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Abstract—Proactive wireless caching and device to device
(D2D) communication have emerged as promising techniques for
enhancing users’ quality of service and network performance. In
this paper, we propose a new architecture for D2D caching with
inter-cluster cooperation. We study a cellular network in which
users cache popular files and share them with other users either
in their proximity via D2D communication or with remote users
using cellular transmission. We characterize the network average
delay per request from a queuing perspective. Specifically, we
formulate the delay minimization problem and show that it is
NP-hard. Furthermore, we prove that the delay minimization
problem is equivalent to the minimization of a non-increasing
monotone supermodular function subject to a uniform partition
matroid constraint. A computationally efficient greedy algorithm
is proposed which is proven to be locally optimal within a factor
(1 � e�1) ⇡ 0.63 of the optimum. We analyze the average per
request throughput for different caching schemes and conduct the
scaling analysis for the average sum throughput. We show how
throughput scaling depends on video content popularity when the
number of files grows asymptotically large. Simulation results
show a delay reduction of 45% to 80% compared to a D2D
caching system without inter-cluster cooperation.

Index Terms—D2D caching, queuing theory, delay analysis,
scaling analysis, throughput analysis.

I. INTRODUCTION

The rapid proliferation of mobile devices has led to unprece-
dented growth in wireless traffic demands. A typical approach
to deal with such demand is by densifying the network. For ex-
ample, macrocells and femtocells are deployed to enhance the
capacity and attain a good quality of service (QoS) by bringing
the network closer to the user. Recently, it has been shown that
only a small portion of multimedia content is highly demanded
by most of the users. This small portion forms the majority
of requests that come from different users at different times,
which is referred to as asynchronous content reuse [2].

Caching the most popular content at various locations of the
network edge has been proposed to avoid serving all requests
from the core network through highly congested backhaul
links [3]–[5]. From the caching perspective, there are three
main types of networks, namely, caching on femtocells in
small cell networks, caching on remote radio heads (RRHs) in
cloud radio access networks (RANs), and caching on mobile
devices [6]–[8]. One approach to overcome the limitations
of the finite capacity backhaul links in the Cloud-RANS,
where low energy base stations (BSs) are deployed over a
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small geographical area and are connected to the cloud, is
to introduce local storage caches at the BSs, in which the
popular files are stored locally in order to reduce the load of
the backhaul links [7]. For the small cell networks, caching
the most popular content at the network edge (the small BSs)
is a promising solution to reduce the traffic and the energy
consumption over the finite capacity backhaul links [6].

In this article, we focus on device caching solely. The
architecture of device caching exploits the large storage avail-
able in modern smartphones to cache multimedia files that
might frequently be requested by the users. The users’ devices
exchange multimedia content stored on their local storage with
nearby devices [8]. Since the distance between the requesting
user and the caching user (a user who stores the file) will be
small in most cases, device to device (D2D) communication is
commonly used for content transmission [8]. In this context,
Golrezaei et al. [9] proposed a novel architecture to improve
the throughput of video transmission in cellular networks
based on the caching of popular video files in base station
controlled D2D communication. The analysis of this network
is based on the subdivision of a macrocell into small virtual
clusters, such that one D2D link can be active within each
cluster. Random caching is considered where each user caches
files at random and independently, according to a caching
distribution.

Different cooperation strategies in D2D networks are pro-
posed in the literature. As an example, in [10], the authors
proposed a cooperative D2D communications framework in
order to combat the problem of congestion in crowded commu-
nication environments. The authors allowed a D2D transmitter
to act as an in-band relay for a cellular link and at the
same time transmit its data by employing superposition coding
in the downlink. It is shown that cooperation between the
cellular link and D2D transmitter helps increase the number
of connections per unit area with the same spectrum usage.
In the area of D2D caching, the authors in [11] proposed
an opportunistic cooperation strategy for D2D transmission
by exploiting the caching capability at the users to control
the interference among D2D links. The authors considered
an overlay inband D2D communication, divided the D2D
users into clusters, and assigned different frequency bands to
cooperative and non-cooperative D2D links. The cluster size
and bandwidth allocation are further optimized to maximize
the network throughput.

The analysis of wireless caching networks from the resource
allocation perspective is widely discussed in the literature. For
instance, in [12], the authors showed how distributed caching
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and collaboration between users and femtocells (helpers) can
significantly improve throughput without suffering from the
backhaul bottleneck problem common to femtocells. The
authors also investigated the role of collaboration among users
- a process that can be interpreted as the mobile devices
playing the role of helpers also. This approach allowed an im-
provement in the video throughput without the deployment of
any additional infrastructure. Due to the dependence between
content cache placement and resource allocation in wireless
networks, the joint problem of caching and resource allocation
is studied in many works. As an example, Zhang et al. in [13]
proposed a single-hop D2D-assisted wireless caching network,
where popular files are randomly and independently cached
in the memory of end users. The joint D2D link scheduling
and power allocation problem is formulated to maximize the
system throughput. Following a similar approach, Chen et
al. in [14] studied the joint optimization of cache content
placement and scheduling policies to maximize the so-called
offloading probability. The successful offloading probability is
defined as the probability that a user can obtain the desired
file in the local cache or via a D2D link with data rate
larger than a given threshold. The authors obtained the optimal
scheduling factor for a random scheduling policy that controls
interference in a distributed manner and proposed a low
complexity solution to compute caching distribution.

Motivated by the remarks from the above discussion, i.e.,
backhaul links being highly congested, the geometric distribu-
tion of the users as groups in clusters, and the small memory
sizes of a group of users colocated in the same cluster, we
propose a novel D2D caching architecture with inter-cluster
cooperation. We propose a system in which a user in a given
cluster can search its requested files either in the local cluster
or any of the remote clusters. We show that allowing inter-
cluster collaboration via cellular communication achieves both
user and system performance gains. From the user perspective,
the average delay per request is reduced when downloading
files from a remote cluster instead of serving files from the
core network. From the system perspective, the heavy burden
on backhaul links is alleviated by decreasing the number
of requests that are served directly from the core network.
From a resource allocation perspective, similar to the work
performed in [11], [12], we analyze the network average delay
and throughput per user request for the proposed inter-cluster
cooperative caching system under different caching schemes
and show how the network performance is significantly im-
proved. To the best of our knowledge, none of the works in the
literature dealt with the performance analysis of D2D caching
networks with inter-cluster cooperation.

The main contributions of this article are summarized as
follows:

• We study a D2D caching system with inter-cluster coop-
eration from a queueing theory perspective. We formulate
the network average delay minimization problem in terms
of cache placement. The delay minimization problem is
then shown to be non-convex, and it can be reduced to a
well-known 0 - 1 knapsack problem which is NP-hard.

• A closed-form expression of the network average delay
is derived under the policy of caching popular files.

Fig. 1. Schematic diagram of the proposed system model. A cellular cell is
divided into square clusters, where users in all clusters can download their
requested files using D2D, cellular, or backhaul communication.

Moreover, a locally optimal greedy caching algorithm is
proposed whose delay is within a factor (1 � e�1

) of
the global optimum. Results show that the delay can be
significantly reduced by allowing D2D caching with inter-
cluster cooperation.

• We derive a closed form expression for the average
throughput per request for the proposed inter-cluster co-
operating scheme. Moreover, we conduct the asymptotic
analysis for the average sum throughput when the content
library size grows to infinity. The result of the scaling
analysis shows that the upper bound for the network
average sum throughput decreases when the library size
increases asymptotically, and the rate of this decrease is
controlled by the popularity of files.

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III, we formulate
the problem and perform the delay analysis of the system. In
Section IV, the content caching schemes are studied. Section
V provides the throughput analysis. Finally, we discuss the
simulation and analytical results in Section VI and conclude
the paper in Section VII.

II. SYSTEM MODEL

A. Network Model

In this subsection, we describe our proposed D2D caching
network with inter-cluster cooperation. Fig. 1 illustrates the
system layout. A cellular network consists of a small base
station (SBS) and a set of users U = {1, . . . , n} placed
uniformly in the cell. The cell is divided into a set of
equally sized clusters K = {1, . . . ,K}. For mathematical
convenience, we assume that the number of users per cluster
is y = n/K users, as in [11] and the reference therein. Users
in the same cluster can communicate directly using low power
high rate D2D communication in a dedicated frequency band
for D2D transmission.

Each user u 2 U requests a file f from a file library
F = {1, . . . ,m} independently and identically, according to
a given request probability mass function. It is assumed that
each user can cache up to M files, and for the caching problem
to be non-trivial, it is assumed that M < m. From the cluster
perspective, we assume to have a cluster’s virtual cache center
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(VCC) formed by the union of devices’ storage in the same
cluster, which caches up to N files, i.e., N = (n/K)M .

We assume that the D2D communication does not interfere
with communication between the BS and users. We also
assume that all D2D links share the same time-frequency
transmission resource within one cell. Multiple transmissions
on those resources are possible since the distance between
requesting users and users with the stored file will typically
be small. Furthermore, there should be no interference by other
transmissions on an active D2D link. To achieve this, the cell
is divided into smaller areas, which we denoted as clusters. To
avoid intra-cluster interference, only one such communication
per cluster is allowed.1 Users in the same cluster are assumed
to be served in a round-robin manner.

We define three modes of operation according to how a
request for content f 2 F is served:

1) Local cluster mode (Mlc mode): Requests are served
from the local cluster. Files are downloaded from nearby
users via a single-hop D2D communication. In this mode,
we neglect self-caching, i.e., the event when a user finds
the requested file in its internal cache with zero delay.
Within each cluster, the BS can help devices find their
requested content by broadcasting signals containing the
content replication ratio.

2) Remote cluster mode (Mrc mode): Requests are served
from any of the remote clusters via inter-cluster coopera-
tion. The BS fetches the requested content from a remote
cluster, then delivers it to the requesting user by acting as
a relay in a two-hop cellular transmission. The BS assists
in content dissemination in the “remote cluster mode” by
relaying the content between different clusters.

3) Backhaul mode (Mbh mode): Requests are served di-
rectly from the backhaul. The BS obtains the requested
file from the core network via the backhaul link and then
transmits it to the requesting user.

In each cluster, we assume that the stream of user requests
are served sequentially based on first in first out (FIFO) crite-
rion. The BS receives all requests and works as a coordinator
to establish the file transfer between the requesting user (a
user who requests the file) and the serving node (another user
who caches the file or a caching server in the core network).
The BS keeps track of which devices can communicate with
each other and which files are cached on each device. Such
BS-controlled D2D communication is more efficient and more
acceptable to spectrum owners if the communication occurs in
a licensed band as compared to traditional uncoordinated peer-
to-peer communications [15]. To serve a request for file f in
cluster k 2 K, first, the BS searches the VCC of cluster k.
If the file is cached, it will be delivered from the local VCC
(Mlc mode). We assume that the BS has all the information
about cached content in all clusters, such that all file requests
are sent to the BS, then the BS replies with the address of the
caching user from whom the file will be retrieved.

If a file is not cached locally in cluster k but cached
in any of the remote clusters, it will be fetched from a
randomly chosen cooperative cluster (Mrc mode), instead of

1We adopt a simplified PHY-layer model in this work.

downloading it from the backhaul. Unlike multi-hop D2D
cooperative caching discussed in [16], in our work cooperating
clusters are assumed to exchange cached files using a two-hop
cellular communication link through the BS, such that the D2D
band is dedicated only to the intra-cluster communication.
Hence, all the inter-cluster communication is performed in a
centralized manner through the BS. Finally, if the requested
file has not been cached in any cluster j 2 K in the cell, it can
be downloaded from the core network via the backhaul link
(Mbh mode). The selection of the three modes of operation is
conducted in a prioritized order from the local cluster, from
the remote cluster, or finally from the core network through
the backhaul link as a last resort.

Serving files sequentially according to the above three
modes is based on the assumption that the BS has a capacity
limited wired backhauling, such that the average delay per
request is decreased when allowing inter-cluster cooperation.
Otherwise, if the backhaul is not a bottleneck, e.g., optical
fiber or millimeter wave backhaul links are available, requests
for files not cached in the local cluster are served directly
from the core network through the high capacity backhaul
link. The analysis in this paper relies on a well-known
grid-based clustering model [9], i.e., no specific underlying
physical model or parameters are assumed. Therefore, the
obtained design/results, e.g., design of caching scheme and
the performance of the greedy algorithm, can be applied to
similar scenarios with three prioritized paths (modes) for file
downloading. For example, on-board users, such as on a plane
or a ship, can obtain requested files from neighboring users via
Bluetooth (local cluster mode), from a remote user through an
access point [17] acting as a relay (remote cluster mode), or
finally from the backhaul, which is the least preferred option.
As another example, in the case of connecting users through
unmanned aerial vehicles (UAVs) [18], serving files can be
prioritized as follows. A file is received from a neighboring
user via D2D communication (local cluster mode), from a
remote user through the UAV acting as a relay (remote cluster
mode), or from the backhaul to the core network through the
UAV as a last resort.

B. Content Placement and Traffic Characteristics

We use a binary matrix C = [ck,f ]K⇥m with ck,f 2 {0, 1}
to denote the cache placement in all clusters, where ck,f = 1

indicates that content f is cached in cluster k. Fig. 2 shows
the assumed users’ traffic model in a cluster k, modeled as
a multiclass processor sharing queue (MPSQ) with arrival
rate �k, and three serving processors representing the three
transmission modes. According to the MPSQ definition [19],
each transmission mode is represented by an M/M/1 queue
with Poisson arrival rate and exponential service rate. A
graphical interpretation of the content cache placement is
shown in Fig. 3. The content caching policy is defined by a
bipartite graph Y = (K,F , E), where edges (k, f) 2 E denote
that content f is cached in the VCC of cluster k.

If a user in cluster k requests a locally cached file f (i.e.,
ck,f = 1), it will be served by the local cluster mode with an
average rate RD. However, if the requested file is not cached
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Fig. 2. The users’ traffic model in a cluster k, with a cache center VCC, is
modeled as a multiclass processor sharing queue (MPSQ).

Fig. 3. An example of the content cache placement modeled as a bipartite
graph indicating how files are cached in clusters.

locally and cached in any of the remote clusters, i.e., when
ck,f = 0 and

P
j2K\{k} cj ,f � 1, it will be served by the

remote cluster mode.
We denote the rate for the remote cluster mode by RWL,

accounting for the average sum transmission rate between the
cooperating clusters through the BS. Accordingly, RWL is
shared between clusters simultaneously served by the remote
cluster mode. Finally, requests for files that are not cached in
the entire cell, i.e., when

PK
j=1 ck,f = 0, are served via the

backhaul mode with an average sum rate RBH . We assume
that RBH << RWL, such that the part of the cellular rate
allocated to the users served by the backhaul mode is neglected
for the delay analysis. RBH is assumed to be the effective rate
from the core network to the user using BS.

Due to traffic congestion in the core network and the
transmission delay between cooperating clusters, we assume
that the aggregate transmission rates for the above three modes
are ordered such that RD > RWL > RBH . We also assume
that the content size Sf is exponentially distributed with
mean S bits. Hence, the corresponding request service times
of the three transmission modes also follow an exponential
distribution with means ⌧lc =

S
RD

sec, ⌧rc =

S
RWL

sec, and
⌧bh =

S
RBH

sec, respectively.

III. PROBLEM FORMULATION

In this section, we characterize the network average delay
on a per request basis from the global network perspective.
Specifically, we study the request arrival rate and the traffic
dynamics from a queuing theory perspective and get a closed
form expression for the network average delay.

A. File Popularity Distribution

We assume that the popularity distribution of files in all
clusters follows a Zipf’s distribution with skewness order �

[20]. However, it is assumed that the content may vary across
clusters. This is inspired by the fact that, for instance, users
in a library may be interested in an entirely different set of
files from the users in a sports center. Our assumption for
the popularity distribution is extended from [21], where the
authors explained that the scaling of popular files is sublinear
with the number of users.2

To illustrate, if user 1 and user 2 are interested in a set
of files with size m0, then the first m0/2 files of user 2 are
common with user 1 and m0/2 are the new ones. User 3, in
turn, shares 2m0/3 files with users 1 and 2, and has m0/3
new files, etc. The union of all demanded (popular) files by
n users is m = m0(1 +

1
2 +

1
3 + . . . ) = m0

Pn
i=1

1
i ⇡ m0

log n. Hence, the library size increases sublinearly with the
number of users. In this work, we assume that the scaling of
the library size is sublinear with the number of clusters. The
cell is divided into clusters with a small number of users per
cluster, such that users in the same cluster are assumed to
request files according to the same file popularity distribution
function (i.e., users in the same cluster are interested in the
same set of popular files).

The probability that a file f is requested in cluster k, with
m0 highly demanded files in each cluster, follows a Zipf
distribution written as [20],

Pk,f =
(f � k�1

k m0a+ (m� k�1
k m0)b)

��

Pm
i=1 i

��
, (1)

where a = 1(f > k�1
k m0) and b = 1(f  k�1

k m0), k�1
k m0

is the order of the most popular file in the k�th cluster, and
1(.) is the indicator function. When k = 1, we get P1,f =

(f)��
Pm

i=1 i�� for the first cluster, which is the Zipf’s distribution
with the most popular file f = 1. For example, if m0 = 60,
then P2,f =

(f�30a+(m�30)b)��
Pm

i=1 i�� for the second cluster, which
is the Zipf’s distribution with the most popular file f =

m0
2 +

1 = 31; also f =

2m0
3 + 1 = 41 is the most popular file in

the third cluster, and so on.

B. Arrival and Service Rates

The arrival rates for the three communication modes Mlc,
Mrc, and Mbh in a cluster k are denoted respectively by �k,lc,
�k,rc, and �k,bh while the corresponding service rates are
represented by µlc, µrc, and µbh. For the local cluster mode,
we have

�k,lc = �k

mX

f=1

Pk,f ck,f , (2)

where
Pm

f=1 Pk,f ck,f is the probability that the requested file
is cached locally in cluster k. The corresponding service rate
is µlc =

1
⌧lc

. For the remote cluster mode, the request arrival
rate is defined as

�k,rc = �k

mX

f=1

Pk,f (1� ck,f )min

⇣ X

j2K\{k}

cj,f , 1
⌘
, (3)

where min(
P

j2K\{k} cj,f , 1) equals one only if the content
f is cached in at least one of the remote clusters. Hence,

2The number of popular files increases with the number of users with a
rate slower than the linear polynomial rate, e.g., the logarithmic rate.
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Pm
f=1 Pk,f (1�ck,f )min(

P
j2K\{k} cj,f , 1) is the probability

that the requested file f is cached in any of the remote
clusters given that it is not cached in the local cluster k.
The corresponding service rate is µrc =

1
⌧rcNa

, where Na

represents the number of cooperating clusters simultaneously
served by the remote cluster mode, i.e, the number of clusters
which share the cellular rate.

Finally, for the backhaul mode, the request arrival rate is
written as

�k,bh = �k

mX

f=1

Pk,f

KY

k=1

(1� ck,f ), (4)

where
Pm

f=1 Pk,f
KQ

k=1
(1 � ck,f ) is the probability that the

requested file f is not cached entirely in the cell, so this
content could be downloaded only from the core network.
The corresponding service rate is µbh =

1
⌧bhNb

, where Nb

is defined as the number of clusters simultaneously served via
the backhaul mode.

The traffic intensity of a queue is defined as the ratio of
mean service time to mean inter-arrival time. We introduce ⇢k
as a metric of the traffic intensity at cluster k as

⇢k =

�k,lc
µlc

+

�k,rc
µrc

+

�k,bh
µbh

(5)

Similar to [22], we consider ⇢k < 1 as the stability condi-
tion, otherwise, the overall delay will be infinite. The traffic
intensity at any cluster is simultaneously related to the request
arrival rate and the transmission rates of the three serving
modes.

C. Network Average Delay

In [22], it is proven that the mean queue size for an MPSQ
with arrival rate � [sec�1] and traffic intensity ⇢, is

⇢+
�
P

i
�i

µ2
i

1� ⇢
,

where �i and µi are respectively the arrival and service rates of
a service group i. Given the fact that the average delay equals
the mean queue size divided by the arrival rate, substituting
the above expression to calculate the average delay per request
in a cluster k yields

Dk =

⇢k

�k
+

�k,lc
µ2
lc

+
�k,rc

µ2
rc

+
�k,bh
µ2
bh

1�⇢k
(6)

Based on the analysis of the delay in a single cluster, we derive
the network weighted average delay per request as

D =

1

�

KX

k=1

�kDk, (7)

where � =

PK
i=1 �i denotes the overall user request arrival

rate in the cell. We observe from (6) that the cluster per request
delay Dk, and correspondingly the network average delay D,
depend on the arrival rates of the three transmission modes,
which are in turn functions of the content caching scheme.
Because of the limited caching capacity on mobile devices,

we would like to optimize the cache placement in each cluster
to minimize the network weighted average delay per request.
The delay optimization problem is then formulated as

minimize
ck,f

D (8)

subject to
mX

f=1

ck,f  N, (9)

ck,f 2 {0, 1}, (10)

where (9) and (10) are the constraints that the maximum
cache size is N files per cluster, and the file is either cached
entirely or is not cached, i.e., no partial caching is allowed. The
objective function in (8) is not a convex function of the cache
placement elements ck,f 2 {0, 1}. Moreover, this equation can
be reduced to a well- known 0 � 1 knapsack problem which
is already proven to be NP-hard in [23].

Remark (N � m). In this case, the caching problem is trivial,
i.e., there are no caching constraints. For any cluster k, ck,f =
1 8f 2 F and

Pm
f=1 ck,f = m. The optimal solution is

obtained when all the files are cached in each cluster. All the
requests are served internally from the local cluster via D2D
communication.

In the next section, we analyze the network average delay
under several caching policies. We further reformulate the
optimization problem in (8) as a well-known structure that
has a locally optimal solution within a factor (1� e�1

) of the
global optimum.

IV. PROPOSED CACHING SCHEMES

A. Caching Popular Files (CPF)

In each cluster, the most popular files for the users in the
cluster are cached without repetition. Since popular files are
different among clusters (but overlapped), applying CPF might
end up replicating the same file in many clusters [15]. We
assume that the request arrival rate �k is equal for all clusters.

1) Arrival Rate for D2D Communication: The arrival rate
of the D2D communication mode is given by

�k,lc = �k

k�1
k m0+NX

f= k�1
k m0+1

Pk,f , (11)

where
P k�1

k m0+N

f= k�1
k m0+1

Pk,f is the probability that the requested

file is cached in the local cluster k, and f =

k�1
k m0 + 1 is

the most popular file index for cluster k. As an example, for
the first cluster, �1,lc = �1

PN
f=1 P1,f .

2) Arrival Rate for Inter-cluster Communication: The ar-
rival rate of the inter-cluster communication mode is given
by

�k,rc = �k

X

j2K\{k}

j�1
j m0+NX

f=c

Pk,f , (12)

where c is defined as max
�
j�2
j�1m0 + N + 1, j�1

j m0 + 1

�
.

To explain, the inner summation
P j�1

j m0+N

f=c Pk,f represents
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the probability that the requested file f is cached in a remote
cluster j 6= k, where the cached files in the j�th cluster are
indexed from f =

j�1
j m0+1 to f =

j�1
j m0+N . c is defined

such that a cached file in the remote clusters is counted only
once when calculating �k,rc. The outer summation is the sum
over all clusters except the local cluster k.

To compute the service rate of the remote cluster mode, µrc,
we first need to obtain the number of cooperating clusters Na

since they share the cellular rate. As introduced in Section III,
Na is a random variable representing the number of clusters
served by the cellular communication whose mean is given by

Na = K
�k,rc
�k

= K
X

j2K\{k}

j�1
j m0+NX

f=c

Pk,f (13)

3) Arrival Rate for Backhaul Communication: The arrival
rate of the backhaul communication mode is now calculated
as

�k,bh = �k

�
1� (�k,lc +�k,rc )

�

= �k

⇣
1� �

k�1
k m0+NX

f= k�1
k m0+1

Pk,f +
X

j2K\{k}

j�1
j m0+NX

f=c

Pk,f
�⌘

(14)
Nb is then obtained to calculate the backhaul service rate µbh.
As alluded to in the definition of Na, Nb is a random variable
representing the number of clusters served via the backhaul
link whose mean is given by

Nb = K
�k,bh
�k

= K
⇣
1� �

k�1
k m0+NX

f= k�1
k m0+1

Pk,f +

X

j2K\{k}

j�1
j m0+NX

f=c

Pk,f
�⌘

(15)

Obviously, we have �k = �k,lc +�k,rc +�k,bh. From (11),
(12), and (14), the network average delay can be calculated
directly from (7). The CPF scheme is computationally straight-
forward if the most popular content is known. Additionally, the
CPF scheme is easy to implement in an independent manner
since it is executed in a per cluster level regardless of the
caching status of other clusters, which is different from the
greedy algorithm proposed in the next subsection. However, it
achieves high performance only if the popularity exponent �
is large enough, i.e., when the content popularity distribution
is skewed, since a small portion of content is highly demanded
which can be cached entirely in each cluster.

B. Greedy Caching Algorithm (GCA)
In this subsection, we introduce a computationally efficient

caching algorithm. We prove that the minimization problem in
(8) can be reformulated as a minimization of a supermodular
function subject to uniform partition matroid constraints. This
structure has a greedy solution which has been proven to be
locally optimal within a factor (1�e�1

) of the optimum [24]–
[26].

We start with the definition of supermodular and matroid
functions, then we introduce and prove some relevant lemmas.

1) Supermodular Functions: Let S be a finite ground set.
The power set of the set S is the set of all subsets of S ,
including the empty set and S itself. A set function g, defined
on the powerset of S as g: 2S! R, is supermodular if for any
A ✓ B ✓ S and x 2 S \B we have [25]

g(A [ {x})� g(A)  g(B [ {x})� g(B) (16)

To illustrate, let gA(x) = g(A[x)�g(A) denote the marginal
value of an element x 2 S with respect to a subset A ✓ S .
Then, S is supermodular if for all A ✓ B ✓ S and for all
x 2 S \ B, we have gA(x)  gB(x), i.e., the marginal value
of the included set is lower than the marginal value of the
including set [25].

2) Matroid Functions: Matroids are combinatorial struc-
tures that generalize the concept of linear independence in
matrices [25]. A matroid M is defined on a finite ground set
S and a collection of subsets of S said to be independent. The
family of these independent sets is denoted by I or I(M). It
is common to refer to a matroid M by listing its ground set
and its family of independent sets, i.e., M = (S, I). For M
to be a matroid, I must satisfy these three conditions:

• I is a nonempty set.
• I is downward closed; i.e., if B 2 I and A ✓ B, then
A 2 I.

• If A and B are two independent sets of I and B has more
elements than A, then 9e 2 B \A such that A[{e} 2 I.

One special case is a partition matroid in which the ground
set S is partitioned into disjoint sets {S1, S2, . . . , Sl}, where

I = {A ✓ S : |A \ Si|  ki for all i = 1, 2, . . . , l}, (17)

for some given integers k1, k2, . . . , kl. One special case of the
partition matroid is the uniform partition matroid in which
k1 = k2 = · · · = kl.

Lemma 1. The constraints in (9) and (10) can be rewritten as
a uniform partition matroid on a ground set that characterizes
the caching elements on all clusters.

Proof. Please see Appendix A for the proof.

Lemma 2. The objective function in equation (8) is a mono-
tone non-increasing supermodular function.

Proof. Please see Appendix B for the proof.

The greedy solution for this problem structure has been
proven to be locally optimal within a factor (1 � e�1

) of
the optimum [24]–[26]. The greedy caching algorithm for the
proposed D2D caching system with inter-cluster cooperation
is illustrated in Algorithm 1, where Sf

k is an element denoting
the placement of file f into the VCC of cluster k. We first
define the attributes of the system in the first line of the
algorithm’s pseudocode. We then initialize the cache memory
of all clusters to zero. We set the number of iterations to be
NK, which means that at each iteration, we cache one file
in one cluster, resulting in caching N different files in K
clusters after NK iterations. In each iteration, all combinations
of caching a file f 2 F in a cluster k 2 K are tried, and
the network service delay is calculated. A file f⇤ is chosen
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to be cached in the k⇤-th cluster, which achieves the highest
reduction in the network service delay.

The greedy algorithm is run at the BS level, and the BS
then instructs the clusters’ devices to cache the files according
to the output of this algorithm. The deterministic caching
approach (both CPF and GCA) can only be realized if the
devices stay at the same locations for many hours. Otherwise,
performance obtained with the deterministic caching strategy
serves as a useful upper bound for more realistic schemes
[15]. As examples of the greedy algorithm, the authors in
[26] showed that the problem of optimal joint caching and
routing can be formulated as maximization of a monotone
submodular function subject to matroid constraints, and hence
can be solved by the greedy algorithm. Also, the authors in [2]
showed that the delay minimization problem can be formulated
as a maximization of a submodular function under matroid
constraints, which can be solved by the greedy algorithm.

Algorithm 1: Greedy Caching Algorithm
Input : K, m, N , �, S, RD, RWL, RBH ;
Initialization: C  (0)K⇥F ;
/

*

Check if all clusters (users’

memories in each cluster) are fully

cached.

*

/

while
PK

k=1

Pm
f=1 ck,f < NK do

(k⇤, f⇤)  argmax(k,f)D(C)�D(C [ Sf
k );

/

*

File achieving highest marginal

value is cached.

*

/

ck⇤,f⇤
= 1 ;

end while
Output: Cache placement C;

V. THROUGHPUT ANALYSIS

We have analyzed the per request average delay from the
network perspective under different caching schemes. In this
section, we conduct the per request throughput and through-
put scaling analysis. We first characterize the per request
throughput from the queuing theory perspective based on the
analytical results of previous sections, then study the scaling
of the average sum throughput when the number of files
asymptotically goes to infinity.

A. per request Throughput Analysis

In this subsection, we first formulate a condition on the
traffic demand for the network to be stable, then we study the
throughput per request from the cluster perspective. As intro-
duced in Section II-B, the content size Sf is assumed to have
an exponential distribution with mean S [bits]. For a cluster
k 2 K whose users’ traffic is modeled as an MPSQ with three
serving processors (transmission modes), the number of users’
requests in the queue that matches the j-th transmission mode
is denoted by xj , where j 2 D := {Mlc,Mrc,Mbh}. Denote
x = (xj)j2D as the vector counting the numbers of users’
requests in the queue for each transmission mode j 2 D.

The process {X(t); t � 0} describing the number of users’
requests served by the three serving processors (transmission
modes) is then a continuous-time Markov process [27]. This
process has a discrete state space ND and admits the following
generator [27]:

(
q(x, x + ✏j) = �k,j , x 2 ND, j 2 D,
q(x, x� ✏j) =

Rj

S

xj

xD
, x 2 ND, j 2 D, xj > 0,

where ✏j designates the vector of ND having coordinate 1 at
position j and 0 elsewhere, and xD :=

P
j2D xj . The first term

of the above generator, q(x, x + ✏j), accounts for the arrival
of a request that matches the j�th transmission mode while
the second term, q(x, x � ✏j), accounts for serving a request
by the j�th transmission mode.

Let X = (Xlc, Xrc, Xbh) be the vector counting the number
of users’ requests of each transmission mode at the steady
state, and let XD :=

P
j2D Xj be the total number of requests

in the queue at the steady state. The average traffic demand
⇣j [bps] of each transmission mode j 2 D in the k�th cluster
is defined as [28]

⇣j = �k,jS, (18)

and the total traffic demand per cluster is then given by

⇣ =

X

j2D
⇣j (19)

We now obtain the cluster critical traffic demand, beyond
which the MPSQ is no longer stable. The constraint (5) that
limits the traffic intensity ⇢k from the above to one can be
rewritten as

⇢k =

�k,lc

RD/S
+

�k,rc

RWL/S
+

�k,bh

RBH/S
 1,

⇣lc
RD

+

⇣rc

RWL

+

⇣bh

RBH

 1, (20)

by multiplying both sides by ⇣ and rearranging the terms, we
get

⇣  ⇣

(R�1
D ⇣lc +RWL

�1
⇣rc +RBH

�1
⇣bh)

,

⇣  ⇣c, (21)

where ⇣c [bps] is the critical traffic demand per cluster, beyond
which the MPSQ loses its stability.

Lemma 3. The steady state distribution of the total number
of users’ requests in the MPSQ modeling the users’ traffic
follows a geometric distribution with parameter p = 1� ⇣/⇣c.

Proof. This result can be deduced from [27] and the references
therein, and the proof is omitted in this paper to avoid
repetition.

As a direct result from Lemma 3, the mean number of total
users’ requests in the MPSQ at the steady state is given by

Nq = E[XD] =
p

1� p
=

⇣

⇣c � ⇣
(22)

At the steady state, the queue throughput is equal to the
traffic demand ⇣. Hence, the average throughput per request
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is defined as the ratio of the given queue throughput and the
average number of users’ requests, i.e.,

r =

⇣

E[XD]
= ⇣c � ⇣ (23)

B. Throughput Scaling Analysis

We conduct the scaling analysis of the average sum through-
put when the number of files grows asymptotically to infinity,
i.e., m ! 1. We first define the outage probability for our
proposed D2D cooperative caching system and then compare it
with a clustered D2D caching system without inter-cluster co-
operation [29]. The obtained formula of the outage probability
is further approximated and then exploited in the throughput
scaling analysis.

In the following, we shall implicitly ignore the non-integer
effects when they are irrelevant for the scaling laws. For
example, recalling that the network has node density n and
it is divided into K clusters, the number of users per cluster
after integer rounding is denoted as y. Next, we conduct
the analysis for the CPF scheme. Since the backhaul rate is
considered much smaller than the rate of cellular and D2D
communications, we assume that the throughput from the
backhaul communication is negligible as compared to the
cellular and D2D throughput.

1) Outage Probability: For a reference clustered D2D
caching network without inter-cluster cooperation [29], the
probability of no outage is defined as the probability that a
randomly chosen user u can download a requested file from
nearby users in the same cluster [29]. Conversely, a user u is
said to be in outage when its requested file is not cached within
the allowed transmission range (i.e., not cached in a neighbor
user in the same cluster). In our cooperative clustered model, a
user u is said to be in outage when the requested file is neither
stored in the local cluster nor any of the remote clusters. We
denote this outage probability as po, which also represents the
percentage of users who are in outage in relation to the total
number of users; the probability of no outage is then denoted
as 1� po.

As stated before, the number of users per cluster, denoted
as y, equals (n/K). In addition, the probability of no outage,
1 � po, can be calculated by determining the probability that
a randomly chosen user u in cluster k is served via the local
cluster or the remote cluster modes. The probability of no
outage is therefore expressed as the sum of two terms, the first
term is corresponding to the probability of serving requests
from the local cluster, and the second term is the probability
of being served from a remote cluster. From (11) and (12),
and under the assumption of the CPF scheme, the probability
of no outage is given by

1� p0 =

k�1
k m0+MyX

f= k�1
k m0+1

Pk,f +
X

j2K\{k}

j�1
j m0+MyX

f=c

Pk,f , (24)

where M is the maximum user cache size in files (our default
is M = 1), and c is defined in (12). Substituting Pk,f from

(1), we obtain the result

1� p0 =

P k�1
k m0+My

f= k�1
k m0+1

f��

Pm
i=1 i

��
+

X

j2K\{k}

P j�1
j m0+My

f=c f��

Pm
i=1 i

��

(25)
Due to the symmetry between clusters in terms of the cache
content, cluster cache size, and the probability of being served
from a remote cluster, we continue with the assumption that
the user u is being served from the first cluster (i.e., k = 1)
and the remote clusters (the potential cooperating clusters) are
from k = 2 to k = K = n/y.

1� p0 =

PMy
f=1 f

��

Pm
i=1 i

��
+

n
yX

j=2

P j�1
j m0+My

f=c f��

Pm
i=1 i

��

=

PMy
f=1 f

��

Pm
i=1 i

��
+

1Pm
i=1 i

��

n
yX

j=2

j�1
j m0+MyX

f=c

f�� (26)

We now aim at deriving an approximated version of (26)
by replacing the summations with approximated integrals from
[30], and then the obtained result is used later in the throughput
scaling analysis. We have two approximations from [30],

qX

i=1

i�↵ ⇡
Z q+1

i

x�↵dx =

(q + 1)

1�↵ � 1

1� ↵
, (27)

and
q�1X

i=w+1

i�↵ ⇡
Z q

w

x�↵dx� w↵
+ q↵

2

,

=

q1�↵ � w1�↵

1� ↵
� w↵

+ q↵

2

(28)

The above approximations are quite tight for small values of
the popularity exponent, e.g., when � < 1. Substituting (27)
and (28) into (26) yields

1� p0 ⇡
1

1�� (My + 1)

1�� � 1
1��

1
1�� (m+ 1)

1�� � 1
1��

+

1

1
1�� (m+ 1)

1�� � 1
1��

n
yX

j=2

⇣� j�1
j m0 +My + 1

�1�� � �
c0
�1��

1� �

�
�
c0
��

+

�
j�1
j m0 +My + 1

��

2

⌘
,

= p0,nc + p0,wc (29)

where c0 =max( j�i
j m0,

j�2
j�1m0 + My), and p0,nc, p0,wc

represent respectively the probability of no outage for a non-
cooperative system and the improvement (increase) in the
probability of no outage due to the inter-cluster cooperation.
In Fig. 4, we plot the outage probability of our proposed
system with inter-cluster cooperation compared to a reference
system without inter-cluster cooperation. We note that as the
number of users per cluster increases, the outage probability
correspondingly decreases. That is attributed to the fact that
the probability of obtaining the requested files from the local
cluster increases with the number of users per cluster.
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Fig. 4. Outage probability of a D2D clustered caching system with coopera-
tion compared to a reference system without cooperation [29] (m = 108, n =
120,M = 1,m0 = 60,� = 0.5).

2) Throughput Scaling Analysis: We now express the net-
work average sum throughput, denoted as T avg

sum (bps), as a
function of the system parameters, namely, number of users,
library size, and popularity exponent. Based on the assumed
interference model, only one D2D link can be active at any
time in each cluster. Whenever there is an active D2D link
within a cluster, we say the cluster is good.3 We also assume
that a D2D link is scheduled in any cluster whenever the
opportunity arises, i.e., if the user to be served in a cluster
requests a file not cached locally, the request is then served via
the appropriate transmission mode (remote cluster or backhaul
modes), meanwhile, another D2D link is scheduled inside the
cluster. In addition to the D2D throughput, there is the cellular
throughput from the remote cluster mode. So the instantaneous
throughput Tsum (bps) can be written as

Tsum = D2D throughput + Cellular throughput,

and the average sum throughput is obtained from

T avg
sum = RD2DE[L] +RWLPrc, (30)

where L is the number of active D2D links, E[L] is the ex-
pected number of active D2D links, which is approximately the
expected number of good clusters, and Prc is the probability
of occurrence of cooperation between clusters. For notational
simplicity, we henceforth substitute RD2D by C (bps) and
RWL by k1C (bps), where k1 < 1.

T avg
sum = C

�
E[L] + k1Prc

�
,

 C
�
E[L] + k1

�
, (31)

where the above inequality holds because Prc is a probability
and cannot be greater than one. In particular, Prc is tight

3In this article, and different from [29], we neglect the inter-cluster
interference. We assume that any cluster can be active whenever there is
a scheduled D2D link, regardless of the activity of all other clusters. This
assumption makes the calculated throughput an upper bound for the actual
throughput.

with its upper bound for a large number of clusters and
relatively uniform popularity distribution (i.e., not skewed). In
the sequel, we calculate the expected number of good clusters
E[L].

Up to now, the cell is divided into K = (n/y) virtual
clusters, each of them with y uniformly distributed users. As
mentioned before, a cluster is good if at least one user requests
a file that can be served from the locally cached content via
D2D communication. Conversely, a cluster is not good if all
y users in the same cluster cannot serve their requests from
the locally cached content, which occurs with probability py0,nc
[31], where p0,nc = 1�p0,nc is the probability that a randomly
chosen user u in any cluster can not obtain a requested file
from nearby users in the same cluster. The probability of
having a good cluster is then 1 � py0,nc. Therefore, we have
the following

E[L] =
n

y
(1� py0,nc) (32)

Substituting p0,nc from (29), and (32) into (31) yields

T avg
sum  C

⇣n
y
(1� py0,nc) + k1

⌘
,

= C
n

y

⇣
1� (1�

1
1�� (My + 1)

1�� � 1
1��

1
1�� (m+ 1)

1�� � 1
1��

)

y
⌘
+ k1C

(33)

Similar to [29] and [31], we define the quantity

� =

1� �

2� �
, (34)

where � changes from 0 to 1
2 when � changes from 1 to 0.

These ranges of � and � are interesting for the scaling analysis
since they are reasonable in practice [29]. In the following, we
conduct the scaling analysis for the regime when y changes
sublinearly with m [29], i.e, y = ⇢m� for some constant ⇢,
and �  1

2 . We analyze the scaling of the upper bound for
T avg
sum when m asymptotically grows to infinity. Substituting

y = ⇢m� into (33) yields

T avg
sum  C

n

⇢m�

⇣
1� �

1�
1

1�� (My + 1)

1�� � 1
1��

1
1�� (m+ 1)

1�� � 1
1��

�⇢m�⌘
+ k1C,

= C
n

⇢m�

⇣
1� �

1�M1��⇢1��F (1��)(��1)
�⇢m�⌘

+ k1C,

(a)
= C

n

⇢m�

⇣
1� �

1�M1��⇢1��m��
�⇢m�⌘

+ k1C,

(35)

where (a) follows by using (1 � �)(� � 1) = ��, then we
have

T avg
sum  k1C+

C
n

⇢m�

⇣
1� ��

1� ⇢1��M1��m��
�⇢�(1��)M�(1��)m��⇢2��M�(1��)⌘

,

(b)
= k1C +

C

⇢

⇣
1� �

e�1
�⇢2��M�(1��)⌘ n

m�
, (36)



10

0 10 20 30 40 50

Number of users per cluster (y)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
2
D

 P
e
r 

u
se

r 
th

ro
u
g
h
p
u
t 
n
o
rm

a
liz

e
d
 t
o
 C β=0.6

β=0.4

β=0.2

Fig. 5. D2D per-user throughput of the cooperative system is plotted against
the number of users per cluster y at different values of the popularity exponent
� (parameters as in [29], n = 10, 000 users,m = 1000 files ,m0 = 200
files).

where (b) follows from limx!1(1 � x�1
)

x
= e�1, then we

have

T avg
sum 

C

⇢

⇣
1� e�⇢2��M�(1��)

⌘ n

m�
+ k1C,

= ⇥

⇣ n

m�

⌘
+O(1) (37)

This result shows that:
• As the library size m increases, the upper bound for
T avg
sum decreases, since the probability of having active

D2D links (good clusters) decreases.
• As � increases, corresponding to the decrease of the pop-

ularity exponent �, the upper bound for T avg
sum vanishes

more rapidly with the library size m.
• The upper bound for T avg

sum scales linearly with the
number of users n.4

The average sum throughput is plotted against the number
of users per cluster y in Fig. 5, for different values of �.
We observe that there is an optimal value of y at which the
throughput is maximized. First, the throughput increases with
the cluster size y. Then, as the cluster size increases, the
outage probability decreases owing to the higher cache size per
cluster. However, for larger cluster size, the throughput starts
to decrease owing to the decrease in the number of clusters
associated with the larger cluster size.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-
posed inter-cluster cooperative architecture using simulation
and analytical results. Results are obtained with the following
parameters: �k = 0.5 requests/sec, m0 = 60 files, m = 108

files, S = 4 Mbits, K = 5 clusters, n = 25 users, M = 4

files, and N = 20 files. RWL = 50 Mbps and RBH = 5

4We use the standard Landau notation: g(n) = O(g(n)) denotes g(n) 
c1g(n) and g(n) = ⇥(g(n)) denotes k1g(n)  g(n)  k2g(n), where c1,
k1, and k2 are real constants > 0.
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Fig. 6. Network average delay versus popularity exponent � under the CPF
scheme.
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Fig. 7. Network average delay (left hand side y-axis) and gain (right hand
side y-axis) vs cluster cache size N .

Mbps as in [24]. For a typical D2D communication system
with transmission power of 20 dBm, transmission range of
10 m, and free space path loss model as in [21], we have
RD = 120 Mbps.

In Fig. 6, we verify the accuracy of the analytical results of
the network average delay under the CPF with inter-cluster
cooperation. The theoretical and simulated results for the
network average delay under the CPF scheme are plotted
together, and they are consistent. We see that the network
average delay is significantly improved by increasing the
cluster cache size N . Moreover, as � increases, the average
delay decreases. This is attributed to the fact that a small
portion of content forms most of the requests that can be
cached locally in each cluster and delivered via high data rate
D2D communication.

In the following, we evaluate and compare the performance
of various caching schemes. In Fig. 7, our proposed inter-
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cluster cooperative caching system is compared with a D2D
caching system without cooperation under the CPF scheme.
For a D2D caching system without cooperation, requests for
files that are not cached in the local cluster are downloaded
directly from the core network. For the sake of concise
comparison, we define the delay reduction gain as

Gain = 1� Delay with inter-cluster cooperation
Delay without inter-cluster cooperation

(38)

Fig. 7 shows that, for a small cluster cache size, the delay
reduction (gain) of our proposed inter-cluster cooperative
caching is higher than 45% with respect to a D2D caching
system without inter-cluster cooperation and greater than 80%
if the cluster cache size is large.
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Fig. 8. Energy consumption per cluster during the local and remote cluster
transmissions (left hand side y-axis) and the gain attained from inter-cluster
cooperation (right hand side y-axis) vs cluster cache size N .

To show the energy-delay reduction gain tradeoff among the
devices, in Fig. 8, we plot the per-cluster energy consumption
during the local and remote cluster modes and the gain attained
from inter-cluster cooperation against the cluster cache size
N . Plc = 20 dBm, and Prc = 23 dBm denote respectively
the transmission power in the local cluster and remote cluster
modes. In each transmission mode, the energy per request is
the transmission power times the transmission duration. The
transmission duration is given by the ratio of file size over
the transmission rate. We see that the consumed energy dur-
ing the local cluster transmission, i.e., D2D communication,
monotonically increases with the cluster cache size N . With
the increasing of N , more requests are served via the local
cluster mode Mlc. For the consumed energy during the remote
cluster transmission, we see that it initially increases with
N , then it decreases, and the same behavior is observed for
the delay-reduction gain. This can be interpreted as follows.
When N increases, the number of requests served from the
remote clusters increases since the remote clusters’ VCCs
increase. When N becomes much larger, the local cluster
cache becomes sufficiently large to serve most of the requests,
as opposed to being served by the remote cluster mode.

For comparison purposes, Fig. 9 shows the average delay
for the proposed caching schemes and random caching against
various system parameters. Fig. 9(a) shows the network aver-
age delay plotted against the request arrival rate �k for three
content placement techniques, namely, GCA, CPF, and random
caching (RC).5 In RC, content stored in clusters are randomly
chosen from the file library. The most popular files are cached
in the CPF scheme, and the GCA works as illustrated in
Algorithm 1. We see that the average delay for all content
caching strategies increases with �k since a larger request rate
increases the probability of a longer waiting time for each
request. It is also observed that the GCA, which is locally
optimal, achieves significant performance gains over the CPF
and RC solutions for the above setup. Fig. 9(b) shows that
the GCA is superior to the CPF only for small values of the
popularity exponent �. If the popularity exponent � is high
enough, CPF and GCA will achieve the same performance.
When � increases, the CDF of the Zipf’s distribution becomes
more skewed. This implies that only a smaller portion of the
files is highly demanded by the devices. The lower the number
of files requested by the devices, the higher the probability of
having such files cached in the clusters’ VCCs. If all these
files are cached locally in each cluster, the global minimum
solution for the delay minimization problem is attained. This
interpretation explains why when � increases, the CPF and
GCA solutions converge to the global optimal solution. We
also note that the CPF and RC schemes roughly achieve the
same delay when � = 0. This stems from the fact that with
� = 0, all files have equal popularity, and correspondingly,
CPF is equivalent to RC. Moreover, RC fails to reduce the
delay as � increases, since caching files at random results
in a low probability of serving the requested files from local
clusters.

Next, we turn our attention to the throughput results in
Fig. 10. Fig. 10(a) plots the throughput per request as a
function of the popularity exponent � for the three caching
schemes. It is shown that the per request throughput mono-
tonically increases with � for the CPF and GCA schemes, and
shows a slight decrease for the RC scheme. When � increases
for the GCA and CPF, the locally stored files form most of
the users’ requests that can be delivered via high rate D2D
communication. Conversely, for the RC scheme, which caches
the files uniformly at random, the probability of having the
requested files cached in the local clusters slightly decreases
when the popularity of files becomes skewed (higher �). Due
to the resulting lower probability of serving the requests from
the local clusters, the throughput per request, in turn, slightly
decreases owing to the lower probability of activating D2D
links. In Fig. 10(b), the throughput per request is plotted
against the cluster cache size N for the three caching schemes.
It is noticed that for all the caching schemes, the per request
throughput is improved with the cluster cache size, and the
GCA achieves the highest throughput. This can be explained
by the fact that, with large cluster cache size, there is a high

5Here, we adopt different transmission rates from [21] and [24] to provide
insights on the difference between the caching schemes, otherwise, the GCA
is far superior to the other schemes, with negligible delay.
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Fig. 9. Evaluation and comparison of the average delay for the proposed caching schemes and random caching for various system parameters (RD = 50
Mbps, RWL = 15 Mbps, RBH = 10 Mbps, N = 20, � = 0.5 for (a) and �k = 0.5 requests/sec for (b)).

opportunity of exchanging cached content via the local cluster
mode that exploits the high rate of the D2D communication.

VII. CONCLUSION

In this work, we propose a novel D2D caching architecture
to reduce the network average delay. We study a cellular
network consisting of one SBS and a set of users. The cell
is divided into a set of equally-sized virtual clusters, where
the users in the same cluster exchange cache content via D2D
communication, while the users in different clusters cooperate
by exchanging their cache content via cellular transmission.
We formulate the delay minimization problem in terms of the
content cache placement. However, the problem is NP-hard
and obtaining the optimal solution is computationally hard.
We then propose two content caching policies, namely, caching
popular files and greedy caching. By reformulating the delay
minimization problem as a minimization of a non-increasing
supermodular function subject to uniform partition matroid
constraints, we show that it could be solved using the proposed
GCA scheme within a factor (1�e�1

) of the optimum. More-
over, we conduct the throughput analysis to investigate the
behavior of the average throughput per request under different
caching schemes. We study the scaling behavior of the average
sum throughput when the library size asymptotically grows to
infinity and show that the network average sum throughput
decreases with the library size increase, and the rate of this
decrease is controlled by the popularity exponent. We verify
our analytical results by means of extensive simulations and
the results show that the network average delay could be
reduced by 45%-80% by allowing inter-cluster cooperation.

APPENDIX A
PROOF OF LEMMA 1

We define the ground set that describes the cache placement
elements in all clusters as

S = {s11, ..., sfk , ..., smk , ..., s1K , ..., smK} (39)

where sfk is an element denoting the placement of file f
into the VCC of cluster k. This ground set can be parti-
tioned into K disjoint subsets {S1, S2, ..., SK}, where Sk =

{s1k, s2k, ..., smk } is the set of all files that might be placed in
the VCC of cluster k.

Let us express the cache placement by the adjacency matrix
X = [xk,f ]K⇥m 2 {0, 1}K⇥m. Moreover, we define the
corresponding cache placement set A ✓ S such that sfk 2 A
if and only if xk,f = 1. Hence, the constraints on the cache
capacity of the VCC of cluster k 2 K can be expressed as
A ✓ S , where

H = {A ✓ S : |A \ Sk|  N for all k = 1, . . . ,K} (40)

The above expression is derived directly from the constraint
that the maximum cache size per cluster is N files, i.e.,Pm

f=1 xk,f  N . Comparing H in (40) with the definition of
partition matroid in (17), it is clear that our constraints form a
partition matroid with l = K and ki = N . Additionally, since
ki = N for all i = {1, 2, . . . ,K}, it is easy to see that our
constraints also form a uniform partition matroid. This proves
Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

We consider two cache placement sets A and A0, where A ⇢
A0. For a certain cluster k 2 K, we consider adding the caching
element sfk 2 S \ A0 to both placement sets. This means that
a file f is added to cluster k, where the corresponding cache
placement element has not been placed in either A or A0. The
marginal value of adding an element sfk to a set is defined as
the change in the file download time after adding this element
to the set. The average download time for a file f with mean
size S is S

RD
, S
RWL/Na

, or S
RBH/Nb

if the file is obtained from
the local cluster, a randomly chosen remote cluster, or the
backhaul, respectively. For our work, we assume that RWL

Na
>

RBH

Nb
always holds. For the sake of simplicity, we replace RWL

Na

and RBH

Nb
with their averages, RWL and RBH , respectively.
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Fig. 10. Evaluation and comparison of the per request throughput for the proposed caching schemes and random caching for various system parameters
(RD = 50 Mbps, RWL = 15 Mbps, RBH = 10 Mbps, �k = 0.5 requests/sec).

Now, the aggregate transmission rate assumption is RD >
RWL > RBH .

For Dk in (6) to be a supermodular function, the difference
in the marginal values between the two sets A and A0 must be
non-positive. For a user u belonging to cluster k and requesting
content f 2 F , we distinguish between these different cases:

1) According to placement A0, user u obtains file f from a
remote cluster j0, i.e., sfj0 2 A0 and j0 6= k. In this case,
the marginal value with respect to A0 is

G(A0 [ {sfk})�G(A0
) = 0 (41)

According to placement A, user u obtains file f from a
remote cluster j, i.e., sfj 2 A, again the marginal value
is zero. However, if sfj /2 A, the marginal value is given
by

G(A [ {sfk})�G(A) = Pk,f

⇣ S

RWL

� S

RBH

⌘
(42)

2) In this case, we assume that sfi = smk , i.e., the requested
file f is cached in cluster k. According to placement A0,
user u obtains file f from the local cluster k. Hence, the
marginal value is given by

G(A0 [ {sfi })�G(A0
) = Pk,f

⇣ S

RD
� S

RWL

⌘
(43)

According to placement A, user u obtains file f from a
remote cluster j when sfj 2 A, again the marginal value
is given by

G(A [ {sfi })�G(A) = Pk,f

⇣ S

RD
� S

RWL

⌘
(44)

However, if sfj /2 A, the marginal value is written as

G(A [ {sfi })�G(A) = Pk,f

⇣ S

RD
� S

RBH

⌘
(45)

Accordingly, the difference in marginal values between A and
A0 in all cases is

G(A [ {sfi })�G(A)� (G(A0 [ {sfi })�G(A0
))  0 (46)

It is clear that g(A)  g(A0
) for A ✓ A0 ✓ S , or equivalently,

g(A)� g(A0
)  0. From the definition of supermodularity, it

is clear that the delay per request in the k�th cluster, Dk, is a
supermodular set function. The weighted sum of supermodular
functions is also a supermodular function [25], and so the
network average delay D in (8) is a supermodular function.
For the monotone non-increasing property, it is intuitive to
see that the delay will never increase by caching new files.
Hence, Lemma 2 proves that problem (8) is a monotonically
non-increasing supermodular set function minimized under
uniform partition matroid constraints.
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