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Remote Estimation of Correlated Sources under

Energy Harvesting Constraints

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—Remote estimation with an energy harvesting sensor
with a limited data and energy buffer is considered. The
sensor node observes an unknown temporally correlated field
and communicates its observations to a remote fusion center
using the energy it harvested. The fusion center employs linear
minimum mean-square error (LMMSE) estimation to reconstruct
the unknown field. We provide performance guarantees for the
estimation error under a block transmission scheme, where at
each transmission block, data and energy buffers are completely
emptied. Our bounds provide insights into how statistical prop-
erties of the energy harvesting process and buffer sizes may
affect the estimation error. In particular, these bounds suggest
insensitivity of the performance to buffer sizes for signals with
low degree of freedom and suggest performance improvements
with increasing buffer sizes for signals with relatively higher
degree of freedom. Depending only on the mean, variance and
finite support of the energy arrival process, these results provide
insights for the energy and data buffer sizes for deployment in
future energy harvesting wireless sensing systems.

Index Terms—energy harvesting, wireless sensor networks,
distortion minimization, correlated signals

I. INTRODUCTION

With the ever increasing number of connected devices,

where over 16 billion devices are expected to be connected

by 2022, powering of these devices and enabling energy

autonomous networked systems is a central concern [1].

Here, energy harvesting provides a promising approach. In

energy harvesting (EH) systems, devices are equipped with

capabilities to collect energy from renewable sources, such as

solar power. EH capabilities not only enable efficient usage of

energy sources but also offer enhanced mobility and prolonged

network life-times [2–5].

Feasibility of energy harvesting approaches have been inves-

tigated and favourable results are obtained for various scenar-

ios, including harvesting from solar energy, mechanical energy

sources and radio-frequency (RF) energy [3–5]. Devices with

various energy harvesting modalities have recently become

commercially available including solar [6], thermoelectric [7]

and vibrations [8]. Deployments that utilize energy harvesting

solutions have already started to appear for a wide range of

applications, including smart buildings and industrial sites [6–

8]. Relevant standardisation and commercial solution efforts
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that target low power consumption for sensor nodes for

internet of things solutions, such as EnOcean wireless standard

(ISO/IEC 14543-3-1X), LoRa (https://lora-alliance.org) and

SigFox (https://www.sigfox.com) have recently emerged.

In parallel to these promising developments, there has been

a significant effort to understand information transfer capa-

bilities of communication systems with EH capabilities. In the

case of energy harvesting from RF sources, the main challenge

lies in designing the optimal strategies at the transmitters [9–

12]. In the case of systems energy harvesting from natural

sources, such as solar power, the key issue is the intermittent

nature of the energy supply. The main challenge in these

systems is to provide reliable and efficient operation even

when the energy supply is unreliable. In this work, we focus

on this intermittent nature of EH sources and its effect on the

performance of remote estimation systems.

A. Prior Work

An important distinction in the energy harvesting literature

is the one between the offline optimization scheme and the

online optimization scheme [2]. In the offline (or deterministic)

scheme, profile of the harvested energy is assumed to be

known non-causally. In contrast, in the online (or stochastic)

scheme, only statistical knowledge about the future energy

arrivals is assumed to be known. The offline optimization

scheme is relatively well-studied, especially in terms of for-

mulations that adopt communication rate as the performance

metric. Analytical results exist for various scenarios, such as

point-to-point channels [13], [14], broadcast channels [15] and

multiple-access channels [16].

In contrast, online scheme is considered to be less tractable

analytically. A typical numerical method here is dynamic pro-

gramming approach, which utilizes a search over a quantized

state space. Unfortunately, this approach not only has high

computational complexity, which limits its applicability in

low-complexity EH sensors, but it also falls short of providing

systematic insight into the effect of system parameters [2].

On the other hand, results that directly provide analytical

insight for the online scheme are available only for a limited

number of scenarios [17–21]. Structural results for capacity

and rate optimization under intermittent energy arrivals are

provided in [17–20]. Under a binary decision scheme, where

at each time instant the sensor makes a decision to transmit

or not, threshold-based policies are proven to be optimal

for remote estimation of Markov sources [21]. A learning

theoretical approach, where optimal transmission strategies are

learned over time without knowledge of statistical parameters
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of energy and data arrival processes, is investigated [22]. Here,

we contribute to the analysis of online scheme by providing

performance guarantees for signal recovery under a block

transmission strategy. We further discuss our approach in

Section I-B.

Establishing a close connection with estimation of unknown

physical fields and in particular degree of sparsity, hence vary-

ing degrees of correlation of unknown signals, is an important

aspect of performance evaluation for sensing systems. Here

sparsity, or equivalently degree of freedom of a signal family,

refers to the effective low dimensionality of the unknown

signal [23]. In addition to providing a reasonable model for

physical fields, sparsity can be utilized to compensate for the

unreliable nature of the energy sources in an EH system. Yet,

for EH systems, structural results that directly exploit sparsity

or correlation characteristics are available only for a limited

number of scenarios, such as estimation of a single parameter

[24–26], Markov sources [21], [27], [28], circularly wide-sense

stationary signals [29], [30], two correlated Gaussian variables

[31], and i.i.d. Gaussian sources, as a result of the findings of,

for instance, [17–20], [32], [33]. As we will further discuss

in Section I-B, here we contribute to this aspect by providing

performance guarantees for estimation error which depends on

the sparsity of the unknown signal and statistical properties of

the energy arrival process.

B. Contributions

In this work, we consider an EH sensor which observes an

unknown correlated field and communicates its observations

to a remote fusion center using the energy it harvested. The

fusion center employs linear minimum mean-square error

(LMMSE) estimation to reconstruct the unknown signal. We

consider this problem under a limited data and energy buffer

constraint using a block transmission scheme where, at each

transmission frame, the data buffer and the battery are com-

pletely emptied. Motivated by the high complexity and the

high energy cost of source and channel coding operations,

we consider an amplify-and-forward strategy as in [25], [26],

[32]. We focus on the scheme where the energy used at each

transmission is modelled as a random variable, i.e. the online

scheme. A preliminary version of this setup is considered

in [34], where energy arrival process is restricted to be a

Bernoulli process and signal model is restricted to circularly

wide-sense stationary signals.

An important contribution of our work stems from our focus

on the correlated signal model. Due to this correlated signal

model, calculation of the mean-square error requires evaluation

of a matrix inverse. Hence the performance criterion, in gen-

eral, cannot be written as a summation of utilities over time in

contrast to the case of formulations based on throughput [14],

[15]. Using random matrix theory and compressive sensing

tools, we provide performance bounds for this correlated signal

set-up under a block transmission scheme. Our results provide

insights into how statistical properties of the energy harvesting

process and buffer sizes affect the estimation error. Consistent

with compressive sensing (CS) results, our bounds suggest

insensitivity of the performance to the buffer size for signals

with low degree of freedom, and possible performance gains

due to increasing buffer sizes for signals with relatively higher

degree of freedom. These performance guarantees, which

depend on the sparsity of the signal to be observed and the

first and second order statistical properties of the energy arrival

process, provide insights into buffer and battery size choices.

An important special case we consider is the case of circu-

larly wide-sense stationary (c.w.s.s.) signals, which are a finite-

dimensional analog of wide-sense stationary signals [35], [36].

In addition to the above block transmission scheme, we also

consider the strategy of transmission of equidistant samples for

the low-pass c.w.s.s. signals. The equidistant sample transmis-

sion scheme is motivated by the sampling theorems for c.w.s.s.

signals [23], [36]. Our performance guarantees suggest that for

low-pass c.w.s.s. signals similar performance can be obtained

by both strategies of block transmission (i.e. spreading the

energy as much as possible on all samples in the buffer)

and sending only equidistant samples with all the energy

in the battery at each transmission frame. Our results here

complement the results of Ref. [30], where the focus is on the

off-line scheme and no high probability results are presented.

Together with the off-line results of [30], the performance

bounds presented here support the possible flexibility in energy

management for sensing of low-pass c.w.s.s. signals under

energy harvesting constraints.

The rest of the paper is organized as follows. In Section II,

system model is described. Our performance guarantees are

presented in Section III. We consider the case of c.w.s.s.

signals in Section IV. Discussion of connections to com-

pressive sensing is provided in Section V. In Section VI,

numerical illustrations are provided. The paper is concluded

in Section VII.

Notation: We denote a column vector a ∈ CN×1 by

a = [a1; . . . ; aN ] ∈ CN×1 where semi-colon ; is used to

separate the rows. Complex conjugate transpose of a matrix

A is denoted by A†. Spectral norm of a matrix A is denoted

by ||A||. The lth row, kth column element of a matrix A
is denoted by [A]lk . Positive semi-definite (p.s.d.) partial

ordering for Hermitian matrices is denoted by �. IN denotes

the identity matrix with IN ∈ RN×N . The l2 norm of a

vector a is denoted by ‖a‖. We denote the diagonal matrix

whose diagonal elements are the elements of the vector a by

diag(a). Statistical expectation is denoted by E[.]. We denote

expectation with respect to (w.r.t.) signals involved with ES [.]
and expectation w.r.t. energy arrivals with EE [.] for the sake

of clarity when needed.

II. SYSTEM MODEL

A. Signal Model

The aim of the remote estimation system is to estimate the

unknown complex proper zero mean field x = [x1; . . . ;xN ] ∈
C

N×1. Here x ∈ C
N×1 denotes a field that is defined

over time and xt denotes the field value at time t, where

t = 1, . . . , N . The covariance matrix Kx = E[xx†] models

the possible correlation of the field values in time. Let s be

the number of non-zero eigenvalues of Kx, i.e. rank of Kx. Let

Kx = UsΛx,sU
†
s be the (reduced) eigenvalue decomposition
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Fig. 1: Energy Harvesting Sensor

(EVD) of Kx, where Λx,s ∈ Cs×s is the diagonal matrix of

non-zero eigenvalues and Us ∈ CN×s is the sub-matrix of

unitary U ∈ CN×N corresponding to non-zero eigenvalues.

Let Px = tr[Kx] = tr[Λx,s]. We consider Λx,s’s of the form

Λx,s =
Px

s Is. Here s gives the number of degrees of freedom

(d.o.f.), i.e. sparsity level of the signal family.

We note that this model covers signal families with a wide

range of correlation structures. In particular, signals with rank

one correlation matrices where the signal components have a

correlation coefficient of one, and white signals with Kx =
Λx,n = In are covered with this model. By varying s and

Us, this model can be used to represent signals with different

correlation structures in between. This type of models have

been used to represent signal families that have a low degree of

freedom in various signal applications, for instance as a sparse

signal model in compressive sensing literature [23], [37].

B. Sensing and Communications to the Fusion Center

We consider an energy harvesting sensor as shown in Fig. 1.

We focus on a slotted discrete-time setting where at each

time slot t, the sensor observes the field value at time slot

t, i.e. xt. The observations are held in a buffer of finite size

Qd before transmission. We consider a block transmission

scheme, where time slots t satisfying (k − 1)Qd + 1 ≤
t ≤ kQd belongs to transmission frame k as shown in

Fig. 2. Hence, the buffer contents at the end of transmission

frame k, i.e. at the end of time slot kQd, is given by

x̄k = [x(k−1)Qd+1;x(k−1)Qd+2; . . . ;x(k−1)Qd+Qd
] ∈ CQd×1.

For convenience, NT = N/Qd is assumed to be an integer,

where NT gives the number of transmission frames. At the

end of transmission frame k, the sensor transmits the data

in its buffer to a fusion center using an amplify-and-forward

block transmission strategy as follows

ȳk =
√
pkx̄k + w̄k, k = 1, . . . , NT , (1)

where pk, w̄k and ȳk denote the amplification factor, chan-

nel noise and the received signal at the fusion center for

transmission frame k, respectively. The channel noise w =
[w̄1; . . . ; w̄NT

] ∈ C
N×1 is modeled as complex proper zero

mean with Kw = E[ww†] = σ2
wIN .

The above type of block transmission scheme allows us to

spread the energy over multiple signal samples and facilitates

connections with uniform power allocation strategies which

are optimal for white sources in the offline scheme [17], [30],

and the power allocation strategies which match the average

arrival rate of the EH process and optimal for white sources

in the online scheme [19]. It is also supported by the fact that

for devices with low power budgets, it is more energy efficient

Energy
Arrivals | | | | | | | | | |

EQe
EQe+1 Et

Data | | | | | | | | | |

x1

. . .

xQd
xQd+1 xN

Transmission

Transmission Frame 1

√
p1 x̄1

Transmission Frame NT

√

pNT
x̄NT

Fig. 2: Time Schedule for the Energy Harvesting Sensor

to send relatively larger amount of data at each transmission

[38].

As a second-order characterization of the dynamical range

of xt, we assume that P(xt /∈ [−αrσxt
, αrσxt

]) ≤ ǫr ≈ 0,

where σ2
xt

is the variance of xt and αr > 0 is a given

constant. For instance, when xt’s are modeled as uniform

random variables over [−at, +at], one has an exact equality,

i.e. ǫr = 0 with αr =
√
12. For the case where xt ’s are

modelled as Gaussian random variables, one has ǫr ≈ 0 for

a large enough choice of αr, where αr = 3 is a common

practical choice used as the effective width of a Gaussian

random variable. Hence, we assume that xt’s are delimited

according to their effective dynamical range with a suitably

chosen αr and ignore the possible saturation effect. We assume

that energy cost of sending a sensor measurement scales with

the variance of the random variable but not with its realization.

We note that this is consistent with the fact that modern

sensors typically provide measurements using analog-to-digital

converters and the outputs of such sensors are represented

by the same number of bits regardless of the realization of

the physical quantity measured. Hence, the energy used by

the sensor for communications at frame k can be written as

follows

Jk = β

Qd
∑

t=1

pkσ
2
x(k−1)Qd+t

, (2)

where β is a proportionality constant that includes the time

duration per symbol and αr. For convenience, β is normalized

as β=1 in the rest of the paper. We note that even when sensor

outputs are represented by a fixed number of bits, one may

need to scale the channel input according to the dynamic range

of the random variable to have an effective signal-to-noise ratio

on the channel that is consistent with the variable’s dynamic

range. Hence, we assume that the energy cost of a transmission

scales with σ2
xt

. Note that for the scenarios with σ2
xt

constant,

such as c.w.s.s. signals, the energy cost only changes with pk.

A more closer investigation of transmission of sensor outputs

where there is no channel coding but fixed-bit sensor readings

are transmitted requires investigation of different modulations,

quantization schemes, headers; which is beyond the scope of
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this work. Here, we use (1) together with (2) as a limited but

nevertheless analytically tractable model for transmission of

sensor outputs over noisy channels.

We note that our formulation also covers the follow-

ing related scenario where the energy cost of transmis-

sions are assumed to directly scale with the energy of

the realizations: Suppose that during the time slot t, NR

statistically independent realizations of xt arrives. Hence,

the data buffer holds Qd × NR values. For instance, with

Qd = 2 for transmission frame k, the data buffer holds

2NR values: NR realizations of x(k−1)Qd+1 and NR re-

alizations of x(k−1)Qd+2. At the end of frame k, sensor

sends Qd × NR values using the scaling
√
pk. If NR is

large enough, average energy of the realizations will be

proportional to
∑Qd

t=1 pkσ
2
x(k−1)Qd+t

regardless of the value of

Qd, since we then have limNR→∞
1

NR

∑NR

i=1|xi
(Qd−1)k+t|2→

E[|xi
(Qd−1)k+t|2] = σ2

x(Qd−1)k+t
, where xi

(Qd−1)k+t is the ith

realization of x(Qd−1)k+t and E[x(Qd−1)k+t]=0. Hence, our

formulation also covers this case with a possibly different

constant β in (2).

C. Energy Constraints at the Sensor:

We consider a battery-aided operation where energy is

stored at a battery and used in regular time intervals. Let

the initial energy stored at the battery be 0, i.e. the battery

is empty. At time slot t, an energy packet of 0 ≤ Et < ∞
arrives to the sensor, where the harvested energy process is

an i.i.d. discrete-time stochastic process with mean µE and

variance ̺E and Et ≤ Eu < ∞, where 0 < Eu < ∞ denotes

the maximum value of the energy packets. At the end of frame

k, total energy that has arrived to the battery during frame k
is given by Ēk as follows

Ēk =

Qe
∑

t=1

E(k−1)Qe+t. (3)

We assume that the time frames for the data buffer and the

battery is synchronized and Qe = Qd = Q. We assume that

battery capacity C satisfies C ≥ EuQ, ∀Q so that a total

energy of EuQ can be stored in the battery.

In general, the sensor has to operate under energy neutrality

conditions:
∑k

l=1 Jl ≤
∑k

l=1 Ēl, k = 1, . . . , NT . These

conditions ensure that the energy used at each transmission

frame does not exceed available energy. Here, we focus on the

case where at each transmission all the energy at the battery

is used, i.e.

Jk = Ēk, k = 1, . . . , NT . (4)

Here the left-hand side of (4) depends on the power ampli-

fication factor pk at transmission frame k through (2). The

right-hand side gives the available energy, i.e. realization of

the total energy stored at the battery at the end of transmission

frame k. Performance of linear transmission strategies under

such power constraints where available energy is modeled as

a deterministic variable have been considered before, see for

instance [39–41] for formulations with total energy constraints

and [25], [26], [32] for energy harvesting formulations. In this

work, we provide performance guarantees under a stochastic

energy arrival model with block transmission.

D. Estimation at the Fusion Center:

After NT transmission frames, i.e. obtaining y =
[ȳ1; . . . ; ȳNT

] ∈ CN×1, the fusion center forms an estimate of

x using Linear Minimum-Mean Square Error (LMMSE) Esti-

mation. Let us consider a fixed Et, t = 1, . . . , N realization,

where pk’s are determined through (4). Hence the LMMSE

estimate conditioned on the energy arrivals Et can be found

as [42, Ch2]

x̂ = KxyK
−1
y y. (5)

This is the standard linear mean-square error estimator where

the fusion center uses the second-order statistics of the source

and noise to form a linear estimate of the unknown variable

[42, Ch2]. Let ES [.] denote the statistical expectation with

respect to noise and signal statistics, including x,w, but not

with respect to energy realizations (and hence not with respect

to pk’s which are also a function of the energy realizations).

Then the mean-square error, ε = ES [||x − x̂||2], can be

expressed as follows [42, Ch2]

ε = tr

[

(
s

Px
Is +

1

σ2
w

U †
sGUs)

−1

]

, (6)

where G = diag(g) = diag([p11Qd
; . . . ; pNT

1Qd
]) ∈ R

N×N ,

g = [g1; . . . ; gt; . . . ; gN ] ∈ RN×1 and 1Qd
= [1; . . . ; 1] ∈

RQd is the vector of ones. Hence y = G1/2 x +w. We note

that the possible additional distortion due to the dynamic range

limiter for xt’s with unbounded support is omitted here. A

study of this aspect in the context of estimation under energy

harvesting constraints can be found in [24]. For the above

standard LMMSE estimation, pk’s are assumed to be known

at the fusion center as in [25], [26]. Determination of pk’s

can be seen as a part of the channel estimation process in

the communication link between the sensor and the fusion

center. We note that here we focus on the reconstruction of the

unknown field and the energy cost of this channel estimation

operation is not accounted for in our work.

Here G is a random vector due to random energy arrivals;

hence our setting is different from the offline scheme where

the performance is evaluated under known energy values.

Furthermore, calculation of the mean-square error in (6), in

general, requires evaluation of a matrix inverse as opposed

to a direct sum of utility functions over time, such as in the

case of throughput based formulations. Our block transmission

scheme provides a possibly sub-optimal but low-complexity

strategy for this correlated signal setting.

III. PERFORMANCE BOUNDS

Let us define

fbt(µ, ̺, r) , 2s exp

(

− ̺

µ2
h

(

µr

̺

))

(7)

fbn(µ, ̺, r) , 2s exp

(

− r2/2

µr/3 + ̺

)

(8)

with h(a) , (1 + a) ln(1 + a)− a, a ≥ 0.
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We now present our main result, i.e. guarantees on the error

performance that hold with high probability:

Theorem 3.1: Let ui ∈ Cs×1 denote the ith column of the

matrix U †
s . Let ηL = mini‖ui‖2, and ηU = maxi‖ui‖2. Let

Eu be parametrized as Eu = rEµE , rE ≥ 1. Performance of

the EH system satisfies the following bounds

I.

P(ε < εI) ≥ 1− fbt (µI , ̺I , r) ≥ 1− fbn (µI , ̺I , r) (9)

for r ∈ (0, 1
ηU

], where

εI =
1

1 + 1
σ2
w
µE(

1
ηU

− r)
Px (10)

µI =
1

ηL
max{rE − 1, 1}min{QηU , 1} (11)

̺I =
̺E
µ2
E

1

η2L

1

Q
min{QηU , 1} (12)

II.

P(ε < εII) ≥ 1− fbt (µII , ̺II , r) ≥ 1− fbn (µII , ̺II , r)
(13)

for r ∈ (0, 1
ηU

], γ ∈ [0, QrE], where

εII =
1

1 + 1
σ2
w

1
Q p̄γµE(

1
ηU

− r)
Px (14)

µII =
1

ηL
max{1

p̄
− 1, 1}min{QηU , 1} (15)

̺II =
1

η2L
(
1

p̄
− 1)min{QηU , 1} (16)

p̄ = P(Ēk ≥ γµE) (17)

Proof: The proof is presented in Section VIII.

Both Bound I in (9)-(12) and Bound II in (13)-(17) provide

performance guarantees (i.e. upper bounds) for the mean-

square error performance. For instance, Bound I states the fol-

lowing: The mean-square error ε is guaranteed to be lower than

εI with probability greater than 1− fbt (µI , ̺I , r), where the

parameters εI , µI , ̺I , r are related through (10)-(12). Bound

II has a similar form with the parameters εII , µII , ̺II , r. We

note that whether Bound I or Bound II is tighter depends on

the system parameters. This aspect is illustrated in Fig. 3

and Fig. 4 in Section VI. Bound I and Bound II can be

seen as performance guarantees based on average number of

samples that can be transmitted. These discussions, together

with connections with compressive sensing, are provided in

Section V.

Remark 3.1: For Q = 1, energy Et that arrives to the

sensor at time t is immediately used to send the sample xt. As

the buffer size Q > 1 gets larger, the probability of sending the

samples in the buffer (with non-zero power) increases since the

probability of the battery being charged with nonzero energy

also increases while waiting for the data buffer to be full.

On the other hand, the power used to send each sample may

be lower compared to the case where the energy is used to

send a fewer number of samples, for instance compared to

the scenario of directly sending the sample xt with energy Et

if an energy packet of Et > 0 arrives (Q = 1). Hence, the

bounds presented here can be interpreted as an exploration of

the trade-off between using a small number of samples with

high signal-to-noise ratio (SNR), i.e. high power, and a high

number of samples with low SNR in the estimation process.

Remark 3.2: Energy allocations which are as uniform as

possible, or alternatively as balanced as possible are optimal

for white sources [17], [19], [30]. In our formulation, the data

buffer and energy buffer allows us to mimic these uniform-like

allocations, where larger buffer sizes allow energy allocations

that are more uniform over the whole time duration of interest,

i.e. 1 ≤ t ≤ N . Hence, varying Q values allows us to

study the effect of different buffer sizes, or equivalently the

effect of balanced energy allocations for signals that are not

necessarily exactly white. Note that we assume the battery

capacity is large enough so that C ≥ EuQ, ∀Q. Hence, the

observations here are in comparison to the maximum size

of the energy packet that can arrive at each time slot. In

particular, a large Q value means the device has a large

enough battery so that Q of the energy packets can be stored.

We note that the block transmission scheme considered

in this work is possibly sub-optimal in the sense that there

may be other transmission strategies that use only statistical

knowledge of future energy arrivals, but can guarantee smaller

error values for a given fixed probability.

A. Comparison with the average performance

For comparison purposes, we now present a lower bound

on the average error performance over different realizations

of the energy arrival process Et.

Lemma 3.1: The following lower bound on the average

error holds with ηL = mini‖ui‖2

EE [ε] ≥
1

1 + 1
σ2
w
µE

1
ηL

Px. (18)

The proof is provided in Section IX. We note that this bound

does not depend on Q.

Remark 3.3: Comparing (18) and the error expressions

in Thm. (3.1) we observe that both expressions provide error

expressions in the form 1
1+SNReff

Px where SNReff takes the

form SNRD
eff = 1

σ2
w

1
ηL

µE for (18) and it takes the form

SNRP
eff = 1

σ2
w
µE(

1
ηU

− r), for instance, for (10). Hence the

error expressions in Thm. (3.1) provide different operating

points for how close one can operate to (18) and with which

probability through the variable r.

B. Comparison with the off-line scheme with a total energy

constraint

As a benchmark for our bounds in Thm. 3.1, we now

consider an associated off-line scheme [30]. In particular, we

consider the case where amplification factors are not modeled

as random variables that depend on the energy arrivals but

deterministic variables to be optimized. Let us consider the

case where each component xt is sent as follows:

yt =
√

btxt + wt, t = 1, . . . , N. (19)
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Here we introduced the notation bt ≥ 0 to denote amplification

factors to emphasize that these are modeled as deterministic

variables as opposed to random variables. In contrast to the

setting of Section II and hence the setting of Thm. 3.1, here

a block transmission constraint is not imposed onto the set of

admissible sensor strategies (hence Q = 1). Let us denote the

error as follows

ε̄(B) = tr

[

(
s

Px
Is +

1

σ2
w

U †
sBUs)

−1

]

, (20)

where bt ≥ 0, ∀t and B = diag(b) = diag([b1; . . . ; bN ]) ∈
RN×N . We consider the following optimization problem

εd = min
B

ε̄ (B) s.t.

N
∑

l=1

blσ
2
xl

= Etot. (21)

In this deterministic scheme, the sensor has a total energy

of Etot and it can freely distribute this energy on the samples

in order to minimize the error. We note the following result:

Lemma 3.2: [30, Lemma 3.5] An optimal strategy for (21)

is given by uniform bt with bt = Etot/Px, ∀t. The optimum

value is given by εd = 1

1+ 1
σ2
w

Etot
s

Px.

Consider the case with Etot = µEN , which is the total

energy that would have been obtained if an energy packet

of µE were harvested at each time slot. We note that µE

is the mean of the energy arrival process. In this sense,

Lemma 3.2 may be used as a deterministic benchmark. Hence,

the benchmark becomes

εd =
1

1 + 1
σ2
w
µE

N
s

Px. (22)

Similar to the lower bound of (18), (22) is a benchmark for

Thm. 3.1 in terms of how close one can operate to this value.

We note that, in general, 1
ηL

6= N
s , hence (18) and (22) provide

different benchmarks.

IV. CIRCULARLY WIDE-SENSE STATIONARY SIGNALS

In this section, we specialize to the case of circularly wide-

sense stationary signals, which constitute a finite dimensional

analog of wide-sense stationary signals [35], [36]. Covariance

matrices of c.w.s.s. signals are circulant by definition, i.e.

covariance matrix of a c.w.s.s. signal is determined by its

first row as [Kx]tk = [K1]modN (k−t), where K1 ∈ C1×N

is the first row of Kx [35], [36]. The unitary matrix U
in the EVD of covariance matrices of c.w.s.s. signals is

given by the Discrete Fourier Transform (DFT) matrix [35],

[36]. Let FN denote the DFT matrix of size N × N , i.e.

[FN ]tk = (1/
√
N) exp(−j 2π

N (t − 1)(k − 1)), 1 ≤ t, k ≤ N ,

where j =
√
−1. Hence, the reduced EVD of Kx is given by

Kx = FN
Ω Λx,sF

N
Ω

†
, where Λx,s = diag(λk) =

Px

s Is ∈ Rs×s

and FN
Ω ∈ CN×s is the matrix that consists of s columns

of FN corresponding to the non-zero eigenvalues. Due to

the circulant covariance matrix structure, the variances of the

components of a c.w.s.s. signal satisfy σ2
xt

= σ2
x = Px/N, ∀t.

Hence, Jk =
∑Qd

t=1 pkσ
2
x(k−1)Qd+t

= pkQPx/N , and by (3),

(4), we have the following

pk =
N

Px

1

Q

Q
∑

t=1

E(k−1)Q+t. (23)

For c.w.s.s. signals, we have ηL = mini‖ui‖2= s
N , and

ηU = maxi‖ui‖2= s
N due to the DFT matrix. Hence, (10)-

(12) can be expressed as

εI =
1

1 + 1
σ2
w
µE

N
s (1 − r̃)

Px, (24)

µI = max{rE − 1, 1}min{Q s

N
, 1}, (25)

̺I =
̺E
µ2
E

1

Q
min{Q s

N
, 1}, (26)

where r̃ ∈ (0, 1]. Here we have scaled r, µI , ̺I while going

from Eqn. (10)-(12) to Eqn. (24)-(26), since fbt(.) and fbn(.)
only depend on the ratios between r, µI , ̺I . Eqn. (14)-(16)

can be specialized to the case of c.w.s.s. signals, similiarly.

We note that these bounds also hold for other signal families

for which ‖ui‖2 is constant for all i, such as unitary Hadamard

matrices.

A. Equidistant sampling of low-pass c.w.s.s. signals

We now focus on the case of low-pass c.w.s.s. signals, i.e.

c.w.s.s. signals for which eigenvalues of Kx that correspond to

the low frequency components indexed by Ω = {0, 1, . . . , s−
1} are possibly non-zero and the rest of the eigenvalues are

zero. Hence, for c.w.s.s. signals only eigenvalues that are

possibly non-zero are the ones associated with the frequencies

exp(−j 2π
N r), r = 0, . . . , s− 1. Such signals can be recovered

from their uniformly taken samples with zero mean-square

error when the total number of (complex-valued) samples is

larger than the number of non-zero eigenvalues [23]. This

property, which is consistent with the deterministic sampling

theorems and the sampling theorems for wide-sense stationary

signals [36], [43], motivates us to study strategies that send

equidistant samples under our EH framework. In particular,

we are interested in understanding which of the following

is a better strategy: i) sending all of the observations of the

sensor with as equal energy as possible as suggested by the

energy harvesting literature; or ii) sending only the equidistant

samples as suggested by the sampling theorems. The block

transmission scheme of Section II provides a low-complexity

approach for implementing strategies similar to (i). We study

the strategy in (ii) below.

In particular, we consider strategies that send one sample out

of every Q = N/s samples as follows: Let td ∈ {0, . . . , Q−1}
be the fixed initial delay before sending the first sample and

NT = N/Q ∈ Z be the number of transmissions as before.

Recall that yt =
√
gtxt +wt. Hence, under uniform sampling

we have gt ≥ 0, if t = Q(k − 1) + td + 1, 1 ≤ k ≤ NT , and

gt = 0 otherwise. Hence, the received signal at transmission

frame k is the single sample xQ(k−1)+td+1 as follows

yk =
√
pkxQ(k−1)+td+1 + wk, (27)
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where
√
pk denotes the amplification factor, wk ∈ C,

E[wkw
†
k] = σ2

w denotes the i.i.d. complex proper zero-mean

channel noise, as before. Energy used by the sensor for

communications at transmission frame k can be written as

follows:

Jk=pkσ
2
x(k−1)Qd+td+1

= pk
Px

N
, (28)

where we have used the fact that for c.w.s.s. signals σ2
xt

=
σ2
x = Px/N, ∀t. By (4), we again have Jk = Ēk, ∀k. At each

transmission frame k, this scheme uses all the energy in the

battery to send only one xt value and discards all the other

samples in the data buffer. We obtain the following bound for

the performance of this system:

Theorem 4.1: Performance of the equidistant sample trans-

mission strategy of (27) for low-pass c.w.s.s. signals satisfies

the following bound with r ∈ (0, 1)

P(ε < εuI )≥1− fbt (µ
u
I , ̺

u
I , r

u)≥1− fbn (µ
u
I , ̺

u
I , r

u) (29)

εuI =
1

1 + 1
σ2
w
µE

N
s (1− r)

Px (30)

µu
I = max{rE − 1, 1} (31)

̺uI =
̺E
µ2
E

s

N
. (32)

Proof: The proof is presented in Section XI.

Comparing (30)-(32) with (24)-(26) for Q = N
s reveals that

for low-pass c.w.s.s. signals, both the strategy of Thm. 3.1,

which spreads the energy accumulated in the battery evenly

on the samples in the buffer, and the equidistant sample

transmission strategy of Thm. 4.1, which uses the energy only

on one sample from the buffer, results in the same performance

guarantees. This property is consistent with the performance

of the associated strategies in the off-line scenario under a

total energy constraint as discussed below:

Comparison with the off-line scheme under equidistant

sample transmission strategy: Let us consider the equidistant

sample transmission scheme under a total energy constraint:

εde = min
Bu

ε̄ (Bu) s.t.

N
∑

l=1

blσ
2
xl

= Etot, (33)

under the condition bt ≥ 0, if t = Q(k − 1) + td +
1, 1 ≤ k ≤ NT , and bt = 0 otherwise; and Q = N/s,

Bu = diag([b1; . . . ; bN ]) ∈ RN×N .

Lemma 4.1: [30, Corollary 3.3] An optimal strategy for

(33) is given by bt =
Etot

Px

N
s , if t = Q(k − 1) + td + 1, 1 ≤

k ≤ NT and bt = 0 otherwise. The optimum value is given

by εde =
1

1+ 1
σ2
w

Etot
s

Px.

Hence, under the off-line scheme with a total energy con-

straint, performance of the uniform power allocation over all

xt’s, which is given by Lemma 3.2, and performance of the

equidistant sample transmission strategy given by Lemma 4.1

are the same. In this work, we have shown that performance

bounds in the online case for block transmission scheme of

Thm. 3.1 (specialized to c.w.s.s. signals in (24)-(26)) and the

performance bounds for the equidistant sample transmission

scheme of Thm. 4.1 are also the same. These two set of

results together suggest flexibility in energy allocation for

estimation of low-pass c.w.s.s signals in energy harvesting

systems. Nevertheless, we note that Thm. 3.1 and Thm. 4.1

provide upper bounds, i.e. guarantees for signal recovery with

a given error with a given probability. Hence, insights and

guidelines derived from these results should take this point

into consideration.

V. CONNECTIONS TO COMPRESSIVE SENSING

The scenario of Q = 1 in (1) is closely related to the

classical compressive sensing setting. In particular, consider

the case where the energy arrival process can be modeled

as an i.i.d. Bernoulli random process. A typical compressive

sensing set-up is the scenario where the measurement process

is modeled as an i.i.d. Bernoulli process where a measurement

is made, for instance, when the Bernoulli random variable is 1
and is dropped when the Bernoulli random variable is 0. Hence

for Q = 1, the bounds presented here are closely related to the

eigenvalue bounds provided in compressive sensing literature

[44, Ch.12]. In particular, consider the scenario of Q = 1
with static σ2

xt
= σ2

x, (such as in the case of circularly wide-

sense stationary signals) and Bernoulli energy arrivals. Then,

the bounds in Thm. 3.1 can be seen as a consequence of the

eigenvalue bounds in the CS literature, see for instance [44,

Ch.12], [45, Thm. 1.2], [23]. For Q > 1 or non-uniform σ2
xt

,

Thm. 3.1 provides a set of novel eigenvalue bounds for the

formulation introduced in Section II.

To further elaborate on connections to compressive sensing,

we now focus on the scenario where there is no noise on the

channel, i.e. σ2
w = 0. Hence, the system model becomes

y = G1/2x, (34)

where G is the diagonal matrix of amplification factors as

defined in Section II-D. Let us consider the following question:

“For which energy arrival rates, sparsity levels and queue sizes,

can we recover x from the observations y with zero mean-

square error (with high probability)?”.

Recall that, Kx = UsΛx,sU
†
s , hence x ∈ CN×1 belongs

to a signal family of low degree of freedom x = Usx̄ where

x̄ ∈ Cs×1 and the covariance matrix Kx̄ = Λx,s. Hence, we

have a setting that is similar to typical compressive sensing set-

ups. Nevertheless, note that in typical CS scenarios, support

of the signal is not known during the signal recovery whereas

here we consider a scenario where the support is known. Note

that locations of the measurements (i.e. which rows of G are

non-zero) are modelled as random both in our setting and in

compressive sensing scenarios. Thm. 3.1 has the following

corollary:

Corollary 5.1: Fix N . Consider the energy arrival process

Et with Et = κtEb, κt ∼Bernoulli(p); Eb > 0. Let σ2
w = 0,

0 ≤ p ≤ 1/2, Q ≤ N/s, p̄ = 1−(1−p)Q, p̄ ≤ 1/2, δ ∈ (0, 1]
and U be the DFT matrix. Suppose that at least one of the

following conditions is satisfied

Ce,I × (Q/3 + 1)× s× ln(2s/δ) ≤ N × p (35)

Ce,II ×Q× s× ln(2s/δ) ≤ N × p̄ (36)
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where Ce,I > 2, and Ce,II > 8/3, are numerical constants.

Then, the mean-square error ε is zero with probability at least

1− δ.

The proof is provided in Section X. In the above, Ce,I ≈ 2
and Ce,II ≈ 8/3, please see Section X for details. We

note that the right hand side of (35)-(36) increases with

increasing energy arrival success rate and can be interpreted as

the average number of transmitted samples. Hence, (35)-(36)

asserts that if s is small enough and the energy arrival rate is

high enough, then the signal can be recovered from its samples

with high probability. This is analogous to the compressive

sensing results where sufficient number of measurements for

recovery of sparse signals are presented. In particular, consider

the following sufficient condition from [45, Thm. 1.1]

Cc × s× ln(N/δ) ≤ M (37)

and C′
c ln

2(N/δ) ≤ M where Cc and C′
c are fixed numerical

constants and M is the number of measurements whose

locations (i.e. which rows of G are non-zero ) are chosen

randomly. If (37) holds, then with probability at least 1 − δ,

an arbitrary signal (with random signs) with support of size

s can be recovered from randomly selected M measurements

[45, Thm. 1.1]. Note that Q = 1 here. Comparing (35)-(36)

and (37), we observe that both conditions give the (average)

number of observations that guarantee signal recoverability.

An important step in the derivation of compressive sensing

results is the derivation of eigenvalue bounds. In particu-

lar, consider the following type of sufficient condition [45,

Thm. 1.2], [44, Thm. 12.12],

C′′
c × s× ln(2s/δ) ≤ M, (38)

where C′′
c > 8/3 is a numerical constant and M is, again, the

number of measurements. If (38) holds, the matrix U †
sGUs is

invertible with probability at least 1 − δ. Hence, the mean-

square error will be zero in (34). Note that (38) is derived

under the assumption that support is fixed and known, as in

our set-up. As discussed in the beginning of this section, for

Q = 1, (35)-(36) and (38) are the same.

Different from (38), our results in (35)-(36) reveal how the

eigenvalue bounds depend on the queue size parameter Q,

which is included in the system formulation due to the energy

harvesting aspect. We note that (35), which was derived from

Bound I, suggests smaller buffer lengths are preferable (in

the sense that for fixed s, p, N values, larger Q values will

not satisfy (35)). On the other hand, p̄ that appears on the

right hand size of (36) also depends on Q. Note that (36) was

derived from Bound II. Whether (36) (and Bound II) favors

smaller or larger Q values depends on the system parameters.

Further investigation of this point is provided in Section VI.

A. Discussions

In a wide range of sensing applications, there exist unknown

physical quantities that we would like to estimate, such as

temperature values in a smart building application or flow

rates in an industrial application. Typically, sensors make

measurements of these parameters and these measurements

are collected at a remote central decision center wirelessly.
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Fig. 3: psuc versus Bound I and Bound II, Bernoulli energy

arrivals, s = 4, p = 0.5.
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Fig. 4: psuc versus Bound I and Bound II, Bernoulli energy

arrivals, s = 8, p = 0.3.

Practical sensor deployments that utilize energy harvesting

sensors for such remote estimation tasks have started to emerge

for various applications, including oil and gas industries, con-

sumer electronics, chemical processing, steel manufacturing

[6–8]. Nevertheless, fundamental performance limits of these

systems from an estimation theoretic framework are not fully

investigated. Our work here contributes to this aspect by

studying such a remote estimation problem under a LMMSE

framework.

Compressive sensing based approaches provide us an at-

tractive set of tools for investigating these remote estimation

problems. In particular, concept of sparsity allows us to study a

large class of signals including correlated signals. Moreover,

the tools developed for studying the effect of random mea-

surements in compressive sensing literature provide promising

candidates for studying the unreliable nature of available

energy in EH systems, as illustrated in this work. Hence,

we believe that compressive sensing based approaches will

be instrumental to study fundamental sensing trade-offs for

future EH sensing systems.

VI. NUMERICAL RESULTS

We now illustrate our bounds by presenting the trade-offs

between the guaranteed MSE and the probability of obtaining
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Fig. 5: Empirical CDF of MSE (Fmse), Bernoulli energy

arrivals, s = 2, p = 0.5.

that MSE. The horizontal axis corresponds to the error bound

as provided by εI or εII and the vertical axis corresponds

to the probability on the right-hand side of (9)/(13), which

is referred as psuc. We use fbt(.) for the calculation of psuc.

Hence, the horizantal axis value of each point on the plot

shows a particular error value and the vertical axis value

shows the probability with which we can guarantee the MSE

to be smaller than that particular error value. We normalize

the error bounds with the total uncertainty in the signal, i.e.

we report εI/Px and εII/Px. Unless otherwise stated, we

consider the energy arrival process Et i.i.d. with Et = κtEb,

κt ∼ Bernoulli(p); Eb = 1 and U is the DFT matrix. Hence,

the benchmark of (18)/(22) is equal to εd = 1
1+ 1

σ2
w
pN

s

Px.

Comparison of Bound I and Bound II: We note that both

Bound I and Bound II are upper bounds. Which bound is

tighter (i.e. which bound guarantees a given error value with

the highest probability) depends on the system parameters.

We now illustrate this point. Let N = 256, Px = N , σ2
w =

10−4Px. Both Bound I and Bound II are presented in Fig. 3

and Fig. 4, for s = 4, p = 0.5 and s = 8, p = 0.3, respectively.

In Fig. 3, Bound I is tighter whereas in Fig. 4 Bound II is

tighter. This behaviour is consistent with our other numerical

investigations where Bound I is observed to be typically tighter

for small s/N ratios and high energy arrival rates and vice-

a-versa for Bound II. For instance, if we decrease p value

for Fig. 4, Bound I can no longer provide a guarantees with

non-zero probability. In the rest of this section, while plotting

the bounds, for a given probability value psuc we present the

tightest of Bound I and Bound II, i.e. the bound that guarantees

a given error value with the highest probability.

Comparison with Empirical Performance: For comparison

purposes, we first present the empirical cumulative distribution

function (CDF) of the mean-square error in (6). In these

experiments, we fix the support (i.e. locations of the non-

zero eigenvalues) and look at the empirical CDF of the mean-

square error with random energy arrivals over Nsim = 2000
realizations. Let N = 512, Px=N , σ2

w =10−4Px. Empirical

CDF values are presented in Fig. 5 and Fig. 6 for s = 2,

p = 0.5 and s = 8, p = 0.3 respectively. The corresponding

bounds are presented in Fig. 7 and Fig. 8. The benchmark of
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Fig. 6: Empirical CDF of MSE (Fmse), Bernoulli energy

arrivals, s = 16, p = 0.3.
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Fig. 7: psuc versus MSE Bound, Bernoulli energy arrivals,

s = 2, p = 0.5.

(18)/(22) is εd ≈ 4× 10−4 is for Fig. 5 and εd ≈ 5.3× 10−3

is for Fig. 6. Comparing Fig. 5 and Fig. 7, we observe that

both the empirical results and the bounds show that we will

operate close to these benchmarks with high probability for

this scenario, where s/N is small and energy arrival rate p
is high. On the other hand, the gap between the bounds and

the empirical results, and also the gap between the empirical

results and the benchmarks of (18)/(22) are larger for Fig. 6

and Fig. 8 where the ratio s/N is larger and p is smaller.

These observations are consistent with compressive sensing

literature where signal recovery guarantees are provided only

for sparse signals (low s/N values).

Effect of System Parameters on Performance Guarantees: In

both Fig. 7 and Fig. 8, as the target performance becomes more

demanding, i.e. the error value decreases, the probability that

this error can be guaranteed becomes smaller. When the degree

of freedom of the signal is sufficiently low (s=2, Fig. 7), the

performance bound is observed to be relatively insensitive to

the buffer size. On the other hand, when the degree of freedom

is higher and energy arrival rate is smaller, (s=16, Fig. 8) the

bound becomes more sensitive to the buffer size. For s=16,

with Q=1, the bound cannot provide any guarantees that hold

with probability higher than 0.9; whereas with higher buffer

sizes, relatively small values of error can be guaranteed with
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Fig. 8: psuc versus MSE Bound, Bernoulli energy arrivals,

s = 16, p = 0.3.
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Fig. 9: psuc versus MSE Bound, uniformly distributed energy

packets, s = 16.

high probability (for instance with probability higher than 0.9).

We observe that as s becomes larger, signal can be said to be

more close to a white source, with the limiting case of s=N
corresponding to an exactly white source. Hence, these results

are consistent with the results of [17], [19], [30] discussed in

Remark 3.2.

We now consider the scenario with Et i.i.d. with uniformly

distributed energy packets, i.e. Et ∼Uniform[0, Eu], Eu = 0.6
in Fig. 9. Here Eu is chosen so that the uniform arrival case

here has the same average energy with the Bernoulli arrival

scenario of Fig. 8. Comparing Fig. 8 and Fig. 9, we observe

that in the uniform energy arrival case of Fig. 9, long buffer

lengths do not offer performance gains as they provide in the

Bernoulli energy arrival case of Fig. 8. This is consistent with

the fact that in the case of uniformly distributed arrivals the

variance of energy packets is smaller and the need to spread

the energy over samples by the use of a buffer is expected to

be less prominent compared to Bernoulli energy arrival case.

VII. CONCLUSIONS

We have considered remote estimation of an unknown field

with an EH sensor with a limited data and energy buffer. In

contrast to much of the existing work, we have focused on a

correlated signal model. We have provided structural results

in terms of performance guarantees on the achievable distor-

tion under random energy arrivals with a block transmission

scheme. Our performance guarantees provide insights into the

trade-offs between the size of buffers, statistical properties of

the energy arrival process, degree of freedom of the signal

and the achievable distortion. These results also have the

advantage that their calculation requires only knowledge of

the mean, variance and finite support about the energy arrival

process, whose exact probability distribution can be difficult to

reliably estimate in practice. Generalizations of our approach

into settings that allow energy saving between transmission

blocks and applications to fading environments are considered

as important future research directions.

VIII. PROOF OF THM. 3.1

The proof relies on the Matrix Bernstein Inequality, a

fundamental random matrix theory tool used in compressive

sensing [44, Ch.8]. We first prove the first family of bounds

indexed by I in (9)-(12). We first note that

ε =

s
∑

i=1

1

λi(
s
Px

Is +
1
σ2
w
U †
sGUs)

, (39)

≤ 1

1 + 1
σ2
w

Px

s λmin(U
†
sGUs)

Px. (40)

In the remaining of the section, we let k = 1, . . . , NT ,

t = 1, . . . , Q and use the indexing zk,t = z(k−1)Q+t for any

variable zi, i = 1, . . . , N . Let

Sk ,

Q
∑

t=1

σ2
xk,t

(41)

where σ2
xk,t

= σ2
x(k−1)Q+t

. By (4) and (41), we have

pk =
1

Sk
Ēk =

1

Sk

Q
∑

l=1

Ek,l, (42)

where Ek,l = E(k−1)Q+l. Let ui ∈ Cs×1 denote the ith

column of the matrix U †
s . Let Yk,t , uk,tu

†
k,t ∈ Cs×s, with

uk,t = u(k−1)Q+t. Let us consider

p̄k , pk − E[pk], (43)

Wk ,

Q
∑

t=1

Yk,t (44)

Zk , p̄kWk (45)

Hence

NT
∑

k=1

Zk =

NT
∑

k=1

pk

Q
∑

t=1

Yk,t −
NT
∑

k=1

E[pk]

Q
∑

t=1

Yk,t, (46)

= U †
sGUs − U †

s ḠUs, (47)

where G = diag([p11Qd
, . . . , pNT

1Qd
]) ∈ RN×N , Ḡ =

diag([E[p1]1Q, . . . ,E[pNT
]1Q]) ∈ RN×N and 1Q =

[1, . . . , 1] ∈ RQ is the vector of ones. We will now use the

Matrix Bernstein Inequality on Zk to find lower bounds for

the eigenvalues of the first term in (47). We will then use these

in (40) to bound the estimation error.
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Lemma 8.1: [Matrix Bernstein Inequality [44, Ch.8]] Let

V1, . . . , VM ∈ C
s×s be independent zero-mean Hermitian

random matrices. Assume that ‖Vl‖≤ µV , ∀l ∈ {1, . . . ,M}
almost surely. Let ̺V , ‖∑M

l=1 E[V
2
l ]‖. Then, for t > 0

P(‖
M
∑

l=1

Vl‖≥ t) ≤ fbt(µV , ̺V , t) ≤ fbn(µV , ̺V , t) (48)

with fbt(.) and fbn(.) as defined in (7)-(8).

We note that Zk in (45) are statistically independent Hermi-

tian random matrices with E[Zk] = 0. We bound the spectral

norm of Zk as follows

‖Zk‖= ‖p̄kWk‖≤
(

max
k

|p̄k|
)

‖Wk‖. (49)

We obtain the following bound for ‖Wk‖

‖Wk‖ = ‖
Q
∑

t=1

uk,tu
†
k,t‖, (50)

≤ Qmax
k,t

‖uk,tu
†
k,t‖, (51)

= Qmax
k,t

||uk,t||2, (52)

= QηU , (53)

where

ηU , max
k,t

||uk,t||2. (54)

We also have the following

‖Wk‖≤ ‖
NT
∑

k=1

Wk‖= ‖Is‖= 1, (55)

where (55) follows from the fact that for A � 0 and B � 0,

λmax(A) ≤ λmax(A + B). By (53) and (55), we have the

following

‖Wk‖ ≤ min{QηU , 1}. (56)

We now consider the term with p̄k = pk − E[pk] in (49)

max
k

|pk − E[pk]| ≤ max
k

max{pk − E[pk],E[pk]} (57)

≤ max
k

max{QEu −QµE

Sk
,
QµE

Sk
} (58)

≤ Qmax{Eu − µE , µE}
1

minSk
(59)

≤ µE max{rE − 1, 1} 1

ηL

s

Px
, (60)

where we have used E[pk] = QE[Ek] = QµE , pk ≤ QEu

and Eu = rEµE . Here (60) follows from

Sk =

Q
∑

t=1

σ2
xk,t

≥ Qmin
k,t

σ2
xk,t

= QηL
Px

s
, (61)

where σ2
xk,t

= Px

s ‖uk,t‖2 and

ηL , min
k,t

‖uk,t‖2. (62)

Hence by (49), (56) and (60)

‖Zk‖≤ µE
s

Px

1

ηL
max{rE − 1, 1}min{QηU , 1} , µ̄I , ∀k.

(63)

We now consider the variance term, i.e.,

‖
NT
∑

k=1

E[Z2
k ]‖ = ‖

NT
∑

k=1

E[p̄2k]W
2
k ‖, (64)

≤ max
k

E[p̄2k] ‖
NT
∑

k=1

W 2
k ‖, (65)

where we have used E[p̄2k]W
2
k � (maxk E[p̄

2
k])W

2
k and

∑NT

k=1 E[p̄
2
k]W

2
k � (maxk E[p̄

2
k])

∑NT

k=1 W
2
k . Here (65) fol-

lows from the fact that for Hermitian A, B with A � B,

we have λk(A) ≥ λk(B), where λk(.) denote the ordered

eigenvalues [46, Cor. 7.7.4].

The spectral norm term in (65) can be bounded as

‖
NT
∑

k=1

W 2
k ‖ ≤ max

k
‖Wk‖‖

NT
∑

k=1

Wk‖, (66)

≤ min{QηU , 1} (67)

where (66) follows from the fact that Wk � 0, see for instance

[47, Sec. 2], and (67) follows from (56) and (55).

We now consider E[p̄2k] in (64). We have the following

E[p̄2k] =
1

S2
k

Q
∑

l=1

E[(Ek,l − E[Ek,l])
2] (68)

=
Q

S2
k

E[(Ek,l − E[Ek,l])
2] (69)

=
Q̺E
S2
k

(70)

≤ ̺E
Qη2L

(
s

Px
)2, (71)

where ̺E is the variance of the energy arrival process as

defined before, (68) follows from the fact that p̄k is a sum of

statistically independent zero mean variables and (71) follows

from S2
k ≥ Q2(mink,t σ

2
xk,t

)2 = Q2η2L(
Px

s )2.

Hence the variance term in (64) can be bounded as follows

‖
NT
∑

k=1

E[Z2
k ]‖≤

̺E
Qη2L

(
s

Px
)2 min{QηU , 1} , ¯̺I . (72)

Using (63), (72) and the Matrix Bernstein Inequality reveals

that for r̄ > 0, ‖
∑NT

k=1 Zk‖< r̄ holds with probability greater

than pbt = 1−fbt(µ̄I , ¯̺I , r̄). We note that for Hermitian A,B,

‖A − B‖< r̄ implies λmin(A) > λmin(B) − r̄. Therefore,

using (47), with probability greater than pbt

λmin(U
†
sGUs) > λmin(U

†
s ḠUs)− r̄ (73)

≥ min
k

E[pk]− r̄ (74)

=
µE

ηU

s

Px
− r̄ (75)
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where (74) follows from the fact that U †
s ḠUs =

∑Q
t=1 E[pk,t]Yk,t with Yk,t � 0 and

Q
∑

t=1

E[pk,t]Yk,t �
Q
∑

t=1

min
t,k

E[pk,t]Yk,t = min
t,k

E[pk,t]Is (76)

so that U †
s ḠUs � mint,k E[pk,t]Is. Hence λmin(U

†
s ḠUs) ≥

mint,k E[pk,t] due to the fact that for Hermitian A, B with

A � B, we have λl(A) ≥ λl(B), where λl(.) denote the

ordered eigenvalues [46, Cor. 7.7.4]. Here (75) follows from

E[pk] =
QµE

Sk
≥ µE

ηU

s
Px

where Sk is bounded as follows

Sk =

Q
∑

t=1

σ2
xk,t

≤ Qmax
k,t

σ2
xk,t

= QηU
Px

s
. (77)

Let us introduce r, µI , ̺I , such that r̄ = µE
s
Px

r, µ̄I =

µE
s
Px

µI , ¯̺I = (µE
s
Px

)2̺I . Hence, (75) is expressed as

λmin(U
†
sGUs) > µE

s

Px
(
1

ηU
− r). (78)

We note that µ̄I , ¯̺I , r̄ can be scaled as above without a

change in the value of fbt(.) and fbn(.), i.e. fbt(µ̄I , ¯̺I , r̄) =
fbt(µI , ̺I , r) and fbn(µ̄I , ¯̺I , r̄) = fbn(µI , ̺I , r). Using r, µI ,

̺I , (78) and (40) leads to the bounds in (9)-(12).

We now consider the second set of bounds given in (13)-

(17). We first consider the event Ēk ≥ γµE and define

a new Bernoulli random variable δ̄k = 1Ēk≥γµE
, where

γ ∈ [0, Q rE) and 1 is the indicator function. We define the

probability p̄ as follows

p̄ , P(Ēk ≥ γµE) (79)

Hence P(δ̄k = 1) = p̄ and P(δ̄k = 0) = 1− p̄. Let us define

pLk ,
γµE

Sk
δ̄k. (80)

We note that pLk provides a lower bound for pk, ∀k. Hence,

we have pkWk � pLkWk, ∀k, and we have

NT
∑

k=1

pkWk �
NT
∑

k=1

pLkWk. (81)

Hence the minimum eigenvalue of
∑NT

k=1 p
L
kWk provides a

lower bound for the minimum eigenvalue of
∑NT

k=1 pkWk

[46, Cor. 7.7.4]. Now re-iterating the steps for the proof of

bounds in (9)-(12) reveals a set of bounds similar to (9)-

(12), but that also depend on γ. Here the variables related

to pk are replaced with variables related to pLk . In particular,

p̄k is replaced by p̄Lk = pLk − E[pLk ] = pLk − p̄γµE

Sk
and (60)

becomes p̄γµE max{ 1
p̄−1, 1} 1

QηL

s
Px

. Similarly, (71) becomes

(p̄γµE)
2( 1p̄ − 1) 1

Q2η2
L

( s
Px

)2 and (75) becomes p̄γµE

QηU

s
Px

− r̄.

Using these values, and normalizing µ̄I , ¯̺I , r̄ appropriately as

before, we arrive at the bounds in (13)-(17).

IX. PROOF OF LEMMA 3.1

Let the notation be the same with Section VIII. We note that

E[pk]=
QµE

Sk
≤ µE

ηL

s
Px

where Sk is bounded by (61). Hence,

E[G]=diag([E[p1]1Q; . . . ;E[pNT
]1Q])�diag(

µE

ηL
Px

s

) (82)

Hence, the error can be bounded as follows

EE [ε] ≥ tr

[

(
s

Px
Is +

1

σ2
w

U †
sE[G]Us)

−1

]

(83)

where (83) follows from (6), Jensen’s inequality and tr[X−1]
is convex for X ≻ 0. The result follows from (82) and

properties of p.s.d. ordering [46, 7.7.2], [46, 7.7.4].

X. PROOF OF COROLLARY 5.1

We first focus on (9) to derive (35). We define the event

Sσ2
w

as Sσ2
w
= {ε < 1

1+ 1
σ2
w
µE( 1

ηU
−r)

Px =
σ2
w

σ2
w+µE( 1

ηU
−r)

Px}.

Suppose that 1
ηU

− r is non-zero. Then,

lim
σ2
w→0

P(Sσ2
w
) = lim

σ2
w→0

E[1Sσ2
w

] = E[ lim
σ2
w→0

1Sσ2
w

] = P(ε = 0)

where 1 is the indicator function and we changed the order of

the expectation and the limit due to Dominated Convergence

Theorem. Hence, we can use (9) to find the probability that

ε = 0 is zero. To have ε = 0, it is sufficient to have the

expression 1
ηU

− r bounded away from zero.

Let us consider a given failure probability δ, so that 1−δ ≤
1− fbn (µI , ̺I , r) . Hence, we have r2

µIr/3+̺I
≥ 2 ln(2sδ ). We

now re-parametrize r ∈ (0, 1
ηU

], as r = r̃ 1
ηU

, where 0 < r̃ ≤ 1.

Using (11), (12), ηL = ηU = s
N , we obtain

2(1/r̃2)(max{1/p− 1, 1}r̃Q/3 + 1/p− 1)s ln(2s/δ) ≤ N
(84)

A sufficient condition for (84) is (35), hence we conclude that

(35) is a sufficient condition for ε = 0. Similarly, (13) leads

to the condition

2(1/r̃2)((r̃/3)max(a, 1) + a)Qs ln(2s/δ) ≤ N (85)

where a = (1/p̄ − 1). Choosing γ of (17) as 1/p (at least

one energy packet arrives during Q time slots), we set p̄ =
1 − (1 − p)Q. Using p̄ ≤ 1/2, hence a ≥ 1, a sufficient

condition for (85) is (36). The result follows.

XI. PROOF OF THM. 4.1

We bound the estimation error using (40). We recall that

Us = FN
Ω ∈ CN×s consists of the first s columns of the size

N DFT matrix FN ∈ CN×N . The proof relies on the fact

that equidistantly row sampled FN
Ω can be associated with the

DFT matrix of size s, F s ∈ Cs×s. Let fN = exp(−j 2π
N ). The

entries of the row-sampled FN
Ω every Q = N/s rows can be

expressed in terms of the entries of F s as follows

[FN
Ω ](N/s)l+td+1,k+1 = (1/

√
N)f

((N/s)l+td)k
N (86)

= (1/
√
N)f lk

s f tdk
N (87)

=
√

s/N [F s]l+1,k+1f
tdk
N , (88)

where 0 ≤ k ≤ s−1, 0 ≤ l ≤ s−1. Now we adopt arguments

similar to Section VIII. By (4) and (28), we have pk = Ēk
N
Px

,

where E[pk] = QµE
N
Px

. Let p̄k , pk − E[pk].
In contrast to Section VIII, due to the equidistant sample

transmission setting, here we define Wk as follows

Wk , Yk,td+1, (89)
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where Yk,t , uk,tu
†
k,t as in Section VIII. Hence, with Zk ,

(pk − E[pk])Wk , we have

NT
∑

k=1

Zk =

NT
∑

k=1

pkYk,td+1 −
NT
∑

k=1

E[pk]Yk,td+1,

= U †
sGUs − U †

s ḠUs, (90)

where G = diag(gt) ∈ RN×N , Ḡ = E[G] ∈ RN×N with

gt = pk, if t = Q(k − 1) + td + 1, 1 ≤ k ≤ NT , and gt = 0
otherwise; as dictated by the equidistant sampling strategy.

We note that ηU and ηL as defined in (54) and (62) is

given by ηU = ηL = s
N due to the fact that here Us is given

by Us = FN
Ω . Hence, we have ‖Wk‖= ‖uk,td+1u

†
k,td+1‖≤

ηU = s/N. Due to (88), we also have ‖Wk‖≤ ‖∑NT

k=1 Wk‖=
‖ s
NF sF s†‖= ‖ s

N Is‖= s
N . Hence, we bound ‖Wk‖ as

‖Wk‖≤ s
N .

Similar to (60), |p̄k| can be bounded as |p̄k|≤ maxk|pk −
E[pk]|≤ QµE max{rE − 1, 1} N

Px
. Hence we have

‖Zk‖≤ QµE
s

Px
max{rE − 1, 1} , µ̄u

I , ∀k. (91)

For ¯̺uI , we note that ‖∑NT

k=1 W
2
k ‖≤ (s/N)2 and E[p̄2k] ≤

Q̺E(
N
Px

)2. Hence using (65), we have

‖
NT
∑

k=1

E[Z2
k ]‖≤ ̺EQ(

s

Px
)2 , ¯̺uI . (92)

Using (91), (92) and the Matrix Bernstein Inequality shows

that ‖∑NT

k=1 Zk‖< r̄u holds with probability greater than pbt =
1− fbt(µ̄

u
I , ¯̺

u
I , r̄

u). Therefore, we have the following

λmin(Us
†GUs) > λmin(U

†
s ḠUs)− r̄u (93)

=
s

N
λmin(F

s† diag(E[pk])F
s)− r̄u (94)

= µEQ
s

Px
− r̄u (95)

where (94) follows from (88); and (95) follows from the fact

that E[pk] = µEQN/Px and F s†F s = Is. Set c = µEQ
s
Px

where Q = N/s. We conclude the proof by rescaling µ̄u
I , ¯̺uI ,

r̄u with c, c2 and c, respectively.
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[12] A. Özçelikkale and T. M. Duman, “Linear precoder design for simulta-
neous information and energy transfer over two-user MIMO interference
channels,” IEEE Trans. Wireless Commun., vol. 14, pp. 5836–5847, Oct
2015.

[13] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Trans-
mission with Energy Harvesting Nodes in Fading Wireless Channels:
Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, pp. 1732–1743,
Sept. 2011.

[14] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for bat-
tery limited energy harvesting nodes,” IEEE Trans. Wireless Commun.,
vol. 11, pp. 1180–1189, March 2012.

[15] M. A. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimal packet
scheduling on an energy harvesting broadcast link,” IEEE J. Sel. Areas

Commun., vol. 29, pp. 1721–1731, Sept. 2011.

[16] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access
channel with energy harvesting transmitters,” Journal of Communica-

tions and Networks,, vol. 14, no. 2, pp. 140–150, 2012.

[17] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic
energy harvesting,” IEEE Trans. Inf. Theory, vol. 58, pp. 6471–6483,
Oct 2012.
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