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Abstract

In this paper, a new spectrum sharing model referred to as riding on the primary (ROP) is proposed

for wireless-powered IoT devices with ambient backscatter communication capabilities. The key idea

of ROP is that the secondary transmitter harvests energy from the primary signal, then modulates its

information bits to the primary signal, and reflects the modulated signal to the secondary receiver without

violating the primary system’s interference requirement. Compared with the conventional spectrum

sharing model, the secondary system in the proposed ROP not only utilizes the spectrum of the

primary system but also takes advantage of the primary signal to harvest energy and to carry its

information. In this paper, we investigate the performance of such a spectrum sharing system under

fading channels. To be specific, we maximize the ergodic capacity of the secondary system by jointly

optimizing the transmit power of the primary signal and the reflection coefficient of the secondary

ambient backscatter. Different (ideal/practical) energy consumption models, different (peak/average)

transmit power constraints, different types (fixed/dynamically adjustable) reflection coefficient, different

primary system’s interference requirements (rate/outage) are considered. Optimal power allocation and

reflection coefficient are obtained for each scenario.
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I. INTRODUCTION

Internet of Things (IoT) is a key application scenario of the fifth generation (5G) mobile com-

munication systems. It covers a wide range of use cases, such as smart home, smart wearables,

smart farming, smart manufacturing, smart utilities, and smart city, which enable new business

opportunities and new operational considerations for 5G. With the diverse use cases anticipated

in IoT, the types of IoT devices are expected to diversified, and the characteristics and demands

of different IoT devices are expected to vary a lot. Some of the devices, such as sensors and

Radio-Frequency Identification (RFID) tags, are expected to be simple, small, low power, low

throughput field devices. For this kind of IoT devices, a key requirement from the industry [2] is

that the power consumption should be very low and the battery life should be as long as ten years

for extreme use cases. In these situations, energy harvesting, with potential to provide a perpetual

power supply, becomes an attractive approach to prolong these devices’ battery lifetime. Classic

sources for energy harvesting include solar and wind. Recently, ambient radio signal [3]-[6] is

receiving much research attention as a new viable source for energy harvesting, supported by

the advantage that the wireless signals can carry both energy and information.

The backscatter communications technology used in RFID systems is a real-world application

of energy harvesting from RF signals. In a typical backscatter system [7], [8], the reader

transmits a RF sinusoidal signal to a passive tag. The passive tag harvests RF energy from

the signal to power its circuit, modulates its information bits onto the received sinusoidal signal

by intentionally changing its amplitude and/or phase which is realized by changing its antenna

impedance, and reflects the modulated signal back to the reader. In [9], ambient backscatter,

which is able to harvest energy from and transmits information over the ambient RF signals (e.g.

TV signals), was proposed. In [10], Wi-Fi backscatter that uses the existing Wi-Fi infrastructure to

provide internet connectivity for RF-powered devices was proposed. In [11] and [12], maximum-

likelihood detection was studied for an ambient backscatter system in which the tag adopts

differential modulation. In [13], the modulator and the decoder design for backscattering over

the ambient orthogonal frequency division multiplexing (OFDM) signals was studied. It was

shown in recent work [14] and [15] that power harvested from ambient RF signals is sufficient to

support the daily communication of a battery-less sensor through dedicated decoder and signal
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design. In [16], it was further shown a network architecture with combined wireless power

transfer and backscattering communication technology is able to a large and dense IoT network.

However, these aforementioned works mainly focus on the hardware and decoder design but

lacks fundamental system analysis from theoretical aspects. Besides, the mutual influence (such

as the interference) between the backscatter system and the primary system are not considered.

In this paper, we introduce the ambient backscatter communication technology to the cognitive

radio (CR) system, and propose a new spectrum sharing model based on that. The proposed spec-

trum sharing model applies to CR systems with conventional primary communication systems

and ambient-backscatter-based secondary systems. The key idea is that the secondary transmitter

harvests energy from the primary signal, then modulates its information bits to the primary signal,

and reflects the modulated signal to the secondary receiver without violating the primary system’s

interference requirement [17]. The main contribution of this paper is summarized as follows:

• We propose a new spectrum sharing model as Riding on the Primary (ROP). The differences

between the proposed ROP and the existing technologies are as follows: (i) Compared with

conventional backscatter communication systems, the reader (secondary receiver) in our

system does not need to generate and transmit a RF sinusoidal signal, which can reduce its

power consumption and prolongs its battery life. (ii) Compared with ambient backscatter

communication systems, the interference from the wireless-powered tag (secondary trans-

mitter) to the primary system is taken into consideration when designing the system. (iii)

Compared with conventional spectrum sharing systems, the secondary system not only

utilizes the spectrum of the primary system but also takes advantage of the primary system’s

signal transmission to carry its information.

• We investigate the performance of the proposed ROP system under fading channels. To be

specific, we maximize the ergodic capacity of the secondary system by jointly optimizing the

transmit power of the primary signal and the reflection coefficient of the secondary ambient

backscatter. Different (ideal/practical) energy consumption models, different (peak/average)

transmit power constraints, different types (fixed/dynamically adjustable) reflection coef-

ficient, different primary system’s interference requirements (rate/outage) are considered.

Optimal power allocation and optimal reflection coefficient are obtained for each case. It

is worth pointing out that certain degree of cooperation is needed between the primary and

secondary system in order to do the joint optimization. For example, the primary system

needs the knowledge of the secondary system (e.g., channel information) to optimize the
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Fig. 1. System Model

transmit power, whereas the secondary system needs the knowledge of the primary system

to optimize the reflection coefficient.

• We show by numerical examples that dynamically adjustable reflection coefficient will result

in a better system performance than a fixed reflection coefficient. The system performance

under the average transmit power constraint is in general better than that under the peak

transmit power constraint. Applying the primary transmission outage probability constraint

to protect the primary system usually leads to a higher secondary ergodic capacity than

adopting the primary transmission rate constraint. All these findings can serve as the

guidance for designing high-performance practical ROP system.

The rest of this paper is organized as follows. Section II introduces the system model of

the proposed ROP spectrum sharing system. Section III presents the basic problem formulation.

Section IV investigates the capacity maximization problem under the practical energy consump-

tion model. Section V studies the capacity maximization problem for fixed reflection coefficient

and average transmit power constraint. Section VI considers the capacity maximization problem

under the primary transmission outage constraint. Then, numerical results are given in Section

VII to verify the proposed studies. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

A. Channel Model

In this paper, we consider a spectrum sharing communication system consists of a primary

communication pair and a secondary transmission pair. The primary communication pair is a
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conventional communication system consisting of a RF source (e.g. Base Stations, TV towers,

WiFi APs) and a receiver (e.g., cell phones, TV receivers). The secondary communication pair

is an ambient backscatter communication system which consists of a wireless-powered passive

tag and a battery-powered reader. For ease of explanation, we denote the RF source and the

receiver of the primary system as the primary transmitter (PT) and the primary receiver (PR),

respectively. The wireless-powered tag and the reader of the backscatter system are denoted as

secondary transmitter (ST) and secondary receiver (SR), respectively. In this paper, we consider

the block fading channel model [17], where the channel coefficients remain the same for each

block but may change from one block to another. As shown in Fig. 1, the channel power gains

for the fading block n, from the PT to the PR, from the ST to the SR are denoted by h1(n) and

g1(n), respectively. The channel power gains for cross channels for fading block n, i.e., from

the PT to the ST, from the PT to the SR, and from the ST to the PR, are denoted by f(n),

h2(n) and g2(n), respectively.

B. Transmission Model

Transmitted signal at the PT. Let s(n; k) denote the transmitted signal of the PT at kth

symbol of the nth block where |s(n; k)|2 = 1, and p(n) denote the transmit power for fading

block n. Then, the transmitted signal of the PT for the kth symbol of block n is given by

xPT (n; k) =
√

p(n)s(n; k), ∀k. (1)

Transmitted signal at the ST. In fading block n, the signal received at the ST from the PT

is
√

f(n)xPT (n; k). Note that the noise at the ST (Tag) is neglected as [9], [10], [11], [12],

[14], [18] since the on-tag integrated circuit only includes passive components. The power of

the received signal at the ST from the PT is f(n)p(n). Part energy of the received signal is

absorbed by the ST to power its circuit operation. The remaining part of the received signal is

modified and backscattered to the reader. For convenience, we refer to this splitting factor as

the reflection coefficient, and denote it by α(n) where 0 ≤ α(n) ≤ 1. Then, the energy of the

transmitted signal of the ST can be denoted as α(n)f(n)p(n). Let c(n; k) where |c(n; k)|2 = 1

denote the ST’s own signal, then the transmitted signal of the ST for the kth symbol of block

n is given by

xST (n; k) =
√

α(n)
√

f(n)
√

p(n)s(n; k)c(n; k), ∀k. (2)
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Note that we assume there is no signal processing delay of the backscatter circuit, i.e., there is

no time delay between the transmitted signal and the received signal of the ST. This assumption

is widely used in backscatter communication research literatures [9]-[13].

Received signal at the PR. Let yPR(n; k) denote the received signal at the PR for the kth

symbol of block n, then we have

yPR(n; k) =
√

h1(n)xPT (n; k)

+
√

g2(n)xST (n; k) +NPR(n; k), ∀k, (3)

where NPR(n; k) denotes the Gaussian receiving noise at the PR with zero mean and variance

σ2
PR. Then, the instantaneous received signal-to-interference-plus-noise ratio (SINR) at the PR

for block n denoted by γPR(n) is given by

γPR(n) =
h1(n)p(n)

g2(n)α(n)f(n)p(n) + σ2
PR

. (4)

Received signal at the SR. Let ySR(n; k) denote the received signal at the SR for the kth

symbol of block n, then we have

ySR(n; k) =
√

g1(n)xST (n; k)

+
√

h2(n)xPT (n; k) +NSR(n; k), ∀k, (5)

where NSR(n; k) denotes the Gaussian receiving noise at the SR with zero mean and variance

σ2
SR. In this paper, we assume that SR decodes the received signal by performing successive

interference cancellation (SIC). SIC is a well-known physical layer technique [19], [20]. Briefly,

SIC is the ability of a receiver to receive two or more signals concurrently. The SIC receiver

decodes the stronger signal first, subtracts it from the combined signal, and extracts the weaker

one from the residue. For the system setup considered in this paper, the secondary system is

an ambient backscatter system. The strength of the signal received from the ST is in general

much lower than that received from the PT (e.g., TV/WiFi signals). Thus, the SIC procedure

at the SR is decoding the primary signal first and then subtracting it from the received signal

before decoding its own signal. Thus, the instantaneous received SNR at the SR for the block

n denoted by γSR(n) is given by

γSR(n) =
g1(n)α(n)f(n)p(n)

σ2
SR

. (6)

Note that we assume that the SR performs SIC decoding while the PR does not. This is due

the fact that SIC needs to decode the stronger signal first. As mentioned above, the strength of
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the signal received from the ST is in general much lower than that received from the PT. Thus,

SIC is not applicable at the PR.

III. ERGODIC CAPACITY MAXIMIZATION

Under the system model given in Section II, the ergodic capacity of the secondary system can

be written as

CSR = E

[

log2

(

1 +
g1(n)α(n)f(n)p(n)

σ2
SR

)]

, (7)

where E [·] denotes the statistic expectation, and it is taken over the joint fading states of the

fading block n. In this paper, our objective is to maximize the ergodic capacity CSR of the

secondary system while guaranteing the performance of the primary system. In the following,

we introduce the constraints that need to be considered when optimizing this network.

PT’s transmit power constraint. Let Ppk denote the maximum transmit power of the PT,

then the peak transmit power constraint can be written as

0 ≤ p(n) ≤ Ppk, ∀n. (8)

The reflection coefficient constraint. Since the tag is a passive device, thus the energy

harvested and reflected from the tag must be equal to the energy received from the primary

signal. Thus, the reflection coefficient must satisfy the following constraint

0 ≤ α(n) ≤ 1, ∀n. (9)

PR’s rate constraint. To guarantee the quality of service (QoS) of the primary system, we

assume that there is a minimum rate requirement, which can be written as

log2

(

1 +
h1(n)p(n)

g2(n)α(n)f(n)p(n) + σ2
PR

)

≥ γ, ∀n. (10)

where γ is the minimum rate of the primary system.

Tag’s (ST’s) circuit operation power requirement. As aforementioned, the ST harvests

energy from the primary signal to power its circuit operation. Let ǫST be the minimum power

that the ST needs to support its circuit operation, then the following constraint must be satisfied

in order for the ST to work, i.e.,

ηST (1− α(n))f(n)p(n) ≥ ǫST , ∀n. (11)

where ηST is the energy harvesting efficiency coefficient.
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In this paper, the objective is to optimize the performance of such a spectrum sharing system

by jointly optimizing the transmit power p(n) of the PT and the reflection coefficient α(n) of

the ST. The problems can be formulated as

P1: Max
{p(n), α(n)}

CSR, (12)

s.t. (8), (9), (10), (11). (13)

For notation convenience, the fading block number n is dropped from now on.

P1 is not a convex optimization problem. A problem is a convex optimization problem if its

objective function is either convex or concave, and its feasible set is a convex set. For P1, its

objective function is neither convex nor concave. This can be verified by looking at its Hessian

matrix (A function is convex if its Hessian matrix is positive semi-definite). According to the

composition rule given in [21], for P1, we can determine the convexity of the objective function

by investigating the convexity of α ∗ p. The Hessian matrix of α ∗ p is [0 1; 1 0], which is

not positive semi-definite. Thus, P1 is not a convex optimization problem, and the conventional

convex optimization techniques can not be applied to solve P1. To solve P1, we first introduce

the following Lemma.

Lemma 1. The largest α that makes P1 feasible, denoted by αL, is given by

αL = max

{

0,min

{

1

g2f

(

h1

2γ−1
−
σ2
PR

Ppk

)

, 1−
ǫST

ηSTfPpk

}}

, (14)

Proof. The constraint (10) can be rewritten as

α ≤
h1

(2γ − 1)g2f
−

σ2
PR

g2fp
. (15)

It is observed that the right hand side of (15) is an increasing function of p. Besides, due to the

fact that 0 ≤ p ≤ Ppk, the largest α denoted by αL1 satisfies (15) is

αL1 =
h1

(2γ − 1)g2f
−

σ2
PR

g2fPpk

. (16)

Similarly, the constraint (11) can be rewritten as

α ≤ 1−
ǫST

ηSTpf
. (17)

The right hand side of (17) is an increasing function of p. Besides, due to the fact that 0 ≤ p ≤

Ppk, the largest α denoted by αL2 satisfies (17) is

αL2 = 1−
ǫST

ηSTfPpk

. (18)
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Thus, the largest α that satisfies both (15) and (17) is given by min{αL1, αL2}. Combining

with the fact that 0 ≤ α ≤ 1, Lemma 1 follows.

Theorem 1. The optimal solution of P1 is given by

p∗ = Ppk, (19)

α∗ = αL, (20)

where αL is given by (14).

Proof. First, it is observed from P1 that all the constraints are instantaneous constraints. Thus,

maximizing the ergodic capacity is equivalent to maximizing the instantaneous transmission

rate, i.e., log2

(

1 + g1αfp

σ2

SR

)

. For any given α in the feasible region, the instantaneous rate is a

monotonically increasing function with respect to p, and it attains the maximum value when

p = Ppk. It is observed that for any given feasible p, the instantaneous rate is a monotonically

increasing function with respect to α. Thus, α should be chosen as the largest α that makes P1

feasible, i.e., αL given by (14), and it is shown in the proof of Lemma 1 that αL is obtained

when p = Ppk. Thus, it is clear that P1 is maximized when p∗ = Ppk and α∗ = αL.

IV. PRACTICAL ENERGY CONSUMPTION MODEL

In this section, we consider a more practical energy consumption model of the ST’s backscatter

circuit, which is

ηST (1− α(n))f(n)p(n) ≥ ǫb + ǫs (rST (n)) , (21)

where ǫb denotes the static energy consumption when the circuit is on, and ǫs (rST (n)) denotes

the dynamic energy consumption which is a function of its transmission rate. In practice, the

dynamic energy consumption is in general proportional to the transmission rate. This is due to the

following fact. The backscatter transmitter maps its bit sequence to RF waveforms by adjusting

the load impedance of the antenna. The backscatter can control the rate at which it will generate

the modulation symbols by controlling the switching frequencies on the SPDT (single pole

double throw) switches [14]. In general, to achieve a higher data rate, the backscatter needs

a higher frequency operation on the switches, which will cost more energy. Thus, we model

the dynamic energy consumption by ǫs (rST (n)) = u log2

(

1 + g1(n)α(n)f(n)p(n)

σ2

SR

)

, where u is a

constant conversion parameter that relates the transmission rate with the energy consumption. In
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this section, under this energy consumption model, we re-investigate the optimization problem

for this spectrum sharing system.

P2: Max
{p(n), α(n)}

CSR, (22)

s.t. (8), (9), (10), (21). (23)

The constraint (21) is a hyper-function with respect to α and p, which makes the problem

difficult to solve. Thus, to solve P2, we first present the following two propositions.

Proposition 1. Let α̂ denote the largest α that satisfies the constraint (21) for a given p, then

α̂ can be obtained by solving the following equation:

ηST (1− α̂)fp = ǫb + u log2

(

1 +
g1α̂fp

σ2
SR

)

. (24)

Proof. It is observed that the left hand side of (21) (i.e., ηST (1 − α)fp) is a monotonically

decreasing function with respect to α, while the right hand side of (21) (ǫb+u log2

(

1 + g1αfp

σ2

SR

)

)

is a monotonically increasing function with respect to α. Thus, it is easy to observe that the

largest α is the intersection point of two curves, which is the solution of (24). Proposition 1 is

thus proved.

Proposition 2. Let αB1 and αB2 be the solution of (24) when p = p1 and p = p2, respectively.

Then, we have

αB1p1 < αB2p2, if p1 < p2. (25)

Proof. Since αB1 and αB2 be the solution of (24) when p = p1 and p = p2, respectively. We

have

ηST (1− αB1)fp1 = ǫb + u log2

(

1 +
g1αB1fp1

σ2
SR

)

. (26)

ηST (1− αB2)fp2 = ǫb + u log2

(

1 +
g1αB2fp2

σ2
SR

)

. (27)

Then, using (27) to minus (26), we have

ηSTf(p2−p1+αB1p1−αB2p2)=u log2

(

g1fαB2p2+σ2
SR

g1fαB1p1+σ2
SR

)

. (28)

Then, in the following, we prove Proposition 2 by contradiction. Assume αB1p1 ≥ αB2p2

when p1 < p2. Then, under this presumption, it is clear that the left hand side of (28) is strictly
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positive, while the right hand side of (28) is zero or negative. This contradicts with the fact that

the left hand side of (28) should be equal to the right hand side of (28). Thus, our presumption

does not hold. Thus, it follows that αB1p1 < αB2p2, if p1 < p2. Proposition 2 is thus proved.

However, unlike P1, we cannot further prove αB1 < αB2, if p1 < p2. Thus, the approach used

to solve P1 can not be applied here. Thus, to solve P2, we first consider the following problem,

which is

P2a: Max
{p, α}

CSR, (29)

s.t. (8), (9), (21). (30)

Let αB and αpk be the solution of (24) when p = PB and p = Ppk, respectively. Then,

from Proposition 2, it follows αBPB < αpkPpk, ∀PB < Ppk. Since the objective function is an

increasing function with respect to αp, it is clear that the objective function attains its maximum

value at αpkPpk. Thus, the optimal solution of P2a can be obtained as

p∗ = Ppk, (31)

α∗ = αpk, (32)

Now, we return to P2. It is clear that the constraint (10) can be rewritten as α ≤ h1

(2γ−1)g2f
−

σ2

PR

g2fp
.

It is observed that its right hand side is an increasing function of p. Besides, due to the fact that

0 ≤ p ≤ Ppk, the largest α satisfying α ≤ h1

(2γ−1)g2f
−

σ2

PR

g2fp
denoted by αM is

αM =
h1

(2γ − 1)g2f
−

σ2
PR

g2fPpk

. (33)

Based on these results, we are now able to solve P2, and the solution is summarized in the

following theorem.

Theorem 2. The optimal solution of P2 is given by

p∗ = Ppk, (34)

α∗ = min {αM , αpk} (35)

where αM is given by (33), and αpk is the solution of (24) when p = Ppk.

Proof. To prove Theorem 2, we consider the following two cases.
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Case 1: αpk ≤ αM . In this case, the optimal solution of P2 is the same as that of P3a, which

is α∗ = αpk and p∗ = Ppk.

Case 2: αpk > αM . In this case, the optimal α∗ must satisfy the condition 0 ≤ α∗ ≤ αM .

Now, we look at the following equation,

ηST (1− αpk)fPpk = ǫb + u log2

(

1 +
g1αpkfPpk

σ2
SR

)

. (36)

The above equation comes from the fact that αpk is the solution of (24) when p = Ppk. Since

αpk > αM , thus if we replace αpk with αM , the left hand side of (36) will increase, while the

right hand side of (36) will decrease. Thus, it follows

ηST (1−αM )fPpk ≥ ǫb+u log2

(

1+
g1αMfPpk

σ2
SR

)

, (37)

which indicates αM and Ppk is a feasible solution of P2. Since αM is the largest feasible α∗ and

Ppk is the largest feasible p∗, thus the optimal solution is α∗ = αM and p∗ = Ppk.

Summarizing the above results, Theorem 2 follows.

V. FIXED REFLECTION COEFFICIENT AND AVERAGE TRANSMIT POWER CONSTRAINT

Fixed Reflection Coefficient. In practice, for the purpose of circuit design simplicity, the

reflection coefficient of the tag is designed to be fixed, i.e., the reflection cannot be dynamically

changed in each fading block. To capture this fact, we introduce the following constraint

α(n) = α, ∀n. (38)

Average transmit power constraint. In practice, there is always a long-term power budget

of the PT, and an average power constraint usually applies, which can be written as

E [p(n)] ≤ Pav, (39)

where the statistic expectation is taken over the joint fading states of the fading block.

In the following subsections, we reinvestigate P1 and P2 under the above two practical

constraints.

A. Ideal Energy Consumption Model

P3: Max
{p(n), α(n)}

CSR, (40)

s.t. (9), (10), (11), (38), (39). (41)
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The objective function of P3 is the same as P1, and thus it is easy to verify that P3 is not a

convex optimization problem. Therefore, it cannot be solved directly using convex optimization

techniques. Thus, for solving P3, we first consider P3 under a given α = ᾱ. For given ᾱ, P3

can be rewritten as

P3a: Max
{p(n)≥0}

E

[

log2

(

1 +
g1(n)ᾱf(n)p(n)

σ2
SR

)]

, (42)

s.t. E[p(n)] ≤ Pav, (43)

log2

(

1 +
h1(n)p(n)

g2(n)ᾱf(n)p(n) + σ2
PR

)

≥ γ, (44)

ǫST − ηST (1− ᾱ)f(n)p(n) ≤ 0. (45)

Note the fading block number n is dropped from now on for notation convenience.

P3a is a convex optimization problem since its objective function is concave and all the

constraints are affine. To solve this problem, we first at the feasibility of the problem. Note that

the constraint (44) is infeasible if h1 − (2γ − 1)g2ᾱf < 0, i.e., no matter how p is chosen, (44)

cannot be satisfied for such fading block. Thus, to save power, the optimal power allocation for

such fading block is p∗ = 0. When feasible, it can be shown that constraints (44) and (45) can

be rewritten as p ≥
σ2

PR(2γ−1)

h1−(2γ−1)g2ᾱf
and p ≥ ǫST

ηST (1−ᾱ)f
, respectively. Thus, (44) and (45) can be

replaced by the following constraint

p ≥ Pm, (46)

where

Pm , max

{

σ2
PR(2

γ−1)

h1−(2γ−1)g2ᾱf
,

ǫST

ηST (1− ᾱ)f

}

. (47)

Theorem 3. The optimal solution of P3a is given by

p∗ =























0, if λ≥ g1ᾱf

σ2

SR
ln 2

,

Pm, if g1ᾱf

σ2

SR
ln 2

>λ> g1ᾱf

ln2(σ2

SR
+g1ᾱfPm)

,

1
λ ln 2

−
σ2

SR

g1ᾱf
, if λ≤ g1ᾱf

ln2(σ2

SR
+g1ᾱfPm)

.

(48)

where λ can be obtained by solving E [p∗] = Pav, and Pm is given by (47).

Proof. By introducing the dual variable associated with the average transmit power constraint,

the partial Lagrangian of P3a problem is expressed as

L (p, λ) = E

[

log2

(

1 +
g1ᾱfp

σ2
SR

)]

− λ (E[p]− Pav) , (49)
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where λ is nonnegative Lagrange dual variable associated with constraints (43).

Let A denote the set of {p ≥ Pm}. The dual function is then expressed as q(λ) = maxp∈A L (p, λ) .

The Lagrange dual problem is then defined as minλ≥0 q(λ). The duality gap is zero for the convex

optimization problem addressed here, and thus solving its dual problem is equivalent to solving

the original problem. The duality gap is zero if and only if strong duality holds. If the primal

problem is convex and satisfies the Slaters condition [21], then strong duality holds. The Slater’s

condition reduces to feasibility when the constraints are all linear equalities and inequalities [21].

P3a is a convex problem and all its constraints are linear inequalities. It also can be verified

that P3a is feasible under our constraints. Thus, the duality gap is zero for P3a. Therefore,

according to the Karush-Kuhn-Tucker (KKT) conditions, the optimal solutions needs to satisfy

the following equations:

λ∗ (E[p∗]− Pav) = 0, (50)

λ∗ ≥ 0, E[p∗]− Pav ≤ 0, (51)

For a fixed λ, by dual decomposition, the dual function can be decomposed into a series of

similar sub-dual-functions each for one fading state. For a particular fading state, the problem

can be shown equivalent to

P3b: Max
{p≥0}

log2

(

1 +
g1ᾱfp

σ2
SR

)

− λp, (52)

s.t. p ≥ Pm, (53)

It is easy to observe that the optimal solution of this subproblem is p∗ = +∞ if λ = 0. Thus,

in the following, we consider the optimal solution of this subproblem under the condition that

λ 6= 0.

The Lagrangian of this subproblem is

Lsub (p, µ) = log2

(

1 +
g1ᾱfp

σ2
SR

)

− λp− µ (Pm − p) + νp, (54)

where µ and ν are nonnegative Lagrange dual variables associated with the constraints p ≥ Pm

and p ≥ 0, respectively. Since the problem is convex, KKT conditions are sufficient to obtain
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its optimal solution. Thus, in the following, we investigate its KKT conditions:

∂L (p∗, µ∗)

∂p∗
=

g1ᾱf

ln2 (σ2
SR + g1ᾱfp∗)

−λ+µ∗ +ν∗ = 0, (55)

µ∗ (p∗ − Pm) = 0, (56)

ν∗p∗ = 0, (57)

p∗ − Pm ≥ 0, (58)

p∗ ≥ 0, µ∗ ≥ 0, ν∗ ≥ 0. (59)

Now, we derive the optimal solution by solving these KKT conditions. To solve these KKT

conditions, we consider the following two cases:

• Case 1: µ∗ > 0, ν∗ = 0. For this case, it follows from (56) that

p∗ = Pm. (60)

Then, based on (55), µ∗ can be obtained by solving g1ᾱf

ln2(σ2

SR
+g1ᾱfPm)

−λ +µ∗ = 0. Thus,

(60) holds only when λ− g1ᾱf

ln2(σ2

SR
+g1ᾱfPm)

> 0.

• Case 2: µ∗ > 0, ν∗ > 0. In this case, it follows from (56) that p∗ = Pm. However, it follows

from (57) that p∗ = 0. Thus, by contradictory, this case cannot happen.

• Case 3: µ∗ = 0, ν∗ = 0. For this case, it follows from (55) that

p∗ =
1

λ ln 2
−

σ2
SR

g1ᾱf
. (61)

Then, taking (58) into consideration, (62) holds only when 1
λ ln 2

−
σ2

SR

g1ᾱf
≥ Pm, i.e., λ −

g1ᾱf

ln2(σ2

SR
+g1ᾱfPm)

≤ 0.

• Case 4: µ∗ = 0, ν∗ > 0. It follows from (57) that

p∗ = 0. (62)

Then, based on (55), ν∗ can be obtained by solving g1ᾱf

σ2

SR
ln 2

−λ+ν∗ = 0. Thus, (62) holds

only when λ− g1ᾱf

σ2

SR
ln 2

> 0.

Thus, combining the results obtained in Case 1 to 4, the optimal solution for the subproblem

can be summarized as (48). Now, we have to find the optimal λ∗. As aforementioned, λ∗ has

to satisfy (87) and (89). It is observed that if λ∗ = 0, the optimal solution for the subproblem

is p∗ = +∞. This definitely violates the constraint E[p∗] ≤ Pav. Thus, it follows that λ∗ 6= 0.

Then, according to the constraint λ∗ (E[p∗]− Pav) = 0, it follows that the optimal λ∗ must satisfy

E[p∗] = Pav. Theorem 2 is thus proved.
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With the optimal solution of P3a given in Theorem 3, the optimal solution of P3 can be

obtained by performing a one-dimension search for α over the space [0, 1].

B. Practical Energy Consumption Model

P4: Max
{p(n), α(n)}

CSR, (63)

s.t. (9), (10), (21), (38), (39). (64)

The objective function of P4 is the same as P1, and thus it is easy to verify that P4 is not a

convex optimization problem. Therefore, it cannot be solved directly using convex optimization

techniques. Thus, before solving P4, we first present the following proposition.

Proposition 3. For a given ᾱ, the constraint (21) can be rewritten as

p ≥ Pc, (65)

where Pc is the positive solution of ηST (1− ᾱ)fPc = ǫb + u log2

(

1 + g1ᾱfPc

σ2

SR

)

.

Proof. For the convenience of exposition, we introduce the following two functions F1 (p) ,

ηST (1 − ᾱ)fp and F2 (p) , ǫb + u log2

(

1 + g1ᾱfp

σ2

SR

)

. It is easy to observe that both F1 (p) and

F2 (p) are monotonically increasing functions with respect to p, and the increasing rate of F1 (p)

is larger than that of F2 (p). It is also observed that F1 (0) ≤ F2 (0). Thus, F1 (p) and F2 (p)

must have a positive crossing point Pc. For any p larger than Pc, we have ηST (1 − ᾱ)fp ≥

ǫb + u log2

(

1 + g1ᾱfp

σ2

SR

)

. Proposition 3 is thus proved.

It can be shown that constraints (10) can be rewritten as p ≥
σ2

PR
(2γ−1)

h1−(2γ−1)g2ᾱf
. Thus, (10) and

(21) can be replaced by the following constraint

p ≥ PL, (66)

where

PL , max

{

σ2
PR(2

γ−1)

h1−(2γ−1)g2ᾱf
, Pc

}

. (67)

Using the same approach as P3, for a given ᾱ, the optimal power allocation of P4 can be

summarized as follows.
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Theorem 4. For a given ᾱ, the optimal power allocation of P4 is given by

p∗ =























0, if λ≥ g1ᾱf

σ2

SR
ln 2

,

PL, if g1ᾱf

σ2

SR
ln 2

>λ> g1ᾱf

ln2(σ2

SR
+g1ᾱfPL)

,

1
λ ln 2

−
σ2

SR

g1ᾱf
, if λ≤ g1ᾱf

ln2(σ2

SR
+g1ᾱfPL)

.

(68)

where λ can be obtained by solving E [p∗] = Pav, and PL is given by (67).

With the optimal solution of P4 under given ᾱ obtained in Theorem 4, the optimal solution

of P4 can be obtained by performing a one-dimension search for α over the the space [0, 1].

VI. PRIMARY TRANSMISSION OUTAGE CONSTRAINT

In previous sections, we use the PR’s rate constraint to guarantee the quality of service (QoS)

of the primary system, i.e., there is a minimum rate requirement that the primary transmission has

to fulfil. However, this constraint is too strict. In practice, certain ratio of transmission outage

is usually acceptable. Thus, in this section, we introduce the primary transmission outage

constraint [22], which is mathematically defined as

Prob

{

log2

(

1 +
h1(n)p(n)

g2(n)α(n)f(n)p(n) + σ2
PR

)

≤ γ

}

≤ ǫ, (69)

where Prob {·} denotes the probability of the event, and ǫ denotes the maximum outage proba-

bility that is acceptable by the primary system.

A. Peak Transmit Power Constraint

We first consider the peak transmit power constraint case. Using the primary transmission out-

age constraint to replace the PR’s rate constraint, and considering the fixed reflection coefficient,

the problem can be formulated as

P5: Max
{p(n), α(n)}

CSR, (70)

s.t. (8), (9), (11), (38), (69). (71)

The objective function of P5 is the same as P1, and thus it is easy to verify that P5x is not a

convex optimization problem. Therefore, it cannot be solved directly using convex optimization

techniques. We first consider P5 under a given ᾱ, i.e., α = ᾱ where ᾱ is a constant. For

expression convenience, we denote the problem of P5 under a given ᾱ as P5a.
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Theorem 5. The optimal power allocation of P5a, i.e., P5 under a given ᾱ, is given by

p∗(n) = Ppk, ∀n. (72)

Proof. For a given ᾱ, the constraint (11) can be rewritten as p(n) ≥ ǫST

ηST (1−ᾱ)f(n)
. For a given

fading block n, it is easy to observe that P5a is infeasible when ǫST

ηST (1−ᾱ)f(n)
> Ppk. This

means that there does not exist a feasible p(n) that can satisfy the ST’s circuit operation power

requirement, which indicates the secondary system does not work in this fading block. Thus,

the contribution of this fading block to the secondary transmission’s ergodic capacity is zero.

The interference from the secondary system to the primary system is also zero. Thus, channel

inversion power allocation or the maximum transmit power should be adopted for the primary

system to minimize the possibility of outage for this fading block. Therefore, for simplicity, the

optimal power allocation for such a fading block can be obtained as

p∗(n) = Ppk. (73)

In the following, we consider the case that ǫST

ηST (1−ᾱ)f(n)
≤ Ppk. To solve the problem, we

introduce the following indicator function

χ=







1, if log2

(

1 + h1(n)p(n)
g2(n)α(n)f(n)p(n)+σ2

PR

)

≤ γ,

0, otherwsie.
(74)

For notation convenience, the fading block number n is dropped from now on. Then, it can be

shown that the constraint given in (69) is equivalent to

E [χ]− ǫ ≤ 0. (75)

By introducing the dual variable associated with (75), the partial Lagrangian of P5 under given

ᾱ can be expressed as

L (p, λ) = E

[

log2

(

1 +
g1ᾱfp

σ2
SR

)]

− λ (E[χ]− ǫ) , (76)

where λ is nonnegative Lagrange dual variable associated with the constraint E [χ]− ǫ ≤ 0.

Let A denote the set of
{

ǫST

ηST (1−ᾱ)f
≤ p ≤ Ppk

}

. The dual function is then expressed as

q(λ) = maxp∈A L (p, λ) . According to the Karush-Kuhn-Tucker (KKT) conditions, the optimal

solution needs to satisfy the following equations:

λ∗ (E[χ∗]− ǫ) = 0, (77)

λ∗ ≥ 0, E[χ∗]− ǫ ≤ 0, (78)
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0
 

 

log2

(

1 + g1ᾱfp

σ2

SR

)

log2

(

1 + g1ᾱfp

σ2

SR

)

− λχ(p)

p

p =
(2γ

−1)σ2

PR

h1−(2γ
−1)g2αf

Fig. 2. An illustration of function log
2

(

1 + g1ᾱfp

σ2

SR

)

− λχ(p).

For a fixed λ, by dual decomposition, the dual function can be decomposed into a series of

similar sub-dual-functions each for one fading state. For a particular fading state, the problem

can be shown equivalent to

P5b: Max
{p≥0}

log2

(

1 +
g1ᾱfp

σ2
SR

)

− λχ(p), (79)

s.t. p ≥
ǫST

ηST (1− ᾱ)f
, (80)

p ≤ Ppk. (81)

Since log2

(

1 + g1ᾱfp

σ2

SR

)

is an increasing function, the optimal solution of P5b is p∗ = Ppk if

λ = 0.

In the following, we consider the optimal solution of this subproblem under the condition that

λ 6= 0. Fisrt, it can be observed that χ(p) can be rewritten as

Case 1: h1 − (2γ − 1)g2αf ≤ 0.

χ(p) = 1, ∀p. (82)
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Case 2: h1 − (2γ − 1)g2αf > 0.

χ(p) =







1, if p ≤
(2γ−1)σ2

PR

h1−(2γ−1)g2αf
,

0, if p >
(2γ−1)σ2

PR

h1−(2γ−1)g2αf
.

(83)

Let us first consider Case 1. In this case, the objective function of P5b becomes log2

(

1 + g1ᾱfp

σ2

SR

)

−

λ, which is an increasing function with respect to p. Thus, the optimal solution of P5b is p∗ = Ppk.

Now we consider Case 2. It is observed from (83) that χ(p) is a step function with respect to

p for this case. The critical point is p =
(2γ−1)σ2

PR

h1−(2γ−1)g2αf
. Thus, the objective function of P5b has a

form as illustrated in Fig. 2. It can be observed from Fig. 2 that the function log2

(

1 + g1ᾱfp

σ2

SR

)

−

λχ(p) is in general an increasing function of p. Thus, the optimal solution of P5b is p∗ = Ppk.

Combining all these results, the optimal solution for P5a can be obtained as (72). Theorem 5

is thus proved.

With the optimal solution of P5a (i.e, P5 under given ᾱ) obtained in Theorem 5, the optimal

solution of P5 can be obtained by performing a one-dimension search for α over the space [0, 1].

B. Average Transmit Power Constraint

Now, we investigate the problem under the average transmit power constraint, which is

P6: Max
{p(n), α(n)}

CSR, (84)

s.t. (9), (11), (38), (39), (69). (85)

We first consider P6 under a given ᾱ, i.e., α = ᾱ where ᾱ is a constant. For expression

convenience, we denote the problem of P6 under a given ᾱ as P6a.

Same as solving P5, it can be shown that (69) can be rewritten as (75). By introducing the

dual variables associated with (75) and (39), the partial Lagrangian of P6a under given ᾱ can

be expressed as

L (p, λ) = E

[

log2

(

1 +
g1ᾱfp

σ2
SR

)]

− λ (E[χ]− ǫ)

− µ (E[p]− Pav) , (86)

where λ and µ are nonnegative Lagrange dual variables associated with the constraints E [χ]−ǫ ≤

0 and E [χ]− Pav ≤ 0, respectively.
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Let A denote the set of
{

ǫST

ηST (1−ᾱ)f
≤ p

}

. The dual function is then expressed as q(λ) =

maxp∈A L (p, λ) . According to the Karush-Kuhn-Tucker (KKT) conditions, the optimal solution

needs to satisfy the following equations:

λ∗ (E[χ∗]− ǫ) = 0, (87)

µ∗ (E[p∗]− Pav) = 0, (88)

λ∗ ≥ 0, E[χ∗]− ǫ ≤ 0, (89)

µ∗ ≥ 0, E[p∗]− Pav ≤ 0. (90)

For a fixed λ, by dual decomposition, the dual function can be decomposed into a series of

similar sub-dual-functions each for one fading state. For a particular fading state, the problem

can be shown equivalent to

P6b: Max
{p≥0}

log2

(

1 +
g1ᾱfp

σ2
SR

)

− λχ(p)− µp, (91)

s.t. p ≥
ǫST

ηST (1− ᾱ)f
. (92)

P6a can be solved by iteratively solving P6b for all fading states with fixed λ and µ, and updating

these dual variables via sub-gradient based method, e.g., the ellipsoid method [21], for which

the details are omitted here for brevity.

In the following, we derive the solution to P6b. To solve the problem, we first introduce the

following function

F(p) , log2

(

1 +
g1ᾱfp

σ2
SR

)

− µp. (93)

It is easy to show that F(p) is a concave function with respect to p, and attains its maximum

value when p is equal to

p̃ =
1

µ ln 2
−

σ2
SR

g1ᾱf
. (94)

Note that the objective function in P6b now becomes F(p)− λχ(p). Now we look at χ(p). It

has been shown in the previous subsection that χ(p) can be rewritten as (82) and (83).

Thus, when h1−(2γ−1)g2αf ≤ 0, we have χ(p) = 1, ∀p. Then, the objective function of P6b

becomes F(p)− λ, which attains its maximum value at the same p as F(p). Thus, the optimal

solution of P6b for this case is p∗ = p̃.
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F(p) − λχ(p)

p′p̃ p

Fig. 3. An illustration of different forms of function F(p)− λχ(p).

When h1 − (2γ − 1)g2αf > 0, as shown in (83), χ(p) is a step function with respect to p,

and its critical point is p =
(2γ−1)σ2

PR

h1−(2γ−1)g2αf
. In the following, we consider P6b for this case. For

the convenience of discussion, we denote the critical point of χ(p) as p′, i.e.,

p′ =
(2γ − 1)σ2

PR

h1 − (2γ − 1)g2αf
. (95)

For the convenience of discussion, we rewrite the constraint (92) as p ≥ p′′, where

p′′ =
ǫST

ηST (1− ᾱ)f
. (96)
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Let p∗ denote the optimal solution of P6b. The following discussions are then made on p∗:

Case 1: p′ ≤ p̃. An illustration of this case is given in Fig. 3(a). It can be seen from Fig. 3(a)

that F(p) attains it maximum value at p = p̃, and at the value of p = p̃, χ(p̃) is equal to zero.

Thus, F(p) − λχ(p) attains its maximum value at p = p̃. Now, in order to obtain the optimal

solution for P6a, we have to consider the following two subcases based on the relationship

among p′, p′′, and p̃.

• Subcase 1: p′′ ≤ p̃. In this case, p̃ is within the feasible region. Thus, the optimal solution

for P6b is p∗ = p̃.

• Subcase 2: p̃ < p′′. In this case, p̃ is not within the feasible region. It is observed from Fig.

3(a) that F(p)− λχ(p) is a decreasing function with respect to p for any p ≥ p̃. Thus, the

optimal solution for P6b is p∗ = p′′ for this case.

Case 2: p′ > p̃. An illustration of this case is given in Fig. 3(b). This case is a little bit

complex than Case 1. As shown in Fig. 3(b), F(p)− λχ(p) may attain its maximum value at

p = p̃ or p = p′ depending on the value of λ. Thus, the following three subcases are considered

for finding the optimal p∗ for P6b.

• Subcase 1: p′′ < p̃ < p′. For this case, both p̃ and p′ are within the feasible region. Thus,

the optimal solution can be obtained as

p∗ =







p̃, if F(p̃)− λ > F(p′),

p′, if F(p̃)− λ ≤ F(p′).
(97)

• Subcase 2: p̃ ≤ p′′ ≤ p′. For this case, only p′ is within the feasible region. However, it is

possible that the value of F(p′′) − λ may be larger than that of F(p′). Thus, the optimal

solution can be obtained as

p∗ =







p′′, if F(p′′)− λ > F(p′),

p′, if F(p′′)− λ ≤ F(p′).
(98)

• Subcase 3: p̃ < p′ < p′′. For this case, both p̃ and p′ are not within the feasible region. It

is observed from Fig. 3(b) that F(p)−λχ(p) is a decreasing function with respect to p for

any p ≥ p′. Thus, the optimal solution for P6b is p∗ = p′′ for this case.

Combining all the results obtained above, the optimal solution for P6a can be summarized in

the following theorem.
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Theorem 6. The optimal power allocation of P6a, i.e., P6 under a given ᾱ, is given by

p∗(n) =



















p̃, if R1 holds,

p′, if R2 holds,

p′′, if R3 holds,

(99)

where p̃, p′, p′′ are given by (94), (95), (96), respectively. R1, R2, R3 are defined as R1 ,

{{h1 − (2γ − 1)g2αf ≤ 0} or {h1 − (2γ − 1)g2αf > 0 and p̃ > max {p′, p′′}} or {p′ > p̃ > p′′

and h1 − (2γ − 1)g2αf > 0 and F(p̃)− λ > F(p′)}}.

R2 , {{h1 − (2γ − 1)g2αf > 0 and p′ > p̃ > p′′ and F(p̃)− λ < F(p′)} or {p′ > p′′ > p̃

and h1 − (2γ − 1)g2αf > 0 and F(p′′)− λ < F(p′)}}.

R3 , {{h1 − (2γ − 1)g2αf > 0 and p′′ > max {p′, p̃}} or {h1 − (2γ − 1)g2αf > 0 and p′ >

p′′ > p̃ and F(p′′)− λ > F(p′)}}.

With the optimal solution of P6a (i.e, P6 under given ᾱ) obtained in Theorem 6, the optimal

solution of P6 can be obtained by performing a one-dimension search for α over the space [0, 1].

VII. NUMERICAL RESULTS

In this section, several numerical examples are presented to evaluate the performance of the

derived results. We assume i.i.d. Rayleigh fading for all channels involved, and thus the channel

power gains of these channels are exponentially distributed. The stochastic mean of the channel

power gain is assumed to be one. It is worth pointing out that the assumption of particular

distributions of the channel power gains does not affect the structure of the problem studied and

the solution obtained. The power of the noises at the receiver of PR and SR are assumed to be

one. The energy harvest efficiency ηST for ST is assumed to be one. The constant conversion

parameter u is assumed to be one. The results given in these examples are obtained by averaging

over 10000 channel realizations.

A. Ideal Vs. Practical Energy Consumption Model

In this subsection, we investigate the impact of the energy consumption model on the system

performance for two different scenarios given below.

1) Peak transmit power constraint with dynamic reflection coefficient: The curves presented

in Fig 4 are obtained based on the solutions to P1 and P2. It is observed from Fig. 4 that the

ergodic capacity of the secondary system increases with the increasing of Ppk for all curves. It is
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also observed that the ergodic capacity of the ideal energy consumption model is larger than that

of the practical energy model for the same Ppk. This is due to the fact that for the practical energy

consumption model, the dynamic power consumption is considered, more power is needed to

support the tag’s circuit operation, and thus the power left for transmitting the signal is less,

which results in a lower transmission rate. We also observe that the capacity for γ = 1 is larger

than that for γ = 2 for both idea and practical energy consumption models. This is as expected

since a lower primary system’s rate requirement indicates a high interference tolerance, and thus

the secondary system can transmit with a higher power which results in a higher transmission

rate.

2) Average transmit power constraint with fixed reflection coefficient: In Fig.5, we show

that ergodic capacity for both ideal and practical energy consumption model under the average

transmit power constraint and the fixed reflection coefficient. The curves presented in Fig 5

are obtained based on the solutions to P3 and P4. The trend of the curves are same as that of

Fig.4. Thus, for concise, the explanations are not repeated here. However, comparing Fig.5 with

Fig.4, we observe that the ergodic capacity in Fig.5 is lower than that of Fig.4 when Ppk = Pav

for the same energy consumption model and the same γ. This is due to the fact the reflection

coefficient in Fig.4 can be dynamically adjusted to its optimal value for each fading block while

the reflection coefficient in Fig.5 remains the same for each fading block.

B. Study of the Primary Transmission Outage Constraint

In this subsection, we investigate the impact of the primary transmission outage constraint on

the system performance for two different setups given below.

1) Peak transmit power constraint: The curves presented in Fig 6 are obtained based on

the solution to P5. Firstly, it is trivial to observe from Fig. 6 that the ergodic capacity under

larger Ppk is larger for the same given primary transmission outage probability. Secondly,

the ergodic capacities for all three curves become flat when the primary transmission outage

probability is sufficiently large. This is as expected since the peak transmit power constraint

becomes the bottleneck that limits the system performance when the primary transmission

outage probability is large. It is also observed that all three curves are not starting from the

zero primary transmission outage probability. This is because the zero primary transmission

outage probability is in fact equivalent to the PR’s rate constraint given in (10). For a fixed

α and a given peak power constraint Ppk, there does not exist a power allocation that satisfies
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Fig. 6. Peak Power Constraint with Primary Transmission Outage Constraint

log2

(

1 + h1(n)p(n)

g2(n)αf(n)p(n)+σ2

PR

)

≥ γ for a given positive γ for all the fading slots due to the

continuous distribution of the channel power gains.

2) Average transmit power constraint: In Fig. 7, four curves with different primary trans-

mission outage probability are given. The curves presented in Fig 7 are obtained based on the

solution to P6. It is easy to observe that the ergodic capacities increase with the increasing

of the transmit power constraint. The capacity difference for four curves is small when the

transmit power constraint is small. This is intuitive since the average transmit power constraint

is the bottleneck that limits the system performance when it is very small. It is also observed

that the ergodic capacity under larger primary outage probability is larger for the same given

transmit power constraint. Besides, the curves with 100% and 0% primary outage probability

serve as the upper bound and the lower bound, respectively. This is as expected since the case

under 100% primary outage probability is equivalent to the case without the primary outage

probability constraint. The case under 0% primary outage probability is equivalent to the case

under the primary rate constraint which is studied in P3.



28

0 5 10 15 20
0

1

2

3

4

5

6

Average Transmit Power Constraint(dB)

E
rg

od
ic

 C
ap

ac
ity

 o
f S

ec
on

da
ry

 S
ys

te
m

 (
bi

t/c
om

pl
ex

 d
im

.)

 

 
Primary Transmission Outage, 100%
Primary Transmission Outage, 30%
Primary Transmission Outage, 10%
Primary Transmission Outage, 0%

Fig. 7. Average Power Constraint with Primary Transmission Outage Constraint

VIII. CONCLUSIONS

In this paper, we proposed the Riding on the Primary (ROP) spectrum sharing model for

wireless-powered IoT devices with ambient backscatter communication capabilities. We in-

vestigated the performance of such a spectrum sharing system under fading channels. The

ergodic capacity of the secondary system was investigated by jointly optimizing the transmit

power of the primary signal and the reflection coefficient of the secondary system. Different

(ideal/practical) energy consumption models, different (peak/average) transmit power constraints,

different types (fixed/dynamically adjustable) reflection coefficient, different primary system’s

interference requirements (rate/outage) are considered were considered. Closed-form solutions

were obtained for most cases. Performance for different scenarios were studied and compared

through numerical simulations.
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