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Inhomogeneous Double Thinning—Modeling
and Analysis of Cellular Networks by Using

Inhomogeneous Poisson Point Processes
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Abstract— In this paper, we introduce a new methodology
for modeling and analyzing downlink cellular networks, where
the base stations (BSs) constitute a motion-invariant point
process (PP) that exhibits some degree of interactions among
the points, i.e., spatial repulsion or spatial clustering. The
proposed approach is based on the theory of inhomogeneous
Poisson PPs (I-PPPs) and is referred to as inhomogeneous double
thinning (IDT) approach. In a PP, the distribution of the distance
from a randomly distributed (typical) user to its nearest BS
depends on the degree of spatial repulsion or clustering exhibited
by the PP. In addition, the average number of interfering BSs
that lies within a given distance from the typical user is a
function of the repulsion and clustering characteristics of the PP.
The proposed approach consists of approximating the original
motion-invariant PP with an equivalent PP that is made of
the superposition of two conditionally independent I-PPPs. The
inhomogeneities of both PPs are created from the point of view
of the typical user (“user-centric”): the first one is based on the
distribution of the user’s distance to its nearest BS and the second
one is based on the distance-dependent average number of
interfering BSs around the user. The inhomogeneities are math-
ematically modeled through two distance-dependent thinning
functions and a tractable expression of the coverage probability is
obtained. Sufficient conditions on the parameters of the thinning
functions that guarantee better or worse coverage compared with
the baseline homogeneous PPP model are identified. The accuracy
of the IDT approach is substantiated with the aid of empirical
data for the spatial distribution of the BSs.

Index Terms— Cellular networks, stochastic geometry, inhomo-
geneous point processes, spatial inhibition, and spatial clustering.

I. INTRODUCTION

IN THE last few years, the theory of Poisson Point
Processes (PPPs) has been extensively employed for

modeling, analyzing, and optimizing the performance of
emerging cellular network architectures [1]. Notable examples
include, Heterogeneous Cellular Networks (HCNs) [2], [3],
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Multiple-Input-Multiple-Output (MIMO) HCNs [4], [5],
millimeter-wave cellular HCNs [6], [7], and massive MIMO
cellular networks [8]. Recently, comprehensive mathematical
frameworks for taking into account the impact of spatial
blockages, antenna radiation patterns, and the network load
have been introduced [9] and empirically validated [10].
Surveys and tutorials on the application of PPPs to the
modeling and analysis of HCNs are available in [11]–[14].

A. Beyond the Poisson Point Process Model:
State-of-the-Art and Limitations

Modeling cellular networks by using PPPs has the inherent
advantage of mathematical tractability. Empirical evidence
suggests, however, that practical cellular network deployments
are likely to exhibit some degree of interactions among the
locations of the Base Stations (BSs), which include spa-
tial inhibition, i.e., repulsion [15], and spatial aggregation,
i.e., clustering [16]. More recently, several other spatial mod-
els have been proposed for overcoming the complete spatial
randomness property of PPPs, i.e., their inherent limitation of
modeling spatial correlations [17]–[29]. In [17], Matérn PPs
are used for modeling cellular networks that exhibit spatial
repulsion. In [18] and [19], the author introduces the As-
A-PPP (ASAPPP) approach, which consists of obtaining the
coverage probability of repulsive PPs through a right-shift of
the coverage probability under the PPP model. The right-shift
to be applied is termed (asymptotic) deployment gain. General
results on the existence and computation of the asymptotic
deployment gain are available in [21] and [25]. The ASAPPP
method is generalized for application to HCNs in [24]. In [20],
the Ginibre PP (GPP) is proposed for modeling repulsive
cellular networks in urban and rural environments. Further
experimental validation of the suitability of GPPs is available
in [22]. In [23], Determinantal PPs (DPPs) are investigated
and their accuracy is substantiated with the aid of practical
network deployments. In [26], the Poisson Hole Process (PHP)
is proposed to model the spatial interactions in cognitive
and device-to-device networks. In [27], the Log-Gaussian
Cox Process (LGCP) is proposed, based on empirical data,
to account for the spatial correlation arising in multi-operator
cellular networks. In [28], a cellular network model con-
stituted by the superposition of a shifted lattice PP and a
PPP is introduced, by bridging the gap between completely
regular and totally random networks. In [29], a general class
of Poisson cluster PPs is studied for modeling the spatial
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coupling between different tiers of HCNs. The Matérn Cluster
PP (MCPP) is used, e.g., for modeling the locations of
small-cell BSs.

By carefully analyzing all the above-mentioned propos-
als for modeling cellular networks via non-PPPs, two main
conclusions can be drawn: 1) non-PPPs are more accurate
than PPPs for modeling emerging cellular architectures and
2) the price to pay is the loss of mathematical tractability
and the limited design insight that can be obtained from
the resulting frameworks. As far as the computation of the
coverage probability is concerned, among all the available
approaches, the ASAPP method is certainly the most tractable.
The asymptotic deployment gain, however, may not be always
explicitly computable [21, Lemma 4]. The approaches pro-
posed so far are, in addition, PP-specific: Each spatial PP
results in a different formulation of the coverage probability.
Therefore, there is a compelling need for a unified and
tractable methodology for modeling cellular networks that
exhibit spatial repulsion and/or clustering.

B. On Modeling Motion-Invariant PPs via I-PPPs:
Rationale, Interpretation, and Challenge

Motivated by these considerations, we study the suitabil-
ity of Inhomogeneous PPPs (I-PPPs) for modeling cellular
networks that exhibit spatial repulsion and clustering. Before
proceeding further, three main questions need to be addressed:
1) What is the rationale of using I-PPPs for modeling cellu-
lar networks? 2) I-PPPs are non-stationary PPs – How to
interpret them for analyzing the typical user? 3) What are the
modeling challenges for leveraging I-PPPs?

1) Rationale: Three reasons motivate us to analyze the
suitability of I-PPPs for system-level modeling and analysis of
cellular networks. 1) Since there are many possible causes at
the origin of the spatial correlation in PPs, empirical evidence
shows that inhibition and aggregation may be difficult to be
disentangled from spatial inhomogeneity [30, Sec. 7.3.5.2].
In addition, the inherent inhomogeneity of the spatial distrib-
ution of users, who may be concentrated in hotspots, buildings,
malls, pedestrian zones, etc., highly determines the resulting
spatial correlation of cellular BSs [31]. In other words, there
is a strong dependence between the spatial distribution of
the network traffic, which is inhomogeneous, and the actual
deployment of cellular BSs. 2) I-PPPs inherit all the main
properties of Homogeneous PPPs (H-PPPs) that make them
mathematically tractable [32, Sec. 2]. Hence, I-PPPs are the
most tractable alternative to PPPs. 3) Recent studies on uplink
cellular networks have put forth the I-PPPs as a suitable
approximation for modeling the otherwise intractable spatial
correlations that characterize the locations of the users sched-
uled for transmission on the same physical channel [33], [34].
We use a similar line of thought for approximating both
repulsion and clustering among the locations of cellular BSs.

2) Interpretation: The spatial models proposed in [17]–[29]
are based on motion-invariant PPs. Hence, the PPs are invari-
ant under translations (i.e., are stationary) and rotations around
the origin (i.e., are isotropic) [35], [36]. This implies that,
e.g., the coverage probability of a randomly distributed (typ-
ical) user is independent of its actual location. For this

reason, the typical user is always assumed to be at the
origin [17]–[29]. I-PPPs, on the other hand, are non-stationary
PPs and the performance of a randomly chosen user depends
on its actual location, i.e, on the “panorama” or view that
the user has of the network. Bearing this difference in mind,
the proposed approach has an unambiguous interpretation: It
consists of approximating a motion-invariant PP, e.g., one of
those in [17]–[29], with an equivalent I-PPP whose inhomo-
geneity is created from the point of view of the typical user of
the original motion-invariant PP, e.g., the user located at the
origin. In simple terms, we approximate a motion-invariant
PP with an equivalent I-PPP, where “equivalent” means that
the network’s view of the typical user located at the origin of
the original motion-invariant PP is (approximately) the same
as the network’s view of a probe user located at the origin1

of the equivalent I-PPP. The equivalency of the network’s
panoramas is obtained by appropriately choosing the spatial
inhomogeneity of the equivalent I-PPP as a function of the
spatial inhibition and aggregation properties of the original
motion-invariant PP.

3) Challenge: I-PPPs are more mathematically tractable
than PPs that exhibit spatial repulsion and cluster-
ing [32, Sec. 2]. I-PPPs may, however, be more difficult to
handle [31]. Let us consider, e.g., GPPs [20] and DPPs [23].
They are uniquely determined by one or two distance-
independent parameters that are simple to be estimated based
on empirical data. I-PPPs necessitate, on the other hand,
the definition of a distance-dependent intensity function, whose
choice is a non-trivial challenge as no a priori information on
its structure exists to date. Its definition, in addition, needs
to account for the critical balance between modeling accuracy
and mathematical tractability.

In summary, the specific intention of the present paper is
to study whether I-PPPs are suitable for modeling practical
cellular network deployments and whether tractable analyt-
ical frameworks can be obtained, even though, compared
with other PPs, I-PPPs may be more difficult to fit from
empirical data. An important contribution of the present
paper is, in addition, to introduce tractable yet accurate
distance-dependent intensity functions and to propose a sim-
ple approach for estimating their parameters from empiri-
cal data sets that correspond to practical cellular network
deployments.

C. Inhomogeneous Double Thinning: Novelty
and Contribution

The proposed approach based on I-PPPs is referred to
as Inhomogeneous Double Thinning (IDT) approach. The
specific novelty and contributions made by the present paper
are as follows.

• For the first time, we propose I-PPPs for modeling the
spatial correlations inherently present in cellular network
deployments. The IDT approach is general and flexible
enough for modeling cellular networks that exhibit spatial

1It is worth mentioning that the origin is chosen only for ease of analysis and
modeling, any other locations may be considered for the probe user provided
that the spatial inhomogeneity is created accordingly.
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TABLE I

SUMMARY OF MAIN SYMBOLS AND FUNCTIONS USED THROUGHOUT THE PAPER

inhibition, aggregation, as well as cellular networks where
some BSs may exhibit spatial inhibition and some other
BSs may exhibit spatial aggregation (e.g., a multi-tier
cellular network where the first and second tiers of BSs
are distributed according to, e.g., a GPP or DPP and a
LGCP or MCPP, respectively).

• We introduce two distance-dependent intensity functions
to create the inhomogeneities based on spatial inhibition
and aggregation properties empirically observed in prac-
tical cellular networks. They are shown to yield a good
trade-off between accuracy and tractability.

• We devise a method for approximating the network’s
panorama of the typical user of the original motion-
invariant PP with the network’s panorama of a probe
user located at the origin of the equivalent I-PPP. The
essence of the method is as follows. In a motion-invariant
PP, the distribution of the distance from the typical user
to its nearest BS (the F-function [30, Sec. 8.3]) and
the average number of interfering BSs within a given
distance from the typical user (related to the Ripley’s
K-function [30, Sec. 7.3]) depend on the degree of
spatial inhibition and aggregation exhibited by the PP.
The IDT approach approximates the original motion-
invariant PP with an equivalent I-PPP that is the
result of the superposition of two conditionally inde-
pendent I-PPPs. The inhomogeneities of the first
and second I-PPP are created based on the F-function
and the non-regularized K-function of the original
motion-invariant PP, respectively. The first I-PPP and
the second I-PPP are employed for modeling the location
of the serving BS and the locations of the interfering BSs,
respectively.

• Based on the IDT approach, a new tractable analytical
expression of the coverage probability of cellular net-
works is introduced. The approach is generalized for
application to cellular networks with spatial-dependent
blockages [9] and multi-tier deployments [3].

• The analytical frameworks of the coverage probability
obtained from H-PPP and I-PPP modeling approaches
are compared against each other. Notably, sufficient
conditions on the parameters of the proposed thinning
functions that guarantee a better or worse coverage prob-
ability compared with the baseline H-PPP model are
identified.

• The accuracy of the IDT approach is substantiated via
empirical data for the locations of cellular BSs. The
study unveils that the IDT approach yields accurate
estimates of the coverage for several motion-invariant
PPs, e.g., GPPs, DPPs, LGCPs, PHPs, MCPPs, and lattice
PPs.

D. Paper Organization and Structure

The rest of the present paper is organized as follows.
In Section II, the system model is presented. In Section III,
the IDT approach is introduced. In Section IV, the ana-
lytical framework of the coverage probability is provided.
In Section V, the IDT approach is generalized for application
to spatial-dependent blockage models and multi-tier deploy-
ments. In Section VI, the IDT approach is substantiated via
empirical data and simulations. Finally, Section VII concludes
this paper.

Notation: The main symbols and functions used in this paper
are reported in Table I.
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II. SYSTEM MODEL

In this section, the network model is introduced. We focus
our attention on single-tier cellular networks, by assum-
ing an unbounded path-loss model and neglecting spatial
blockages [9]. System models with blockages and multi-tier
deployments are discussed in Section V.

A. Cellular Networks Modeling

A downlink cellular network is considered. The BSs are
modeled as points of a motion-invariant PP, denoted by ΨBS,
of density λBS. The locations of BSs are denoted by x ∈
ΨBS ⊆ R

2. The Mobile Terminals (MTs) are distributed inde-
pendently of each other and uniformly at random in R

2. The
density of MTs is denoted by λMT. Thanks to the assumption
of motion-invariance, the PP of BSs is stationary and isotropic.
As a result, the analytical frameworks are developed for the
typical MT, denoted by MT0, that is located at the origin. The
BS serving MT0 is denoted by BS0. Its location is denoted
by x0 ∈ ΨBS. The cell association criterion is introduced in
Section II-C. Examples of PPs that satisfy these assumptions
are reported in [20], [23], and [26]–[29].2 The BSs and MTs
are equipped with a single omnidirectional antenna. Each BS
transmits with a constant power denoted by Ptx. A fully loaded
assumption is considered, i.e., λMT � λBS, which implies
that all the BSs are active and have MTs to serve. These
latter assumptions may be removed based on [9]. This is not
considered, however, in the present paper, in order to keep the
focus on the new approach for modeling the spatial distribution
of the BSs. All available BSs transmit on the same physical
channel as BS0. The PP of interfering BSs is denoted by
Ψ(I)

BS. Besides the inter-cell interference, Gaussian noise with
power σ2

N is taken into account as well.

B. Channel Modeling

For each BS-to-MT0 link, path-loss and fast-fading are con-
sidered. Shadowing is not explicitly considered for simplicity,
but it can be taken into account by using the approach in [9].
All BS-to-MT0 links are assumed to be mutually independent
and identically distributed (i.i.d.).

1) Path-Loss: Consider a generic BS whose location is
x ∈ ΨBS. The path-loss is defined as l (x) = κ‖x‖γ , where κ
and γ > 2 are the path-loss constant and the path-loss slope
(exponent).

2) Fast-Fading: Consider a generic BS-to-MT0 link. The
power gain due to small-scale fading is assumed to follow
an exponential distribution with mean m. Without loss of
generality, m = 1 is assumed. The power gain of a generic
BS-to-MT0 link is denoted by gx for x ∈ ΨBS.

C. Cell Association Criterion

A cell association criterion based on the highest average
received power is assumed. Let x ∈ ΨBS be the location

2As discussed in [15, Sec. II-E], the lattice is not a stationary PP. However,
it can be made stationary by introducing a random translation over the Voronoi
cell of the origin. Another option is to consider the concept of empirical
homogeneity condition [39, Sec. III]. Either way, the methods discussed and
the conclusions drawn in the present paper apply unaltered.

of a generic BS. The location, x0, of the serving BS, BS0,
is obtained as follows:

x0 = argmax
x∈ΨBS

{1/l (x)} = argmax
x∈ΨBS

{1/Lx} (1)

where Lx = l (x) is a shorthand. As for the intended link,
L0 = l (x0) = minx∈ΨBS {Lx} holds.

D. Coverage Probability

The performance metric of interest is the coverage proba-
bility, Pcov, that is defined as follows:

Pcov = Pr

{
Ptxg0/L0

σ2
N +

∑
x∈Ψ

(I)
BS

Ptxgx/Lx
> T

}
(2)

where Ψ(I)
BS = ΨBS\x0.

We focus our attention on the coverage probability because
it corresponds to the complementary cumulative distribution
function of the SINR (Signal-to-Interference+Noise Ratio),
and, thus, it completely characterizes the statistical proper-
ties of the SINR. Other relevant performance metrics, e.g.,
the average rate, the potential spectral efficiency, and the local
delay, that depend on the SINR can be directly obtained from
the coverage probability [37], [38].

Under the assumptions of this paper, Pcov can be formulated
as shown in the following lemma.

Lemma 1: An analytical expression of the coverage proba-
bility in (2) is as follows:

Pcov =
∫ +∞

0

exp
(
−ξTσ2

N

/
Ptx

)
MI,L0 (ξ; T) fL0 (ξ) dξ

(3)

where fL0 (·) is the Probability Density Function (PDF)
of L0 introduced in Section II-C and MI,L0 (·;·) is the
Laplace functional of the PP, Ψ(I)

BS = ΨBS\x0, of interfering
BSs:

MI,L0 (ξ = L0 = l (x0) ; T)

= E
!x0
ΨBS

⎧⎨
⎩

∏
x∈ΨBS\x0

(1 + T (ξ/l (x)))−1

⎫⎬
⎭ (4)

Proof : It directly follows from [1]. �
Remark 1: In (4), we have made explicit that the compu-

tation of the Laplace functional of the PP of interfering BSs,
Ψ(I)

BS = ΨBS\x0, necessitates the knowledge of the reduced
Palm distribution of the PP, ΨBS [36, Sec. 8]. In simple
terms, the expectation under the reduced Palm distribution,
E

!x0
ΨBS

{·}, is obtained by conditioning upon x0 and by remov-
ing it from the PP. �

By direct inspection of (3) and (4), we infer that the mathe-
matical tractability of Pcov depends on fL0 (·) and MI,L0 (·;·).
In general, the following holds [35], [36]: i) fL0 (·) depends
on the Contact Distance Distribution (CDD) of the PP, ΨBS,
of BSs (see Definition 1), and ii) MI,L0 (·;·) depends on the
Laplace functional of the PP, Ψ(I)

BS = ΨBS\x0, of interfering
BSs, which requires the reduced Palm distribution of the PP,
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ΨBS, of BSs to be known. The CDD and reduced Palm distrib-
ution of an arbitrary motion-invariant PP, however, may not be
known or may not be mathematically tractable. The tractability
of the H-PPP lies in the simple analytical expression of
fL0 (·) [39] and in the fact that the reduced Palm distribution
of a H-PPP coincides with the distribution of the H-PPP
itself. Other motion-invariant PPs, e.g., GPPs and DPPs, admit
analytical expressions of the CDD and their reduced Palm
distribution is known. Their Pcov has, however, a limited
analytical tractability [20], [23]. In Section III, we propose a
tractable analytical approach that overcomes this limitation,
by leveraging the theory of I-PPPs.

E. Preliminary Definitions

For ease of exposition, we introduce a few definitions that
are used in the next sections.

Definition 1: Let ΨBS be a motion-invariant PP. Let
u ∈ R

2 be the location of a random MT. The
CDD or F-function of ΨBS at location u is F

(u)
ΨBS

(r) =

Pr {‖u − ΨBS‖ < r}
(a)
= Pr {‖ΨBS‖ < r} = FΨBS (r), i.e., it

is the Cumulative Distribution Function (CDF) of the distance
between u and its nearest BS in ΨBS [36, Sec. 2.8]. The
equality in (a) is due to the motion invariance of ΨBS. �

Definition 2: Let ΨBS be a motion-invariant PP. Let
x ∈ ΨBS be the generic location of a BS of ΨBS.
The “non-regularized” Ripley’s function or “non-regularized”
K-function of ΨBS is K

(x)
ΨBS

(r) = E
!x
ΨBS

{‖x − ΨBS‖ < r}
(a)
= E

!0
ΨBS

{‖ΨBS‖ < r} (b)
= KΨBS (r), i.e., it is the average num-

ber of BSs in ΨBS that lie inside the ball of center x and
radius r without counting the BS at x [36, Sec. 6.5]. The
equalities in (a) and (b) are due to the motion invariance
of ΨBS. �

Remark 2: The Ripley’s K-function in Definition 2 is non-
regularized because it is not scaled by the density, λBS, of the
motion-invariant PP, ΨBS [36, Sec. 6.5]. �

Remark 3: Let ΦBS be an I-PPP. The non-regularized
K-function in Definition 2 is denoted by ΛΦBS (B (x, r)) =
K

(x)
ΦBS

(r), where B (x, r) is the ball of center x ∈
ΦBS and radius r, and ΛΦBS (·) is the intensity mea-
sure of ΦBS [32, Sec. 2.2]. Since I-PPPs are non-stationary
PPs, the intensity measure depends on the location
x [32, Sec. 2.2]. If ΦBS is a H-PPP, the non-regularized
K-function is ΛΦBS (B (x, r)) = ΛΦBS (B (x = 0, r)) =
λΦBSπr2, which is independent of x. �

Remark 4: Let ΦBS be an I-PPP with intensity measure
ΛΦBS (·). The CDD or F-function of ΦBS at location u ∈ R

2

is F
(u)
ΦBS

(r) = 1 − exp (−ΛΦBS (B (u, r))), where B (u, r)
is the ball of center u and radius r [32, Sec. 2.2]. If ΦBS

is a H-PPP, the F-function is F
(u)
ΦBS

(r) = F
(u=0)
ΦBS

(r) =
1 − exp

(
−λΦBSπr2

)
, which is independent of the

location u. �

III. THE INHOMOGENEOUS DOUBLE

THINNING APPROACH

The approach that we propose for computing Pcov con-
sists of introducing an equivalent abstraction for the system

model detailed in Section II-A that is based on I-PPPs. For
ease of exposition, we first introduce the equivalent network
model in general terms and then describe the IDT approach.
The equivalent network model, in particular, is constituted by
two I-PPPs, Φ(F )

BS and Φ(K)
BS , which are constructed in a very

special way and with the only purpose of approximating the
original motion-invariant PP from the point of view of the
typical user.

A. Cellular Networks Abstraction Modeling Based on I-PPPs

We consider the same system model as in Section II-A with
a single exception: The BSs are modeled as the points of
two independent isotropic I-PPPs, denoted by Φ(F )

BS and Φ(K)
BS ,

with intensity measures Λ
Φ

(F )
BS

(·) and Λ
Φ

(K)
BS

(·), respectively.
Since I-PPPs are non-stationary, the notion of typical user
does not apply anymore. We are interested, on the other hand,
in computing the coverage probability of a probe (or specific)
MT that is located at the origin. The BS serving the probe
MT is assumed to belong to Φ(F )

BS and the interfering BSs are
assumed to belong to Φ(K)

BS . More precisely, by considering the
same cell association criterion as in Section II-C, the serving
BS and the I-PPP, Φ(I)

BS, of interfering BSs can be formulated
as follows:

x
(F )
0 = argmax

x∈Φ
(F )
BS

{1/l (x)}

Φ(I)
BS = Φ(I)

BS

(
x

(F )
0

)

=
{
x ∈ Φ(K)

BS : l (x) > L
(F )
0 = l

(
x

(F )
0

)}
(5)

Remark 5: By construction, the I-PPPs Φ(F )
BS and Φ(K)

BS are
independent. The I-PPPs Φ(F )

BS and Φ(I)
BS are, on the other

hand, only conditionally independent, where the conditioning
is meant upon the location of the serving BS, i.e., x

(F )
0 . In (5),

this conditioning accounts for the cell association criterion
being used and is made explicit with the aid of the notation
Φ(I)

BS = Φ(I)
BS

(
x

(F )
0

)
. �

In the proposed network model, which is based on I-PPPs
whose serving and interfering BSs are defined in (5), the cov-
erage probability of the probe MT at the origin can be
formulated as:

P̃(o)
cov = Pr

⎧⎨
⎩

Ptxg0

/
L

(F )
0

σ2
N +

∑
x∈Φ

(I)
BS

Ptxgx/l (x)
> T

⎫⎬
⎭ (6)

where the superscript (o) highlights that (6) holds for the
probe MT at the origin.

The coverage probability, P̃(o)
cov, in (6) is explicitly formu-

lated in the following lemma.
Lemma 2: An analytical expression of the coverage proba-

bility in (6) is as follows:

P̃(o)
cov =

∫ +∞

0

exp
(
−ξTσ2

N

/
Ptx

)
M̃

I,L
(F )
0

(ξ; T) f̃
L

(F )
0

(ξ) dξ

(7)
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where f̃
L

(F )
0

(·) is the PDF of L
(F )
0 and M̃

I,L
(F )
0

(·;·) is the

Laplace functional of Φ(I)
BS as follows:

f̃
L

(F )
0

(ξ) =
(

ξ

κ

)1/γ 1
γξ

Λ(1)

Φ
(F )
BS

(
B
(

0,

(
ξ

κ

)1/γ
))

× exp

(
−Λ

Φ
(F )
BS

(
B
(

0,

(
ξ

κ

)1/γ
)))

M̃
I,L

(F )
0

(ξ; T) = exp
(
−
∫ +∞

ξ

(
1 +

z

Tξ

)−1( z

κ

)1/γ

× 1
γz

Λ(1)

Φ
(K)
BS

(
B
(

0,
( z

κ

)1/γ
))

dz

)
(8)

and Λ(1)
(·) (B (0, r)) = dΛ(·) (B (0, r))

/
dr is the first-order

derivative of the intensity measure.
Proof : It follows by using the same approach as

in [9]. �
The aim of the proposed IDT approach is to make the

original network model based on the motion-invariant PP
ΨBS and the equivalent network model based on the two
conditionally independent I-PPPs Φ(F )

BS and Φ(I)
BS approxi-

mately the same from the coverage probability standpoint.
In other words, the IDT approach aims to find two suit-
able intensity measures Λ

Φ
(F )
BS

(·) and Λ
Φ

(K)
BS

(·) such that

P̃(o)
cov ≈ Pcov holds for an arbitrary choice of the network

parameters.
The intensity measures Λ

Φ
(F )
BS

(·) and Λ
Φ

(K)
BS

(·) are deter-
mined by taking into account five requirements: i) they need
to depend only on the spatial characteristics of the original
motion-invariant PP, which make them independent, e.g.,
of the transmission scheme and of the path-loss model being
used, ii) they need to be determined by a few parameters
and need to be simple to compute, iii) they need to lead
to a tractable analytical expression of P̃(o)

cov as opposed to
Pcov, iv) they need to lead to an analytical expression of
the coverage that provides insight for system analysis and
design, and v) they need to be applicable to advanced network
models, e.g., that account for spatial blockages and multi-tier
setups (see Sec. V). In the next two sections, we introduce
the proposed intensity measures and the approach to obtain
P̃(o)

cov ≈ Pcov.

B. IDT Approach: Proposed Intensity Measures of the I-PPPs

The intensity measure of an I-PPP is determined by the
intensity function [32, Sec. 2.2]. Let λ

(F )
BS (·) and λ

(K)
BS (·)

be the intensity functions of Φ(F )
BS and Φ(K)

BS , respectively.
Since the considered I-PPPs are isotropic, λ

(F )
BS (·) and λ

(K)
BS (·)

are distance-dependent and angle-independent. The following
holds:

Λ
Φ

(F )
BS

(B (0, r)) = 2π

∫ r

0

λ
(F )
BS (ζ) ζdζ

Λ
Φ

(K)
BS

(B (0, r)) = 2π

∫ r

0

λ
(K)
BS (ζ) ζdζ (9)

We propose different intensity functions for PPs that exhibit
spatial inhibition and aggregation.

1) Spatial Inhibition: Let
(
ǎF, b̌F, čF

)
and

(
ǎK, b̌K, čK

)
be

two triplets of non-negative real numbers such that čF ≥ b̌F ≥
1 and b̌K ≤ čK ≤ 1. The following intensities are proposed:

λ
(F )
BS (r) = λBSčF min

{
(ǎF/čF) r + b̌F

/
čF, 1

}
λ

(K)
BS (r) = λBS min

{
ǎKr + b̌K, čK

}
(10)

2) Spatial Aggregation: Let
(
âF, b̂F, ĉF

)
and

(
âK, b̂K, ĉK

)
be two triplets of non-negative real numbers such that ĉF ≤
b̂F ≤ 1 and b̂K ≥ ĉK ≥ 1. The following intensities are
proposed:

λ
(F )
BS (r) = λBS max

{
−âFr + b̂F, ĉF

}
λ

(K)
BS (r) = λBSb̂K max

{
−
(
âK/b̂K

)
r + 1, ĉK/b̂K

}
(11)

Remark 6: Based on the definitions of the intensity
functions in (10), the I-PPPs Φ(F )

BS and Φ(K)
BS can be

obtained by first generating two H-PPPs with intensity
functions λBSčF and λBS, respectively, and then indepen-
dently thinning the points with retaining probabilities equal
to min

{
(ǎF/čF) r + b̌F

/
čF, 1

}
and min

{
ǎKr + b̌K, čK

}
,

respectively. The constraints on the triplets of parameters(
ǎF, b̌F, čF

)
and

(
ǎK, b̌K, čK

)
allows one to obtain a con-

sistent thinning probability that is less than or equal to one.
A similar comment holds for the definitions of the intensity
functions in (11). �

Remark 7: Besides simplicity and analytical tractability,
the choice of min {·, ·} and max {·, ·} functions for the retain-
ing probabilities in (10) and (11), respectively, has a profound
rationale from the modeling standpoint. From the definition
of min {·, ·} function, the BSs closer to the origin (where
the probe MT is) are retained with a smaller probability.
From the probe MT’s standpoint, thus, the resulting I-PPP
exhibits spatial repulsion. A similar line of thought applies
to the max {·, ·} function, which allows one to model spatial
clustering from the probe MT’s standpoint, since the BSs
closer to the origin are retained with a higher probability. �

Remark 8: A network model based on H-PPPs is a special
case of the model based on I-PPPs with intensity functions
given in (10) and (11). Consider aF > 0, aK > 0, the H-PPP
network model is obtained by setting bF = cF = 1 and bK =
cK = 1 for PPs with repulsion or clustering. �

For ease of writing, the intensity measures
of PPs with spatial repulsion and clustering are
denoted by Λ

Φ
(·)
BS

(
·; ǎ(·), b̌(·), č(·)

)
= Λ̌

Φ
(·)
BS

(·) and

Λ
Φ

(·)
BS

(
·; â(·), b̂(·), ĉ(·)

)
= Λ̂

Φ
(·)
BS

(·), respectively.
The following lemma provides closed-form expressions for

the intensity measures in (9).
Lemma 3: Let Υ (r; a, b, c) be defined as follows:

Υ (r; a, b, c)
= 2πλBS

(
(a/3) r3 + (b/2) r2

)
� (r ≤ (c − b)/a)

+ 2πλBS

(
(c/2) r2 − (c − b)3

/
6a2
)
� (r > (c − b)/a)

(12)
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The intensity measures in (10) can be formulated as
Λ̌

Φ
(·)
BS

(B (0, r)) = Υ
(
r; ǎ(·), b̌(·), č(·)

)
and Λ̂

Φ
(·)
BS

(B (0, r)) =

Υ
(
r;−â(·), b̂(·), ĉ(·)

)
for PPs that exhibit repulsion and clus-

tering, respectively.
In addition, let Υ(1) (r; a, b, c) = dΥ (r; a, b, c)

/
dr be the

first-order derivative of Υ (r; ·, ·, ·):

Υ(1) (r; a, b, c) = 2πλBS

(
ar2 + br

)
� (r ≤ (c − b)/a)

+ 2πλBScr� (r > (c − b)/a) (13)

The first-order derivatives of the intensity measures
are Λ̌(1)

Φ
(·)
BS

(B (0, r)) = Υ(1)
(
r; ǎ(·), b̌(·), č(·)

)
and

Λ̂(1)

Φ
(·)
BS

(B (0, r)) = Υ(1)
(
r;−â(·), b̂(·), ĉ(·)

)
for PPs that

exhibit repulsion and clustering, respectively.
Proof : It follows by inserting (10) and (11) in (9) and

solving the integrals. �
Remark 9: The functions Υ (r; ·, ·, ·) and Υ(1) (r; ·, ·, ·)

in (12) and (13) are continuous for r ≥ 0 and for
every triplet (a, b, c). In particular, they are continuous if
r = (c − b)/a ≥ 0. �

C. IDT Approach: Proposed Criterion for
System Equivalence

From the intensity functions in (10) and (11), two triplets of
parameters need to be estimated for approximating the network
model based on a motion-invariant PP with the network model
based on two conditionally independent I-PPPs. The aim of
this section is to introduce a criterion for estimating these
parameters in order to obtain P̃(o)

cov ≈ Pcov. By direct inspec-
tion of Pcov in (3) and P̃(o)

cov in (7), we evince that a sufficient
condition for P̃(o)

cov ≈ Pcov to hold is that the following two
conditions are fulfilled simultaneously: f̃

L
(F )
0

(ξ) ≈ fL0 (ξ)

and M̃
I,L

(F )
0

(ξ; T) ≈ MI,L0 (ξ; T).

1) Condition f̃
L

(F )
0

(ξ) ≈ fL0 (ξ): f̃
L

(F )
0

(·) and fL0 (·)
are the PDFs of the smallest path-loss of the typical MT
(located at the origin without loss of generality) in the original
network model and of the smallest path-loss of the probe
MT at the origin in the equivalent network model based on
I-PPPs. In the considered system model, the smallest path-loss
is equivalent to the shortest distance. This assumption is not
necessary for the application of the IDT approach, as better
discussed in Section V. It helps, however, to introduce the
essence of the proposed methodology. The PDF of the shortest
distance of a PP to the origin is the first-order derivative
of the CDD introduced in Definition 1. We evince that the
condition f̃

L
(F )
0

(ξ) ≈ fL0 (ξ) is fulfilled if the CDD of
the original motion-invariant PP and the CDD of the I-PPP
Φ(F )

BS are close to each other, i.e., FΨBS (r) ≈ F
(0)

Φ
(F )
BS

(r) =

1 − exp
(
−Λ

Φ
(F )
BS

(B (0, r))
)

, where Λ
Φ

(F )
BS

(B (0, r)) =

Λ̌
Φ

(F )
BS

(B (0, r)) and Λ
Φ

(F )
BS

(B (0, r)) = Λ̂
Φ

(F )
BS

(B (0, r)) if
ΨBS exhibits spatial repulsion and clustering, respectively.

2) Condition M̃
I,L

(F )
0

(ξ; T) ≈ MI,L0 (ξ; T): M̃
I,L

(F )
0

(·; ·)
and MI,L0 (·; ·) are the Laplace functionals of the PPs of
interfering BSs Ψ(I)

BS and Φ(I)
BS defined in (5), respectively.

From (8), M̃
I,L

(F )
0

(·; ·) depends uniquely on the intensity

measure of the I-PPP Φ(K)
BS , i.e., Λ

Φ
(K)
BS

(·). From (4), the com-
putation of MI,L0 (·; ·) necessitates the reduced Palm dis-
tribution of the motion-invariant PP ΨBS. Since the latter
distribution may not be either known or tractable, our approach
for fulfilling the condition M̃

I,L
(F )
0

(ξ; T) ≈ MI,L0 (ξ; T)
is based on a second-order moment approximation of the
spatial interactions among the points of the motion-invariant
PP ΨBS [30, Sec. 7.3]. More precisely, our approach relies
on Remark 3 and Definition 2. From Remark 3, we know that
the intensity measure of an I-PPP coincides with its non-
regularized K-function. As a result, we propose to choose
the intensity measure of Φ(K)

BS such that it coincides with the
non-regularized K-function of ΨBS, i.e., Λ

Φ
(K)
BS

(B (0, r)) ≈
KΨBS (r), where Λ

Φ
(K)
BS

(B (0, r)) = Λ̌
Φ

(K)
BS

(B (0, r)) and

Λ
Φ

(K)
BS

(B (0, r)) = Λ̂
Φ

(K)
BS

(B (0, r)) if ΨBS exhibits spatial
repulsion and clustering, respectively. By using this approach,
we ensure that the average number of interfering BSs viewed
by the typical MT of the original network model is the same
as the average number of interfering BSs viewed by the probe
MT at the origin of the equivalent network model based on
I-PPPs.

Remark 10: The non-regularized K-Function of motion-
invariant PPs provides, by definition, the average number of
BSs viewed by a BS of the PP (whose contribution is ignored)
within a ball centered at the BS and of fixed radius. There
is no ambiguity, however, in saying that the non-regularized
K-Function yields the average number of interfering BSs
viewed by the typical MT. This originates from the properties
of motion-invariant PPs as detailed in [20, Sec. III]. In simple
terms, the BSs of a motion-invariant PP can be translated,
without altering the statistics of the PP, so that the location of
the serving BS is moved to the location of the typical MT. �

Remark 11: Why is the equivalent network model based
on two I-PPPs? Isn’t one I-PPP sufficient? The reason why
the IDT approach is based on two I-PPPs can be under-
stood from the approximations proposed to obtain the inten-
sity measures of the I-PPPs. The intensity measures of
Φ(F )

BS and Φ(K)
BS are obtained from the F-function and non-

regularized K-function of the motion-invariant PP ΨBS. Based
on, e.g., [20, eqs. (10) and (19)] and [23], we observe that
the F-function and non-regularized K-function of repulsive PPs
have opposite trends compared with the same functions of a
H-PPP: The F-function of a repulsive PP is usually greater
than the F-function of a H-PPP, while the K-function of a
repulsive PP is usually smaller than the K-function of a H-PPP.
These conflicting trends, which determine the distribution of
the distances of serving and interfering BSs, are difficult to
model with a single I-PPP. �

Remark 12: In network models where the smallest path-
loss is equivalent to the shortest distance, the proposed equiv-
alent network model may be obtained by using only the I-PPP
obtained from the non-regularized K-function. The serving BS
may, in fact, be obtained by generating a single point (rather
than the complete I-PPP based on the F-function), whose dis-
tance from the probe MT is a random variable with distribution
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TABLE II

F-FUNCTION AND K-FUNCTION OF PPS. EMPIRICAL (EMP.) MEANS
THAT NO CLOSED-FORM IS AVAILABLE AND THAT THE

FUNCTIONS ARE OBTAINED FROM STATISTICAL

DATA GENERATED BY USING R [30]

equal to the F-function. In general, however, the generation
of a complete I-PPP may be still more convenient due to
its simplicity of implementation and generality. In network
models where the smallest path-loss is not equivalent to
the shortest distance, both I-PPPs are needed in order to
account for the distance and the path-loss model and, hence,
to correctly identify the serving BS. An example is the network
model in the presence of spatial blockages that is analyzed in
Section V-A. �

Remark 13: The proposed approximations based on the
F-function and non-regularized K-function are convenient for
two reasons: i) they can be readily estimated from empirical
data sets or by using open-source statistical toolboxes for
analyzing PPs [30]3 and ii) they are available in closed-form
for many PPs that exhibit spatial inhibition and aggregation.
As far as the PPs of interest for this paper are concerned,
Table II summarizes where they can be found. �

In summary, the triplets of parameters that determine
the intensity measures Λ

Φ
(F )
BS

(·) and Λ
Φ

(K)
BS

(·) in Lemma 3
can be obtained by solving the minimization problems
in (14) shown at the bottom of the next page, where
the definitions ΩF =

{(
ǎF, b̌F, čF

)
: čF ≥ b̌F ≥ 1

}
and ΩK =

{(
ǎK, b̌K, čK

)
: b̌K ≤ čK ≤ 1

}
or ΩF ={(

âF, b̂F, ĉF

)
: ĉF ≤ b̂F ≤ 1

}
and ΩK ={(

âK, b̂K, ĉK

)
: b̂K ≥ ĉK ≥ 1

}
hold if the motion-invariant

PP ΨBS exhibits spatial repulsion or clustering, respectively.
Remark 14: The non-linear optimization problem in (14)

aims to minimize the error between the exact (or empirically
estimated) F-function and non-regularized K-function of ΨBS

and the corresponding functions of Φ(F )
BS and Φ(K)

BS , respec-
tively. The errors are, in general, computed over the entire
positive real axis, i.e., for r ≥ 0. If FΨBS (·) and KΨBS (·) are
estimated from empirical data, on the other hand, the errors are
computed for 0 ≤ r ≤ RA, where RA is the largest distance
from the origin of the geographical region of interest, i.e., the
network radius (some examples are available in Table VI).
Equation (14) can be efficiently solved by employing the
function lsqcurvefit that is available Matlab. Further
details are provided in Section VI. �

3Similar to [1], the density of BSs, λBS, needs to be estimated from the
data set, e.g., as described in [30, Sec. 6.2].

IV. TRACTABLE ANALYTICAL FRAMEWORK OF

THE COVERAGE PROBABILITY

With the aid of the IDT approach, we introduce a new
tractable expression of the coverage probability for cellular
networks whose BSs exhibit spatial inhibition and aggregation.
Based on Lemma 3, the analysis of network models with
spatial repulsion and clustering is unified by considering
a generic triplet of parameters

(
a(·), b(·), c(·)

)
and by set-

ting
(
a(·), b(·), c(·)

)
=
(
ǎ(·), b̌(·), č(·)

)
and

(
a(·), b(·), c(·)

)
=(

−â(·), b̂(·), ĉ(·)

)
for PPs that exhibit spatial inhibition and

aggregation, respectively.
The following theorem provides a tractable expression for

P̃(o)
cov in (6). Two case studies are considered: i) the network

is infinitely large and ii) the network has a finite size whose
radius is RA. The second case study is useful for comparing
the analytical frameworks against estimates obtained by using
empirical data, especially for small values of the path-loss
exponent. This is because it is not possible, in many cases,
to obtain or generate data sets for very large geographical
regions.

Theorem 1: Based on the intensity measures in (9)-(11),
P̃(o)

cov in (6) can be formulated as in (15) shown at the bottom
of the next page, where Θ → ∞ and I (ξ) = I∞ (ξ) for
infinite-size networks, Θ → κRγ

A and I (ξ) = IRA (ξ) for
finite-size networks of radius RA, and I∞ (·), IRA (·), UIN (·),
UOUT (·) are defined in Table III.

Proof : See Appendix A. �
Remark 15: From Remark 8, the coverage probability of

H-PPPs follows from (15) by setting bF = cF = 1 and bK =
cK = 1. Throughout this paper, it is denoted by P(H−PPP)

cov . �
Remark 16: The coverage probability in (15) is formulated

in terms of a single integral whose numerical complexity is
not higher than that of currently available frameworks based
on H-PPPs [1]. Since (15) cannot be explicitly computed,
a promising research direction is to develop closed-form
bounds and approximations for P̃(o)

cov in order to simplify
analysis and optimization. �

A. Comparison With Homogeneous Poisson Point Processes

From Remark 8, it follows that network models based on
H-PPPs constitute a special case of network models based
on I-PPPs, i.e., the IDT approach. In this section, we are
interested in comparing the coverage of PPs that exhibit spatial
inhibition and aggregation against the coverage of H-PPPs.
More precisely, we aim to identify sufficient conditions on
the triplets of parameters (aF, bF, cF) and (aK, bK, cK) that
make the coverage probability of cellular networks with spatial
repulsion and clustering better and worse than the coverage
probability of H-PPPs, respectively. The main result is reported
in Proposition 1. Three lemmas used for its proof are provided
as follows.

Lemma 4: The intensity measure of a H-PPP with constant
intensity function λBS is ΛH−PPP (B (0, r)) = πλBSr2 and its
first-order derivative is Λ(1)

H−PPP (B (0, r)) = 2πλBSr.
Proof : It follows from Remark 8 and Lemma 3. �

Lemma 5: Let ΨBS be a motion-invariant PP with
spatial repulsion. Let Λ

Φ
(F )
BS

(
B (0, r) ; ǎF, b̌F, čF

)
and
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TABLE III

AUXILIARY FUNCTIONS USED IN Theorem 1

Λ
Φ

(K)
BS

(
B (0, r) ; ǎK, b̌K, čK

)
be the intensity measures of the

equivalent I-PPPs Φ(F )
BS and Φ(K)

BS obtained by applying the
IDT approach in (14). If čF ≥ b̌F ≥ 1 and b̌K ≤ čK ≤ 1,
then:

Λ̌
Φ

(F )
BS

(B (0, r)) ≥ ΛH−PPP (B (0, r))

Λ̌(1)

Φ
(F )
BS

(B (0, r)) ≥ Λ(1)
H−PPP (B (0, r))

Λ̌
Φ

(K)
BS

(B (0, r)) ≤ ΛH−PPP (B (0, r))

Λ̌(1)

Φ
(K)
BS

(B (0, r)) ≤ Λ(1)
H−PPP (B (0, r)) (16)

Proof : It follows by direct inspection of ε (r) =
Λ

Φ
(·)
BS

(
B (0, r) ; ǎ(·), b̌(·), č(·)

)
− ΛH−PPP (B (0, r)) and of its

first-order derivative computed with respect to r. �

Lemma 6: Let ΨBS be a motion-invariant PP with
spatial clustering. Let Λ

Φ
(F )
BS

(
B (0, r) ; âF, b̂F, ĉF

)
and

Λ
Φ

(K)
BS

(
B (0, r) ; âK, b̂K, ĉK

)
be the intensity measures of

the equivalent I-PPPs Φ(F )
BS and Φ(K)

BS obtained by applying
the IDT approach in (14). If ĉF ≤ b̂F ≤ 1 and b̂K ≥ ĉK ≥ 1,
then:

Λ̂
Φ

(F )
BS

(B (0, r)) ≤ ΛH−PPP (B (0, r))

Λ̂(1)

Φ
(F )
BS

(B (0, r)) ≤ Λ(1)
H−PPP (B (0, r))

Λ̂
Φ

(K)
BS

(B (0, r)) ≥ ΛH−PPP (B (0, r))

Λ̂(1)

Φ
(K)
BS

(B (0, r)) ≥ Λ(1)
H−PPP (B (0, r)) (17)

Proof : It follows similar to the proof of Lemma 5. �

(aF, bF, cF) = argmin
(a,b,c)∈ΩF

{∫ +∞

0

[
FΨBS (r) −

(
1 − exp

(
−Λ

Φ
(F )
BS

(B (0, r) ; a, b, c)
))]2

dr

}

(aK, bK, cK) = arg min
(a,b,c)∈ΩK

{∫ +∞

0

[
KΨBS (r) − Λ

Φ
(K)
BS

(B (0, r) ; a, b, c)
]2

dr

}
(14)

P̃(o)
cov =

∫ κ((cF−bF)/aF)γ

0

exp
(
−ξTσ2

N

/
Ptx

)
exp (−I (ξ))UIN (ξ) dξ

+
∫ Θ

κ((cF−bF)/aF)γ

exp
(
−ξTσ2

N

/
Ptx

)
exp (−I (ξ))UOUT (ξ) dξ (15)
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1/G∞ = πλBS

∫ (čK−b̌K)/ǎK

0

(
xγ

γ − 3

(
čK − b̌K

)3−γ

ǎ2−γ
K

+
γ − 2
γ − 3

ǎKx3 + b̌Kx2

)

F (x) dx

+ πλBSčK

∫ +∞

(čK−b̌K)/ǎK

x2
F (x) dx (19)

Remark 17: The findings reported in Lemma 5 and
Lemma 6 provide relevant insight and intuition on the impact
of spatial repulsion and clustering among the BSs of cellular
networks. In the presence of spatial repulsion, Lemma 5 states
that, under some assumptions on the parameters, the CDD
of I-PPPs is greater than the CDD of H-PPPs. This follows
from Definition 1 and the condition Λ̌

Φ
(F )
BS

(·) ≥ ΛH−PPP (·).
In addition, Lemma 5 states that the average number of inter-
fering BSs viewed by the typical MT in the presence of spatial
repulsion is smaller than the average number of interferers in
network models with complete spatial randomness (i.e., based
on H-PPPs). This follows from Definition 2 and the condition
Λ̌

Φ
(K)
BS

(·) ≤ ΛH−PPP (·). Compared with H-PPPs, in other
words, network models based on PPs with spatial repulsion
result, from the standpoint of the typical MT, in the serving
BS being closer to the typical MT and in a smaller number,
on average, of interfering BSs around it. This is consistent
with Remark 11 and confirms a hidden intuition on the impact
of spatial repulsion in cellular networks. Lemma 6, on the
other hand, provides opposite conclusions about the impact of
spatial clustering: Compared with H-PPPs, the serving BS is
more distant from the typical MT and the average number
of interferers around it is larger. In Section VI, we show
that the conditions on the parameters stated in Lemma 5
and Lemma 6 hold for several empirical cellular network
deployments available in the literature. �

Proposition 1: Let P̃(o)
cov be the coverage probability in

Theorem 1 and P(H−PPP)
cov be the coverage probability of a

H-PPP according to Remark 15. Then, P̃(o)
cov ≥ P(H−PPP)

cov

under the assumptions of Lemma 5 and P̃(o)
cov ≤ P(H−PPP)

cov

under the assumptions of Lemma 6.
Proof : See Appendix B. �

Remark 18: Proposition 1 yields the conditions that need to
be fulfilled by an I-PPP to be stochastically greater or smaller
than a H-PPP according to the coverage probability order [40].
Appendix B, in particular, provides a formal proof of the
stochastic ordering that exists between I-PPPs and H-PPPs,
as a function of the triplet of parameters

(
ǎF, b̌F, čF

)
and(

ǎK, b̌K, čK

)
. �

B. AS-A-PPP: Simplified Expression of the Deployment Gain

In [18] and [19], the author introduces the ASAPPP
approach, which consists of obtaining the coverage proba-
bility of repulsive PPs through a right-shift of the cover-
age probability under the H-PPP model. The right-shift to
apply is termed asymptotic deployment gain. In this section,
we show that the asymptotic deployment gain of the network
model based on I-PPPs has a simple analytical formula-
tion. For simplicity, we focus our attention on the original

definition of the asymptotic deployment gain, henceforth
denoted by G∞, for interference-limited cellular networks,
i.e., for σ2

N = 0. From [18, eq. (5)], G∞ can be formulated as
G∞ = (MISRIDT/MISRH−PPP)−1, where MISR stands for
Mean Interference-to-Signal Ratio, MISRH−PPP = 2/(γ − 2)
for H-PPPs and the following holds for I-PPPs with spatial
repulsion:

MISRIDT =
∫ +∞

0

xγ

(∫ +∞

x

y−γΛ̌(1)

Φ
(K)
BS

(B (0, y)) dy

)

×Λ̌(1)

Φ
(F )
BS

(B (0, x)) exp
(
−Λ̌

Φ
(F )
BS

(B (0, x))
)

dx

(18)

The following proposition provides us with a tractable
expression of G∞ based on (18).

Proposition 2: The asymptotic deployment gain G∞ can be
formulated as in (19) shown at the top of this page, where

F (x) = Λ̌(1)

Φ
(F )
BS

(B (0, x)) exp
(
−Λ̌

Φ
(F )
BS

(B (0, x))
)

.

Proof : It follows by inserting (12) and (13) in (18), and
by computing the inner integral. �

Remark 19: The analytical expression of G∞ in (19) holds
for γ �= 3. The setup γ = 3 can be obtained from (18) as a
special case. For brevity, the final formula is not reported in
the present paper. �

The asymptotic deployment gain in (19) may be further
simplified and studied as a function of the triplets

(
ǎF, b̌F, čF

)
and

(
ǎK, b̌K, čK

)
. This is, however, beyond the scope of the

present paper. Our aim is to show an important application of
the proposed IDT approach for modeling cellular networks:
The simple calculation of G∞ under the proposed modeling
approach, as opposed to the general definition based on the
Palm measure [25]. The generalization of (19) to multi-tier
and other network models can be obtained by applying the
methods discussed in Section V.

V. GENERALIZATIONS

In this section, we generalize the IDT approach for appli-
cation to system models that account for spatial blockages
and multi-tier network deployments. Due to space limitations,
we focus our attention only on the computation of the coverage
probability. It can be shown, however, that the findings in
Lemma 5, Lemma 6, and Proposition 1 apply unaltered to the
system model with spatial blockages. The proofs follow the
same rationale as the methods reported in Section IV-A.

A. Cellular Networks in the Presence of Spatial Blockages

Due to its mathematical tractability yet accuracy for
modeling spatial blockages, we adopt the distance-dependent
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TABLE IV

AUXILIARY FUNCTIONS USED IN Theorem 2 (DF = (cF − bF) /aF AND DK = (cK − bK) /aK )

single-ball blockage model in [9]. In particular, each BS-to-
MT0 link of length r = ‖x‖, where x is the location of
a generic BS, can be either in Line-Of-Sight (LOS) or in
Non-Line-Of-Sight (NLOS) with a probability that depends
only on the distance r. Blockage conditions between different
links are assumed to be mutually independent. More precisely,
the probability that a link of length r is in LOS is plos (r) =
q
(in)
los � (r ≤ DB) + q

(out)
los � (r > DB), where DB is the radius

of the so-called LOS-ball that depends on the area covered
by blockages, and 0 ≤ q

(in)
los ≤ 1 and 0 ≤ q

(out)
los ≤ 1

are the probabilities that links of length smaller and larger
than DB, respectively, are in LOS. The probability that the
same links are in NLOS is pnlos (r) = q

(in)
nlos� (r ≤ DB) +

q
(out)
nlos � (r > DB), with plos (r) + pnlos (r) = q

(in)
los + q

(in)
nlos =

q
(out)
los +q

(out)
nlos = 1 for r ≥ 0. The path-loss of LOS and NLOS

links is llos (x) = κlos‖x‖γlos and lnlos (x) = κnlos‖x‖γnlos ,
respectively, where (κlos, κnlos) and (γlos, γnlos) have the same
meaning as in Section II-B.

The following theorem provides us with a tractable expres-
sion of the coverage probability in (6), by considering a

network model based on I-PPPs, a single-ball blockage model,
and a cell association criterion based on the smallest path-loss.
Since the BS-to-MT0 links can be either in LOS or NLOS,
the serving BS is not necessarily the nearest BS to the probe
MT (see Section III-C and Remark 12). In particular, P̃(o)

cov

in (6) is formulated for two generic triplets of parameters
(aF, bF, cF) and (aK, bK, cK) and, hence, it is applicable to
network models with spatial inhibition and aggregation.

Theorem 2: In the presence of spatial blockages, P̃(o)
cov in (6)

can be formulated as follows:

P̃(o)
cov =

∫ Θnlos

0

exp
(
−ξTσ2

N

/
Ptx

)
× exp (−2πλBS (Qlos (ξ)+Qnlos (ξ)))U0 (ξ) dξ (20)

where Θnlos → ∞ and Θnlos = κnlosR
γnlos
A for infinite-

size and finite-size networks, respectively, and the rest of the
functions are provided in Table IV for s ∈ {los, nlos}.

Proof : It follows similar to the proof of Theorem 1,
since the superposition of two independent I-PPPs is an I-PPP
whose intensity measure is the sum of the intensity measures
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SINR =

(
PT1gT1,0

/
lT1

(
x

(F )
T1,0

))
� (PT1/lT1 (xT1,0) ≥ PT2/lT2 (xT2,0))

σ2
N +

∑
x∈Φ

(I)
T1

�
x
(F )
T1,0

�PT1gT1,x/lT1 (x) +
∑

x∈Φ
(I)
T2

�
x
(F )
T2,0

�PT2gT2,x/lT2 (x) + PT2gT2,x

/
lT2

(
x

(F )
T2,0

)

+

(
PT2gT2,0

/
lT2

(
x

(F )
T2,0

))
� (PT2/lT2 (xT2,0) > PT1/lT1 (xT1,0))

σ2
N +

∑
x∈Φ

(I)
T2

�
x
(F )
T2,0

�PT2gT2,x/lT2 (x) +
∑

x∈Φ
(I)
T1

�
x
(F )
T1,0

�PT1gT1,x/lT1 (x) + PT1gT1,x

/
lT1

(
x

(F )
T1,0

) (21)

of the two I-PPPs. In particular, the intensity measures of
the I-PPPs constituted by the links in LOS and NLOS are
obtained from (9) by replacing λ

(·)
BS (ζ) with λ

(·)
BS (ζ) ps (ζ)

for s ∈ {los, nlos}. �

B. Multi-Tier Cellular Networks

In this section, we consider a two-tier cellular network.
The tiers are denoted by T1 and T2. The BSs of tiers T1
and T2 belong to two independent and motion-invariant PPs
that are denoted by ΨT1 and ΨT2, respectively. The system
model is the same as in Section II for single-tier cellular
networks, with a few exceptions. Let x ∈ ΨT be the location
of a BS of tier T ∈ {T1, T2}. The path-loss at location x
is lT (x) = κT ‖x‖γT , where κT and γT are the path-loss
constant and slope of tier T similar to Section II-B. The
transmit power of tier T is PT = δT Ptx, where δT ≥ 0.
A similar notation is employed for the other system parameters
introduced in Section II. The cell association criterion is
based on the highest average received power. More precisely,
let xT ,0 be the location of the BS of tier T that provides
the smallest path-loss to the typical MT and that is com-
puted by using (1). Then, the location of the serving BS of
the typical MT of the two-tier cellular network is xT1,0 if
PT1/lT1 (xT1,0) ≥ PT2/lT2 (xT2,0) and xT2,0 otherwise. For
ease of writing, we introduce the shorthand κ̄T = κT /δT for
T ∈ {T1, T2}.

We apply the IDT approach for modeling the locations
of the BSs of ΨT1 and ΨT2. In particular, each motion-
invariant PP is approximated by using two I-PPPs, which,
similar to Section III, are denoted by

(
Φ(F )

T1 , Φ(K)
T1

)
and(

Φ(F )
T2 , Φ(K)

T2

)
. The parameters of each pair of I-PPPs are

obtained as described in Section III. In simple terms, each
motion-invariant PP is approximated, from the standpoint of
the typical MT, with two I-PPPs as if it was the only tier
of the cellular network. The BS of tier T ∈ {T1, T2} that
provides that smallest path-loss among all the BSs of tier
T and the corresponding I-PPP of conditionally independent
interfering BSs are defined similar to (5), and are denoted
by x

(F )
T ,0 ∈ Φ(F )

T and Φ(I)
T = Φ(I)

T

(
x

(F )
T ,0

)
⊆ Φ(K)

T . Similar
to (6), the coverage probability of a two-tier cellular network
is P̃(o)

cov = Pr {SINR > T}, where the SINR is in (21) shown
at the top of this page.

Remark 20: The direct inspection of the SINR in (21)
highlights the fundamental difference between the proposed
IDT approach based on conditionally independent I-PPPs and

the conventional modeling approach based on H-PPPs. Let us
consider the first line of the SINR in (21), i.e., the probe MT
is served by a BS that belongs to tier T1. Similar comments
apply to the second line of (21). The interference in the
denominator is the sum of three terms: i) the second addend
in the denominator is the interference that originates from the
BSs of tier T1, whose path-loss is greater than the path-loss
of the serving BS at location x

(F )
T1,0, ii) the third addend in

the denominator is the interference that originates from the
BSs of tier T2, whose path-loss is greater than the path-loss
of the BS of tier T2 that is at location x

(F )
T2,0, instead of at

location x
(F )
T1,0 as is the case in models based on H-PPPs, and

iii) the fourth addend in the denominator is the interference
that originates from the BS of tier T2 at location x

(F )
T2,0, which

is not treated separately in models based on H-PPPs. These
differences with respect to spatial models based on H-PPPs are
specific of the IDT approach and are necessary because the
serving BS and the interfering BSs of each tier are obtained
from conditionally independent I-PPPs with different spatial
inhomogeneities. In models based on H-PPPs, on the other
hand, all the BSs are generated from a single H-PPP. In the
IDT approach, these differences in the third and fourth term of
the denominator of the SINR ensure that the path-loss of the
interfering BSs that belong to Φ(I)

T2

(
x

(F )
T2,0

)
is not smaller than

the path-loss of the BS at location x
(F )
T2,0, even if it is not the

serving BS of the two-tier cellular network. This condition is
essential for appropriately reproducing the spatial interactions
among the BSs of the original motion-invariant PP. Stated
differently, the SINR in (21) is conditioned upon the locations
x

(F )
T1,0 and x

(F )
T2,0, while in spatial models based on H-PPPs the

conditioning is needed only upon the location of the serving
BS, i.e., either upon x

(F )
T1,0 or x

(F )
T2,0 only. �

The following theorem yields the coverage probability of
the two-tier cellular network based on (21).

Theorem 3: In two-tier cellular networks, P̃(o)
cov in (21) can

be formulated as in (22) shown at the bottom of the next
page, where, for T ∈ {T1, T2}, ΘT → ∞ and ΘT =
κ̄T RγT

A for infinite-size and finite-size networks, respectively,
W1 (ξ1, ξ2) = ST1 (ξ1, ξ1) +ST2 (ξ2, ξ1), W2 (ξ1, ξ2) =
ST1 (ξ1, ξ2)+ST2 (ξ2, ξ2), and the rest of the functions are
given in Table V for T ∈ {T1, T2}.

Proof : It follows similar to the proof of Theorem 1,
by taking into account that the addends in the denomina-
tor of the SINR are independent by conditioning on x

(F )
T1,0

and x
(F )
T2,0. �



5174 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 8, AUGUST 2018

TABLE V

AUXILIARY FUNCTIONS USED IN Theorem 3 (UIN (·), UOUT (·), AND I(·) (·) ARE DEFINED IN TABLE III)

TABLE VI

EMPIRICAL PPs (ISD = INTER-SITE DISTANCE). THEIR PARAMETERS ARE DEFINED IN THE REFERENCES

Remark 21: Compared with Theorem 1 and Theorem 2,
the coverage probability in (22) is formulated in terms of a
two-fold integral. This originates from Remark 20 and, more
precisely, from the fact that the SINR in (21) depends on the
locations of the BSs of each tier that provide, in their own tier,
the smallest path-loss to the probe MT. Simple bounds may
be used to obtain a single-integral expression of the coverage
probability. This study is, however, outside the scope of this
paper due to space limitations. In addition, the computation
of (22) is sufficiently simple for two-tier networks. Simple
bounds may, on the other hand, be needed if more than two
tiers are considered. In general, the number of fold integrals
coincides with the number of tiers. �

Remark 22: In Theorem 2 and Theorem 3, the spatial
inhomogeneities of the I-PPPs are the same as in Theorem 1.
They depend only on the spatial characteristics of the original

motion-invariant PP and are independent of, e.g., blockages
and LOS/NLOS channel parameters. �

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we illustrate several numerical results that
substantiate the applicability of the IDT approach for the
modeling and analysis of practical cellular network deploy-
ments. The network deployments considered in our study are
reported in Table VI. The simulation setup is summarized
in Table VII. Table VIII reports the algorithm used for
simulating the IDT approach in the general case of a two-tier
cellular network. Table IX and Table X provide the triplets of
parameters (aF, bF, cF) and (aK, bK, cK) of the IDT approach
that correspond to the PPs in Table VI and that exhibit spatial
inhibition and spatial aggregation, respectively. These triplets

P̃(o)
cov =

∫ ΘT1

0

(∫ ΘT2

ξ1

e−ξ1Tσ2
N/Ptx(1 + T (ξ1/ξ2))

−1
e−W1(ξ1,ξ2)UT2,0 (ξ2) dξ2

)
UT1,0 (ξ1) dξ1

+
∫ ΘT2

0

(∫ ΘT1

ξ2

e−ξ1Tσ2
N/Ptx(1 + T (ξ2/ξ1))

−1
e−W2(ξ1,ξ2)UT1,0 (ξ1) dξ1

)
UT2,0 (ξ2) dξ2 (22)
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TABLE VII

SETUP OF PARAMETERS (UNLESS OTHERWISE STATED)

TABLE VIII

SIMULATION OF THE IDT APPROACH (TWO-TIER, PPs
WITH REPULSION OR CLUSTERING)

of parameters are obtained by solving (14). As mentioned in
Remark 14, the optimization problem in (14) is solved with
the aid of the lsqcurvefit function that is available in
Matlab. Since the solution of (14) depends on the initialization
point of the algorithm, no general conclusions about the global
optimality of the solution can be drawn. There may exist

Fig. 1. F-function and non-regularized K-function of GPP-Urban (β = 0.9).
Markers: Monte Carlo simulations. Solid lines: IDT approach from (14).

multiple triplets of parameters that provide sufficiently good
estimates for the F-function and non-regularized K-function.
The triplets of parameters reported in Table IX and Table X
are obtained by solving (14) for several random starting points
of the search and by choosing the solution that provides the
smallest error value. It is worth noting that the triplets of
parameters reported in Tables IX and X are expressed in
terms of a large number of decimal figures, as provided by
Matlab to us. An important issue is to study the number of
significant figures that are necessary to retain a good accuracy.
Even though this comprehensive study is outside the scope of
the present paper, our empirical trials have shown that three4

significant figures may be sufficient to estimate the coverage
probability in the considered case studies. By direct inspection
of Table IX and Table X, we evince, notably, that all the triplets
of parameters satisfy the constraints stated in Lemma 5 and
Lemma 6.

In Fig. 1, we compare the F-function and non-regularized
K-function of the original PP against those obtained by using
the IDT approach. The curve labelled “Empirical” is obtained
by generating the data set in Table VI (GPP-Urban with
β = 0.9) with the aid of the simulation method in [46].
The curve labelled “PPP-IDT” is obtained by using the
triplets of parameters, (aF, bF, cF) and (aK, bK, cK), reported
in Table IX. We note an almost perfect overlap between the
curves. The results, in addition, are in agreement with the
analytical expressions in [20]. In Fig. 2, we consider a GPP
and depict the triplet of parameters (aF, bF, cF) as a function
of β. The figure is obtained by solving (14) for different
values of β and plotting the outcome. The best polynomial
fitting of sixth degree is shown as well, along with the set
of polynomial coefficients. Figure 2 brings to our attention
that the optimization problem in (14) may be solved just
once as a function of some sample values for the parameters
that determine the spatial characteristics of the PP of interest.
With these empirical samples at hand, the analytical relation

4Leading zeros are considered to be never significant.
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TABLE IX

PARAMETERS OF THE IDT APPROACH (SPATIAL INHIBITION). ǎ(·) IS MEASURED IN 1/METER

between the triplet of parameters (a, b, c) may be obtained
through polynomial fitting and then used for further analysis.
This confirms, once again, the usefulness of the proposed IDT
approach.

The numerical results of Pcov are reported in Figs. 3-11,
by considering single-tier, single-tier with spatial blockages,
and two-tier cellular network models. In each figure, Monte
Carlo simulations are compared against the analytical frame-
works in Theorems 1-3. As far as the system setups with

a small path-loss exponent (γ = 2.5 or γlos = 2.5) are
concerned, the analytical frameworks for finite-size networks
are employed and RA is set according to the data set being
considered. In all the other cases, the analytical frameworks
for infinite-size networks are used. Three curves are shown in
each figure: i) the curve labelled “Empirical (R)” is obtained
by generating the data sets listed in Table VI by using R [30],
as described in Table VII. The data sets are imported in Matlab
and the coverage is obtained through Monte Carlo simulations.
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TABLE X

PARAMETERS OF THE IDT APPROACH (SPATIAL AGGREGATION). â(·) IS MEASURED IN 1/METER

Fig. 2. Triplet of parameters
�
ǎF, b̌F, čF

�
for a GPP as a function of β. The

parameter ǎF is multiplied by 1000. The table provides the best polynomial
fitting of sixth order, e.g., ǎF =

�6
n=0 qnβn. Markers: Solution of (14).

Solid lines: Best polynomial fitting.

The data sets of the GPP are obtained by using the simulation
method in [46]; ii) the curve labelled “PPP-IDT” is obtained
by using the IDT approach with the triplets of parameters listed
in Table IX and Table X. Monte Carlo simulations are obtained
in Matlab by using the algorithm reported in Table VIII. The
analytical frameworks are computed with Mathematica; and
iii) the curve labelled “PPP-H” corresponds to the benchmark
cellular network deployments where the BSs are distributed
according to H-PPPs. The analytical frameworks are obtained
from Theorems 1-3 according to Remark 8. As far as two-tier
cellular networks are concerned, in particular, two independent
H-PPPs of the same densities as the original motion-invariant
PPs are considered. Figure 3 shows the coverage probability
for its entire range of values, i.e., [0, 1], and confirms the good
accuracy offered by the IDT approach. To better highlight the
gap between the curves labelled PPP-IDT and PPP-H, the other
figures depict only the main body of the coverage probability.

Fig. 3. Pcov of GPP-Urban (β = 0.9). Markers: Monte Carlo simulations.
Solid lines: Analytical frameworks in Theorem 1.

Fig. 4. Pcov of MCPP. Markers: Monte Carlo simulations. Solid lines:
Analytical frameworks in Theorem 1.

From Figs. 4-11, we evince that the IDT approach is
accurate, tractable, and capable of reproducing the spatial
interactions of several PPs widely used for modeling the
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Fig. 5. Pcov of GPP-Rural (β = 0.375) and GPP-Urban (β = 0.9). Markers:
Monte Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.

Fig. 6. Pcov of DPP-Cauchy (Houston). Markers: Monte Carlo simulations.
Solid lines: Analytical frameworks in Theorem 1.

Fig. 7. Pcov of DPP-Gaussian (LA). Markers: Monte Carlo simulations.
Solid lines: Analytical frameworks in Theorem 1.

locations of BSs. It is worth mentioning that these promising
findings do not imply the universal applicability of the IDT
approach to any PPs that may be available in the open technical
literature. We believe, e.g., that there may exist PPs for which

Fig. 8. Pcov of Square-Lattice (ISD = 100m, 300m). Markers: Monte Carlo
simulations. Solid lines: Analytical frameworks in Theorem 1.

Fig. 9. Pcov of Perturbed-Square-Lattice (ISD = 100m). Markers: Monte
Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.

Fig. 10. Pcov of LGCP. Markers: Monte Carlo simulations. Solid lines:
Analytical frameworks in Theorem 1.

the retaining probabilities to use may be different from those
reported in (10) and (11). The results reported in the present
paper provide, however, the indisputable evidence that the
proposed IDT approach is sufficiently accurate, general, and
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Fig. 11. Pcov of PHP. Markers: Monte Carlo simulations. Solid lines:
Analytical frameworks in Theorem 1.

Fig. 12. Pcov of DPP-Cauchy (Houston) & GPP (Urban, β = 0.9) and
Square-Lattice (ISD = 100 m) & GPP (Urban, β = 0.9). Setup: γ = 3.5.
Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in
Theorem 3.

Fig. 13. Pcov of GPP (Urban, β = 0.925) and LGCP (Urban). Setup: γlos =

2.5, γnlos = 3.5, DB = 109.8517 m, q
(in)
los = 0.7196, q

(out)
los = 0.0002.

Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in
Theorem 2.

analytically tractable for modeling, studying, and optimiz-
ing cellular network deployments whose BSs are distributed
according to several empirically validated PPs.

VII. CONCLUSION

In the present paper, we have introduced a new tractable
approach for modeling and analyzing cellular networks where
the locations of the BSs exhibit some degree of spatial
interaction, i.e., repulsion or clustering. The proposed IDT
approach is based on the theory of I-PPPs, and it is shown
to be tractable and insightful. Tractability and accuracy have
been substantiated by using several data sets for the loca-
tions of cellular BSs that are available in the literature. The
IDT approach may be applied in different ways to simplify
the analysis and optimization of cellular networks. A non-
exhaustive list of potential uses for system-level analysis is
the following.

a) To use it as an approximation of general PPs: If a
PP is not analytically tractable but its F-function and non-
regularized K-function are available in a computable form,
the IDT approach may be used to approximate the network
panorama of the typical user and to obtain a tractable expres-
sion of the coverage probability that may be studied as a
function of many radio access technologies.

b) To use it as a tractable model whose parameters are
obtained from empirical data: If the PP model is unknown and
the analysis can be based only on empirical data sets for the
locations of the BSs, the IDT approach may be applied for
system-level analysis and optimization by simply estimating
the F-function and the non-regularized K-function from the
empirical data set. This may be done by using the Fest
function [44, p. 483] and the Kest function [44, p. 683]
that are available in the spatstat package of the R software
environment for statistical computing and graphics.

c) To use it to simplify the computation of relevant
performance metrics: As discussed in Section IV-B, the IDT
approach may be used to simplify the computation of rele-
vant performance metrics that quantify the impact of spatial
repulsion and clustering in cellular networks.

d) To use it as a new parametric approach for modeling
and optimizing cellular networks: The IDT approach may be
considered to be a spatial model on its own, which may allow
one to generate PPs with different kinds of spatial interactions.
The triplets of parameters (aF, bF, cF) and (aK, bK, cK) may
not be obtained from the F-function and non-regularized
K-function of other PPs, but they may be considered as free
parameters as a function of which the network performance
can be studied and optimized. One may compute the best
triplets that optimize the coverage probability under some
communication constraints and then use them for optimal
network planning.

Based on these potential applications, we argue that the IDT
approach may constitute an efficient alternative to employing
system-level simulations for analyzing and optimizing cellular
networks. The reason is that the proposed equivalent system
based on I-PPPs depends only on the network geometry. This
implies that the triplets of parameters that determine the spatial
inhomogeneities of the equivalent network model need to be
determined just once for a given network deployment, while
they can be used to formulate several optimization problems
in order to identify the best communication technologies and
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protocols to be employed in cellular networks. Usually, this is
a more efficient approach than using brute-force system-level
simulations.

In conclusion, we believe that the IDT approach may have
wide applicability to the modeling and design of cellular
networks, e.g., to study the advantages and limitations of
emerging radio access technologies by taking the spatial inter-
actions of practical network topologies into account. There
are many possible generalizations of the theories proposed
in the present paper, which include, but are not limited to,
the impact of different path-loss models [47], the analysis
of uplink cellular networks [37], the optimization of spectral
efficiency and energy efficiency [38], the analysis of the spatial
correlation between the locations of BSs and MTs [48], [49].

APPENDIX A
PROOF OF THEOREM 1

The proof follows by inserting (12) and (13) in (7), and
by computing the integral in (8) with the aid of the fol-
lowing notable integrals (υ1 (x) = 2F1 (1,−n/γ, 1 − n/γ, x),
υ2 (x) = 2F1 (1, n/γ, 1 + n/γ, x)):

J1 (z) =
∫ +∞

A

(1 + t/θ)−1 (z/γ) tn/γ−1dt

= − (z/n)An/γ (1 − υ1 (−θ/A)) for γ > n

J2 (z) =
∫ B

A

(1 + t/θ)−1 (z/γ) tn/γ−1dt

= (z/n) Bn/γυ2 (−B/θ) − (z/n)An/γυ2 (−A/θ)
(23)

APPENDIX B
PROOF OF PROPOSITION 1

Let us consider the case study when ΨBS exhibits spatial
inhibition. The case study when ΨBS exhibits spatial aggre-
gation can be proved by using a similar line of thought and,
hence, the details are omitted for brevity. By applying some
changes of variable and by adopting a simpler notation for ease
of writing, P̃(o)

cov = PI and P(H−PPP)
cov = PH can be written

as follows:

PI =
∫ +∞

0

e−ηζγMI (ζ) fI (ζ) dζ

PH =
∫ +∞

0

e−ηζγMH (ζ) fH (ζ) dζ (24)

where η = Tκσ2
N

/
Ptx, and the subscripts I and H are referred

to the network models based on I-PPPs (the IDT approach) and
H-PPPs, respectively. By introducing the shorthand notation
Λ

Φ
(·)
BS

(B (0, ζ)) = Λ(·) (ζ) and Λ(1)

Φ
(·)
BS

(B (0, ζ)) = Λ(1)
(·) (ζ),

the following holds: fI (ζ) = Λ(1)
F (ζ) exp (−ΛF (ζ)),

MI (ζ) = exp
(
−
∫ +∞

ζ

(
1 + (y/ζ)γT−1

)−1Λ(1)
K (y)dy

)
,

ΛH (ζ) = πλBSζ2, Λ(1)
H (ζ) = 2πλBSζ, fH (ζ) =

Λ(1)
H (ζ) × exp (−ΛH (ζ)) = 2πλBSζ exp

(
−πλBSζ2

)
, and

MH (ζ) = exp
(
−
∫ +∞
ζ

(
1 + (y/ζ)γT−1

)−1Λ(1)
H (y)dy

)
=

πλBSζ2 (2F1 (1,−2/γ, 1 − 2/γ,−T) − 1).

If b̌K ≤ čK ≤ 1, from Lemma 5, we have Λ(1)
K (ζ) ≤

Λ(1)
H (ζ) for ζ ≥ 0. This implies MI (ζ) ≥ MH (ζ) for ζ ≥ 0.

As a result, the following Lower-Bound (LB) for PI holds:

PI ≥ P(LB)
I =

∫ +∞

0

e−ηζγMH (ζ) fI (ζ) dζ

(a)
=
∫ +∞

0

(
−χ(1) (ζ)

)
(1 − exp (−ΛF (ζ))) dζ

(25)

where (a) follows by applying the integration by parts formula
and by introducing the functions χ (ζ) = e−ηζγMH (ζ) ≥ 0
and χ(1) (ζ) = dχ (ζ)/dζ ≤ 0, where the inequalities hold for
ζ ≥ 0.

If b̌F ≥ čF ≥ 1, from Lemma 5, we have Λ(1)
F (ζ) ≥

Λ(1)
H (ζ) for ζ ≥ 0. This implies 1 − exp (−ΛF (ζ)) ≥

1 − exp (−ΛH (ζ)) for ζ ≥ 0. As a result, the following LB
for P(LB)

I holds:

PI ≥ P(LB)
I =

∫ +∞

0

(
−χ(1) (ζ)

)(
1 − e−ΛF (ζ)

)
dζ

≥
∫ +∞

0

(
−χ(1) (ζ)

)(
1 − e−ΛH(ζ)

)
dζ

(b)
= PH (26)

where (b) follows from PH in (24) by applying the integration
by parts formula similar to (a) in (25). In summary, the
condition PI ≥ PH is proved.
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