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Abstract

User authentication (UA) supports the receiver in deciding whether a message comes from the

claimed transmitter or from an impersonating attacker. In cryptographic approaches messages are signed

with either an asymmetric or symmetric key, and a source of randomness is required to generate the

key. In physical layer authentication (PLA) instead the receiver checks if received messages presumably

coming from the same source undergo the same channel. We compare these solutions by considering the

physical-layer channel features as randomness source for generating the key, thus allowing an immediate

comparison with PLA (that already uses these features). For the symmetric-key approach we use secret

key agreement, while for asymmetric-key the channel is used as entropy source at the transmitter. We

focus on the asymptotic case of an infinite number of independent and identically distributed channel

realizations, showing the correctness of all schemes and analyzing the secure authentication rate, that

dictates the rate at which the probability that UA security is broken goes to zero as the number of used

channel resources (to generate the key or for PLA) goes to infinity. Both passive and active attacks are

considered and by numerical results we compare the various systems.

Index Terms

Physical Layer Authentication; Physical Layer Security; Rayleigh Fading; User Authentication.

I. INTRODUCTION

User authentication (UA) methods in communication systems are used to confirm the identity

of a message sender [1]. In particular, the receiver must take a decision on who has transmitted

the message considering that an attacker aims at impersonating the legitimate transmitter. Typi-

cally, UA includes two phases: an identification association (ID-A) phase, when the legitimate

transmitter is assigned an identifying feature using an authenticated channel, and an identification

verification (ID-V) phase, when the identifying feature is verified upon reception of a message.

http://arxiv.org/abs/1705.03430v2
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Many commonly-used UA protocols for communication systems use as identifier a key, i.e.,

a secret know by either only the transmitter (asymmetric key) or both the transmitter and the

receiver (symmetric key), and encryption techniques are adopted in the ID-V phase [1]. These

methods go also under the name of key-based UAs [2], [3]. An alternative key-less approach is

physical layer authentication (PLA) [4], in which the identifying feature is the physical channel

over which the communication occurs. In this case the ID-A phase consists in the identification

of the channel features, while the ID-V phase consists in checking if the received message

has undergone the same channel of the ID-A phase (see e.g. [5]–[7] and [4] for a survey).

For example, in wireless systems, the propagation phenomena (e.g., fading) are associated to

the specific position of both transmitter and receiver, thus the attacker should be in the same

position of the legitimate transmitter for a successful impersonation. PLA has been studied

for discrete memory-less channels in [8]; implementations for multiple-input multiple-output

(MIMO) and intersymbol-interference channels have been proposed in [5] and [9], while a

game-theoretic study of PLA has appeared in [10]. Recently, a review of key-based and key-less

security approaches with a comparison of cryptography and physical-layer security solutions has

been proposed in [11]. In [8] the keyless UA was studied in a new noisy model, where there

are two discrete memoryless channels, one from sender to receiver and and the other the from

adversary to the receiver, in addition to an insecure noiseless channel between the legitimate

parties. Optimality of the scheme was further proofed in [12].

In both key-based and key-less approaches a source of randomness is needed to either generate

the keys or identify the user feature. In this paper we focus on the use of physical-layer channel

features as randomness source for all the UA techniques. While the exploitation of channel

features is intrinsic in PLA, for key-based solutions we extract a random number (the key) from

the channel. The key must remain secret to the attacker, in order to prevent impersonation: thus

for symmetric-key systems we use the secret key agreement (SKA) procedure of [13], [14],

while for asymmetric-key systems the channel is used as an entropy source for one user only,

and a set of secret bits is obtained from this source.

Most of the literature has considered separately key-based and key-less UA. In [15] a first

comparison of the approaches when the unique source of randomness was the channel has been

proposed, but limited to quantized channel model with a finite number of samples per frame. In

this paper instead we focus on the asymptotic case of an infinite number of available independent

and identically distributed (i.i.d.) channel realizations. In this asymptotic regime all considered



JUNE 18, 2021 3

UA schemes can be shown to be correct, i.e., authentic messages are always accepted. We then

analyze the secure authentication rate (SAR), that dictates the rate at which the probability that

UA security is broken goes to zero as the number of channel resources used to extract either the

key or the channel features goes to infinity. In particular, we focus on time-invariant channels,

time-variant channels and Rayleigh fading channels with additive white Gaussian noise (AWGN).

Most derivations are obtained considering a passive attacker that listens to transmissions in the

ID-A phase and then attempts to impersonate the legitimate transmitter in the ID-V phase.

However, we also consider active attacks aiming at disrupting the ID-A phase in order to ease

the impersonation attack in the ID-V phase. Beyond considering optimal attacks by Eve we

also discuss a simple approach in which the attacker first performs a linear combination of

all channel estimates to obtain the minium mean square error (MMSE) linear estimate of the

legitimate channel which is then used for the attack. By numerical results we closely compare

the various systems, highlighting their potentials and vulnerabilities.

The rest of the paper is organized as follows. Section II introduces the system model, with

emphasis on both the channel and the considered schemes. The analysis of the protocols in

terms of SAR is performed in Section III, while its derivation for the relevant case of reciprocal

Rayleigh fading AWGN channels is discussed in Section IV. Active attacks during the ID-A phase

are discussed in Section V. Numerical results comparing the various strategies are presented in

Section VI, before the main conclusions are outlined in Section VII.

Notation: P[X ] denotes the probability of the event X . E[x] denotes the expectation of the

random variable x, H(x) denotes the entropy of the discrete random variable x, and H̄(x)

denotes the differential entropy of the continuous random variable x. I(x; y) denotes the mutual

information between random variables x and y. D(p||q) denotes the Kullback-Leibler (KL)

divergence between the two probability density function (PDF) p and q. Vectors are denoted

in boldface, while scalar quantities are denoted in italic. ln x and log x denote the natural-base

and base-2 logarithms of x, respectively. detA and trA denote the determinant and trace of

matrix A, respectively. px(a) denotes the PDF of random variable x.

II. SYSTEM MODEL

We consider a communication system with two legitimate users, Alice and Bob, and one

attacker Eve. Time is divided into frames, each of the same duration. In order to simplify the

analysis we suppose that in even and odd frames Alice and Bob alternate their transmissions. In
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particular, starting from the first frame and in all odd frames 2t+ 1 (t = 0, . . .) Alice transmits

to Bob, while starting from the second frame and in all even frames 2t (t = 1, . . .) Bob transmits

to Alice. Eve can transmit at any frame.

Bob must decide if packets received in odd frames are coming from either Alice or Eve.

To this end, initial frames are used for ID-A purposes, extracting keys from the channel or

identifying reference channel features as described in the following. In forthcoming frames Bob

receives packets and performs ID-V, i.e., he decides if they are coming from Alice (hypothesis

H0) or not (hypothesis H1).

Channel between each users’ couple are assumed to be time-invariant within each frame, and

described by n complex random variables. All transmissions include pilot symbols known to all

users (including Eve) for channel estimation. The channel estimated by Bob at frame 2t + 1 is

described by the random vector

X(2t+ 1) = [x1(2t+ 1), . . . , xn(2t+ 1)], (1)

while the channel estimated by Alice in frame 2t is described by the random vector

Y (2t) = [y1(2t), . . . , yn(2t)]. (2)

Let

VA(2t+ 1) = [v1,A(2t + 1), . . . , vn,A(2t+ 1)] (3)

VB(2t) = [v1,B(2t), . . . , vn,B(2t)] (4)

be the estimated channels by Eve when either Alice or Bob are transmitting, respectively. We

also collect into the vector Z(2t) the channel estimates of Eve up to frame 2t, i.e.,

Z(2t) = [VA(1),VB(2), . . . ,VA(2t− 1),VB(2t)] . (5)

Eve will exploit all these estimates to perform her attacks.

Channel estimates X(t1), Y (t2), VA(t3) and VB(t4) are assumed to be correlated, in general

however they do not have the same value since they are affected by noise, time-varying channel

phenomena and changing positions of transmitters and receivers. Within each estimated vector,

we assume that xk(t), are i.i.d. for k ∈ [1, n], with frame-dependent PDF px(t)(a), a ∈ C.

Similarly we have that yk(t), vk,A(t) and vk,B(t) are i.i.d.. In the following we will drop index



JUNE 18, 2021 5

k from all channel estimates, i.e., using x(t) instead of xk(t) (for any k). Moreover, we define

the 2t-size vector

z(2t) = [vA(1), vB(2), . . . , vA(2t− 1), vB(2t)] . (6)

We consider three UA approaches, namely asymmetric channel-based cryptographic authenti-

cation (A-CBCA), symmetric channel-based cryptographic authentication (S-CBCA) and phys-

ical layer authentication (PLA). While both A-CBCA and S-CBCA have a cryptography back-

ground and exploit some secret known by either or both the legitimate parties, PLA has information-

theoretic foundations and mostly relies on the communication channel characteristics. In order to

obtain a fair comparison of the three approaches, we extract the secret needed for both A-CBCA

and S-CBCA from the channel, so that all three schemes have the same source of randomness.

Moreover, both Alice and Bob must be able to exchange authenticated messages in the ID-A

phase, to ensure that they are talking to each other, and not with Eve. This is a common feature

to all UA protocols and we assume it for granted. The authenticated channel can be obtained for

example when devices are in a protected location immune from attacks. Also, the authenticated

channel is available when the keys used for authentication must be renewed, but we can still use

the old keys in the ID-A phase. Moreover PLA, which is not based on a key, can be considered

as a low-complexity alternative to be used in replacement of a more expensive UA procedure

that is adopted only for the ID-A phase of the PLA protocol.

We now details the UA procedures for the three authentication approaches.

A. A-CBCA

The basic structure of the A-CBCA can be summarized as follows.

ID-A Phase: In this phase Alice generates a private and public key couple from a source

of randomness, where the public key decrypts messages encrypted with the private key. Then,

she transmits the public key to Bob over an authenticated channel.

ID-V Phase: In this phase, whenever Alice wants to transmit a message, she encrypts it

with her private key, including a signature. Bob decrypts the message with the public key and

checks if the signature is correct, and in this case the message is accepted as authentic, otherwise

it is discarded as non-authentic.

Suitable variants of this scheme have been proposed to prevent various attacks (including the

replay attack) and are out the scope of this paper. With proper adaptations, the scheme is proofed
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to be secure [1], provided that the private key is secret.

In our implementation of A-CBCA, the random bits are obtained from the channel. In par-

ticular, in the second frame Alice extracts random bits from Y (2). On her side, Eve attempts

to extract the private key from her channel observations. Therefore, we must ensure that the

randomness extraction procedure provides bit that are not known to Eve. Proof of correctness

and security in this case is provided in Section III.

B. S-CBCA

The basic structure of the S-CBCA can be summarized as follows.

ID-A Phase: Alice and Bob share over an authenticated and confidential (to Eve) channel

a secret key.

ID-V Phase: Alice encrypts the message with her secret key, including a signature. Bob

decrypts the message with the same secret key and checks if the signature is correct.

Also this scheme, with proper modifications and improvements (out of the scope of this work)

is proofed to be secure [1], provided that the key is secret. In our implementation of S-CBCA

the key is obtained from the channel, using what is known as a SKA protocol [16] that provides

a secret key to two parties, with the support of an authenticated channel. In particular, in the

first two frames they estimate their channels and using a public error-free authenticated channel

they complete the reconciliation process. The proof of correctness and security in this case is

provided in Section III.

C. PLA

With PLA the authentication is provided by the physical channel over which the communi-

cation occurs [5]. The PLA algorithm works as follows.

ID-A Phase: In this phase, occurring at frame 1, Bob obtains a reference estimate of the

channel to Alice X(1). The estimation must be performed using an authenticated message, so

that Bob is sure that the estimated channel is connecting him to Alice (rather than Eve).

ID-V Phase: In this phase, occurring for frames 2t+1, with t > 0, whenever Bob receives

a message, he decides that it comes from Alice if the estimated channel in that frame, X(2t+1),

is similar to X(1).

The correctness and security proof of PLA is provided in Section III.
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III. PROTOCOLS ANALYSIS WITH ID-V ATTACKS

In this section we consider only the attacks in ID-V phase, while attacks in the ID-A phase

will be considered in Section V. We assess the correctness and security (as usually defined in

cryptography) of each UA protocol. We first provide a definition of correctness and security:

Definition 1 (Correctness and Security): A UA protocol is correct when a message coming

from Alice is verified as authentic by Bob and is secure when a message coming from Eve is

dismissed as non-authentic by Bob.

Let K(n) be the key used for key-based UA or the features used for PLA: since we assume

that the n channel realizations are i.i.d., the length of K(n) grows linearly with n. We aim

at establishing the protocols’ correctness and security asymptotically, as the number of channel

uses per frame n goes to infinity. About security, we show that for all schemes, the probability

of successful attack (PSA) Ps(t) at frame t goes exponentially to zero as n goes to infinity and

we define

R(t) = lim
n→∞

−1

n
logPs(t) (7)

as the secure authentication rate (SAR) at frame t. Interpreting the n entries of the channel

estimate vectors as n channel uses, R(t) is the number of secret bits in K(t) per channel use at

frame t, i.e, the number of bits that are not known to Eve in K(n), as n → ∞. Note that the PSA

depends on the frame index t since Eve collects channel estimates as time goes on, thus being

able to refine her knowledge of the Alice-Bob channel. In the following we derive the maximum

SAR for each UA protocol achieved by proper use of channel knowledge. We consider attacks

at odd frames, starting from frame t = 3, after Eve has collected an even number of channel

observations.

A. S-CBCA

We establish the correctness and security of the S-CBCA protocol by the following Theorem.

Theorem 1: As n → ∞, the S-CBCA protocol is correct and the SAR for frame 2t+ 1, with

t ≥ 1 is

RS−CBCA(2t+ 1) = CSKA(2t) , (8)

where CSKA(2t) is the weak secret-key capacity of the SKA process between Alice and Bob,

given the channel knowledge by Eve at frame 2t.
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Proof: S-CBCA is proofed to be correct and secure [1] provided that the key is secret.

About correctness, asymptotically SKA ensures that Alice and Bob have the same key, as long

as the secret key rate RSKA(2t+ 1) satisfies RSKA(2t+ 1) ≤ CSKA(2t+ 1).

About security, for SKA the length of the secret key (in bits) grows as nRSKA(2t + 1).

Therefore

Ps(t) ≈ 2−nRSKA(2t+1) (9)

and from (7) the maximum SAR coincides with CSKA(2t + 1), and we obtain (8).

We recall that the secret key capacity for the source-model SKA is not known with a closed-

form expression, but is bounded as

I(x(1); y(2))−min{I(x(1); z(2t)), I(y(2); z(2t))}

≤ CSKA(2t+ 1) ≤

min{I(x(1); y(2)), I(x(1); y(2)|z(2t))} ,

(10)

since the two channel estimates used for SKA are X(1) and Y (2) and the information on the

channel available at Eve at frame 2t+ 1 is Z(2t).

B. A-CBCA

For A-CBCA we first consider the case in which the channel estimates are discrete-valued

random variable. This occurs for example if Alice quantizes y(2) into 〈y(2)〉 ∈ A, where A =

{a0, . . . , aM−1} is an M-size quantization alphabet. The random number used for the private

key is then extracted from 〈y(2)〉.
Theorem 2: The A-CBCA scheme is correct and for discrete-valued estimated channels 〈y(2)〉,

as n → ∞ its SAR at frame 2t+ 1, with t ≥ 1 is

RA−CBCA(2t+ 1) = H(〈y(2)〉|z(2t)) , (11)

where H(·|·) is the conditional entropy.

Proof: Correctness of A-CBCA scheme follows immediately by the assumption that the

public-key broadcast is error-free and authenticated.

About security, the A-CBCA protocol can be seen as a source-based SKA protocol where both

Alice and Bob observe the same source of randomness. In this case the SKA capacity upper
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bound becomes

min{I(〈y(2)〉; 〈y(2)〉), I(〈y(2)〉; 〈y(2)〉|z(2t))}

= I(〈y(2)〉; 〈y(2)〉|z(2t)) = H(〈y(2)〉|z(2t)) ,
(12)

which coincides with the lower bound

I(〈y(2)〉; 〈y(2)〉)− I(〈y(2)〉; z(2t))

= H(〈y(2)〉)−H(〈y(2)〉) +H(〈y(2)〉|z(2t)) ,
(13)

providing (11).

For the channel quantization case a lower bound on SAR is obtained as follows

RA−CBCA(2t+ 1) = H(〈y(2)〉)− I(〈y(2)〉; z(2t))

≥ max{0,H(〈y(2)〉)− I(y(2); z(2t))} ,
(14)

where the first line is obtained by the definition of mutual information and the second line by

the data processing inequality, where we upper-bounded the mutual information on the quantized

variable by the corresponding mutual information on the continuous-valued channel estimate.

Now, we consider the case in which the channel is a continuous random random variable, for

which the SAR is established by the following Lemma.

Lemma 1: For continuous channel estimates at Alice (i.e., y(2) is a continuous random

variable), the SAR is

RA−CBCA(2t+ 1) = ∞ . (15)

Proof: We first observe that the conditional entropy in (11) can be written as

H(〈y(2)〉|z(2t)) =
∫

H(〈y(2)〉|z(2t) = b)pz(2t)(b)db . (16)

Now, the continuous random variable y(2) is the asymptotic case of the quantized 〈y(2)〉 with a

number of quantization points M → ∞. Asymptotically, the conditional entropy for each value

of z(t) is the limiting density of discrete points which tends to infinity logarithmically with M

under very mild assumptions [17]. Therefore, the average of the logarithm, which corresponds

to the conditional entropy tends to infinity, i.e., H(〈y(2)〉|z(2t)) → ∞, providing (15).

C. PLA

We establish the correctness and security of PLA by the following Theorem.



JUNE 18, 2021 10

Theorem 3: The PLA protocol is asymptotically correct, and as n → ∞ its SAR at frame

2t+ 1, with t ≥ 1, is

RPLA(2t+ 1) = D(px(1),x(2t+1)|H0
||px(1),x(2t+1)|H1

), (17)

where px(1),x(2t+1)|H0
and px(1),x(2t+1)|H1

are the joint PDF of x(1) and x(2t+1) when Alice and

Eve are transmitting, respectively in the ID-V phase (frame 2t+ 1).

Proof: About correctness, using the Chernoff-Stein Lemma [18, Theorem 11.8.3] we have

that for n → ∞ the probability of correctly authenticating messages coming from Alice can be

made arbitrarily small.

About security, still from the Chernoff-Stein Lemma [18, Theorem 11.8.3] the PSA goes to

zero as

Ps ∼ 2−nD(px(1),x(2t+1)|H0
||px(1),x(2t+1)|H1

) , (18)

which directly provides (17).

Note that the SAR depends on the attack that Eve is performing through px(1),x(2t+1)|H1
.

Therefore it is interesting to have results under the hypothesis that Eve performs a specific

attack, as in the following Lemma.

Lemma 2: If Eve is able to induce any channel estimate X(2t+1) to Bob when attacking, and

assuming that Eve generates the induced estimate randomly distributed according to the PDF of

the legitimate channel given Eve’s observations, px(2t+1)|z(2t),H0
, then the SAR is upper-bounded

by

RPLA(2t+ 1) ≤ I(x(1); xH0(2t+ 1)|z(2t)) . (19)

Proof: See Appendix A.

From this lemma we observe that if the statistics of estimated channels at both Alice and Bob

are the same (px = py) then RPLA(2t + 1) ≤ I(x(1); y(2)|z(2t)), i.e., the PLA has the same

upper-bound of S-CBCA.

Remark 1: For time-varying channels we assumed that Eve can induce any channel estimate

when performing the attack. This however does not hold as the channel are changing and Eve

does not know the exact channel (with respect to Bob) on which she attacks, therefore in

practice she will not be able to induce any desired channel estimate. Therefore our assumption

is conservative and the obtained SAR is a lower bound on the effective SAR. Moreover, for



JUNE 18, 2021 11

PLA the time-varying channel scenario is particularly challenging, since the variations decrease

the ability of the receiver to identify the channel in the ID-V phase. In other words, for PLA

SAR will decrease over time. In particular, as t → ∞ the KL divergence will tend to zero, thus

nulling the SAR.

Remark 2: We have assessed the performance for the three UA methods, and from the theorems

we can conclude that A-CBCA has an unlimited SAR as we increase the number of quantization

bits. For PLA we have an explicit expression for SAR, depending however on the attack by Eve.

For the SAR of S-CBCA we have only bounds. Moreover, for a particular attack strategy by

Eve the SAR of PLA share the same upper bound of S-CBCA.

IV. RAYLEIGH AWGN RECIPROCAL CHANNELS

We now consider a scenario in which the estimates are corrupted by AWGN, which corre-

sponds for example to a massive MIMO system in which all users (Alice, Bob and Eve) have
√
n

antennas each, so that the resulting channel matrices have n → ∞ entries1. Moreover, channel

matrix entries are assumed i.i.d., and zero-mean unitary power complex Gaussian (ZMUPCG),

in accordance with the Rayleigh fading model. By reordering the n entries of each matrix into

a vector we obtain the channel model described in Section II, where x(t), y(t) and z(t) are

Gaussian distributed.

We assume that the channel between any couple of devices is reciprocal, therefore we have

x(t) = h(t) + σxwx(t) , y(t) = h(t) + σywy(t) , (20)

where wx(t), wy(t) are jointly ZMUPCG and σ2
x, σ

2
y are the noise powers at the receivers. We

also define the correlation of h(t) over time as

E[h(t)h∗(t+ ℓ)] = ρ(ℓ) . (21)

Eve’s channels are correlated with coefficients αA ∈ [−1, 1] and αB ∈ [−1, 1] to h(t), and

affected by AWGN with powers σ2
v,A and σ2

v,B (typically σ2
v,A = σ2

v,B). Therefore, her estimate

of the channel to Alice is

vA(t) = αAh(t) +
√

1− α2
AqA(t) + σv,Awv,A(t) , (22)

1Other antennas configurations can be considered, leading to similar results and expressions as those derived in this section.

Also, orthogonal frequency division multiplexing (OFDM) systems can be cast in this model.
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while her estimate of the channel to Bob is

vB(t) = αBh(t) +
√

1− α2
BqB(t) + σv,Bwv,B(t) , (23)

where wv,A(t), wv,B(t) are ZMUPCG independent with respect to h(t), qA(t) and qB(t), and

qA(t), qB(t) are ZMUPCG variables. Note that by these definitions all channel estimates have

unitary variance in the absence of noise.

A-CBCA: As we have already seen, using directly the continuous-valued channel estimate

we obtain that the SAR of A-CBCA is infinite, thus we focus here on the channel quantization

case. The conditional entropy in (11) can be written (by definition) as

RA−CBCA(2t+ 1) = H(〈y(2)〉|z(2t)) = H(〈y(2)〉|z(2t)) =

−
M−1
∑

i=0

∫

p〈y(2)〉|z(2t)(ai|b)pz(2t)(b) log p〈y(2)〉|z(2t)(ai|b)db .
(24)

About the bound (14), recall that for a Gaussian vector v of size k with correlation matrix Rv

the differential entropy is H̄(v) = log det((πe)kRv). Let us define

R[y(2),z(2t)] =

=E[[y(2), z(2t)]H[y(2), z(2t)]]

=





1 + σ2
y rH

y

ry R
z(2t)



 ,

(25)

where ry = E[y(2)zH(2t)] has entries

[ry]ℓ =











α∗
Aρ(ℓ− 2) ℓ even ,

α∗
Bρ(ℓ− 2) ℓ odd .

(26)

Then we have

I(y(2); z(2t)) = H̄(y(2)) + H̄(z(2t))

− H̄([y(2), z(2t)]) = log
(1 + σ2

y) detRz(2t)

detR[y(2),z(2t)]

= − log

(

1−
rH
y R

−1
z(2t)ry

1 + σ2
y

)

,

(27)
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where Rz(2t) = E[zH(2t)z(2t)], with entries

[R
z(2t)]m,n =



















































α∗
AαBρ(m− n) n odd, m even

αAα
∗
Bρ(m− n) n even, m odd

|αB|2ρ(m− n) n and m even, m 6= n

|αA|2ρ(m− n) n and m odd, m 6= n

1 + σ2
z n = m.

(28)

S-CBCA: For S-CBCA we have the bound (10). In particular for the Gaussian case we

have

I(x(1); y(2)) = H(x(1)) +H(y(2))−H(x(1), y(2))

= − log

(

1− |E[x(1)y∗(2)]|2
(1 + σ2

x)(1 + σ2
y)

)

= − log

(

1− ρ(1)

(1 + σ2
x)(1 + σ2

y)

)

,

(29)

and analogously to (27)

I(x(1); z(2t)) = log
(1 + σ2

x) detRz(2t)

detR[x(1),z(2t)]

= − log

(

1−
rH
x R

−1
z(2t)rx

1 + σ2
x

) (30)

where

R[x(1),z(2t)]

=E[[x(1), z(2t)]H [y(2), z(2t)]]

=





1 + σ2
x rH

x

rx Rz(2t)



 ,

(31)

[rx]ℓ = [E[x(1)zH(2t)]]ℓ =











α∗
Aρ(ℓ− 1) ℓ even ,

α∗
Bρ(ℓ− 1) ℓ odd .

(32)

Moreover we have

I(x(1); y(2)|z(2t)) = I(x(1); y(2), z(2t))− I(x(1); z(2t)) (33)
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I(x(1); y(2), z(2t)) = log
(1 + σ2

x) detR[y(2),z(2t)]

detR[x(1),y(2),z(2t)]

(34)

and

R[x(1),y(2),z(2t)] =










1 + σ2
x ρ(1) rH

x

ρ(−1)
R[y(2),z(2t)]

rx











.
(35)

PLA: Assuming that Eve generates the induced estimate x(2t + 1) randomly distributed

according to the PDF of the legitimate channel given Eve’s observations, i.e., px(2t+1)|z(2t),H0

the SAR has been computed in [5]. In particular, let us define S = R−1
[x(1)z(2t+1)] and T =

R−1
[x(2t+1)z(2t+1)] where

R[x(2t+1)z(2t+1)] = E[[x(2t + 1), z(2t)]H [x(2t + 1), z(2t)]]

=





1 + σ2
x rH

x,2

rx,2 Rz(2t)



 ,
(36)

[rx,2]ℓ = [E[x(2t + 1)zH(2t)]]ℓ =











α∗
Aρ(ℓ− 2t+ 1) ℓ even ,

α∗
Bρ(ℓ− 2t+ 1) ℓ odd .

(37)

Partitioning the two matrices as

S =





S1,1 S1,2

S2,1 S2,2



 T =





T1,1 T1,2

T2,1 T2,2



 (38)

where T1,1 and S1,1 are scalars, while all other entries are vectors and matrices of suitable

dimensions, we define

E = S2,2 + T2,2 −R−1
z(2t+1) , (39)

and

V =





T1,1 − TH
1,2E

−1T1,2 −TH
1,2E

−1S1,2

−SH
1,2E

−1T1,2 S1,1 − SH
1,2E

−1S1,2





−1

. (40)
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Then (17) becomes

RPLA(2t+ 1) =

− ln det(R[x(2t+1),x(1)]V ) + tr(V R[x(2t+1),x(1)])− 2

ln 2
,

(41)

where

R[x(2t+1),x(1)] = E[[x(2t + 1), x(1)]H [x(2t + 1), x(1)]]

=





1 + σ2
x ρ(2t)

ρ(−2t) 1 + σ2
x



 .
(42)

A. Linear Eve’s Processing

With linear Eve’s processing (LEP) Eve first performs a linear combination of all channel

estimates to obtain the MMSE linear estimate of the legitimate channel ĥ, which is then used

for the attack. In particular, for the A-CBCA scheme Eve estimates h(2), while for PLA she

estimates h(1). For S-CBCA since we have only bounds on the SAR, Eve can maximize the

SAR lower bound. Therefore, from the estimates obtained for PLA and A-CBCA Eve picks the

one that minimizes the minimum of the two mutual information, i.e.,

ĥ = argminh∈{ĥ(1),ĥ(2)} min{I(x(1); z(2t)), I(y(2); z(2t))} . (43)

Let k be the frame index of the desired channel estimate, k = 1, 2. We first define the

correlation vector

β(k) = E[z(2t)h∗(k)] (44)

with entries

β2ℓ+1(k) = αAρ(k − 2ℓ− 1) , β2ℓ(k) = αBρ(k − 2ℓ) . (45)

Then we have

z(2t) = β(k)h(k) +w0R
1/2
s (2t) , (46)

where w0 is a jointly ZMUPCG 2t-size vector with i.i.d. entries and the correlation matrix

Rs(2t) is

Rs(2t) = E[(z(2t)− β(k)h(k))H(z(2t)− β(k)h(k))] . (47)
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Now, the MMSE estimation of h(k) is obtained as follows

ẑ(2t) =
1

tr(R−2
s (2t))

z(2t)R−1
s (2t)1 = h(k) + σz(2t)ŵz(2t) , (48)

where 1 is a 2t-long column vector of all ones, ŵz(2t) is ZMUPCG and

σ2
z (2t) = tr2(R−2

s (2t)) . (49)

In general, LEP is a suboptimal procedure (except for time-invariant channels) in the sense that

the attacks by Eve will be less effective. However, this procedure has a limited computational

complexity. The SAR obtained with LEP is readily computed from the results of the previous

section where z(2t) is replaced by ẑ(2t) having unitary correlation with h(k) and noise power

σ2
z (2t).

B. LEP with Time-invariant Channels

We now focus on time invariant channels, therefore h(t) = h, qA(t) = qA and qB(t) = qB.

We also have ρ(t) = 1 ∀t. In this case, the LEP procedure corresponds to optimal processing at

Eve.

For t = 1 we have

β(1) = β(2) = [αA, αB]
T (50)

and

Rs =





1− α2
A + σ2

v,A 0

0 1− α2
B + σ2

v,B



 . (51)

For the upper bound of S-CBCA SAR we have

R[x(1),y(2),ẑ(2t)] =











1 + σ2
x 1 1

1 1 + σ2
y 1

1 1 1 + σ2
z (2t)











, (52)

detR[x(1),y(2),ĥ(2)] = (1 + σ2
x)[(1 + σ2

y)(1 + σ2
z (2))− 1]−

[(1 + σ2
z (2))− 1] + [1− (1 + σ2

y)]

= σ2
xσ

2
y + σ2

xσ
2
z (2) + (1 + σ2

x)σ
2
yσ

2
z (2).

(53)
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For t > 1 note instead that, since qA and qB are the same at all frames, LEP boils down to

first estimating

v̄A(2t) =
1

t

t−1
∑

n=0

vA(2n+ 1) =

αAh+
√

1− α2
AqA + σv̄,A(2t)wv,A(2t) ,

(54)

v̄B(2t) =
1

t

t−1
∑

n=0

vB(2n) =

αBh+
√

1− α2
BqB + σv̄,B(2t)wv,B(2t) ,

(55)

where wv,A(2t) and wv,B(2t) are ZMUPCG and

σ2
v̄,A(2t) =

σ2
v,A

t
, σ2

v̄,B(2t) =
σ2
v,B

t
, (56)

and then applying MMSE combining on v̄A(2t) and v̄B(2t) as for the case t = 1.

In particular, for t → ∞, from (56) we have that σ2
v̄,A(2t) = σ2

v̄,B(2t) = 0, and

ẑ(2t) = h+
αA(1− αA)

(α2
A + α2

B)
qA +

αB(1− αB)

(α2
A + α2

B)
qB , (57)

i.e., the Eve’s channel estimate is affected only by qA and qB.

In Appendix B we derive the SAR with LEP processing of the A-CBCA scheme considering

a uniform quantizer with saturation interval [−vsat, vsat] and quantization step ∆.

V. ATTACKS IN THE ID-A PHASE

In this section we consider attacks by Eve in the ID-A phase for the various UA strategies.

Eve transmits together and synchronously with Alice and Bob in the ID-A phase. Therefore she

can overlap her signal on the pilots transmitted by Alice. Furthermore, Eve is assumed to be a

full-duplex terminal, therefore she can transmit pilots and at the same time receive signals by

Alice and Bob thus estimating the channel. Channels are time-invariant (thus we drop index t)

and, in order to simplify notation, we assume that Eve has perfect estimates of her channels to

both Alice and Bob, i.e., σ2
v = 0.

Two attacks are considered: pilot contamination (PC) and artificial noise (AN) attack. These

attacks are very well known in the literature, and we now apply them to the UA procedures.
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a) PC Attack: With PC attack, Eve transmits a scaled version of pilots transmitted by Alice,

with scaling factors ζA and ζB, so that Alice and Bob estimate the same channel to Eve, i.e.,

ζAvA = ζBvB = G . (58)

The estimated channels by Alice and Bob are

x(t) = h+G + σxwx(t), y(t) = h +G+ σywy(t) . (59)

In order to analyze the performance of this attack we note that if we divide x(t) and y(t) by
√

1 + |G|2 we obtain again the model (20)-(23) where now σ2
x and σ2

y become σ2
x/(1+ |G|2) and

σ2
y/(1+|G|2), respectively. On her side, Eve using LEP obtains the estimate of (h+G)/

√

1 + |G|2

ẑPC(2t) = (ẑ(2t) +G)/
√

1 + |G|2 (60)

with noise variance σ2
z (2t)/(1 + |G|2). Therefore the effect of this attack is the scaling of all

noise variances, and results of previous Section can be used to compute the SAR. Note that

the PC attack has an impact also on PLA correctness, when Eve does not transmit pilots after

the ID-A phase. In this case Bob may not recognize the Alice-Bob channel as correct, since G

is missing. A-CBCA and S-CBCA are not affected by this issue, since they only use the key

extracted in the ID-A phase.

b) AN Attack: With this attack Eve transmits AN during the ID-A phase, i.e. a random

ZMUPCG signal aimed at increasing the noise for Alice and Bob. This scenario can be analyzed

using the results of the previous section, simply modifying the values of σ2
x and σ2

y. Note that

this attack has no impact on the correctness of UA process.

A. Defense Strategies

We describe now possible defense strategies against the ID-A attacks.

• Random pilots: legitimate parties use random pilots, locally generated at the transmitter

and shared with the legitimate receiver after the ID-A phase on the public authenticated

error-free channel (which as we have seen, must be in any case available in the ID-A phase).

In this case Eve would not be able to add coherently her pilot and induce a desired channel;

• Channel and noise power estimation: if reference values of these powers are available at

the legitimate receivers, the attack can be detected (see also [19]);
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• Channel agreement: as outlined in [19] by estimating the channel at both Alice and Bob

and comparing the estimates without disclosing them to Eve it is possible to check if the

two legitimate users see the same channel, thus preventing Eve from performing an attack

in which she does not know the channels to Alice and Bob.

Moreover, note that the described attacks require the knowledge of the Alice-Eve and Bob-Eve

channels before transmissions, therefore implementing the ID-A stage at the very beginning of

transmission would prevent Eve from getting the channel estimates and deploy the attack.

VI. NUMERICAL RESULTS

We provide now some results on the SAR of the various UA systems. We focus in particular on

the Rayleigh AWGN reciprocal channels of Section IV, where both Alice and Bob transmit with

unitary power and channels are vectors of i.i.d. ZMUPCG. We consider both time-invariant and

time-variant channels, and ID-A attacks described in Section V. For A-CBCA we have already

observed that the SAR can be made arbitrarily large in the presence of a passive eavesdropper:

here we report the results for a uniform quantizer with 3 bits (corresponding to 8 quantization

levels) and saturation value vsat that ensures a probability of saturation of 10−2. Unless differently

specified we consider σ2
x = σ2

y = σ2
v,A/B = −10 dB.

A. Time-invariant Channels

We start from time-invariant channels. Fig. 1 shows the SAR versus (vs) the correlation

coefficients αA = αB, at ID-V frame t = 3, i.e., immediately after the two ID-A frames.

The results for the lower and upper bound on the SAR of S-CBCA are shown as RS−CBCA

low and up, respectively. As expected, with an increasing correlation among the legitimate and

eavesdropper’s channels the SAR decreases. Note that even when αA = αB = 1 we still may

have a non-zero SAR. In particular, in A-CBCA Bob benefits from the randomness of the noise

which is assumed independent with respect to that of Eve. Similarly, in PLA Eve generates a

random attack channel having as mean her channel estimate rather than the estimate obtained by

the legitimate user in the ID-A steps, and the two estimates differ due to the noise. The lower

bound for S-CBCA is indeed zero in this case.

Fig. 2 shows the SAR vs the ID-V frame for three values of channel correlations: αA = αB =

0.1 (solid lines), αA = αB = 0.4 (dashed lines), and αA = αB = 0.8 (dotted lines). We observe

that for all schemes, as the ID-V frame t increases SAR decreases, because in the meantime Eve
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Figure 1. SAR vs the correlation coefficients αA = αB for time-invariant channels at ID-V frame t = 3.

has obtained a better channel estimate. The degradation of authentication performance is more

remarkable for a higher value of channel correlation factor, since in this case having a more

accurate knowledge of her channels to Alice and Bob truly provides Eve a better knowledge of

the Alice-Bob channel.

B. Time-varying Channels

We consider now frame-time-variant channels with Jakes fading. In particular the channel is

time-invariant in each frame while the evolution over frames is

h(t) = ρ(t)h(1) +
√

1− |ρ(t)|2g(t) , (61)
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Figure 2. SAR vs ID-V frame index, for three values of channel correlations: αA = αB = 0.1 (solid lines), αA = αB = 0.4

(dashed lines), and αA = αB = 0.8 (dotted lines).

with g(t) ZMUPCG and

ρ(t) = J0(2πfdtT ) , (62)

with T the frame duration, fd the Doppler frequency and J0(·) the zero-order Bessel function

of the first kind.

As we have observed, for PLA channel variations have an impact on the ability of the scheme

to effectively authenticate a legitimate transmission, since the channel (which is used as user

signature) changes. Therefore Fig. 3 shows the SAR vs the ID-V frame index, for three values of

the normalized Doppler frequency TfD for the PLA scheme when αA = αB = 0.4. We assume

that Eve estimates the channel in only the first two frames, and up to frame t > 2 Alice and
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Figure 3. SAR vs the ID-V frame index, for three values of the normalized Doppler frequency TfD for the PLA scheme.

αA = αB = 0.4.

Bob are not transmitting. We observe that as the normalized Doppler frequency increases the

SAR decreases. Moreover, as ID-V frame index increases the SAR is reduced as well. In both

cases the channel variations prevent an effective authentication. Lastly, note that for the highest

value of the normalized Doppler frequency the SAR increases for a higher number of frames:

this is due to the Jakes model, and in particular to the behavior of the correlation (62) as fd first

decreases and then increases.

We now consider the effect of time-variations on all the schemes. Fig. 4 shows the SAR as a

function of the normalized Doppler frequency for three ID-V frames t = 3 (solid lines), t = 5

(dashed lines) and t = 9 (dotted lines). Also in this case αA = αB = 0.4. We observe that the
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Figure 4. SAR vs the normalized Doppler frequency for three ID-V frames t = 3 (solid lines), t = 5 (dashed lines) and t = 9

(dotted lines). αA = αB = 0.4.

A-CBCA scheme is not affected by the time-variation of the channel across frames, as it only

uses one frame. Moreover, for S-CBCA the SAR decreases for increasing normalized Doppler

frequency but it is insensitive to the frame in which authentication is performed: in fact, for

this scheme the channel is used only in the ID-A phase to establish the secret key and channel

variations in further frames are not relevant. On the other hand, S-CBCA and PLA are more

heavily affected, since channel variations have an impact on both ID-A and ID-V phases. Also

in this case we observe the effect of increasing channel correlation for high Doppler frequency,

as already observed for Fig. 2.
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Figure 5. SAR as a function of σ2
G for ID-A-phase attacks, for both the PC attack (solid lines) and the AN attack (dashed

lines).

C. Active Attacks

We now consider the active attacks by Eve, as described in Section V, namely PC and AN

attack. Fig. 5 shows the SAR as a function of σ2
G for PC attack (solid lines) and AN attack

(dashed lines). Also in this case αA = αB = 0.4 and channels are time-invariant. We recall

that for the PC attack σ2
G is the power of the random channel superimposed to the effective

channel that is estimated by the legitimate users in the ID-A phase. From the figure we observe

that this attack is not effective for S-CBCA and PLA schemes, instead increasing the SAR.

This is due to the fact that this attack is equivalent to a reduction of the noise estimate for both

legitimate users and Eve, thus resulting in a globally favorable situation. For A-CBCA this attack
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in instead effective, since the reduction of the uncertainty on the channel estimated by Bob helps

Eve to perform a more effective attack. When we consider the AN attack instead we observe

that it is effective for the S-CBCA and PLA schemes, while it yields a higher SAR (thus not

being effective) for A-CBCA. In fact, since the AN is not used by Eve in its estimation phase,

this attack provides additional randomness to Alice, that is unknown to Eve, thus supporting

the extraction of random bits from the channel in A-CBCA. Instead, for the other schemes the

additional noise reduces the capabilities of extracting a shared secret key from the channel in the

S-CBCA scheme, or the possibility of effectively detecting channel variations in PLA scheme.

Therefore this attack is effective against these two schemes. As we mentioned, randomizing

pilots and channel agreement can be effective in preventing these attacks.

VII. CONCLUSIONS

In this paper we have compared three UA strategies, based on either symmetric/asymmetric

keys or on physical layer authentication, where in all cases the features used for authenticating

the user are extracted from the communication channel. The comparison has been performed in

terms of SAR, i.e., the rate at which the probability that UA security is broken goes to zero

as the number of used channel resources goes to infinity. From the analysis and the numerical

results we can conclude that the A-CBCA scheme provides potentially the highest SAR and is

immune to channel changes. Then, the S-CBCA scheme, which uses the source-based SKA, is

slightly more sensitive to the channel variations but has a lower bound on SAR that typically

is higher than the SAR achieved with PLA. Moreover, PLA is the most sensitive solution to

channel variations.
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APPENDIX A

PROOF OF LEMMA 2

We first observe that by the chain rule

D(px(1),x(2t+1)|H0
||px(1),x(2t+1)|H1

) ≤

D(px(1),x(2t+1),z(2t)|H0 ||px(1),x(2t+1),z(2t)|H1) .
(63)
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Moreover, the KL divergence of the joint PDFs can be written as the expectation of the condi-

tioned PDFs, i.e.,

D(px(1),x(2t+1),z(2t)|H0 ||px(1),x(2t+1),z(2t)|H1) =

E[D(px(1),x(2t+1)|H0,z(2t)||px(1),x(2t+1)|H1,z(2t))] ,
(64)

where expectation is taken with respect to z(2t). Now, we also have the general relation between

mutual information and KL divergence for random variables a, b and c

I(a; b|c) = Ec[D(pa,b|c||pa|cpb|c)]. (65)

Recalling that conditionally on z(2t), x(1) and x(2t+1) (as generated by Eve) are independent

[20] we have

px(1),x(2t+1)|H1,z(t) = px(1)|H1,z(t)px(2t+1)|H1,z(2t) . (66)

Now, assuming that Eve does not attack in the ID-A frames, px(1)|H1,z(t) = px(1)|H0,z(t). Moreover,

if the attack has PDF px(2t+1)|H0,z(2t), we have

px(2t+1)|H1,z(2t) = px(2t+1)|H0,z(2t) (67)

and therefore

px(1),x(2t+1)|H1,z(t) = px(1)|H0,z(t)px(2t+1)|H0,z(2t) , (68)

and using (63) we have

D(px(1),x(2t+1)|H0 ||px(1),x(2t+1)|H1) ≤

I(x(1); xH0(2t+ 1)|z(2t)) ,
(69)

which provides (19).

APPENDIX B

SAR FOR A-CBCA WITH RAYLEIGH FADING

We first observe that the Rayleigh channel coefficient h has i.i.d. real and imaginary parts,

therefore the SAR will be twice of the rate obtained considering the quantization of the real
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part, i.e.,

RA−CBCA(2t+ 1) = −2

M−1
∑

i=0

∫

p〈y(2)〉|ẑ(2t)(ai|b)pẑ(2t)(b)

log p〈y(2)〉|ẑ(2t)(ai|b)db ,
(70)

For time-invariant channels and considering (Ti−1, Ti) as quantization interval for ai we have

p〈y(2)〉|ẑ(2t)(i|b) =
1

pẑ(2t)(b)
×

P

(

ĥ+
σy√
2
wy(2) ∈ (Ti−1, Ti], ĥ+

σz(2t)√
2

ŵz(t) = b, h = ĥ

)

=

∫ ∞

−∞
P

(

h+
σy√
2
wy(2) ∈ (Ti−1, Ti]

)

×

pŵz(2t)

(

− h
√
2

σz(2t)
+

b
√
2

σz(2t)

)

ph(h)dh ,

(71)

where we used half of all noise variances since we are considering only the real part of the

channel estimates. Now considering vsat as the saturation value and Ti = vsat +∆i, T−1 = −∞,

TM = ∞, we have that the first function in (70) is

P

(

h+
σy√
2
wy(2) ∈ (Ti−1, Ti]

)

=























1−Q
(√

2(−vsat+∆−h)
σy

)

i = 0

Q
(√

2(−vsat+∆i−h)
σy

)

−Q
(√

2(−vsat+∆(i+1−h)
σy

)

i ∈ [1,M − 2]

Q
(√

2(−vsat+∆(M−1)−h)
σy

)

i = M − 1 ,

(72)

where 〈y(2)〉 is the quantization index of y(2). Moreover for second and third functions in (70)

we have

ph(ĥ) =
1

π
e−ĥ2

, (73)

pŵz(2t)

(

−
√
2h

σz(2t)
+

√
2b

σz(2t)

)

=
1

σz(2t)
√
π
e
− (h−b)2

σ2
z (2t) . (74)

Both integrals in (71) and in (70) must be solved by numerical methods.
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