

optimal associations in both links.

The received signal power in DL at the kth UE from a BS is given by

QDL
vk =

PM‖hk‖2, v = 0,

PS‖gvk‖2, v = 1, 2, . . . , S,
(2)
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where PM and PS are the total transmit power of MBS and SBS. In addition, the subscript v

represents the index of BS, 0 is for the MBS and v is for the vth SBS. Similarly, the received

signal power in UL at a BS from UE k can be expressed as

QUL
vk =

PD‖hk‖2, v = 0,

PD‖gvk‖2, v = 1, 2, . . . , S,
(3)

where PD stands for the transmit power of UEs.

Like the conventional MARP strategy, the effect of fast-fading should be averaged to let long-

term parameters determine the association, which is more practical and operational in practice.

Therefore, we exhibit the association results of the kth UE as an example using this modified

MARP strategy:

Dk = arg max
v=0,1,...,S

{
E

hW
k
,gW
sk

[
QDL
vk

]}
= arg max

v=0,1,...,S

{
MPM

(
dM
k

)−α
, NPS

(
dS

1k

)−α
, . . . , NPS

(
dS
Sk

)−α}
,

Uk = arg max
v=0,1,...,S

{
E

hW
k
,gW
sk

[
QUL
vk

]}
= arg max

v=0,1,...,S

{
MPD

(
dM
k

)−α
, NPD

(
dS

1k

)−α
, . . . , NPD

(
dS
Sk

)−α}
(4)

where D = {D1, . . . ,DK} and U = {U1, . . . ,UK} are DL and UL association sets. Based on

this, we can focus on the UEs with indices belonging to the set {k|Dk 6= Uk, k = 1, . . . , K},

who are regarded as decoupled UEs.

After performing the modified MARP strategy, UEs are able to connect to the optimal BSs in

both links and ready to communicate with them. However, in decoupled HetNets, CSI acquired

by UL training at the DL BS is not good enough to perform accurate DL precoding since the

DL BS may not be the optimal UL BS. For the rest of this paper, we are devoted to improve

the accuracy of DL channel for decoupled UEs by using decoded UL data to aid the estimation.

III. THREE-STAGE DATA-AIDED CHANNEL ESTIMATION

In this section, we elucidate our proposed data-aided channel estimation scheme for cellular

HetNets with decoupled access. The whole process can be described in three stages. To illustrate

the sequence of operations in each stage, the frame structure of this data-aided scheme is shown

in Fig. 2. Different from conventional frame structure of a massive MIMO system, UL BSs

in decoupled systems need to transmit decoded data to DL BS after completing common UL

training and UL data transmission, and the DL BS is required to listen and record the UL



7

Uplink
Training

Uplink
Data

Downlink
Data

Switch
Guard

Switch
Guard

Coupled
BS

Uplink
Training

Uplink
Data

Downlink Data

UL  BS

DL  BS

Listening Phase/
Uplink Phase           

(for its associated UL UEs)

Decoded Data
Transmission

(a) Frame Structure in Massive MIMO
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Downlink Data
(for its associated DL UEs)

Fig. 2. The frame structure for the data-aided channel estimation scheme.

signal (including training and data phases) to perform joint channel estimation along with known

training sequences and decoded data. Note that switch guard is ignored in decoupled systems

for ease of understanding. The detailed implementation and signal model of the three-stage

data-aided scheme are described step by step as follows.

A. Stage 1: Uplink Training

In the first stage, all UEs transmit their prescribed pilot sequences at power of PT. The pilot

sequences are orthogonal with τT symbols and S =
[
sT

1 , · · · sT
k , · · · , sT

K

]T denotes the pilot matrix

where sk ∈ C1×τT is the pilot for the kth UE. Obviously, we have SSH = τTPTIK and τT ≥ K.

The main task here is for all UL BSs to recover channels from the UL training signal, which

is a common procedure in training based systems. To this end, we consider two conventional

channel estimators, LS and MMSE.

The received signal at the vth SBS can be expressed as

YP
v = GvS + Nv =

K∑
k=1

gvksk + Nv, (5)

where Nv ∈ CN×τT denotes the additive white Gaussian noises (AWGNs) received and each

element is independent identical distributed (i.i.d.), subject to CN (0, N0).
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Adopting the LS channel estimator, the estimated channel of the kth decoupled UE connecting

to the vth SBS in UL is given as

ĝLS
vk = YP

v sH
k

(
sks

H
k

)−1
= gvk +

Nvs
H
k

τTPT

. (6)

MMSE is another widely used channel estimator which provides better performance at the

cost of higher complexity and prior statistics information in terms of correlation matrices of

channels and noises. MMSE estimator is served as a benchmark and the estimated channel is

ĝMMSE
vk = YP

v CUP,opt
vk = GvSCUP,opt

vk + NvC
UP,opt
vk , (7)

where CUP,opt
vk is the τT × 1 linear estimation matrix for gvk, defined as

CUP,opt
vk , arg min

Cvk
E
[∥∥gvk − ĝMMSE

vk

∥∥2
]

=

[
K∑
i=1

sH
i Rgvisi + RNv

]−1

sH
k Rgvk

(8)

where Rgvi = E
[
gH
vigvi

]
, RNv = E

[
NH
v Nv

]
are the channel and noise correlation matrices.

B. Stage 2: Uplink Data Transmission

In the second stage, UEs send UL data to their associated UL BS and, the data of decoupled

UEs are first decoded separately at each SBS with the estimated channels and then sent to the

MBS via backhaul. However, the desired UL data signal at the SBSs is subject to high co-channel

interference, and could hardly be decoded correctly using linear detectors. In this paper, discrete

symbols are used to transmit data to combat severe interference. We assume that a UE transmits

binary phase-shift-keying (BPSK)-coded UL data of totally τD symbols to its associated UL BS.

The matrix X =
[
xT

1 , · · ·xT
k , · · · ,xT

K

]T is used to represent data sequences of UEs with each

element randomly chosen from the set {PD,−PD} and xk ∈ C1×τD is the UL data for the kth

UE. Three linear receivers, maximal-ratio combining (MRC), zero-forcing (ZF) and MMSE are

considered separately in the process of data decoding.

Firstly, the received signal at the vth SBS is expressed as

YD
v = GvX + Ñv =

K∑
k=1

gvkxk + Ñv, (9)

where Ñv ∈ CN×τD is AWGN with each element subject to CN (0, N0) independently.

1) ZF and MRC Detectors: We use the estimated channel in Stage 1 to recover the UL data

of the kth UE and, assume that the kth UE is associated with the vth SBS in UL. The MRC
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detector only needs CSI of the kth UE, while in this scheme the SBS has the CSI knowledge

of UEs served by itself to perform ZF detection. Therefore, a new channel matrix is defined as

Gvk = [ĝvk, · · · ], which involves the estimated channels of UEs associated with the vth SBS,

knowing that the kth UE is included at least. Thus, the combination matrix A for MRC and ZF

detectors are given by

A =

ĝvk
(
ĝH
vkĝvk

)−1
, for MRC,

Gvk
(
GH
vkGvk

)−1
, for ZF.

(10)

Then the estimated data sequence of the kth UE after applying the combination matrix becomes

x̂ZF,MRC
k = Decoder

(⌈
AHYD

v

⌉
1

)
, (11)

where dBei performs the operation of taking the ith row of B and Decoder(·) is the conventional

BPSK decoder based on the maximum a posteriori probability (MAP) criterion. Note that in (10),

the formation of combination matrix for ZF and MRC are similar. If an SBS only serves one

UE, the matrix for ZF will degrade to that for MRC, which is the reason we take two detectors

into consideration together.

2) MMSE Detector: In order to achieve better BER performance, MMSE detector is applied

before decoding at each SBS. For MMSE detector with imperfect CSI, the standard way is to

define MMSE channel estimation error as G̃v = Gv − Ĝv, and the received signal can thus be

rewritten as

YD
v = ĜvX + G̃vX + Ñv. (12)

In what follows, we can treat the estimated channel as the real channel and the estimation

error as independent noise, with the statistical property of MMSE [30]. Therefore, the MMSE

combination matrix for the kth UE can be written as

CUD,opt
vk = ĝH

vk

(
ĜvĜ

H
v +

(
K∑
k=1

N0β
S
vk

N0 + βS
vkPTτT

+
N0

PD

)
I

)−1

. (13)

After multiplied by the combination matrix CUD,opt
vk , the estimated signal is sent to the BPSK

decoder and the decoded data for the kth UE can be expressed as

x̂MMSE
k = Decoder

(
CUD,opt
vk YD

v

)
. (14)
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Here, three detectors are considered to recover the UEs’ UL data at each SBS and the decoded

data is then transferred to the MBS via backhaul for the data-aided channel estimation scheme.

C. Stage 3: Data-Aided Channel Estimation

As described in the frame structure, during the last stage, the MBS needs not only to proceed

with the UL channel estimation and UL data detection for its own UEs but also to listen and

record both UL training and data signal. As a result, in this stage, we can utilize the recorded

UL signal along with the known UL training sequences and the decoded UL data to perform

channel estimation at the MBS3. With UL data signal and decoded UL data sequences, there is

more information for the MBS to improve the estimated channel accuracy of decoupled UEs.

First, the received signal at the MBS during the first two stages can be jointly expressed as

MPD = HW + Z =
K∑
k=1

hkwk + Z, (15)

where W = [S,X] with wk being its kth row and Z ∈ CM×(τT+τD) is the AWGN noise at the

MBS with each element an i.i.d. CN (0, N0) random variable.

Next, the MMSE channel estimator is adopted to recover the channels of decoupled UEs, by

utilizing the UL training sequences and the decoded UL data sequences. Hence, the estimated

channel from the kth UE to MBS can be written as

ĥMMSE
k = MPDCDA,opt

k , (16)

where

CDA,opt
vk =

[
K∑
i=1

βM
k E
[
wH
kwk

]
+N0E

[
ZHZ

]]−1

βM
k E
[
wH
k

]
, (17)

thus, the channels from the decoupled UEs to the DL BS are obtained by this data-aided method.

Note that we only give the general expression of the combination matrix for the data-aided

method in (17). In the error-free scenario, we can easily obtain the result of E
[
wH
kwk

]
in (17)

from the prior information about the UL data sequences, however, the random errors in the

decoded data sequences are non-negligible in a more practical scenario. Therefore, the problems

of how to estimate the BER performance of decoded data and how to model the random errors

in the decoded sequences will be discussed in the following section. Moreover, the specific

3When channel varies fast, it can be estimated with pilot and part of decoded UL data, herein decoded data is fully utilized.
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combination matrix for the data-aided scheme and channel estimation performance of different

estimators will also be analyzed.

IV. PERFORMANCE ANALYSIS

In this section, we conduct performance analysis to compare the data-aided scheme with

conventional channel estimation techniques such as MMSE and LS. First of all, to evaluate

the performance of different channel estimation methods, NMSE is adopted as the performance

metric, which is defined as

NMSE=10log10

(
E
[
‖g − ĝ‖2]
E
[
‖g‖2]

)
(in dB) , (18)

where g represents the real channel vector and ĝ is the estimated one.

A. Performance of Conventional Channel Estimation Methods

In this subsection, we use the above metric to analyze the NMSE performances of conventional

channel estimation methods by only taking the UL training sequences into account. Herein, we

take NMSE of the kth UE associated with the vth SBS in Stage 1 as an example. Although

the NMSE expressions here are based on the channel between a UE and an SBS, they can be

easily generalized to the case of a UE connected to the MBS, which will be regarded as the

performance benchmarks of conventional methods.

Now, we give the performance of the LS channel estimator. From (6) and the NMSE definition

in (18), the NMSE for the LS estimator of the kth UE associated with the vth SBS is

J S,LS
vk = 10log10

(
N0

βS
vkτTPT

)
. (19)

Remark 1: From the above expression, it is observed that NMSE for the conventional LS

estimator is related to N0, β
S
vk, τT and PT. It states that once a UE is located and the BS is

stationary, larger pilot power and longer pilot sequence are two means to improve channel

estimation accuracy.

Before analyzing the NMSE for the MMSE estimator, we rewrite the estimated channel of

the kth UE to the vth SBS as

ĝvk =
Rgvk

(NN0 + RgvkPTτT)

(
τTPTgvk + Nvs

H
k

)
, (20)

where Rg = E
[
GH
v Gv

]
= diag (Rgv1 . . .Rgvi . . .RgvK ), Rgvi = E

[
gH
vigvi

]
.
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Observing the equation (20), gvk and Nvs
H
k are independent complex Gaussian random vari-

ables, therefore, it is the property of Gaussian distribution that ĝvk is also a complex Gaussian

variable following

ĝvk ∼ CN

(
0,

(
βS
vk

)2
PTτT

N0 + βS
vkPTτT

I

)
. (21)

Then we denote the channel estimation error of the MMSE estimator as g̃vk
∆
= gvk − ĝvk, with

the help of the orthogonal property of the MMSE estimator, g̃vk is independent of ĝvk. Thus,

we directly obtain the channel estimation error vector, which is distributed as

g̃vk ∼ CN
(

0,
N0β

S
vk

N0 + βS
vkPTτT

I

)
. (22)

In parallel to the LS estimator, the NMSE for the MMSE estimator of the kth UE associated

with the sth SBS can be calculated by using (22)

J S,MMSE
vk = 10log10

(
N0

N0 + βS
vkPTτT

)
. (23)

Remark 2: Similar to the LS estimator, NMSE for the MMSE estimator is a function of τT,

PT, βS
vk and N0. We can also increase pilot length and transmitted power to improve channel

estimation performance once the locations of UE and SBS are both set. Comparing two NMSE

expressions, the only difference appears to be the extra noise variance term N0 in the numerator

of NMSE for MMSE. Hence, the performance gain of the MMSE estimator over LS is obtained

in the regime of low SNR and drops to 0 when SNR gets higher.

B. Performance of Data-Aided Channel Estimation Method

To evaluate our proposed data-aided method, the process of UL data transmission is analyzed

and the BER is obtained since the decoded data is used to aid channel estimation and may

highly affect channel estimation in stage 3. Here, we assume that the CSI acquired by the

MMSE estimator is applied and the MMSE detector is performed for data decoding in Stage 2,

as MMSE detector performs better in interference-limited systems. We first consider the BER

performance of UL data in Stage 2 and the well-know BER expression for binary modulations

is given by [31]

BER =

∫ ∞
0

fSINR (x)

∫ ∞
√
x

1√
2π

exp

(
−1

2
t2
)

dt dx, (24)
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where fSINR (x) is the probability density function (p.d.f.) of SINR (signal-to-interference plus

noise ratio).

As a matter of fact, the exact distribution of SINR for the MMSE detector has been derived in

[32], but the distribution is too complex to obtain a closed-form expression of BER. Therefore,

we resort to the well-known tractable Gamma distribution, whose p.d.f. is given as

fGamma (x;α, ξ) =
xα−1e−

x
ξ

Γ (α) ξα
(25)

to approximate the result.
Similar approach to obtain closed-form solutions has been applied in many previous efforts,

see, e.g., [18], [31]. Following the similar procedure in [31], by determining two parameters

of the approximated Gamma distribution, a closed-form expression of BER can be obtained.

However, different from [18], [31], in our case, the antenna number at each SBS is assumed less

than the number of UEs. In the following, two parameters of Gamma distribution are determined

by moment matching.

We denote SINRvk as the SINR of the kth UE served by the vth SBS with the MMSE detector.

From (12)(13), SINRvk can be expressed as

SINRvk =
1((

I + ρvĜH
v Ĝv

)−1
)
kk

− 1, (26)

where ρv =

(
K∑
k=1

N0βS
vk

N0+βS
vkPTτT

+ N0

PD

)−1

and (·)kk represents the (k, k)th element of a matrix.

Then by applying [31, (8)], SINRvk can be further expressed as

SINRvk = ρvĝ
H
vkĝvk − ρ2

vĝ
H
vkĜv(−k)Ĝ

H
v(−k)

(
I + ρvĜv(−k)Ĝ

H
v(−k)

)−1

ĝvk, (27)

where Ĝv(−k) is the matrix Ĝv with the kth column removed and ĝvk is the kth column of Ĝv.
Considering the singular value decomposition (SVD), we have Ĝv(−k) = UDVH, U ∈

CN×N ,D ∈ CN×N ,VH ∈ CN×(K−1), UUH = UHU = IN and VHV = IN . Then applying

SVD to (27), we get
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SINRvk = ρvĝ
H
vkĝvk − ρ2

vĝ
H
vkUD2

(
I + ρvD

2
)−1

UHĝvk

= ρvϕ
Hϕ− ρ2

vϕ
HD2

(
I + ρvD

2
)−1

ϕ

= ρv

N∑
i=1

‖ϕi‖2

1 + ρvd2
i

, (28)

where UHĝvk
∆
= ϕ and di is the ith diagonal element of D. As U is a unitary matrix, it can be

proved that ϕ has the same distribution as ĝvk.

Next, we proceed our analysis with the help of some known results of the empirical eigenvalue

distribution of the product of two random matrices [33], [34]. Although these results are obtained

under the limiting condition, it is shown in [31] that this approximation is, to some extent,

accurate even for very small dimensions. In our case, those results are extended to the scenario

where the number of antennas is less than the number of UEs, namely, N < K.

The empirical eigenvalue distribution (ESD) of ρvĜv(−k)Ĝ
H
v(−k), denoted by Ĵ, converges to

a measure J, whose Stieltjes transform, denoted by T (z), is given as

T (z)
∆
=

∫
1

x− z
J (dx). (29)

According to the results in [35], this integral can be approximated by

T (z) ≈

(
K∑
i 6=k

Vi

1 + Tr (ViT (z))
− zI

)−1

, (30)

where Vi = ρvβ̂
S
vkIN and β̂S

vk =
(βS
vk)

2
PTτT

N0+βS
vkPTτT

. Similarly, the first derivative of T is found as

T ′ (z)
∆
=

∫
1

(x− z)2 J (dx) = T 2 (z) ≈

(
K∑
i 6=k

Vi

1 + Tr (ViT (z))
− zI

)−2

. (31)

Note that T (z) and T ′ (z) are well defined at z = −1 by the bounded convergence theorem

[36], [37]. Then, we have

Tr (Λ)

N
=

1

N

N∑
i=1

1

1 + ρvd2
i

=

∫
1

x+ 1
Ĵ (dx)

p−−→
∫

1

x+ 1
J (dx) = T (−1)

∆
= µ, (32)

Tr (Λ2)

N
=

1

N

N∑
i=1

1

(1 + ρvd2
i )

2 =

∫
1

(x+ 1)2 Ĵ (dx)
p−−→
∫

1

(x+ 1)2 J (dx) = T ′ (−1)
∆
= σ2,

(33)

where
p−−→ means convergence in probability and Λ

∆
= Diag (λ1, . . . , λi, . . . , λN) , λi = 1

1+ρvd2i
.

By solving (30) and (31), we can obtain µ and σ2 and have the following lemma.
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Lemma 1: The first two moments of SINRvk can be approximated by

E [SINRvk] ≈ Nρvβ̂
S
vkµ, (34)

Var [SINRvk] ≈ N
(
ρvβ̂

S
vk

)2

σ2. (35)

Proof: See Appendix A.

Thus, with the first two moments of SINRvk, its p.d.f. is determined and the ergodic BER

expression can be presented by the proposition below.

Proposition 1: For the kth UE served by the vth SBS employing MMSE data detection with

imperfect CSI (acquired by MMSE estimator), the BER of its UL data is expressed as

BERvk =
Γ
(
αvk + 1

2

)
Γ (αvk) 2

√
2π

ξ−αvkvk

αvk

(
1
ξvk

+ 1
2

)αvk+ 1
2

× 2F1

(
1, αvk +

1

2
;αvk + 1;

1
ξvk

1
ξvk

+ 1
2

)
, (36)

where we have SINRvk ∼ Gamma (αvk, ξvk) with αvk = N µ2

σ2 , ξvk = ρvβ̂
S
vk
σ2

µ
. Γ (·) represents

gamma function and 2F1 (·) is the hypergeometric function.

Proof: Based on (34) and (35), the distribution of SINRvk can be determined by moment

matching. Then plugging its distribution in (24), we obtain the final result after integration.

We note that both Gamma function and hypergeometric function are involved in the above

result, which can be evaluated numerically but hardly shed any light on the BER performance.

Hence, approximated expressions are derived in the following corollary.

Corollary 1: According to the result in (24), we find that BER is a strict convex function.

Thus, by applying Jensen’s inequality, the ergodic BER can be lower bounded by

BERLower
vk = Q

(√
E[SINRvk]

)
= Q

(√
αvkξvk

)
, (37)

where Q (x) =
∫∞
x

1√
2π

exp
(
−1

2
t2
)

dt. The lower bound of the ergodic BER is a monotonic

decreasing function of the first moment of SINRvk, also of all the parameters of the first moment.

After UL data BER values are derived, we are now able to continue with the evaluation of the

data-aided channel estimation, which utilizes MMSE estimation to recover the channels from

the joint sequences consisting of known training sequences and decoded data with certain BER.

To do so, we model the joint sequences as follows. Recall the joint UL signal W in (15),

which is the combination of known training sequences S and UL data sequences X of all UEs.

Denote the block matrix of known training sequences and decoded data as Ŵ = [S, X̂], and use
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E to represent the error matrix which can be defined as

W , Ŵ ◦ E, (38)

where ◦ represents Hadamard product of two matrices. Note that it can further be decomposed
into two parts as Ŵ ◦ E =

[
S, X̂

]
◦ [E1,E2]. As we know the training sequences exactly, E1

is an all-one matrix, which represents an identity matrix in the Hadamard product, while E2

indicates errors in the decoded sequences with all elements from the set {1,−1}. Then we can

obtain the following statistical property of E2 by utilizing the value of BER obtained previously

E [eij] = 1− 2BERvi,

E
[
‖eij‖2] = 1,

(39)

where eij = [E2]ij . Intuitively, we assume that each bit in X̂ from each UL data stream has the
same probability of error, regardless of its location and what is actually sent, meaning that eij

for j = 1, . . . , τD are i.i.d. random variables, and the elements in E2 from different streams are

independent. Therefore, the following proposition elucidates data-aided channel estimation with

the MMSE estimator.

Proposition 2: For the MMSE estimator, the recovered channel of the kth UE at the MBS by

using data-aided channel estimation can be written as

ĥMMSE
k = (HW + Z) CDA,opt

k , (40)

CDA,opt
k = (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])
βM
k , (41)

where ek is the kth row of E with

E
[
eH
k

]
=

(
1 · · · 1︸ ︷︷ ︸
τT

1− 2BERvk · · · 1− 2BERvk︸ ︷︷ ︸
τD

)H

, (42)

and P , P̂ + ∆P with

P̂ =
([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])
, (43)

∆P ,

 0 0

0 ∆SXIτD

 , (44)

where RH = diag
(
βM

1 , . . . , β
M
k , . . . , β

M
K

)
and ∆SX = PD

K∑
k=1

βM
k

{
1− (1− 2BERvk)

2} .
The NMSE of the channel from the kth UE to the MBS by using the data-aided channel
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TABLE I
NMSE FOR DIFFERENT CHANNEL ESTIMATION METHODS

Conventional Data-Aided
LS MMSE MMSE

10 log10

(
1

ρConβM
k

)
10 log10

(
1

1+ρConβM
k

)
10 log10

(
1

1+ρDA
k βM

k

)
ρCon = τTPT

N0

ρDA
k = τTPT

N0
+ τDPD(1−2BERvk)

2

∆SX+N0

∆SX = PD

K∑
k

βM
k

{
1− (1− 2BERvk)

2
}

estimation method with MMSE can be calculated asymptotically as

JMMSE
k = 10 log10

(
1

1 + ρDA
k βM

k

)
, (45)

where

ρDA
k =

τTPT

N0

+
τDPD (1− 2BERvk)

2

∆SX +N0

. (46)

Proof: See Appendix B.

Remark 3: From Proposition 2, it is observed that the proposed data-aided channel estimation

method introduces more parameters into NMSE, such as UL data transmission power, length of

UL data sequence and BER of itself and other UEs. It is anticipated that better BER, higher

data transmit power and longer UL data length will have positive effects on NMSE of data-aided

estimation.

C. Comparison between Conventional and Data-Aided Channel Estimation

Here, we first summarize the NMSE expressions derived previously in TABLE I. Note that

results in the table describe NMSE performances of the estimated channel from decoupled UEs

to the associated MBS with different channel estimators. The NMSE results in the first two

columns are directly transformed from that of UEs associated with the SBSs in (19) and (23).

In general, the table demonstrates that all NMSE results are parameterized by large-scale

fading and a SNR-like term. Furthermore, after we combine these two parameters, it can be

viewed as an effective signal power divided by noise power at the receiver, which corresponds

to the meaning of an effective SNR. Thus, NMSE can be interpreted as the function of reverse

effective SNR as a whole.
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Next, we will examine the differences among these estimators and try to reveal some insights.

To begin with, compared with the LS estimator, we can clearly observe that MMSE outperforms

LS at low SNR, but performs nearly equally as LS when ρCon is high. Secondly, different from

conventional methods, the data-aided channel estimation method makes full use of UL data signal

to explore channel information it carries. In addition, in our two-tier network model, decoded UL

data streams at the SBSs will be assembled at the central MBS via capacity-rich backhaul links.

As such, we can utilize the collected UL data streams as a kind of asymptotically orthogonal

pilot sequences, although these sequences have a certain probability of error. As a matter of

fact, the data-aided method offers more information of the desired channels and introduces more

degrees of freedom in the process of estimation, such as UL data power, UL data length and

BER performance. Furthermore, the advantage of our proposed scheme can be clearly shown by

an increment in the SNR-like term ρDA in TABLE I, which implies that the data-aided method

does help with elevating channel estimation performance in all cases.

Some intuitions can be gained on how to obtain better channel for downlink transmission in

decoupled systems using the data-aided channel estimation method. According to the NMSE

expression for the data-aided method, we can gain several insights into practical design.

• Generally, when we increase training power, training length, UL data length and UL power,

NMSE will monotonically decrease and better channel estimation can be achieved.

• When we reduce our generalized model to the scenario without UL data BER, it basically

corresponds to the case where all UL data are decoded correctly and ρDA =
(
τTPT+τDPD

N0

)
.

As a result, NMSE is determined by the total energy within training slot and UL data

transmission slot, which is different from some previous literatures where power and length

distribution within two slots can be optimized by assuming a fixed total energy [25], [38],

[39]. However, in our model, NMSE is a constant regardless how to allocate power and

length between the two slots. Also, the performance of this zero-BER case can be regarded

as the performance upper bound.

• If the BER performance is extremely poor in certain circumstances, say close to 0.5, the

benefit from data-aided estimation in the SNR-like term will disappear and ρDA
k = τTPT

N0
. The

data-aided method will be degraded to the conventional method. Hence, BER is a significant

factor to exploit the most of channel information from data sequences. Further, NMSE of

a typical UE is not only affected by its own UL data BER, but also by BER of co-channel

UEs due to non-orthogonality property of coded data sequences although both sequences
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are orthogonal asymptotically.

• As observed, we can improve the NMSE for all the estimators listed in TABLE I by

increasing training power. However, note that the SNR-like term for data-aided estimation

would eventually saturate to

τD (1− 2BERv1)2

K∑
k

βM
k

{
1− (1− 2BERvk)

2} (47)

when PD approaches infinity. Therefore, there is a performance floor when increasing data

power, although in practice the maximum transmit power is fixed.

V. NUMERICAL RESULTS

In this section, we perform simulations to validate the analytical results and demonstrate the

potential of data-aided channel estimation for decoupled UEs. As described in the system model,

we consider a single cell consisting of an MBS in the center and S SBSs uniformly placed in

the cell. Also, K UEs are uniformly distributed in random within the cell and connect to the

BSs according to the modified MARP with decoupling access. As a result, there are a number of

decoupled UEs who connect to different BSs in UL/DL. Unless otherwise specified, numerical

results provided focus on and are averaged over all decoupled UEs, and the parameters in this

section are listed in TABLE II. All points in simulations were obtained via 100 association

patterns and 1000 independent channel realizations. In this section, PO corresponds to “pilot

only” and DA represents the “data-aided” method.

Two main performance metrics are used to evaluate the proposed DA method. One is the

NMSE defined in Section IV and the second performance metric is the average DL rate by

assuming standard zero-forcing beamforming (ZFBF) based on the estimated channels at all

BSs. The average DL rate is defined as

R = E
[
log2

(
1 + SINRDL

UE

)]
, (48)

where SINRDL
UE is the received DL SINR of UEs. Note that the maximum UL power of UEs in

some figures is extended to 43 dBm to exhibit the whole picture of impacts on metrics, but in

practice UL power would not be raised to that high .

In order to verify data-aided scheme can work in other scenarios, NLoS/LoS path loss model

is also adopted in simulations. Due to page restrictions, only rate performance is shown and
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TABLE II
SIMULATION PARAMETERS

Parameters Values
Radius of macro cell RM 1000 m

Number of SBSs S 30
Number of UEs K 30

Noise power spectral density N0 -174 dBm/Hz
Attenuation exponent α 4

Antenna number of MBS M 256
Antenna number of SBS N 8
Transmit power of MBS PM 46 dBm
Transmit power of SBS PS 24 dBm
Training power of UEs PT -7∼23 dBm

Data power of UEs PD -7∼23 dBm
Training length τT 30

Data length τD 128

NMSE performance of this model is similar to all-NLoS model. According to 3GPP [40] and

previous work [41], NLoS/LoS path loss model is defined as

βM,NL
k = ANL

M

(
dM
k

)−αNL
M ,

βS,L
sk = AL

S

(
dS
sk

)−αL
S

(49)

where ANL
M and AL

S are the path loss of NLoS path between a MBS and a UE and the path loss

of LoS path between a SBS and a UE at a reference distance of 1. αNL
M and αL

S are path loss

exponents for their corresponding paths. According to the recommendations of 3GPP, we adopt

the parameters as αNL
M = 3.75, αL

S = 2.09, ANL
M = 10−14.54, AL

S = 10−10.38.

In Fig. 3 and Fig. 4, the average UL data BER performance of decoupled UEs with different

detectors versus training power and data power are demonstrated. Numerical results reveal that

ZF enjoys better performance due to interference cancelation with CSI at the SBSs, but both

detectors are not able to obtain as low BER as MMSE when training or data power grows. All

the MMSE estimators with estimated CSI can achieve BER performance better than 10−3 under

severe co-channel interference and the curves for those estimators saturate to the one for the

MMSE detector with perfect CSI. The estimated BER with imperfect CSI in (36) is plotted with

plus signs and is pretty close to the simulated one, while a gap between BER simulations and

its lower bound (in circles) is observed in both figures. Hence, the estimated BER is accurate

enough to be utilized to represent the real BER performance of the decoded data in the later DA
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Fig. 3. Average uplink data BER of decoupled UEs versus PT

with PD = 23 dBm for different data estimators.
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Fig. 4. Average uplink data BER of decoupled UEs versus PD

with PT = 3 dBm for different data estimators.
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with PD = 23 dBm.
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Fig. 6. Comparison of average NMSE of decoupled UEs for PD

with PT = 3 dBm.

channel estimation. Note that all the curves are for BPSK modulation except the one in asterisk

is for the BER performance of 4QAM modulation, which has higher BER than BPSK since the

power of UL symbols remains the same in different modulations.

Then, we verify the NMSE performance of the DA method and compare it with the PO LS

and MMSE. Fig. 5 depicts the relation between training power and NMSE of decoupled UEs. It

is observed that the DA channel estimation is always better than LS and MMSE estimators, in
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particular, when training power is low, the DA method outperforms the conventional ones over

30dB. The curves for the DA method tend to approach to and eventually saturate to the one for

the PO MMSE and LS estimators as training power increases, which can be explain with the

NMSE expression for DA in TABLE I that when training power grows higher, the first term with

training power dominates the SNR-like term which is highly related to the NMSE performance

and the benefit from DA method is not as remarkable as in the low training power scenarios.

Moreover, the squares represent the NMSE by treating a decoded sequence with errors as if

there were no error in it. Its performance is almost the same as the one considering the BER

effect at low training power regime and become worse as training power grows. Interestingly, in

the error-free scenario, we find the NMSE performance of 4QAM is exactly the same as that of

BPSK and both two modulations performs a little better than 16QAM, which provides a solid

proof for the insight concluded in Section IV-C that NMSE of the DA method is determined by

the total energy of training and data slots since all symbols of 4QAM and BPSK have the same

power PT while symbols of 16QAM have several power levels with the maximum power of PT.

The NMSE versus data power is shown in Fig. 6. The gap between PO and the DA methods

gets larger by increasing data power for the reason that the NMSE performances of PO methods

has no relation with data power while for the DA method, higher data power will not only improve

BER performance but also directly increase the SNR-like term. Furthermore, the NMSE of the

DA method without BER can be improved almost log-linearly as data power grows while the

case with BER tends to decrease slower and reaches a performance limit as analyzed in Section

IV-C. Similar results of 4QAM and 16QAM can be observed in this figure.

The relation between NMSE and data lengths is also investigated. In Fig. 7, it is observed that

when the UL data length gets longer, NMSE for the PO MMSE remains constant but the NMSE

for the DA method enjoys nearly log-linear improvement. Recall that we make the approximation

that X̂X̂
H → τDPDIk when τD is large. Fig. 7 indicates that for the DA method without BER,

the gap between simulations and the approximated result is getting smaller quickly when τD

becomes larger, while for the case with BER, the approximation gap reduces slowly. In general,

as the result of BER effect, the DA methods without BER performs better than the method with

BER and the performance gap between two methods gets larger as the length of data grows.

Next, we examine the impacts of parameters on the final rate metric and compare the average

DL rate performance between three types of UEs, which are decoupled UEs, SUEs (served by

SBSs in UL/DL) and MUEs (served by the MBS in UL/DL), also between two different path loss
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Fig. 8. Average DL rate versus PT with PD = 23 dBm for the
comparison between DA and PO.

models. From Fig. 8 and Fig. 9, we observe that DA method can improve DL rate of both MUEs

and decoupled UEs by using two different path loss models within the whole range of training

and data power, especially in high data power and low training power regimes. By utilizing

DA method, the MBS has more accurate channels of decoupled UEs and the accuracy of DL

beamforming is also improved, thus, the inter-UE interference at both MUEs and decoupled UEs

can be suppressed effectively and higher rate can be obtained. The average rate for SUEs remains

almost the same because the UL channel estimation at SBSs is so good that the improvement in

NMSE by increasing training power would have little benefit to the DL rate, while it is easy to

figure out that changing UL data power has no effect on DL rate of SUEs. Therefore, the DA

methods can not only improve the average DL rate of the whole cell but also reduce rate gaps

between different types of UEs, which promises better fairness in the cell. Moreover, although

DL rates for three types of UEs have dropped by using NLoS/LoS model, the data-aided scheme

could still provide remarkable promotion in rate performances of MUEs and decoupled UEs.

Fig. 10 shows that the DL rate gain achieved by the DA method grows with the increase of

UL data length. Similarly, the DL rates of both MUEs and decoupled UEs are improved by DA

method and it is observed that decoupled UEs enjoys larger rate growth than MUEs.
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Fig. 9. Average DL rate versus PD with PT = 3 dBm for the
comparison between DA and PO.
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VI. CONCLUSION

In this paper, we proposed a data-aided channel estimation method for decoupled UEs in

HetNets. In this method, the decoded UL data and known training sequence are jointly utilized

to better estimate the DL channels at the MBS. The ergodic BER of UL data has been analyzed

to model the decoded data with errors and the approximated NMSE for the data-aided MMSE

estimator was derived and compared with the conventional estimators. It has been proved by both

theoretic results and simulations that the data-aided method can greatly improve the accuracy

of estimated channels of decoupled UEs by introducing more degrees of freedom. Although the

BER may affect the effectiveness of this method, the BER could be controlled at a very low

level by applying more advanced data detection techniques in the future. DL rate performance

is also investigated numerically to show the true benefit to this final metric and the results of

4QAM/16QAM and NLoS/NLoS verify the proposed method can be applied in multiple scenarios

with different modulations.



25

APPENDIX A

PROOF OF LEMMA 1

Proof: From the expression of SINRvk in (28), we have

E [SINRvk] = E

[
ρv

N∑
i=1

‖ϕi‖2

1 + ρvd2
i

]

= Nρvβ̂
S
vkE

[(
1

N

N∑
i=1

λi

)]

= Nρvβ̂
S
vkE

[
Tr (Λ)

N

]
≈ Nρvβ̂

S
vkµ,

(50)

where the above approximation uses the definition in (32).

Similarly, we obtain the second moment by

Var [SINRvk] = N2ρ2
vVar

[
1

N

N∑
i=1

λi ‖φi‖2

]

= N2ρ2
vVar

[
1

N

N∑
i=1

λiE
[
‖φi‖2 |Ĝv(−k)

]]
+N2ρ2

vE

[
1

N

N∑
i=1

λ2
iVar

[
‖φi‖2 |Ĝv(−k)

]]
(a)
= N2ρ2

v

(
β̂S
vk

)2

Var
[

Tr (Λ)

N

]
+N2ρ2

v

(
β̂S
vk

)2

E
[

Tr (Λ2)

N

]
≈ N2ρ2

v

(
β̂S
vk

)2

σ2, (51)

where the first term of (a) can be proved to converge to 0 by the results from [31].

APPENDIX B

PROOF OF PROPOSITION 2

Proof: First, denote the mean-square-error (MSE) as J (Ck) = E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

. Then

by applying the MMSE rule directly, the problem is formulated as

min
Ck
J (Ck) = E

[((
H
(
Ŵ ◦ E

)
+ Z

)
Ck − hk

)H ((
H
(
Ŵ ◦ E

)
+ Z

)
Ck − hk

)]
, (52)

and we take the derivative of J in terms of Ck and let the derivative be 0 to find the optimal

solution (
E
[(

Ŵ ◦ E
)H

HHH
(
Ŵ ◦ E

)
+ ZHZ

])
Ck = E

[(
Ŵ ◦ E

)H
HHhk

]
. (53)
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Then according to the statistical properties of H, E and the independency between two random

matrices, we can obtain

RH ,
1

M
E
[
HHH

]
= diag

(
βM

1 , . . . , β
M
k , . . . , β

M
K

)
, (54)

and (
E
[(

Ŵ ◦ E
)H

RH

(
Ŵ ◦ E

)]
+N0I

)
Ck =

(
ŵH
k ◦ E

[
eH
k

])
βM
k . (55)

The above expectation can be defined by P and decomposed into four block matrices

P , E
[([

S ◦ E1, X̂ ◦ E2

])H
RH

([
S ◦ E1, X̂ ◦ E2

])]
=

 P11 P12

P21 P22

 , (56)

with P11 = SHRHS, P12 = SHRH

(
X̂ ◦ E [E2]

)
, P21 =

(
X̂ ◦ E [E2]

)H
RHS,

P22 = E
[(

X̂ ◦ E2

)H
RH

(
X̂ ◦ E2

)]
.

The results of P11,P12 and P21 are straightforward. Hence, we focus on the expectation of

P22. Two cases are discussed separately by using the definition of matrix multiplication and

independency, as

[P22]ij,i6=j =
K∑
k

K∑
l

[RH]kl (x̂ki)
′x̂ljE

[
([E2]ki)

′ [E2]lj

]
=

K∑
k

βM
k (x̂ki)

′ x̂kj (1− 2BERvk)
2

[P22]ij,i=j =
K∑
k

βM
k (x̂ki)

′ x̂kiE
[
‖[E2]ki‖

2] = PD

K∑
k

βM
k .

Therefore, [P22]i 6=j can be generally written as
[([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])]
i 6=j

, but

diagonal elements of P22 are PD

K∑
k

βM
k . Hence, for brevity and ease of calculation, we can

rewrite P22 as (
X̂ ◦ E [E2]

)H
RH

(
X̂ ◦ E [E2]

)
+ ∆PX, (57)

where ∆PX = ∆SXIτD ,∆SX = PD

K∑
k

βM
k

{
1− (1− 2BERvk)

2
}

. As a result, the block matrices can be

reunited as the sum of two parts denoted as P , P̂ + ∆P, with

P̂ =
([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])
(58)
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and

∆P =

 0 0

0 ∆PX

 . (59)

By plugging these results into (55), the optimal combination matrix for the data-aided channel

estimation method with the MMSE estimator is obtained. After the combination matrix is

obtained, we can continue to evaluate NMSE of the data-aided method. From the definition

in (18), we can first calculate numeric term inside logarithm as

E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

=E
[((

H
(
Ŵ ◦ E

)
+ Z

)
Ck − hk

)H ((
H
(
Ŵ ◦ E

)
+ Z

)
Ck − hk

)]
=MβM

k −M
(
βM
k

)2 E
[
(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])]
(60)

Now, we denote

PAux , ∆P +N0I =

 N0IτT 0

0 (∆SX +N0) IτD

 (61)

and

W̄ , Ŵ ◦ E [E] . (62)

Thus, we can derive the expectation part in the last equation of (60) as

E
[
(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])]
=E

[[
W̄
(
W̄HRHW̄ + PAux

)−1
W̄H

]
kk

]
(a)
=E
[[

W̄P
−1
AuxW̄

H − W̄P
−1
AuxW̄

H
(
R−1

H + W̄P
−1
AuxW̄

H
)−1

W̄P
−1
AuxW̄

H
]
kk

]
(b)
=

[
R−1

H −R−1
H E

[(
W̄P

−1
AuxW̄

H + R−1
H

)−1
]

R−1
H

]
kk

,

(63)

where (a) follows the Woodbury matrix inversion identity while (b) uses the matrix identity

A−A (A + B)−1 A = B−B (A + B)−1 B. (64)

With the definitions of

Ẽ2 , diag ((1− 2BERv1) , . . . , (1− 2BERvK)) (65)
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and

ΛX ,
1

∆SX +N0

X̂X̂
H
, (66)

the expectation part in (63) can be simplified as

E
[(

W̄P
−1
AuxW̄

H + R−1
H

)−1
]

=E


[S, X̂ ◦ E [E2]

]
∆P−1

Aux

 SH(
X̂ ◦ E [E2]

)H

+ R−1
H

−1


=E

[(
τTPT

N0

Ik + Ẽ2ΛXẼH
2 + R−1

H

)−1
]

≈
(
τTPT

N0

Ik +
τDPD

∆SX +N0

Ẽ2
2 + R−1

H

)−1

=diag
(

βM
1

1 + ρDA
1 βM

1

, . . . ,
βM
K

1 + ρDA
K βM

K

)
, (67)

where

ρDA
k =

τTPT

N0

+
τDPD (1− 2BERvk)

2

∆SX +N0

, (68)

and the approximation above is due to the fact that the UL data length is usually long enough

to hold that the two different data stream are uncorrelated. This means that X̂X̂
H → τDPDIk

when τD is large. Hence, utilizing the above results, we have

E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

=
MβM

k

1 + ρDA
k βM

k

. (69)

Finally, the NMSE for the data-aided method with the MMSE estimator can be obtained based

on the definition of NMSE

J MMSE
k = 10 log10

(
1

1 + ρDA
k βM

k

)
, (70)

which proves Proposition 2.
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