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Abstract

Ultra reliable and low latency communication (URLLC) is a newly introduced service category in

5G to support delay-sensitive applications. In order to support this new service category, 3rd Generation

Partnership Project (3GPP) sets an aggressive requirement that a packet should be delivered with 10
−5

packet error rate within 1 ms transmission period. Since the current wireless transmission scheme

designed to maximize the coding gain by transmitting capacity achieving long codeblock is not relevant

for this purpose, a new transmission scheme to support URLLC is required. In this paper, we propose

a new approach to support the short packet transmission, called sparse vector coding (SVC). Key idea

behind the proposed SVC technique is to transmit the information after the sparse vector transformation.

By mapping the information into the position of nonzero elements and then transmitting it after the

random spreading, we obtain an underdetermined sparse system for which the principle of compressed

sensing can be applied. From the numerical evaluations and performance analysis, we demonstrate that

the proposed SVC technique is very effective in URLLC transmission and outperforms the 4G LTE and

LTE-Advanced scheme.
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Sparse Vector Coding for Ultra Reliable and

Low Latency Communications in 5G Systems

I. INTRODUCTION

Ultra reliable and low latency communication (URLLC) is a newly introduced service cat-

egory in 5G to support delay-sensitive applications such as the tactile internet, autonomous

driving, factory automation, cyber-physical system, and remote robot surgery [2]. In order to

support this new service category, 3rd Generation Partnership Project (3GPP) sets an aggressive

requirement that a packet should be delivered with 10-5 block error rate (BLER) within 1

ms period [3]. One notable observation in these applications is that the transmit information

is control (command) type information (e.g., move left/right, start/stop, rotate/shift, and speed

up/down) or sensing information (e.g., temperature, moisture, pressure, and gas density) so that

the amount of information to be delivered is tiny [4]. Since the current wireless transmission

strategy designed to maximize the coding gain by transmitting capacity achieving long codeblock

is not relevant to these URLLC scenarios, entirely new transmission strategy to support the short

packet transmission is required. While there have been some efforts to improve the connection

density, the medium access latency, and the reliability of the re-transmission scheme for URLLC

[5–9], not much work has been done for the short-sized packet transmission except for the

consideration of advanced channel coding schemes (e.g., polar code) [10].

In the current 4G systems, reliability of the data transmission is mainly achieved by the

channel coding scheme [11]. Encoding at the basestation is done by the convolution coding

and the decoding at the mobile terminal is done by the maximum likelihood decoding (MLD)

or Turbo decoding. While this approach has shown to be effective in 4G systems, use of this

scheme in URLLC scenario would be problematic since there is a stringent limitation on the

packet length (and thus the parity size) yet the required reliability (target BLER = 10-5) is

much higher than the current LTE-Advanced and LTE-Advanced Pro systems (target BLER =

10-2∼10-3) [10].

The purpose of this paper is to propose a new type of short packet transmission for URLLC

that does not rely on the conventional channel coding principle. Key idea behind the proposed

technique, henceforth referred to as sparse vector coding (SVC), is to transmit the short-sized
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information after the sparse vector transformation. To be specific, by mapping the information

into the sparse vector and then transmitting it after the random spreading, we obtain an under-

determined sparse system for which the principle of compressed sensing can be applied [12].

It is now well-known from the theory of compressed sensing that an accurate recovery of a

sparse vector is guaranteed with a relatively small number of measurements when the system

matrix (a.k.a. sensing matrix) is generated at random [13], which is achieved in our case via

the random spreading. In fact, since the sparsity of the input vector is guaranteed by the sparse

vector transformation, SVC decoding is achieved by the sparse signal recovery (more accurately,

identification of nonzero positions in the transmit sparse vector). Therefore, the proposed scheme

is very simple to implement and can be applied to wide variety of future wireless applications

in which the amount of transmit information is sufficiently small.

We note that there have been various efforts to use the support locations in the information

encoding process [14–18]. For example, sparse mapping is conceptually similar to the position

modulation (PM) and the index modulation (IM) techniques [14–16] in which the indices of

the building block of the communication systems, such as pulses in optical systems, transmit

antennas at the basestation or subcarrier groups in OFDM systems, are used to convey additional

information bits. Also, in the single and multiple PM techniques, information is transmitted

via the time sparsity by using the combinations of the positions of optical pulses. In the

spatial modulation-based IM technique, for example, additional information can be delivered

by selectively using part of transmit antennas in the information transmission. Similar approach

can also be found in Boolean multiple access channel [17-18]. Our work is distinct from these

studies in that we fully utilize the physical resources in the data transmission so that the loss,

if any, caused by the underutilization of physical resources can be prevented. Also, in contrast

to the IM technique where the receiver processing consists of two steps (the index recovery and

symbol detection), decoding of the proposed SVC scheme is achieved by the identification of

nonzero position called support identification [12]. The distinction of SVC over the conventional

techniques is further strengthened by the fact that there is no random sensing mechanism (e.g.,

random spreading in SVC) in the conventional schemes so that the compression of the transmit

vector is not possible.

From the performance analysis in terms of the decoding success probability and also numerical

evaluations on the realistic setting, we demonstrate that the proposed SVC technique is very

effective in short-size packet transmission and outperforms the 4G LTE and LTE-Advanced
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physical downlink control channel (PDCCH) scheme by a large margin in terms of reliability

and transmission latency.

The rest of this paper is organized as follows. In Section II, we briefly explain the short-

sized packet transmission in 4G LTE and LTE-Advanced systems. In Section III, we present

the proposed SVC scheme and explain the encoding and decoding operations. In Section IV,

we analyze the success probability of SVC-encoded data transmission. Various implementation

issues are discussed in Section V. In section VI, we present simulation results to verify the

performance of the proposed scheme. We conclude the paper in Section VII.

II. SHORT-SIZED PACKET IN LTE-ADVANCED DOWNLINK

In this section, we briefly review the control-type data transmission (PDCCH of 4G LTE

systems) to illustrate the short-sized packet transmission in the conventional systems. PDCCH

carries essential information for the mobile terminal when it tries to transmit or receive the data.

To be specific, PDCCH carries small-sized information needed to decode the data channel (e.g.,

resource assignment, modulation order, code rate). On top of these, cyclic redundancy check

(CRC) is added to test the decoding error [19]. Since the CRC bit stream is scrambled with

a user index (called radio network temporary identifier), only the scheduled user can pass the

CRC test.

After the channel coding and symbol mapping,1 the modulated symbol vector s ∈ CN×1 is

transmitted. The corresponding received vector y ∈ Cm×1 is given by

y = HRs + v, (1)

where H ∈ Cm×m is the diagonal matrix whose diagonal entry hii is the channel component

for each resource, v ∼ CN (0, σ2
vI) is the additive Gaussian noise, and R ∈ C

m×N is the

matrix describing the mapping between the symbol and resource element. For example, when

one symbol is mapped to a single resource, R would be the identity matrix (R = I). Whereas,

if two resources are assigned to one symbol for the transmit diversity, then R would be 2N ×N

matrix (e.g., if N = 2, then R =
[
1 0 1 0

0 1 0 1

]T

).

When one tries to improve the reliability with a small modification of current PDCCH, one

can think of three options. The first option is to achieve the better coding gain by using lower

1e.g., convolution coding with rate 1
3

and quadrature phase shift keying (QPSK) modulation are employed.
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code rate (i.e., r = b
2N

< rpdcch = 1
3
). This option is easy and straightforward but when the coded

symbol length N increases, transmission and processing latency will also increase, resulting in

the violation of the URLLC requirement. The second option is to use the multiple resources to

achieve the diversity gain (m > N). By combining multiple versions of the same symbol at the

receiver, reliability of the symbol can be improved. The problem of this approach is that a large

portion of wireless resources are consumed in achieving the diversity gain so that there would

be a severe degradation of the resource utilization efficiency. The third option is to reduce the

size of control information b. By removing some of the scheduling parameters, resources used

for the control channel can be saved. Even in this case, it is not possible to remove essential

information (e.g., CRC and user index) so that one cannot expect a dramatic reduction of control

information.

III. SPARSE VECTOR CODING

A. SVC Encoding and Transmission

The key idea of the proposed SVC technique is to map the information into the positions of a

sparse vector s. Figuratively speaking, SVC encoding can be thought as marking a few dots to

the empty table. As illustrated in Fig. 1, if we try to mark dots to two cells out of 9, then there

would be
(
9
2

)
= 36 choices in total. In general, when we choose K out of N symbol positions,

we can encode ⌊log2
(
N

K

)
⌋ bits of information. Example of one-to-one mapping between the

information bit stream w and transmit sparse vector s is (see example in Table I)

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1
...

1 1 1 1 1
︸ ︷︷ ︸

b-bit information w(b=5)

←→
←→
←→

...

←→

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 1
...

1 0 0 0 0 0 0 0 1
︸ ︷︷ ︸

K−sparse vector s (K=2)

.

After the sparse mapping, each nonzero element in s is spread into m resources using the

codeword (spreading sequence) in the spreading codebook C. While it is possible to allocate

resources either in time, frequency axis or hybrid of these, in this work, we assume that they

are allocated in the frequency axis (see Fig. 2(a)). This choice will not affect the system model

but minimizes the transmission latency. As a result of this spreading process called the multi-
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1 0 0 0 1 0 0 0 0

Fig. 1: Metaphoric illustration of SVC encoding. Information is mapped into the position of a

sparse vector.

TABLE I: Example of mapping between the information w and the sparse vector s

Input: (w)(10) s

Size of sparse vector N , 0 000011

information vector w 1 000101

Output: 2 000110

Sparse vector s 3 001001

a := 0 4 001010

for i = 2 to N do 5 001100

for j = 1 to i− 1 do 6 010001

if a = (w)(10) 7 010010

s :=
(

2i + 2j
)

(2)
8 010100

end if 9 011000

a := a+ 1 10 100001

end for :

end for :

Note: (w)(10) is decimal expression of binary vector w and (w)(2)
is binary expression of integer w.

code spreading, the resource mapping matrix R in (1) is replaced with the codebook matrix

C = [c1 c2 · · · cN ] where ci = [c1i c2i · · · cmi]
T is the spreading sequence. For example, if

the first and the third element of s are nonzero, then the transmit vector after spreading is

x = Cs

= s1c1 + s3c3. (2)

Since the positions of nonzero elements are chosen at random, the codebook matrix C should be

designed such that the transmit vector x contains enough information to recover the sparse vector

s irrespective of the selection of the nonzero positions. It has been shown that if entries of the

codebook matrix C are generated at random, e.g., sampled from Gaussian or Bernoulli distribu-

tion, then an accurate recovery of the sparse vector is possible as long as m = O (K logN) [13].

Example of C for m = 5 and N = 10, when elements of ci are chosen from the Bernoulli
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distribution, is given by

C =
1

α













1 1 1 1 −1 1 −1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 1 1 −1 −1
−1 1 1 1 −1 −1 −1 −1 1 1













,

(3)

where α is the normalization factor depending on the modulated symbols (see Section V.B). The

corresponding received signal y is

y = Hx+ v

=
[

Hc1 Hc3

]




s1

s3



+ v. (4)

In general, the received vector y is given by

y = HCs+ v

=








h11

. . .

hmm














c1 . . . cN















s1
...

sN







+








v1
...

vm








.

(5)

It is worth mentioning that an accurate recovery of the sparse vector s is unnecessary in SVC since

the decoding of the information vector is achieved by the identification of nonzero positions, not

the actual values of this vector. The fact that the decoding is done by the support2 identification

greatly simplifies the decoding process and also reduces the chance of decoding failure. The

overall structure of the proposed SVC is depicted in Fig. 2(b).

The benefits of SVC can be summarized as follows; First, the transmission power of the data

channel is concentrated on the nonzero elements of an information vector. Thus, when compared

to the conventional system in which the transmission power is uniformly distributed across all

symbols, effective transmit power per symbol is higher. Second, the SVC decoding process

achieved by the sparse recovery algorithm lends itself to the test of decoding success/failure so

that the CRC operation is unnecessary. This directly implies that the code rate of SVC can be

2Support is the set of nonzero elements. For example, if s = [0 0 1 0 0 1], the Ωs = {3, 6}.
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time

frequency

time

frequency

PDCCH region

Pilot symbol

Pilot region

Control region

Data region

Control transmission
Data transmission

URLLC transmission

m

(a)

Data
information

Sparse
mapping

b bits Multi-code
spreading

Channel

Support
detection

Sparse
demapping

N symbols

s

Decoded
information

x = Cs

yŝ

Basestation encoding

Decoding at mobile station

(b)

Fig. 2: SVC-based packet transmission: (a) packet structure of 4G (left) and the URLLC packet

(right) and (b) the block diagram for the proposed SVC technique.

made smaller than the rate of PDCCH. Specifically, when the number of resources used for the

data channel is m and the QPSK modulation is used, the code rate of SVC is rsvc =
bi
2m

(bi is

the number of information bits) and the code rate of PDCCH is rpdcch = (bi+bc)
2m

(
= 1

3

)
. If the

number of CRC bits is bc = βbi (β > 0), then m = 3
2
(bi + bc) =

3
2
(bi +βbi). Thus, the code rate

of SVC can be expressed in term of β as

rsvc =
bi

2m
=

1

3(1 + β)
<

1

3
= rpdcch. (6)

Third, when m is sufficiently large, the basestation can easily assign the distinct codebook C for

each user. This is because codebook matrices can be made near orthogonal by using a properly

designed codebook generation mechanism.3 For example, when m = 42 and the codebook is

generated by the Bernoulli distribution, then there are 242 different spreading sequences ci. Thus,

3The correlation between two distinct columns of random matrix decreases exponentially as the dimension of a column

increases (see, e.g., [20, Theorem 1]).
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TABLE II: PDCCH versus SVC technique

PDCCH SVC technique

Coding

(encoding/decoding)

Convolution code ( 1
3

rate) /

Viterbi decoding

Sparse encoding / CS recovery

algorithm

Transmission Time/frequency mapping Spreading in frequency direc-

tion

User identification CRC scrambled with user in-

dex

User codebook C

Resource overhead (L
repetitions, QPSK)

L 3b
2

Lm where m is the size of

spreading length

if N = 96, then the basestation can support maximally 235(≈ 242

96
) devices. Last but not least

important benefit of SVC is that the implementation cost is small and the processing latency is

low. Encoding is done via a simple injective mapping and spreading, which can be easily realized

by the look-up table and addition/subtraction operations and the decoding is performed by the

support detection and demapping. In particular, since the sparsity K is small and also known to

the receiver, one can decode the SVC packet using a simple sparse recovery algorithm such as

orthogonal matching pursuit (OMP) [12].4 Comparisons of PDCCH and SVC are summarized

in Table. II.

B. SVC Decoding

1) Support Identification: As mentioned, the SVC decoding is done by the identification of

the support and any sparse recovery algorithm can be employed for this purpose. In this work, we

employ the greedy sparse recovery algorithm in the decoding of the SVC-encoded packet. After

pre-multiplying the diagonal matrix constructed by the complex exponential ej∡h, the modified

received vector can be expressed as

ỹ = diag [exp(j∡h11) . . . exp(j∡hmm)]y

= diag
[

h̃
]

Cs+ ṽ,

= H̃Cs + ṽ, (7)

where ∡h is the angle of h, h̃ = [h11e
j∡h11 . . . hmme

j∡hmm], H̃ = diag
[

h̃
]

, and ṽ = [ṽ1, . . . , ṽm]

is the modified noise vector where ṽi = vie
j∡hii . Since s has K nonzero elements, the modified

4Most of CS algorithm finds out the solution without the prior knowledge of the sparsity K. However, when K is known in

advance, one can recover the sparse vector more accurately by using the sparsity-aware recovery technique [29].
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‖
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)
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′
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′ 6= C)

ỹ = H̃Cx+ ṽ

Fig. 3: Snapshot of the ratio between residual magnitude ‖rk‖22 and ‖ỹ‖22 as a function of the

number of iterations in the OMP algorithm. Signal-to-noise ratio (SNR) is set to 0 dB and the

sparsity K is set to 4.

received vector ỹ = H̃Cs + ṽ can be expressed as a linear combination of K columns of

Φ = H̃C perturbed by the noise. In view of this, the main task of the SVC decoding is to

identify the columns in Φ participating in the modified received vector. In each iteration, greedy

sparse recovery algorithm identifies one column of Φ at a time using a greedy strategy [21].

Specifically, a column of Φ that is maximally correlated with the (modified) observation rj−1 is

chosen. That is, an index of the nonzero column of Φ chosen as j-th iteration is5

ωj = argmax
l
|<φl, r

j−1>|2, (8)

where rj−1 = ỹ−ΦΩj−1
s

ŝj−1 is the modified observation called the residual and ŝj−1 = Φ
†
Ωj−1

s

ỹ

is the estimate of s at (j − 1)-th iteration.6

A better way to improve the decoding performance is to use the maximum likelihood (ML)

detection. Recalling that the sparsity K is known to both transmitter and receiver, the ML

detection problem for the system model in (8) is

s∗ = arg max
‖s‖0=K

Pr(ỹ|s, H̃,C), (9)

5If Ω = {1, 3}, then ΦΩ = [φ1 φ3].

6Φ† = (ΦTΦ)−1ΦT is the pseudo-inverse of Φ.
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where ‖s‖0 is the ℓ0-norm of s counting the number of nonzero elements in s. Since our goal

is to find out the support of s, we alternatively have

Ω∗
s = arg max

|Ωs|=K
Pr(ỹ|Ωs, H̃,C), (10)

where |Ωs| is the cardinality of the set Ωs.

To find out the ML solution, we need to enumerate all possible combinations of candidate

supports with cardinality K. Unfortunately, this exhaustive search would not be feasible for most

practical scenarios. In this work, we instead use the multipath match pursuit (MMP) algorithm

[22], a recently proposed near-ML sparse recovery algorithm, as a baseline for the SVC decoding.

In a nutshell, MMP performs an efficient tree search to find out the near-ML solution to the

original sparse vector. Unlike the single-path search algorithm, MMP selects multiple promising

indices in each iteration. Specifically, each candidate chosen in an iteration brings forth multiple

new child candidates. After finishing K iterations, candidate s∗ having the smallest cost function

among all candidates is chosen as the final output (i.e., s∗ = argmin
ŝ
J (̂s) where J (̂s) = ‖ỹ −

ΦΩŝ
ŝ‖2). Due to the fact that many candidates are redundant and hence counted only once, an

actual number of candidates examined in MMP are quite moderate [22].

One clear advantage of MMP, in the perspective of SVC decoding, is that it deteriorates the

quality of incorrect candidate yet does not impose any estimation error to the correct one. This

is because the quality of incorrect candidates gets worse due to the error propagation while

no such behavior occurs to the correct one. In particular, since nonzero values of an original

sparse vector s are known to the receiver,7 no estimation error will be introduced in the correct

candidate. We note that the computational complexity of the SVC decoding is marginal since the

computational complexity of the greedy sparse recovery algorithm is directly proportional to the

sparsity K.8 Accordingly, the processing latency of SVC decoding can also be made sufficiently

small. This is in contrast to the Viterbi or Turbo decoding algorithm in which the computational

complexity is proportional to the length of a codeblock [23].

2) Identification of False Alarm: Overall, there are two kinds of false alarm events causing the

decoding failure: 1) support detection when the basestation transmits information to the different

7Since the goal of SVC decoding is to find out the nonzero positions of a sparse vector, we can pre-define values of the

nonzero elements in s (see Section IV.A).

8In each iteration, greedy sparse recovery algorithm performs three operations: support identification, nonzero element

estimation, and residual update. Since the nonzero values are fixed and known in advance, estimation of the nonzero elements

is unnecessary.
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TABLE III: The proposed MMP-based SVC decoding algorithm

Input:

Measurement ỹ, sensing matrix Φ = H̃C, sparsity K,

number of expansion L, max number of search candidate lmax,

stop threshold ǫ, detection threshold ε
Output:

Support set Ω̂
Initialization:

l := 0 (candidate order), ρ := ∞ (minimum magnitude of residual)

While: l < lmax and ǫ < ρ do

l := l + 1
r0 := ỹ

[p1, ... , pK ] := compute_pk(l, L) (compute layer order)

for k = 1 to K do (investigate l-th candidate)

ω̃ :=compute_ω(k, L) (choose L best indices)

Ωk
l := Ωk−1

l ∪{ω̃pk} (construct a path in k-th layer)

rk := ỹ −ΦΩk

l

sk (update residual)

Ω̂k := Ωk
l (update support set)

end for

if ‖rK‖22 < ρ then (update the smallest residual)

ρ := ‖rK‖22

if
‖rK‖2

2

‖y‖2
2

> 1−ε then (false-alarm identification)

Ω̂∗ := 0

end if

Ω̂∗ := Ω̂K

end if

end while

return Ω̂∗

function compute_pk(l, L)
t := l − 1
for k = 1 to K do

pk := mod (t, L) + 1
t := floor(t/L)

end for return [p1, ... , pK ]
end function

function compute_ω(k,L)
if k = odd then

return arg max
|π|=L

‖(ℜ〈 φT

‖φ‖2
rk−1〉)π‖

2
2

else

return arg max
|π|=L

‖(ℑ〈 φT

‖φ‖2
rk−1〉)π‖

2
2

end if

end function

user and 2) support detection when there is no transmission at the basestation. In order to prevent

these events, we need to examine the residual magnitude in each iteration. Firstly, when a packet

for the different user is received, the codebook between two distinct users would be different

from each other so that the magnitude of the correlation µij between two codewords, each being

chosen from two district codebooks would be small. In this case, clearly, one cannot expect a

substantial reduction in the residual magnitude. Secondly, when there is no transmission, the
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received vector will measure the noise only (i.e., ỹ = ṽ) and thus some column in Φ, say

φl, will be added to the residual in each iteration ri = ri−1 − φlŝl (see Fig. 3). Based on

these observations, we declare the decoding failure when the residual magnitude is outside of

the confidence interval of the pure noise contribution. We will say more about the selection of

confidence interval Section V.E.

The proposed MMP-based SVC decoding algorithm is summarized in Table III.

IV. SVC PERFORMANCE ANALYSIS

In this section, we analyze the decoding success probability of the SVC technique. As men-

tioned, decoding of the SVC-encoded packet is successful when all support elements are chosen

by the sparse recovery algorithm so that we analyze the probability that the support is identified

accurately. In our analysis, we assume that the greedy sparse recovery algorithm is used in the

decoding process and analyze the lower bound of the success probability. For analytic simplicity,

we initially consider K = 2 scenario and then extend to the general case. Without loss of

generality, we assume that p and q-th elements of s are nonzero (i.e., Ωs = {p, q}). Further, by

setting the information vector such that sp = 1 and sq = j, we can model the QPSK transmission

(see Section V.B).

Following lemmas will be useful in our analysis.

Lemma 1. Consider the vector ai (i = 1, · · · , N) whose element is i.i.d. standard Gaussian.

Then,
aT
i aj

‖ai‖2 is standard Gaussian. That is,
aT
i aj

‖ai‖2 ∼ N (0, 1).

Proof: See Appendix A.

Lemma 2. Consider the vector h̃ = [h̃11 h̃22 · · · h̃mm]
T where h̃ii = hiie

j∡hii . The probability

density function (PDF) of the ‖h̃‖22 is Chi-squared distribution with

f‖h̃‖22(x) =
xm−1 exp (−x)

Γ(m)
, (11)

where Γ(m) = (m− 1)! is the Gamma function and E
[

‖h̃‖22
]

= m.

Proof: From (7), ‖h̃‖22 can be expressed as ‖h̃‖22 = ‖h‖22 =
∑m

i=1 |hii|2 =
∑m

i=1(ℜ(hii)
2 +

ℑ(hii)
2) where ℜ(c) and ℑ(c) are the real and imaginary part of c, respectively. Since ℜ(hii),
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ℑ(hii) ∼ N (0, σ
2
v

2
), we can show after some manipulations that 2‖h̃‖22 follows Chi-squared

distribution with 2m DoF [28]. That is,

f2‖h̃‖22(x) =
xm−1 exp

(
−x

2

)

2mΓ(m)
. (12)

Since fZ(z) = 2f2Z(2z), we have

f‖h̃‖22(x) =
xm−1 exp (−x)

Γ(m)
. (13)

Let Sj be the success probability that the support element is chosen in the j-th iteration. Since

K = 2 and thus the required number of iterations to decode the information vector is two, the

probability that the SVC packet is successfully decoded can be expressed as

Psucc = P(Ω∗
s = Ωs)

= P
(
S1,S2

)

= P
(
S2|S1

)
P
(
S1
)
. (14)

Our main result in this section is as follows.

Theorem 1. The probability that the SVC-encoded packet is decoded successfully satisfies

Psucc ≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)2N

,

(15)

where m is the number of measurements (resources), N is the size of sparse vectors, σ2
v is the

noise variance, and µ∗ = max
i 6=j
|µij| is the maximum absolute value of correlation between two

distinct columns of Φ.

When m is sufficiently large, we approximately have

Psucc &

(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m
)2N

.

(16)

Also, since the block error rate is BLERsvc = 1− Psucc, the upper bound of BLER is

BLERsvc . 1−
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m
)2N

.

(17)
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Fig. 4: BLER performance of SVC-encoded packet from (17)

In Fig. 4, we plot the BLER performance of SVC as a function of SNR. To judge the

effectiveness of Theorem 1, we perform the empirical simulation for m = 42, N = 96. From the

empirical evaluations, we obtain that µ∗ ≈ 0.7. When we apply this value to the upper bound in

(17), we could observe that the obtained bound is tight across the board. To better understand

the performance of SVC, we plot the BLER as a function of µ∗, N, and m in Fig. 4(b), 4(c), and

4(d). First, when the maximum correlation µ∗ decreases, we see that the BLER gain increase

sharply as shown in Fig. 4(b). For example, if µ∗ is reduced from 0.4 to 0.2, we can achieve 1.5

dB gain at the target reliability point (BLER = 10-5). Next, we test the BLER performance for

various sparse vector dimensions in Fig. 4(c). Although the BLER performance degrades with
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N , we see that the degradation is fairly graceful. Whereas, as shown in Fig. 4(d), the BLER

performance is quite sensitive to the number of measurements.

As a first step to prove Theorem 1, we analyze the success probability P (S1) for the first

iteration.

Lemma 3. Consider the received signal ỹ = γΦs+ ṽ where γ =
√
SNR

α
, Φ = [φ1 φ2 · · · φN ],

and φi = [h̃11c1i h̃22c2i · · · h̃mmcmi]
T . The probability that the support element is chosen in the

first iteration satisfies

P(S1) ≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)N−1

.

(18)

Proof: As shown in Table II, N decision statistics
φT

l

‖φl‖2r
k−1 (l = 1, · · · , N) are computed

in each iteration. For analytic simplicity, we take the real part of the decision statistic in the first

iteration and the imaginary part in the second iteration.9

In order to identify the support element in the first iteration, we should have

∣
∣
∣ℜ〈 φp

‖φp‖2 , r
0〉
∣
∣
∣ ≥

max
i

∣
∣
∣ℜ〈 φi

‖φi‖2 , r
0〉
∣
∣
∣ and thus the success probability for a given channel realization h is

P(S1|h) = P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥ max

i

∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

=

N∏

i=1,i 6=p

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

, (19)

where 〈a,b〉 is the inner product between two vector a and b. First, noting that sp = 1 and

sq = j, we have

〈 φp

‖φp‖2
, r0〉 = 〈 φp

‖φp‖2
,φpsp + φqsq + ṽ〉

= ‖h̃‖2 + j‖h̃‖2µqp +
φT

l

‖φl‖2
ṽ, (20)

where the equality follows from (see Appendix B)

〈 φk

‖φk‖2
,φl〉 =







‖h̃‖2 for k = l

‖h̃‖2µkl for k 6= l
.

(21)

9This choice is suboptimal but simplifies the analysis.
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Let zp = ℜ
(

φT
p

‖φp‖2 ṽ
)

, then

ℜ〈 φp

‖φp‖2
, r0〉 = ‖h̃‖2 + zp. (22)

In a similar way, we have

ℜ〈 φi

‖φi‖2
, r0〉 = ‖h̃‖2µip + zi, (23)

and hence

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

= P
(∣
∣
∣‖h̃‖2 + zp

∣
∣
∣ ≥

∣
∣
∣‖h̃‖2µil + zi

∣
∣
∣

)

(a)
= P

(

‖h̃‖2 + zp >
∣
∣
∣‖h̃‖2µip + zi

∣
∣
∣

)

P
(

‖h̃‖2 + zp > 0
)

+P
(

−‖h̃‖2 − zp >
∣
∣
∣‖h̃‖2µip + zi

∣
∣
∣

)

P
(

‖h̃‖2 + zp < 0
)

≥ P
(

‖h̃‖2 + zp > ‖h̃‖2|µip|+ |zi|
)

P
(

‖h̃‖2 + zp > 0
)

≥ P
(

‖h̃‖2 + zp > µ∗‖h̃‖2 + |zi|
)

P
(

‖h̃‖2 + zp > 0
)

,

(24)

where (a) follows from

P (|A| ≥ |B|) = P (A > |B|) P (A > 0) + P (−A > |B|) P (A < 0) . (25)

Since zi ∼ N (0, σ
2
v

2
) from Lemma 1, the second term in (24) is lower bounded as

P
(

‖h̃‖2 + zp > 0
)

= P
(

zp > −‖h̃‖2
)

= 1−Q

(

−‖h̃‖2σv√
2

)

≥ 1− exp

(

−‖h̃‖
2
2

σ2
v

)

, (26)

where the last inequality follows from Q(x) ≤ exp
(

−x2

2

)

. In a similar way, the first term in

(24) is lower bounded as

P
(

‖h̃‖2 + zp > µ∗‖h̃‖2 + |zi|
)

= 1− P
(

|zi| − zp ≥ (1− µ∗)‖h̃‖2
)

= 1− P
(

zi − zp ≥ (1− µ∗)‖h̃‖2
)

P (zi > 0)
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−P
(

−zi − zp ≥ (1− µ∗)‖h̃‖2
)

P (zi < 0)

(a)
= 1− 2P

(

zi − zp ≥ (1− µ∗)‖h̃‖2
)

P (zi > 0)

(b)

≥ 1−Q

(

−‖h̃‖2(1− µ∗)

σv

)

≥ 1− exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

)

, (27)

where (a) is because −zi ∼ N (0, σ
2
v

2
) and (b) is because zi − zp ∼ N (0, σ2

v). By plugging (26)

and (27) into (24), we have

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

≥
(

1− exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

))(

1− exp

(

−‖h̃‖
2
2

σ2
v

))

≥ 1− exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

)

− exp

(

−‖h̃‖
2
2

σ2
v

)

.

(28)

Note that P(S1|h) in (19) is the success probability in the first iteration for a given channel

realization h. In order to obtain the unconditional probability, we need to take expectation with

respect to the channel h. That is,

P(S1) =

∫

P(S1|h)fh(x)dx = Eh

[
P(S1|h)

]
. (29)

Thus,

P(S1) = Eh

[
N∏

i=1,i 6=p

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

| h
]

=
N∏

i=1,i 6=p

Eh

[

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

| h
]

≥
N∏

i=1,i 6=p

Eh

[

1− exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

)

− exp

(

−‖h̃‖
2
2

σ2
v

)

| h
]

=

N∏

i=1,i 6=p

(

1− Eh

[

exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

)

| h
]

− Eh

[

exp

(

−‖h̃‖
2
2

σ2
v

)

| h
])

. (30)
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Since ‖h̃‖22 follows Chi-squared distribution with 2m DoF (see Lemma 2), we have

Eh̃

[

exp

(

−‖h̃‖
2
2

σv
2

)

| h
]

=

∫ ∞

0

exp

(

− x

σv
2

)
xm−1 exp (−x)

(m− 1)!
dx,

=
1

(
1
σ2
v
+ 1
)m , (31)

where the equality follows from
∫∞
0

xn exp (−ax)dx = n!
an+1 for n = 0, 1, 2, ..., a > 0.

In a similar way, we have

Eh

[

exp

(

−‖h̃‖
2
2(1− µ∗)2

2σv
2

)

| h
]

=

(

1 +
(1− µ∗)2

σ2
v

)−m

. (32)

Finally, by plugging (31) and (32) into (30), we obtain the lower bound of P(S1) as

P(S1) = Eh

[
N∏

i=1,i 6=p

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

| h
]

=

N∏

i=1,i 6=p

(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)N−1

.

(33)

We now move to the success probability for the second iteration when the first iteration is

successful.

Lemma 4. The probability that the support element is chosen at the second iteration under the

condition that the first iteration is successful satisfies

P
(
S2|S1

)
≥

(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)N−2

.

(34)

Proof: When the first iteration is successful, the residual r1 can be expressed as

r1 = r0 −ΦΩ1
s
ŝ1

(a)
= r0 − φpsp

= φqsq + ṽ, (35)
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where (a) is because the transmit symbols are known in advance (ŝ1 = sp). After taking similar

steps to Lemma 3, one can show that P (S2|S1) satisfies (we skip the detailed steps for brevity)

P
(
S2|S1

)
= P

(∣
∣
∣
∣
ℑ〈 φq

‖φq‖2
, r1〉

∣
∣
∣
∣
≥ max

i

∣
∣
∣
∣
ℑ〈 φi

‖φi‖2
, r1〉

∣
∣
∣
∣

)

=

N∏

i=1,i 6=p,q

P

(∣
∣
∣
∣
ℑ〈 φq

‖φq‖2
, r1〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℑ〈 φi

‖φi‖2
, r1〉

∣
∣
∣
∣

)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)N−2

.

(36)

It is worth mentioning that the lower bounds of P (S1) and P (S2|S1) have the same form

except for the exponent. We are now ready to prove the main theorem.

Proof of Theorem 1: By combining Lemma 3 and 4, we can obtain the lower bound of

the success probability Psucc as

Psucc = P
(
S2|S1

)
P
(
S1
)

= P

(∣
∣
∣
∣
ℑ〈 φq

‖φq‖2
, r1〉

∣
∣
∣
∣
≥ max

i

∣
∣
∣
∣
ℑ〈 φi

‖φi‖2
, r1〉

∣
∣
∣
∣

)

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥ max

i

∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

=
N∏

i=1,i 6=p,q

P

(∣
∣
∣
∣
ℑ〈 φq

‖φq‖2
, r1〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℑ〈 φi

‖φi‖2
, r1〉

∣
∣
∣
∣

) N∏

i=1,i 6=p

P

(∣
∣
∣
∣
ℜ〈 φp

‖φp‖2
, r0〉

∣
∣
∣
∣
≥
∣
∣
∣
∣
ℜ〈 φi

‖φi‖2
, r0〉

∣
∣
∣
∣

)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)(N−2)+(N−1)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)2N

,

(37)

which completes the proof.

Finally, we present the decoding success probability bound for general sparsity K.

Theorem 2. The probability that the SVC-encoded packet can be successfully decoded for a

given K satisfies

Psucc &

(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m
)KN

.

(38)
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Proof: The success probability Psucc is expressed as

Psucc = P
(
S1,S2, · · · ,SK

)

= P
(
SK |SK−1, · · · ,S1

)
· · ·P

(
S2|S1

)
P
(
S1
)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)(N−K)+···+(N−2)+(N−1)

≥
(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m

−
(

1 +
1

σ2
v

)−m
)KN

.

(39)

Since the proof is similar to the proof of Theorem 1, we skip the detailed steps.

If m≫ 1, we approximately have

Psucc &

(

1−
(

1 +
(1− µ∗)2

σ2
v

)−m
)KN

.

(40)

It is clear from (40) that the decoding success probability decreases when the information vector

is less sparse (i.e., K is large), which matches with our expectation.

V. IMPLEMENTATION ISSUES

In this section, we discuss the implementation issues including codebook design, high-order

modulation, diversity transmission, pilot-less transmission, and threshold selection to prevent the

false alarm event.

A. Codebook Design

From our analysis in the previous section, we clearly see that a codebook with small correlation

is important to improve the decoding success probability. As mentioned, as m increases, the

correlation between two randomly generated codewords decreases, and thus we can basically

use any kind of randomly generated sequence. For example, if we use the Bernoulli random

matrix, then the maximum correlation satisfies µ∗ ≤
√

4m−1 ln N
δ

with probability exceeding

1− δ2 [24].

Instead of relying on the random sequence, we can alternatively use the deterministic se-

quences. Well-known deterministic sequences include chirps, BCH, DFT, and second-order Reed-
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Muller (SORM) sequences [25]. For example, SORM is a sequence designed to generate low

correlation sequences. SORM of length 2m is defined as

φP,b(a) =
(−1)w(b)

√
2p

i(2b+Pa)T a, (41)

where P is a d× d binary symmetric matrix, a = [a0 a1 · · · ad−1]
T and b = [b0 b1 · · · bd−1]

T

are binary vectors in Zd
2, and w(b) is the weight (number of ones) of b. The corresponding

SORM matrix can be expressed as

Φrm =
[

UP1 UP2 · · · UP
2d(d−1)/2

]

, (42)

where UPj
is the 2d × 2d orthogonal matrix whose columns are the SORM sequences. The

maximum correlation ν∗ of the SORM sequence is

ν∗ =







1√
2l
, l = rank(Pi −Pj)

1√
m
, l = d

.

(43)

For example, if m = 64 and l = d, then ν∗ = 0.125. The benefit of using SORM sequence is

that the correlation between any two codewords is a constant and thus the performance variation

can be minimized.

B. High-order Modulation

Since the ensuring reliability is the top priority in URLLC, QPSK modulation would be the

popular option in practice. In order to use the QPSK modulation in SVC, we set one of the

nonzero entries in s to 1 and the other to j. For example, if the nonzero positions are 5 and 7,

then we set s = [0 0 0 0 1 0 j 0 0 0]T and thus the transmit vector x can be expressed as

x = 1c5 + jc7. (44)

From (44), we can easily see that elements of the transmit vector x are mapped to the QPSK

symbol (i.e., xi ∈ {1+j, 1-j, -1+j, -1-j}). It is worth mentioning that one additional bit can be

encoded by differentiating two possible choices (i.e., [1, j] and [j, 1]). However, this choice will

increase the computational overhead of the decoding algorithm and also degrade the performance

little bit. When the higher sparsity is used, this mapping can be readily extended to the high

order modulation (e.g., K = 4 for 16-QAM and K = 6 for 64-QAM). Specifically, if K = 4,
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we map the element in x to the 16-QAM symbol by setting two of the nonzero entries to 1, 2

and the remaining nonzero entries to j, 2j. In a similar way, if K = 6, then we can transmit

64-QAM symbols by setting three of the nonzero entries to 1, 2, 3 and the remaining ones to

j, 2j, and 3j. The normalization factor (α in (3)) corresponding M-QAM is α =
√

2(M−1)
3

.

C. Diversity Transmission

One can easily integrate the diversity scheme to SVC to further improve the reliability. The

first option is to use the frequency diversity in which the SVC-encoded packet is repeated L

times in L distinct frequency bands. The benefit of the frequency diversity is that the diversity

gain can be achieved without increasing the transmission latency. Specifically, by applying the

maximal-ratio combining at the receiver for the same symbol of the repeated packets, effective

SNR can be increased and thus the BLER performance can be improved [26]. For example, when

the SVC-encoded packet is repeated for L = 8 times, due to the power gain of the combined

symbol, the required SNR to achieve the desired URLLC performance (e.g., 10-5 BLER) can be

reduced from 3 dB to 3− 10 log10(L) = -6dB in AWGN environments. On top of the frequency

diversity, other diversity schemes such as time, antenna, and space diversity can also be easily

incorporated.

D. SVC without Pilot

When the channel is a constant or channel variation is very small (i.e., h ≈ const.), which

is true for mobile devices under static or slowly moving environments, decoding of the SVC

packet can be performed without pilot transmission, resulting in a substantial reduction of the

resources, transmission power, receiver processing time, and also implementation cost. In fact,

since the packet length is smaller than the channel coherence time, this assumption holds true in

many realistic scenarios. Pilot-less transmission is done by slightly modifying the system model

such that the system matrix equals the codebook C and the sparse vector contains the channel

component (s
′
= hs). That is,

y = HCs+ v

= Cs
′

+ v
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=







c1 . . . cN















hs1
...

hsN







+








v1
...

vm








.

(45)

Recalling that the goal of the SVC decoding is to find out the nonzero positions of s
′

vector,

we can perform the decoding without the channel knowledge. When the channel variation is flat

in the frequency axis, tall packet structure (stretched in frequency axis) is preferred. Whereas,

if the channel variation is very small in time-domain, horizontal packet (stretched in time axis)

would be a good choice.

E. Threshold to Prevent False Alarm Event

To distinguish the false alarm event from the normal decoding process, we examine the

probability that the residual after the sparse recovery algorithm is not pure noise. In fact, if

the SVC decoding is finished successfully, the residual contains the noise contribution only

(rK = v) so that the residual power ‖rK‖22 can be readily modeled as a Chi-squared random

variable with 2m degree of freedom. Naturally, one can reject this hypothesis if the residual

power is too large and lies outside of the pre-defined confidence interval. In other words, if

‖rK‖22 > F−1
‖v‖22

(1 − Pth) where Pth is the pre-defined probability threshold (e.g., Pth = 0.01)

and F−1
‖v‖22

is the inverse cumulative distribution function of Chi-squared random variable, then

we declare the hypothesis is not true (i.e., decoding is not successful) and discard the decoded

packet. To evaluate the effectiveness of this thresholding approach, we simulate the probability

of false alarm as a function of SNR for the conventional 16-bit CRC and the proposed residual-

based thresholding. As is clear from Fig. 5, the residual-based thresholding performs similarly

to the CRC-based error checking.

VI. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup

In this section, we examine the performance of the proposed SVC technique. Our simulation

setup is based on the downlink OFDM system in the 3GPP LTE-Advanced Rel.13 [11]. As a

channel model, we use AWGN and realistic ITU channel models including extended typical

urban (ETU) and extended pedestrian-A (EPA) channel model [11]. For comparison, we also

August 2, 2018 DRAFT



25

-2 0 2 4 6 8 10 12
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

P
ro

b
.

o
f

fa
ls

e
al

ar
m

With residual threshold

With 16-bit CRC

Fig. 5: Decoding failure as a function of SNR (Pth = 10−5).

investigate the performance of the conventional PDCCH of LTE-Advanced system, polar code-

based PDCCH of 5G systems [27], and AWGN lower bound. We test the transmission of b bit

information which consists of information bit bi and CRC bit bc. In the conventional PDCCH

method, the convolution code with rate 1
3

with the 16-bit CRC is employed. Since the block size

of the polar code is not flexible, we set the rate 1
4

to test similar conditions (b = 24 and m = 32).

In the proposed SVC algorithm, we set the random binary spreading codebook with N = 96

and K = 2. To ensure the fair comparison, we use the same number of resources (m = 42 with

L = 8 repetitions) in the control packet transmission. As a performance measure, we use BLER

of the code blocks.

B. Simulation Results

In Fig. 6(a), we investigate the BLER performance of the proposed SVC method and com-

peting schemes under AWGN channel condition. We observe that the proposed SVC technique

outperforms the conventional PDCCH and polar code-based scheme, achieving more than 4 dB

gain over the conventional PDCCH and about 1.1 dB gain over the polar code-based scheme at

10-5 BLER point. Even in realistic scenarios such as EPA and EVA channels in LTE-Advanced,

we observe that the performance gain of the proposed SVC scheme over competing schemes is

maintained (see Fig. 6(b)).

In Fig. 7, we evaluate the BLER performance of PDCCH and SVC as a function of SNR for
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Fig. 6: BLER performance as a function of SNR (bi = 12, bc = 16, m = 42, L = 8, and N = 96)

for (a) AWGN channel and (b) ETU and EPA channel.
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Fig. 7: BLER performance for various size of control information (L = 8).

various information bit size (bi = 12, 24, 48, and 96). These results demonstrate that the proposed

SVC technique can deliver more information bits than the conventional PDCCH can support.

For example, SVC can deliver twice more information than PDCCH in the low SNR region (for

example, bi = 12 of PDCCH and bi = 24 of SVC in Fig. 7). To further investigate this, we plot

the minimum SNR to achieve the target BLER as a function of the information bit size in Fig. 8.

For example, to achieve 10-5 BLER with b = 10, it requires -2.9 dB for PDCCH while -6.2 dB

SNR for SVC, resulting in 3.3 dB gain in performance. It is worth mentioning that the coding
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Fig. 9: Probability of transmission latency for achieving 10-5 BLER (bi = 12, m = 42, L = 8,

N = 96, and SNR=−12 dB).

gain of the conventional PDCCH improves with the codeblock size so that the gap between the

SVC and PDCCH diminishes gradually as the number of information bits increases.

Next, we evaluate the latency performance of the SVC and PDCCH (see Fig. 9). In this

experiments, we plot the distribution of transmission latency to achieve 10-5 BLER when n-

repetition scheme is employed. Transmission latency is defined as the time from the initial
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Fig. 10: BLER performance as a function of SINR (bi = 12, m = 42, L = 8, N = 96, and

interference power is half of the signal power).

transmission to the time that the packet is successfully decoded at the mobile terminal.10 These

results demonstrate that most of SVC packets satisfy the URLLC requirement (1 ms latency).

Finally, we investigate the performance of SVC in the small cell scenarios where the received

signal contains a considerable amount of interference from adjacent basestations. Note that

densely deployed small cell (pico, femto, and micro) environments will play a key role to

enhance the cell throughput in 5G and how to manage the interference is the key to the success

of small cell networks. In our simulations, we set the power level of interference to half of the

desired cell signal. Since the SVC transmission is based on the multi-code spreading and also

the effective transmit power per symbol is large (see Section III.A), SVC can effectively manage

the interference. Whereas, since the conventional PDCCH has no such interference protection

mechanism, error correction capability of PDCCH is degraded significantly and thus the PDCCH

performs very poor as shown in Fig. 10.

VII. CONCLUSION

In this paper, we have proposed the short packet transmission strategy for URLLC. The

key idea behind the proposed SVC technique is to transform an information vector into the

sparse vector in the transmitter and to exploit the sparse recovery algorithm in the receiver.

10In our experiments, we ignored the decoding latency.
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Metaphorically, SVC can be thought as a marking dots to the empty table. As long as the

number of dots is small enough and the measurements contain enough information to figure out

the marked cell positions, accurate decoding of SVC packet can be guaranteed. We demonstrated

from the numerical evaluations that the proposed SVC scheme is very effective in URLLC

scenarios. In this paper, we restricted our attention to the URLLC scenario but we believe that

there are many other applications such as mMTC that the SVC technique can be applied to. Also,

there are many interesting extensions and variations worth investigating, such as the information

embedding in nonzero positions, channel aware sparse vector coding, and combination of SVC

and error correction codes.

APPENDIX A

PROOF OF LEMMA 1

Let ui =
ai

‖ai‖2 , then it is clear that ui is a random vector with zero mean and unit variance.

Also, let X =
aT
i aj

‖ai‖2 , then X = uT
i aj . One can easily show that X conditioned on any realization

of ui = u is a standard Gaussian. This is because E[X|ui = u] = E[uTaj ] = uTE[aj ] = 0 and

V ar(X|ui = u) = E[uTaja
T
j u] = uTu = 1. Further,

fX(x) =

∫

u

fX|ui
(x|u)fui

(u)du

=
1√
2π

exp

(

−x
2

2

)∫

u

fui
(u)du

=
1√
2π

exp

(

−x
2

2

)

, (A.1)

which is the desired result.

APPENDIX B

DERIVATION OF (21)

Noting that φi = [h̃11c1i h̃22c2i · · · h̃mmcmi]
T and µij =

φT
i φj

‖h̃‖22
, we have

〈 φi

‖φi‖2
,φj〉 =

φT
i φj

‖φi‖2
. (B.1)
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Since ‖φi‖2 =
√

|h̃11c1i|2 + · · ·+ |h̃mmcmi|2 = ‖h̃‖2, we have

〈 φi

‖φi‖2
,φj〉 = ‖h̃‖2

φT
i φj

‖h̃‖22
= ‖h̃‖2µij . (B.2)

In particular, i = j, µij = 1 and thus

〈 φi

‖φi‖2
,φi〉 = ‖h̃‖2. (B.3)

From (B.2) and (B.3), we have 〈 φi

‖φi‖2 ,φj〉 =







‖h̃‖2 for i = j

‖h̃‖2µij for i 6= j.
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