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Joint Frequency Reuse and Cache Optimization in
Backhaul-Limited Small-Cell Wireless Networks

Wei Han, An Liu, SMIEEE, Wei Yu, FIEEE, and Vincent K. N. Lau, FIEEE

Abstract—Caching at base stations (BSs) is a promising ap-
proach for supporting the tremendous traffic growth of content
delivery over future small-cell wireless networks with limited
backhaul. This paper considers exploiting spatial caching diver-
sity (i.e., caching different subsets of popular content files at
neighboring BSs) that can greatly improve the cache hit proba-
bility, thereby leading to a better overall system performance. A
key issue in exploiting spatial caching diversity is that the cached
content may not be located at the nearest BS, which means that to
access such content, a user needs to overcome strong interference
from the nearby BSs; this significantly limits the gain of spatial
caching diversity. In this paper, we consider a joint design of
frequency reuse and caching, such that the benefit of an improved
cache hit probability induced by spatial caching diversity and
the benefit of interference coordination induced by frequency
reuse can be achieved simultaneously. We obtain a closed-
form characterization of the approximate successful transmission
probability for the proposed scheme and analyze the impact of
key operating parameters on the performance. We design a low-
complexity algorithm to optimize the frequency reuse factor and
the cache storage allocation. Simulations show that the proposed
scheme achieves a higher successful transmission probability than
existing caching schemes.

Index Terms—Frequency reuse, Cache, Poisson point process

I. INTRODUCTION

It is predicted that there will be a 1000X increase in capacity
demand for mobile data traffic in future 5G wireless networks.
To meet the rapid data traffic growth, small-cell wireless
networks have been proposed as an effective approach. By
increasing the density of small-cell base stations (BSs) de-
ployed per unit area, the spectral efficiency of a network can
be improved. However, due to the large number of BSs per
unit area in small-cell wireless networks, allocating a high-
speed backhaul to each BS will lead to both high CAPEX
and OPEX [1]. In practice, the backhaul capacity of small-
cell BSs is limited, and this significantly limits the potential
spectral efficiency gain provided by small-cell networks.

Recent works show that caches can be used in small-
cell wireless networks to alleviate the high-speed backhaul
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capacity requirement by moving the content closer to users
[2]–[11]. For example, in [6]–[11], the benefits of caching are
characterized by considering the stochastic natures of channel
fading and the geographic locations of BSs and users. The
caching performance can be analyzed and optimized using the
theory of stochastic geometry. Specifically, in [6], the authors
consider a cache placement scheme in which all BSs store the
same set of the most popular content files, and then analyze
the outage probability and average rate. The uncached files
are served using the data obtained from the backhaul, so the
service rates are limited by the backhaul capacity. Likewise,
the authors of [7] analyze the average ergodic rate and the
outage probability in a three-tier heterogeneous network with
backhaul capacity constraints and with the caching of the most
popular files. Caching the same subset of the most popular
files at every BS is, however, not optimal in general. In [9],
the authors consider random caching at BSs and analyze the
cache hit probability under general popularity distribution (but
without considering backhaul constraints), and show that it is
not always optimal to cache the most popular content files
in every BS. The reason behind this is that placing different
contents in different BSs provides spatial caching diversity,
which brings better overall performance.

Spatial caching diversity is typically achieved by random
caching strategies in the existing literature. For example, in
[10], the authors study caching in a wireless network with
uniform content popularity distribution but without a backhaul
constraint, and analyze cache hit probability and content
outage probability for random caching with a uniform distri-
bution. In [11], the authors consider a heterogeneous wireless
network which caches the same subset of the most popular
files at the macro-BSs but uses random caching at the pico-
BSs; they analyze and optimize the successful transmission
probability in the high signal-to-noise ratio (SNR) and user
density regions with a backhaul capacity constraint, where the
uncached files are served by macro BSs using the data obtained
from the backhaul. Note that in [9]–[11], spatial caching
diversity is achieved by randomly caching different files at
different BSs, as illustrated in Fig. 1. In such cases, a user may
be served by a BS which has its requested content file but is
not the geographically nearest BS. This may result in strong
interference coming from the geographically nearest BS for
the target user. Hence, the benefit of spatial caching diversity
may be overwhelmed by excessive inter-cell interference.

Spatial caching diversity can also be achieved with coded
caching by encoding each content file into coded bits and
caching different portions of the coded bits in different BSs
[12]–[14]. Specifically, in [12] and [13], a maximum distance
separable (MDS)-coded caching scheme is considered. How-
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Fig. 1. Illustration of the strong interference in single-band random caching
schemes. u0 is served by BS 0, which has its requested blue content file,
but is not the geographically nearest BS of u0. In this case, u0 experiences
strong interference coming from BS 3, which is the geographically nearest
BS of u0.

ever, the physical layer is modeled by error-free links between
users and their associated BSs, and the effect of interference is
ignored. In [14], multiple BSs cache different coded packets
of each file, and each user employs successive interference
cancellation (SIC) to cancel the strong interference from the
nearest BSs before decoding the desired signal. Although
SIC removes strong interference from the nearest BSs, the
complexity of the receiver at the user side increases. Moreover,
the analysis in [14] is obtained under the simplified assumption
that each BS transmits signals all the time, and only one typical
user is considered. Also, the resource allocation for multi-user
transmission at each BS and the effect of system loading are
not studied in [14].

This paper proposes to address the interference induced
by spatial caching diversity by joint design of frequency
reuse and caching. Frequency reuse is a well-studied inter-cell
interference coordination technique in conventional link-based
wireless networks [15]. In a system with frequency reuse,
two adjacent cells may use different frequencies to reduce the
strong interference experienced by the cell edge users. In this
way, both coverage and capacity are improved [16].

In this paper, we propose to explore the joint design of
frequency reuse and caching, such that the benefit of spatial
caching diversity and frequency reuse can be achieved at
the same time. We consider a content delivery application
with a fixed data rate requirement for each user. In such an
application, the performance is characterized by the successful
transmission probability. The main contributions of this paper
are summarized as follows:
• A joint design of frequency reuse and caching scheme:

In this paper, we propose a joint frequency reuse and
caching scheme such that the subset of BSs allocated the
same frequency also caches the same subset of content
files. By such joint design, the strong interference caused
by spatial caching diversity can be removed and a higher
successful transmission probability can be achieved.

• Closed-form characterization of the approximate suc-
cessful transmission probability: To analyze the impact
of key operating parameters (such as number of subbands
and cache storage capacity allocation) on the system
performance, we derive a closed-form characterization
of the approximate successful transmission probability
under the joint frequency reuse and caching scheme.

• Optimization of the frequency reuse factor and cache
placement: The problem of optimizing the number of
subbands and the cache storage capacity allocation is a
complex integer optimization problem. We propose a low-
complexity algorithm and show that the proposed scheme
achieves a large gain over existing caching schemes in
terms of the successful transmission probability.

The rest of the paper is organized as follows. The model
of caching in backhaul-limited small-cell wireless network
under study is presented in Section II. A joint frequency reuse
and caching scheme is proposed in Section III. In Section
IV, we define the average successful transmission probability
as the performance metric, and analyze the performance of
the proposed scheme for a given cache storage allocation
and frequency reuse factor. In Section V, we formulate and
solve the joint cache storage allocation and frequency reuse
optimization problem. Numerical evaluation of the proposed
scheme is presented in Section VI. We conclude the paper in
Section VII.

II. SYSTEM MODEL

We consider a backhaul-limited small-cell wireless network.
The locations of the BSs are spatially distributed as a homo-
geneous Poisson point process (PPP) Φb with density λb. The
locations of the users are also spatially distributed as a homo-
geneous PPP Φu with density λu. There is a content library
X = {X1, X2, . . . , XL} that contains L files, where the size
of each content file is F bits. Each content file is independently
requested with probability ρl, satisfying

∑L
l=1 ρl = 1. Without

loss of generality, we assume ρ1 ≥ ρ2 ≥ · · · ≥ ρL.
We consider the downlink transmission, where the content

file requested by each user is transmitted at a fixed rate of
τ bits per second. Each BS has one transmit antenna with
transmission power P , a cache of storage capacity BCF bits,
and a backhaul with limited capacity of BBτ bits per second
(bps). Each user has one receive antenna. The total bandwidth
is W Hz. We consider a discrete-time system, with time being
slotted with duration ν, and study one time slot of the network.
We consider both large-scale fading (path loss) and small-
scaling fading. Specifically, the channel coefficient between a
BS and a user with distance D is modeled by D−αh, where
α > 2 is the path loss exponent, h d∼ CN (0, 1) is the small
scale fading factor (i.e., we assume Rayleigh fading channels).

III. JOINT FREQUENCY REUSE AND CACHING SCHEME

In this section, we propose a joint frequency reuse and
caching scheme which exploits the benefit of interference
coordination induced by frequency reuse and the benefit of
backhaul offloading induced by spatial caching diversity.
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A. Joint Frequency Reuse and Cache Placement

The BSs are randomly divided into M non-overlapping
BS groups indexed by {0, . . . ,M − 1}. Specifically, each
BS independently and randomly generates a number from
{0, . . . ,M − 1}, say m, and then joins the m-th BS group.
Denote Φbm with m ∈ {0, . . . ,M − 1} as the BSs in the
m-th BS group. For analysis purposes, we assume random
BS grouping and independent thinning [17, p. 230] so that
Φbm follows a homogeneous PPP with density λb

M . The total
bandwidth W is also divided into M equal-size subbands
denoted as W0,W1 . . . ,WM−1, where the bandwidth of each
subband is W

M . The BSs in Φbm are designed to transmit in
subband Wm for m = 0, . . . ,M − 1.

The proposed joint frequency reuse and cache placement
design helps mitigate inter-cell interference in the network.
Note that in [9], the authors propose a probabilistic cache
placement policy, which sets the probability of storing each
content at a given BS to an optimized target value. Such a
design does not consider the strong interference induced by
spatial caching diversity, because in the scheme proposed in
[9], a user may be served by a BS that has its requested
content file but is not the geographically nearest BS, which
may result in the user experiencing strong interference from
the geographically nearest BS, as illustrated in Fig. 1. In
this paper, we propose a joint frequency reuse and cache
placement strategy that can mitigate inter-cell interference
in the network. In our scheme, the BSs in one BS group
store the same subset of content files. As a user is served
by the nearest BS that stores the requested content file, the
serving BS must also be the geographically nearest BS in
its transmitting subband (BS group), which leads to a higher
receiving signal-to-interference-plus-noise ratio (SINR) at the
user, as illustrated in Fig. 2.

Note that a naive combination of the cache placement
scheme in [9] and frequency reuse cannot completely ad-
dress the strong interference issue. If the frequency reuse
and cache placement are designed separately, the nearest BS
storing the requested content file would not necessarily be the
geographically nearest BS in its transmitting subband. In this
case, the user may experience strong interference coming from
the geographically nearest BS in the transmitting subband, as
illustrated in Fig. 3. Numerical results in Section VI also show
that our proposed joint scheme outperforms naive combination
of the cache placement scheme in [9] and frequency reuse.

A main contribution of this paper is to design the optimal
caching policy of the content files. Each content file may be
stored in multiple BS groups. Denote ql ∈ {0, 1, . . . ,M} for
l ∈ {1, . . . , L} as the cache storage allocation factor, which
indicates that the l-th content file is stored in a total of ql
BS groups. We assume that ql ≥ ql+1, for l = 1, . . . , L − 1,
i.e., a content file with higher popularity is stored in more
BSs. Denote q = [q1, . . . , qL] as the cache storage allocation
vector, which must satisfy the following cache storage capacity
constraint:

L∑
l=1

ql ≤MBC . (1)

BS 1 in group 1
[Subband W1]

BS 3 in group 1
[Subband W1]

BS 2 in group 0
[Subband W0]

BS 0 in group 0
[Subband W0]

u0

u2

u4

Transmission in subband W0:
Transmission in subband W1:

u3

u1

u0 is served by BS 0 (nearest BS 
stores the blue cotent), which is 
the nearest BS in subband W0

Desired signal
Interference 

(only the interference to u0 is 
shown for conciseness)

Fig. 2. Illustration of the joint frequency reuse and cache placement scheme.
The user u0 is served by BS 0, which has u0’s requested blue content file,
and BS 0 is the geographically nearest BS in the transmitting subband W0.
The geographically nearest BS (BS 3) is transmitting in subband W1, and
does not cause interference to u0.
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Fig. 3. Illustration of the strong interference caused by separated design of
frequency reuse and cache placement. The frequency reuse factor is 1

2
, and

the cache placement follows random caching. Due to separated design, u0
is served by BS 1, which has its requested blue content file, but is not the
geographically nearest BS in the transmitting subband W1. In this case, u0
experiences strong interference coming from BS 3, which is the geographically
nearest BS in the transmitting subband W1.

The proposed cache placement is illustrated in Fig. 4 for a
network with M = 3 BS groups and cache storage capacity
BC = 3 files at each BS. The detailed cache data structure is
elaborated below. Since all BSs in the same BS group cache
the same subset of content files, we can use a single cache
memory with BC memory blocks to represent the cache data
structure for each BS group. First, the cache memory for each
BS group is divided into BC memory blocks of size F bits
and each memory block caches one content file. The cached
content for all BS groups can be arranged in a matrix form,
where the (n,m)-th entry is the n-th memory block for the m-
th BS group, as illustrated in Fig. 4. For a given cache storage
allocation vector q satisfying (1), the L content files are placed
one after another to fill in the cache memory sequentially from
left to right and top to bottom in the matrix of cache memory
blocks, where the l-th content file fills a total number of ql
cache memory blocks. Specifically, if ql = 0, then the l-th
content file is not stored in any of the BS caches, and will be
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Fig. 4. Illustration of the cache placement and cache data structure in Example
1.

served via the backhaul at the BSs. If ql 6= 0, then the l-th
content file is stored in the cache of the BSs in

⋃
m∈Ml

Φbm,
where Ml is the index of the BS groups that store the l-th
content file, given by

Ml =

{
mod

(
l−1∑
l′=1

ql′ ,M

)
,mod

(
l−1∑
l′=1

ql′ + 1,M

)
,

. . . ,mod

(
l−1∑
l′=1

ql′ + ql − 1,M

)}
. (2)

The proposed scheme ensures that for a given q satisfying
(1), the number of content files stored in each cache is
the same, and each BS caches BC distinct content files.
The proposed cache placement scheme is illustrated in the
following example.

Example 1 (Cache placement): Consider a network with
M = 3 BS groups, cache size BCF = 3F , and total number
of content files L = 6. The cache storage allocation vector
is given by q = [3, 2, 2, 2, 0, 0], satisfying the cache storage
capacity constraint given in (1). As illustrated in Fig. 4, the
first content file is stored in three BS groups indexed byM1 =
{0, 1, 2}. Each of the other content files is stored in two BS
groups, given by M2 = {0, 1}, M3 = {0, 2}, M4 = {1, 2},
andM5 =M6 = ∅. It can be easily seen that each BS caches
three distinct content files, which satisfies the cache storage
capacity constraint.

Note that for practical consideration, the initialized cache
content at the BSs does not adapt to the instantaneous realiza-
tion of the user request at fast timescale. Instead, q is adaptive
only to the content popularity statistics. As a result, the BS
cache update is done over a slow timescale when the network
is lightly loaded.

B. Content Delivery

1) Content-Centric User Scheduling: We adopt a content-
centric user scheduling scheme. Different from the conven-
tional connection-based user scheduling scheme, which is
based on physical layer parameters, this content-centric user
scheduling scheme jointly considers both the physical layer
and content status of BS caches. Consider a user which
requests the l-th content file. If the requested l-th content file
is stored in some of the BS caches in the network, i.e., ql 6= 0,
then the user is associated with the nearest BS which stores
the l-th content file in its cache. Otherwise, if the requested l-
th content file is not stored in any BS caches, i.e., ql = 0,
then the user is associated with the geographically nearest

BS in Φb (and the content file is fetched via the backhaul).
The proposed user association scheme is illustrated using the
example in Fig. 2. The blue content file requested by u0 is
stored in the cache of BS 0 and BS 2; in this case u0 is
associated with BS 0, which is the nearest BS which stores
the blue content file. The red content file requested by u1

is not stored in any BS caches, then u1 is associated with
BS 1, which is the geographically nearest BS, and the red
content file is fetched via the backhaul. A similar content-
centric user association has also been adopted in existing
works on cached wireless networks [9] and [11]. Compared
with the conventional nearest BS association, the content-
centric user association schemes in our paper, [9] and [11]
require some additional information about user requests and
content placement at the BSs. Since the user requests change at
a much longer timescale compared with the duration of a time
slot, the induced additional overhead is low, and is practically
feasible.

Without loss of generality, we study the performance of a
typical user, which is located at the origin. Denote u0 as the
typical user, and denote B0 as the serving BS of u0. Denote
Kl as the number of users associated with B0 which request
the l-th content file, and denote K = [K1, . . . ,KL] as the BS
loading vector. K may take value k = [k1, . . . , kL], where
kl ∈ {0, 1, . . . }. Note that not all associated users of B0 can
always be served by B0 at the same time. Due to the limited
backhaul transmission capacity, if more than BB uncached
content files are requested from one BS, then BB users are
randomly selected to be served with the content files obtained
from the backhaul.1 Denote S as the user scheduling state,
where S = 1 represents the event that u0 is scheduled to be
served by B0, and S = 0 represents the event that u0 is not
scheduled to be served. The user scheduling is illustrated in
the following example.

Example 2 (User scheduling): Consider a network with
M = 3 BS groups, backhaul transmission capacity BBτ = 2τ ,
cache capacity BCF = 3F at each BS, and the total number
of content files L = 6. The cache storage allocation vector
is given by q = [3, 2, 2, 2, 0, 0], and the BS loading vector is
given by [5, 4, 4, 3, 3, 2], which indicates that among the users
associated with B0, the number of users requesting the first
content file is 5, the number of users requesting the second
content file is 4, and so on. Since ql 6= 0, l ∈ {1, . . . , 4}, the
users requesting the first four content files can be served using
cached data. However, since q5 = q6 = 0, users requesting the
fifth and sixth content files are served via the data obtained
from the backhaul. Due to the backhaul transmission capacity
constraint, two users will be randomly selected from the five
users requesting the fifth and sixth content files to be served
using the date obtained from the backhaul.

2) PHY Transmission: We adopt unicast and frequency
division multiple access (FDMA) with uniform bandwidth and
transmit power allocation for the users associated with each

1Note that even when two users request the same content file from the
backhaul, the probability that the two users request the same portion of the
content file within the current time slot is very small for the typical content
file size and slot duration, and thus they still need to consume a backhaul
capacity of 2τ bits/s.



5

BS.2 Consider one BS which simultaneously transmits to a
total number of G0 associated users. The BS transmits each
of the associated users at a rate of τ bps over bandwidth W

MG0
.

The transmit power is proportional to the allocated bandwidth,
given by P

G0
. We assume that all BSs are active. When u0 is

served with file l0, the received signal of u0 is given by

y0 = D
−α2
0,0 h0,0x0 +

∑
n∈Φbm0

\B0

D
−α2
n,0 hn,0xn + z0, (3)

where D0,0 is the distance between B0 and u0, h0,0 ∼
CN (0, 1) is the small-scale channel fading between B0 and
u0, x0 is the transmit signal from B0 to u0 satisfying the
transmit power constraint E (‖x0‖) = P

G0
, Φbm0

is the group
of BSs which B0 belongs to (i.e., B0 ∈ Φbm0

), Dn,0 is the
distance between BS n and u0, hn,0 ∼ CN (0, 1) is the
small-scale channel fading between BS n and the typical user
u0, xn is the transmit signal from BS n to its associated
user in the m0-th frequency band satisfying transmit power
constraint E (‖xn‖) = P

G0
, z0 is the complex additive white

Gaussian noise of power WN0

MK0
, and N0 is the noise spectral

density. In this paper, we consider the high SINR regime where
P/W � N0. The signal-to-interference ratio (SIR) of u0 is
given by

SIR =
D−α0.0 |h0,0|2∑

n∈Φbm0
\B0

D−αn.0 |hn,0|
2 . (4)

In the interference-limited regime, the achievable rate of u0 is
given by

C =
W

MG0
log2 (1 + SIR) . (5)

IV. PERFORMANCE METRIC AND ANALYSIS

The requested content file can be decoded correctly at u0

only when u0 is scheduled to be served by B0 (i.e., S = 1) and
the physical layer achievable rate is larger than the target rate
(i.e., C ≥ τ ). Therefore, the average successful transmission
probability is defined as

p (M,q)

, Pr [C ≥ τ, S = 1] (6)

= Pr [S = 1] Pr
[
C ≥ τ

∣∣S = 1
]

(7)

= EK,L0 Pr
[
S = 1

∣∣K, L0

]
Pr
[
C ≥ τ

∣∣K, L0, S = 1
]
, (8)

where L0 is the random user request from the typical user
u0, and L0 = l0 represents that the l0-th content file is
requested by u0. The probability is with respect to the
distribution of the random user requests L0, index of the
BS group m0 that B0 belongs to, BS loading K, large-
scale channel fading D

−α2
0.0 , and small-scale channel fading

2In practice, each file consists of a large number of segments, and the
probability of two users requesting the same segment at the same time is
small. As pointed out in [18], even though users keep requesting the same
few popular files, the asynchronism of their requests is usually large with
respect to the duration of the file (e.g., video) itself, such that the probability
that a single transmission from the source nodes is useful for more than
one user (i.e., multicasting) is essentially zero. This phenomenon is called
“asynchronous content reuse” in [18]. As a result, “naive” multicasting due
to repeated requests for the same segment of the same file at the same time
from different users is unlikely to occur in practice.

h0,0. Note that the number of BS groups and subbands M
and cache storage capacity allocation vector q fundamentally
determine the average successful transmission probability that
can be achieved. As a result, we explicitly write p (M,q)
as a function of M and q. We will analyze the conditional
user scheduling probability Pr

[
S = 1

∣∣K = k, L0 = l0
]

and
conditional physical layer successful transmission probability
Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]
, respectively, in the fol-

lowing two subsections.

A. Conditional User Scheduling Probability

Under the proposed content-centric user scheduling scheme,
the number of users associated with B0 whose requested
content files exist in the cache is

∑
l∈

{
l
∣∣ql 6=0

}Kl, and the

number of users associated with B0 whose requested content
files do not exist in the cache and have to be fetched from
the backhaul is

∑
l∈

{
l
∣∣ql=0

}Kl. Therefore, the total number

of users simultaneously served by B0 is given by

G0 =
∑

l∈
{
l
∣∣ql 6=0

}Kl + min


∑

l∈
{
l
∣∣ql=0

}Kl, BB

 , (9)

where the minimum in the second term is due to the lim-
ited backhaul transmission capacity. In general, we have
G0 ≤

∑L
l=1Kl, and if G0 <

∑L
l=1Kl, the

∑L
l=1Kl − G0

unserved users will suffer from outage caused by the limited
backhaul capacity. As a result, the conditional user scheduling
probability is given by

Pr
[
S = 1

∣∣K = k, L0 = l0
]

=


1, ql0 6= 0,

min

 BB∑
l∈

{
l

∣∣ql=0

} kl , 1
 , ql0 = 0.

(10)

Remark 1: Equation (10) illustrates the following effect
of the caching allocation strategy q and the number of BS
groups (i.e. subbands) M on the conditional user scheduling
probability:

1) Effect of q:
a) ql0 6= 0: The requested l0-th content file

is stored in some of the BS caches, and
the user scheduling probability is given by
Pr [S = 1|K = k, L0 = l0] = 1.

b) ql0 = 0: The requested l0-th content file does not
exist in the cache and has to be fetched from the
backhaul. As more content files need to be fetched
from the backhaul (i.e.,

∑
l∈

{
l
∣∣ql=0

} kl increases),

the user scheduling probability decreases.
2) Effect of M : M does not directly affect the user

scheduling probability. However, it indirectly affects the
user scheduling probability through the feasible region
of the cache storage allocation vector q. As M increases,
a larger cache diversity can be achieved by collectively
caching more content files at all BSs (as can be seen
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from the cache capacity constraint
∑L
l=1 ql ≤ MBC).

Hence, the backhaul scheduling probability can be im-
proved.

Consider the case in Example 2, conditioned on the typical
user being served with the backhaul (i.e., l0 ∈ {5, 6} and
ql0 = 0), the probability that the typical user being scheduled
for transmission is given by Pr [S = 1|K = k, L0 = l0] = 2

5 .

B. Conditional Physical Layer Successful Transmission Prob-
ability

In the following, we analyze the physical layer successful
transmission probability conditioned on a given user request’s
realization and loading of B0.

Lemma 1 (Conditional physical layer successful transmis-
sion probability): Conditioned on BS loading vector k, the l0-
th content file being requested by u0, and u0 being scheduled
for transmission (i.e., S = 1), the physical layer successful
transmission probability is given by

Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

=
λbl0/λ

b
I

λbl0/λ
b
I + β (M, g0)

,

(11)
where

g0 =
∑

l∈
{
l
∣∣ql 6=0

} kl + min


∑

l∈
{
l
∣∣ql=0

} kl, BB
 , (12)

is the realization of G0 (which represents the number of users
simultaneously served by B0) conditioned on K = k,

β (M, g0) =
2

α

(
2
Mg0τ
W − 1

) 2
α

B′
(

2

α
, 1− 2

α
, 2−

Mg0τ
W

)
,

(13)
B′ (x, y, z) ,

∫ 1

z
ux−1 (1− u)

y−1
du is the complementary

incomplete Beta function,

λbl0 =

{
λb, ql0 = 0,
ql0
M λb ql0 6= 0,

(14)

is the density of BSs that have access to the l0-th content
file, and λbI = λb/M is the density of interfering BS in the
transmitting subband of u0.

The proof can be found in Appendix A.
Remark 2: Lemma 1 shows the following effect of the

number of BS groups M and the caching allocation strategy
q on the conditional physical layer successful transmission
probability:

1) Effect of M for given q: As M increases, the physical
layer achievable rate decreases due to the lower spec-
tral efficiency caused by the smaller frequency reuse
factor 1/M . Hence, the conditional physical layer suc-
cessful transmission probability decreases. As a result,
there is a tradeoff between spectral efficiency and user
scheduling probability and we shall derive the optimal
number of subbands and BS groups M to maximize
the successful transmission probability in Section V.
Note that when there is only one subband and one
BS group (M = 1), each user is always served by

the geographically nearest BS, and the system model
reduces to the conventional cellular network with PPP
distributed BSs and users, as considered in [19]. In this
case, λbl0 = λbI = λb, and the conditional physical
layer successful transmission probability degenerates to
Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

= 1
1+β(1,g0) , which

is consistent with the result in [19].
2) Effect of q for given M :

a) ql0 6= 0: The file requested by u0 is stored in the
cache of BSs, and the density of BSs that have
access to the l0-th content file is given by λbl0 =
ql0
M λb. As ql0 increases, the density of BSs that
have access to l0-th content file also increases, and
hence, the distance between u0 and B0 decreases.
Meanwhile, the interference of u0 only comes from
the BSs in the same group as B0 with BS density
λbI = λb

M , which is not affected by ql0 . As a result,
when ql0 increases, the conditional physical layer
successful transmission probability increases.

b) ql0 = 0: Since u0 is associated with the
geographically nearest BS with BS density
λbl0 = λb, the conditional physical layer
successful transmission probability is given
by Pr

[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

=
M

M+β(M,g0) , which is the same as the case
when ql0 = M .

C. Average Successful Transmission Probability
The average successful transmission probability is a func-

tion of the BS loading K, which is a random vector. To
simplify the analysis, we first compute the expectation of the
BS loading vector K as follows.

Lemma 2 (Expectation of the BS loading vector K): The
expectation of the BS loading vector K is given by

k̃l , E [Kl] = ρl +
9λuρl
7λb

. (15)

The proof can be found in Appendix B.
Now instead of considering the distribution of K, we ap-

proximate the BS loading K using its expectations in Lemma
2. The approximate successful transmission probability condi-
tioned on the l0-th content file being requested by u0 is given
by

Pr
[
C ≥ τ, S = 1

∣∣L0 = l0
]

=EK Pr
[
S = 1

∣∣K = k, L0 = l0
]

× Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

(16)

≈Pr
[
S = 1

∣∣K = E [K] , L0 = l0
]

× Pr
[
C ≥ τ

∣∣K = E [K] , L0 = l0, S = 1
]
, (17)

where the approximation in (17) is obtained by replacing
the probability density function of K with a delta function
δ (x− E [K]).

Using (10), (11), (15), and (17), the average successful
transmission probability can then be approximated as

p̃ (M,q) ,
L∑

l0=1

p̃l0ρl0 ≈ p (M,q) , (18)
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where

p̃l0 =


ql0

ql0+β(M,g̃0) , ql0 6= 0,

M
M+β(M,g̃0) min

 BB∑
l∈

{
l

∣∣ql=0

} k̃l , 1
 , otherwise.

(19)
and

g̃0 =
∑

l∈
{
l
∣∣ql 6=0

} k̃l + min


∑

l∈
{
l
∣∣ql=0

} k̃l, BB
 . (20)

In Section VI, simulations show that the approximate gap be-
tween p̃ and the simulated successful transmission probability
is quite small under various scenarios. Therefore, in the rest of
the paper, the optimization of the frequency reuse factor 1/M
and cache storage capacity allocation vector q will be based on
the approximate average successful transmission probability in
(18). The accurate expression of the successful transmission
probability is also provided, but it is too complicated to
provide any useful insight. Interested readers should please
refer to Appendix C for details. In the following section,
we formulate and solve an optimization problem to find the
optimal M and q that maximize the approximate average
successful transmission probability.

V. OPTIMIZATION OF CACHE STORAGE ALLOCATION AND
FREQUENCY REUSE

A. Problem Formulation

The problem of finding the optimal frequency reuse factor
and cache storage capacity allocation vector that maximize
the approximate average successful transmission probability
is formulated as:

P : max
M∈N+,ql∈{0,1,...,M},∀l

p̃ (M,q) (21)

s.t. ql ≥ ql+1, l = 1, . . . , L− 1, (22)
L∑
l=1

ql ≤MBC . (23)

Denote M? and q? as the optimal solution of P . Constraint
(22) is used to simplify the optimization algorithm design.
Simulation results show that our proposed scheme with con-
straint (22) achieves a reasonably large average successful
transmission probability gain over existing caching schemes
in typical scenarios.

Problem P is an integer optimization problem, and the
objective function is neither convex nor concave. Even if we
fix M and relax the integer constraint on q to allow it to be a
real vector, the relaxed problem is still very difficult to solve
due to the indicator function w.r.t. ql in (19) and (20), and the
complicated function β (M, g̃0) w.r.t. g̃0 (recall that g̃0 also
depends on q) in (13). As a result, it is highly non-trivial to
even design a low-complexity algorithm for Problem P by
solving the above relaxed problem.

B. Problem Transformation and Optimization

For a fixed M , the primary difficulty in solving Problem P
is how to deal with the user scheduling probability (10) and
expectation of the BS loading (15), in which q appears in the
indication function in the subscript of summation. To address
this challenge, we introduce an auxiliary variable L′, which is
the number of content files that can be found in BS caches.
Under (22), we have

ql ≥ 1, ∀l ≤ L′, (24)
ql = 0, ∀l > L′. (25)

Note that for a given L′, the set of content files that need
to be fetched from backhaul (whose indexes are given by
{L′ + 1, . . . , L}) is fixed. As a result, the backhaul success
probability given by (10) is fixed. If we further assume M is
given, then for the content files indexed by {L′ + 1, . . . , L},
the successful transmission probability is also fixed. In this
case, to find the optimal q that maximizes the average suc-
cessful transmission probability, we only need to minimize
the average physical layer outage probability over the content
files that are stored in BS caches. Specifically, after relaxing
the integer constraint on q, P can be decomposed into a set of
sub-problems that minimize the average physical layer outage
probability for a given M and L′, which is given by

P̃ (M,L′) : min
ql

L′∑
l=1

ρlβ (M, g̃0)

ql + β (M, g̃0)
(26)

s.t.

L′∑
l=1

ql = MBC , (27)

ql ≥ ql+1, ∀l ∈ {1, . . . , L′ − 1} , (28)
1 ≤ ql ≤M, ∀l ∈ {1, . . . , L′} (29)

for M ∈ N+ and L′ ∈ [BC ,min {MBC , L}]. Denote
q̃? (M,L′) as the optimal solution of the sub-problem
P̃ (M,L′). Note that for the given M and L′, both K̃0 and
β (M, g̃0) are fixed. It can be easily seen that P̃ (M,L′) is a
convex minimization problem, and q̃? (M,L′) can be obtained
using Karush–Kuhn–Tucker (KKT) conditions [20], as in the
following theorem.

Theorem 1 (Optimal solution of P̃ (M,L′)): The optimal
solution q̃? (M,L′) of problem P̃ (M,L′) is given by

q̃?l (M,L′) = min

{
M,

max
{

1,
√
ρl/λ? − β (M, g̃0)

}}
,∀l ∈ {1, . . . , L′} , (30)

where λ? satisfies
L′∑
l=1

min
{
M,max

{
1,
√
ρl/λ? − β (M, g̃0)

}}
= MBC .

(31)
The proof can be found in Appendix D.
The content popularity distribution ρ and physical layer

parameter represented by β (M, g̃0) jointly affect q̃? (M,L′).
Note that content file with higher popularity is allocated
more cache storage resources. For a heavy-tailed popularity
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Algorithm 1 Subbands decision and cache storage capacity
allocation

1: for M = 1, . . . ,Mmax do
2: for L′ = BC , . . . ,min {MBC , L} do
3: Calculate optimal solution q̃? (M,L′) of problem

P̃ (M,L′) using Theorem 1
4: end for
5: end for
6:
(
M̃?, L′?

)
= arg max p̃ (M,q) and q̃? = q̃?

(
M̃?, L′?

)
7: q̂? = bq̃?c, where b·c is the rounding down function
8: while

∑L
l=1 q̂

?
l < M̃?BC do

9: l′ = arg minl∈{1,...,L′?}

(
ρl

q̂?l +1+β(M̃?,g̃0)
− ρl

q̂?l +β(M̃?,g̃0)

)
10: q̂?l′ = q̂?l′ + 1
11: end while

distribution, the differences between ρl’s are small, and the
cache capacity is allocated to more content files instead of
concentrating on a few most popular files.

To calculate a solution of P , we first enumerate L′ and M
to find the best solution

(
M̃?, q̃?

(
M̃?, L′?

))
that maximizes

the objective function p̃ (M,q) of P . Then q̃?
(
M̃?, L′?

)
is

rounded down such that it becomes a feasible integer solution
of P . Finally, the residue cache storage capacity induced by
the rounding down operation is allocated to the content files
that minimizes the average physical layer outage probability in
a greedy manner. The detailed algorithm is given in Algorithm
1. Note that the optimal objective value p̃

(
M̃?, q̃? (M?, L′?)

)
for the relaxed problem provides an upper bound of the opti-
mal objective value of the original problem P . In Section VI,
we show that this upper bound is quite close to the objective
value achieved by the integer solution

(
M̃?, q̂? (M?, L′?)

)
obtained using Algorithm 1, which shows that the proposed
low-complexity algorithm is close-to-optimal for the original
integer optimization problem.

In practice, we can set a limit Mmax for the maximum
number of subbands searched by Algorithm 1, and Mmax

can be used to control the tradeoff between performance and
complexity. Note that the optimal number of subbands M̃?

is usually small. Otherwise the bandwidth would become
insufficient to support the transmission rate τ . L′ is upper
bounded by MBC , which is usually much smaller than the
total number of content files. Algorithm 1 needs to solve
M2

maxBC sub-problems (26), and each sub-problem can be
efficiently solved using bisection. Note that the cache capacity
BC is usually much smaller than the total number of content
files L. As a result, the computational complexity induced
by enumeration is low. In Section VI, we shall show that
Algorithm 1 is quite efficient and achieves a large average
successful transmission probability gain over conventional
single-band caching schemes. In Section VI, we shall also
provide numerical insight on M̃? and L′?, i.e., the optimal
number of subbands and BS groups, and how many content
files to cache.
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Fig. 5. Illustration of the approximate gap between p̃ and p when γ = 0.8
and BB = 5.

VI. SIMULATION RESULTS

In this section, we show that the simulation results are
consistent with the theoretical results. We also demonstrate the
performance gain of our scheme over the following baselines:
• Baseline 1: A standard policy which caches the most

popular content (MPC) at each BS [6]. The frequency
reuse factor is one, and orthogonal frequency-division
multiple access (OFDMA) is applied at each BS to serve
multiple users.

• Baseline 2: Geographic caching problem (GCP) pro-
posed in [9], which exploits spatial caching diversity
by random caching. The frequency reuse factor is one,
and OFDMA is applied at each BS to serve multiple
users. The corresponding cache placement is optimized to
maximize the average successful transmission probability
(the performance metric considered in this paper), using
an algorithm similar to Algorithm 1, which combines
enumeration and convex optimization.

• Baseline 3: Separated design of MPC and frequency
reuse. The frequency reuse factor is optimized to maxi-
mize the average successful transmission probability.

• Baseline 4: Separated design of GCP and frequency
reuse. The cache placement and frequency reuse factor
are separately optimized to maximize the average suc-
cessful transmission probability.

For the proposed scheme, the number of subbands M̃? and
cache storage allocation vector q̂? is obtained using Algorithm
1, where the maximum number of subbands is given by
Mmax = 5. The system parameters are set as follows:
• Geometric parameters: BS density λb = 3×10−5, user

density λu = 3× 10−4.
• Channel parameters: Path loss exponent α = 4, total

bandwidth W = 20MHz, target rate τ = 0.1 Mbps,
length of each time slot ν = 1 ms.

• Content parameters: Content library size L = 1000,
content popularity follows Zipf distribution with exponent
γ [21], [22].
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Fig. 6. Average successful transmission probability versus cache capacity
when γ = 0.8 and BB = 5.

In Fig. 5, we plot the average successful transmission prob-
ability versus the cache storage capacity when γ = 0.8 and
BB = 5. It can be observed that the simulation results largely
match the theory; the relative approximation error is large
only when the average successful transmission probability
is very low, which is not a desirable operating regime for
practical systems. In a practical regime when the success
probability is high, the approximate error is small. In this case,
the theoretical approximation (18) can capture the first-order
behavior of the proposed scheme and can be used to optimize
the cache design. The results also show that the objective value
achieved using Algorithm 1 is quite close to the upper bound
given by p̃

(
M̃?, q̃? (M?, L′?)

)
(it is an upper bound since

the integer constraint on q is relaxed), which indicates that
the proposed low-complexity algorithm is close to optimum
for the original integer optimization problem.

In Fig. 6 – Fig. 8, we compare the performance between
the proposed scheme and the baselines. It is observed that
for separated design and optimization of frequency reuse with
either GCP or MPC, the optimal frequency reuse strategy is
usually to let all BSs use the entire bandwidth (i.e., optimal
frequency reuse factor is one). This is because a separated
design of frequency reuse and GCP cannot completely address
the strong interference issue in random caching. Meanwhile,
for separated design and optimization of frequency reuse and
MPC, each scheduled user is always served by the geographi-
cally nearest BS, and thus the inter-cell interference is weaker
compared to the case with random caching. In both cases,
a frequency reuse factor less than one would lead to lower
physical layer successful transmission probability due to less
bandwidth being allocated to each BS.

• Impact of cache capacity BC (Fig. 6):
– On the optimal number of subbands M̃?: When
BC is small, the optimal number of subbands M̃?

is large, so that the proposed scheme can achieve
a lower backhaul outage probability by exploiting
spatial caching diversity. As BC increases, due to
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Fig. 7. Average successful transmission probability versus backhaul trans-
mission capacity when γ = 0.8 and BC = 20.

sufficient cache storage capacity, the importance of
spatial caching diversity decreases. As a result, M̃?

decreases, so that the distance between the user and
BS decreases and the physical layer achieves larger
spectral efficiency.

– On the optimal caching strategy: When BC is
small, the optimal cache storage allocation of the
proposed scheme is not to use the cache to store
only the most popular content files in every BS (i.e.,
L′? 6= BC). As BC increases, L′? increases since
more content files can be stored in the cache, which
leads to a lower backhaul outage probability.

It can be seen that single-band MPC [6] and single-band GCP
[9] are not optimal when the cache capacity BC is limited.
• Impact of backhaul transmission capacity BB (Fig.

7):
– On the optimal number of subbands M̃?: When

the backhaul capacity BB is small, the backhaul can
handle fewer user requests. In this case, it is better to
increase M to improve the spatial caching diversity
gain and cache hit probability. When BB is large,
the backhaul can handle more user requests and the
importance of spatial caching diversity decreases.
In this case, it is better to decrease M to achieve
larger physical layer spectral efficiency. Therefore,
the optimal number of subbands M̃? decreases with
the cache capacity BB .

– On the optimal caching strategy: When cache
capacity BB is small, it is important to exploit the
spatial caching diversity to improve the cache hit
probability. In this case, the optimal cache storage
allocation is not to use the cache to store only
the most popular content files in every BS, but to
use some cache capacity to store some less popular
content files as well. On the other hand, as BB
increases, more content files can be fetched from the
backhaul without causing backhaul outage. In this
case, it is not necessary to store many less popular
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Fig. 8. Average successful transmission probability versus Zipf distribution
exponent when BC = 20 and BB = 5.

content files; i.e., L′? will decrease.
It can be seen that single-band MPC [6] and single-band GCP
[9] are not optimal when the backhaul transmission capacity
is limited.

• Impact of Zipf exponents γ (Fig. 8):
– On the optimal number of subbands M̃?: When γ

is small (i.e., the popularity distribution is flat), it is
important to exploit the spatial caching diversity to
improve the cache hit probability. In this case, it is
better to increase M to improve the spatial caching
diversity gain and cache hit probability. On the other
hand, as γ increases, the user requests concentrate on
a few content files, and hence the benefit of spatial
caching diversity decreases. Therefore, the optimal
number of subbands M̃? decreases.

– On the optimal caching strategy: When γ is small,
it is important to exploit the spatial caching diversity
to improve the cache hit probability. In this case,
the optimal cache storage allocation is not to use
the cache to store only the most popular content
files in every BS. As γ increases, the user requests
concentrate on a few content files, hence the benefit
of spatial caching diversity decreases. In this case,
it is not desirable to store too many less popular
content files, i.e., L′? will decrease.

Based on the simulation results, our proposed scheme out-
performs single-band MPC [6] and single-band GCP [9],
especially for the values of γ from 0 to 1, with is typical
for general applications [21].

Additionally, in Fig. 9, we plot the successful transmission
probability under a given realization of PPP, which shows that
the proposed design also works well in this case.

VII. CONCLUSION

In this paper, we propose a joint frequency reuse and
caching scheme to achieve both the spatial cache diversity and
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Fig. 9. Successful transmission probability versus cache capacity under a
given realization of PPP when γ = 0.8 and BB = 5.

interference mitigation in small-cell backhaul-limited wire-
less networks. We first derive a closed-form expression of
the approximate successful transmission probability using the
tools of stochastic geometry, and analyze the impact of key
operating parameters. We then propose a low-complexity algo-
rithm which combines enumeration and convex optimization
to optimize the frequency reuse factor and the cache storage
allocation vector. Finally, by simulations, we show that by
exploiting the spatial cache diversity and interference mitiga-
tion benefits provided by the joint optimization of frequency
reuse and caching, the proposed scheme achieves a large
performance gain over the typical single-band MPC scheme
[6] and random caching scheme [9], especially when the cache
capacity and backhaul capacity at each BS are limited.

APPENDIX

A. Proof of Lemma 1

First, we calculate the physical layer successful transmission
probability conditioned on file l0 requested by u0, BS loading
K = k, u0 being scheduled for transmission (i.e., S = 1) and
distance D0,0 = d, which is given by

Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1, D0,0 = d
]

(a)
= EΦbm0

exp

−(2
Mg0τ
W − 1

)
dα

∑
n∈Φbm0

\B0

D−αn,0 |hn,0|
2


= EΦbm0

 ∏
n∈Φbm0

\B0

exp
(
−
(

2
Mg0τ
W − 1

)
dαD−αn,0 |hn,0|

2
)

(b)
= exp

−2πλbI

∫ ∞
d

1− 1

1 +
(

2
Mg0τ
W − 1

)
dαr−α

 rdr


(c)
= exp

(
−2π

α
λbI

(
2
Mg0τ
W − 1

) 2
α

B′
(

2

α
, 1− 2

α
, 2−

Mg0τ
W

)
d2

)
= 1 exp

(
−πλbIβ (M, g0) d2

)
, (32)
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where (a) is due to Rayleigh fading channel |h0,0|2
d∼ Exp (1),

(b) is obtained using the probability generating function
of PPP [17, Page 235], and (c) is obtained by replacing(

2
Mg0τ
W − 1

)− 1
α

d−1r with t, and then replacing 1
1+t−α with

w.
Then, we calculate Pr

[
C < τ

∣∣K = k, L0 = l0, S = 1
]

by
removing the condition of D0,0 = d. The probability density
function of D0,0 is given by

fD0,0,l0 (d) = 2πλbl0d exp
(
−πλbl0d

2
)
, (33)

as the BSs storing the l0-th content file form a homogeneous
PPP with density λbl0 . By (32) and (33), we have

Pr
[
C ≥ τ

∣∣l0,K0, S = 1
]

=

∫ ∞
0

Pr
[
C < τ

∣∣K = k, L0 = l0, S = 1, D0,0 = d
]

× fD0,0,l0 (d) dd (34)

=2πλbl0

∫ ∞
0

d exp
(
−π
(
λbl0 + λbIβ (M, g0)

)
d2
)

dd (35)

(a)
=

λbl0
λbI

λbl0
λbI

+ β (M, g0)
, (36)

where (a) is obtained using
∫∞

0
d exp

(
−cd2

)
dd = 1

2c (c is a
constant).

B. Proof of Lemma 2

In the following, we first derive the probability mass func-
tion of k. Note that due to the content-centric user scheduling
scheme, each file Xl ∈ {X1, X2, . . . , XL} corresponds to
a Voronoi tessellation, which is determined by the locations
of all BSs which have access to file Xl. To calculate the
probability mass function of k, we need the probability density
function of the size of the Voronoi cell which B0 belongs to.
Based on a widely used approximated form of this probability
density function given in [19], the probability mass function
of K is given in the following lemma.

Lemma 3 (Probability mass function of K): The probability
mass function of K conditioned on the l0-th content file being
requested by u0 is given by

Pr
[
K = k

∣∣L0 = l0
]

=
1

ql0

∑
m0∈Ml0

Pr
[
K = k

∣∣L0 = l0,M0 = m0

]
(37)

for ql0 6= 0, and

Pr
[
K = k

∣∣L0 = l0
]

=
1

M

∑
m0∈{0,...,M−1}

Pr
[
K = k

∣∣L0 = l0,M0 = m0

]
(38)

for ql0 = 0, whereMl0 is the set of indexes of BS groups that
stores the l0-th content file, Pr

[
K = k

∣∣L0 = l0,M0 = m0

]

is the probability mass function of K conditioned on the l0-
th content file being requested by u0 and B0 ∈ Φbm0

, and
Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
is given by

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]

=



Ψ
(
λuρl,

qlλ
b

M

)
, l = l0, ql0 6= 0,

Ψ
(
λuρl, λ

b
)
, l = l0, ql0 = 0,

1 (kl = 0) , l 6= l0, ql 6= 0, , l /∈ Cm0

Ψ
(
λuρl,

qlλ
b

M

)
, l 6= l0, ql 6= 0, l ∈ Cm0 ,

Ψ
(
λuρl, λ

b
)
, l 6= l0, ql = 0,

(39)

where Cm0
is the set of content files stored in the cache of the

BSs in Φbm0
,

Ψ (x, y) =
3.54.5

Γ (4.5)

xk−1

yk−1 (k − 1)!

Γ (k + 3.5)(
x
y + 3.5

)k+3.5
, (40)

Ψ (x, y) =
3.54.5

Γ (4.5)

xk

ykk!

Γ (k + 4.5)(
x
y + 3.5

)k+4.5
. (41)

The proof can be found in Appendix B1.
Using (39), we calculate the expectation of Kl conditioned

on l0 and m0, which is given by

E
[
Kl

∣∣L0 = l0,M0 = m0

]
=

∞∑
kl=0

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
kl (42)

=



1 + 9
7
λuρl
qlλ

b

M

, l = l0, ql0 6= 0,

1 + 9
7
λuρl
λb

, l = l0, ql0 = 0,

0, l 6= l0, ql 6= 0, l /∈ Cm0

9
7
λuρl
qlλ

b

M

, l 6= l0, ql 6= 0, l ∈ Cm0 ,

9
7
λuρl
λb

, l 6= l0, ql = 0.

(43)

Then we calculate E
[
Kl

∣∣L0 = l0
]

by removing the condition
on m0, given by

E
[
Kl

∣∣L0 = l0
]

=

{
1 + 9

7
λuρl
λb

, l = l0,
9
7
λuρl
λb

, l 6= l0.
(44)

Finally, we calculate E [Kl] by removing the condition on l0,
given by

E [Kl] = ρl +
9

7

λuρl
λb

. (45)

1) Probability Mass Function of K: The probability mass
function of K depends on the probability density function of
the size of the Voronoi cell of BS B0 w.r.t. content file l ∈
{1, . . . , L}. Denote fZ (z) as the probability density function
of the size of the Voronoi cell to which a randomly chosen user
belongs, where Z is a random variable that denotes the size
of the Voronoi cell normalized by the inverse of the density
of BSs. A widely used approximated form of this probability
density function is given by [19]

fZ (z) =
3.54.5

Γ (4.5)
z3.5 exp (−3.5z) . (46)
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We first prove Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
in (39):

• l = l0 and ql0 6= 0: The users requesting the l-th content
file form a homogeneous PPP with density λuρl, and the
BSs that store the l-th content file form a homogeneous
PPP with density λbql/M . The probability mass function
of Kl conditioned on l0, m0 and z is given by

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0, Z = z
]

=

(
λuρl
λbql/M

z
)kl

kl!
e
− λuρl
λbql/M

z
. (47)

Then we calculate Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
by

removing the condition on z, given by

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
=

∫ ∞
0

Pr
[
Kl = kl − 1

∣∣L0 = l0,M0 = m0, Z = z
]

× fZ (z) dz (48)

=

∫ ∞
0

(
λuρl
λbql/M

z
)kl−1

(kl − 1)!
e
− λuρl
λbql/M

z
fZ (z) dz (49)

=
3.54.5

Γ (4.5)

(λuρl)
kl−1

(λbql/M)
kl−1

(kl − 1)!

×
∫ ∞

0

zkl+2.5 exp

(
−
(

λuρl
λbql/M

+ 3.5

)
z

)
dz (50)

= Ψ

(
λuρl,

qlλ
b

M

)
. (51)

• l = l0 and ql0 = 0: The users requesting the l-th content
file form a homogeneous PPP with density λuρl. All BSs
access to l-th content file via the backhaul, and they form
a homogeneous PPP with density λb. Similar to (51), we
have

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
=

∫ ∞
0

Pr
[
Kl = kl − 1

∣∣L0 = l0,M0 = m0, Z = z
]

× fZ (z) dz (52)

=Ψ
(
λuρl, λ

b
)
. (53)

• l 6= l0, ql0 6= 0 and l /∈ Cm0
: Note the ql0 6= 0 indicates

that the l-th content file is stored in some of the BSs.
Meanwhile, l /∈ Cm0 indicates the BSs in Φbm0

do not
cache the l-th content file. As a result, the BSs in Φbm0

do not serve the users requesting the l-th content file,
which means that kl = 0 is always satisfied.

• l 6= l0, ql0 6= 0 and l ∈ Cm0 : The users requesting the
l-th content file form a homogeneous PPP with density
λuρl, and the BSs that store the l-th content file form a
homogeneous PPP with density λbql/M . The conditional

probability mass function is given by

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
=

∫ ∞
0

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0, Z = z
]

× fZ (z) dz (54)

=

∫ ∞
0

(
λuρl
λbql/M

z
)kl

kl!
e
− λuρl
λbql/M

z
fZ (z) dz (55)

=
3.54.5

Γ (4.5)

(λuρl)
kl

(λbql/M)
kl kl!

×
∫ ∞

0

zkl+3.5 exp

(
−
(

λuρl
λbql/M

+ 3.5

)
z

)
dz

(56)

=Ψ

(
λuρl,

qlλ
b

M

)
. (57)

• l 6= l0, ql0 = 0: The users requesting the l-th content
file form a homogeneous PPP with density λuρl. All BSs
access to l-th content file via the backhaul, and they form
a homogeneous PPP with density λb. Similar to (57), we
have

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0

]
=

∫ ∞
0

Pr
[
Kl = kl

∣∣L0 = l0,M0 = m0, Z = z
]

× fZ (z) dz (58)

=Ψ
(
λuρl, λ

b
)
. (59)

Finally, we calculate Pr
[
K = k

∣∣L0 = l0
]

by removing the
condition on m0. For ql0 6= 0, m0 is selected from the BS
groupsMl0 with equal probability. For ql0 = 0, m0 is selected
from all the BS groups {0, . . . ,M − 1} with equal probability.
Hence, Pr

[
K = k

∣∣L0 = l0
]

is given by (37)–(38) by remov-
ing the condition on m0 in Pr

[
K = k

∣∣L0 = l0,M0 = m0

]
.

C. Expression of Successful Transmission Probability p

The BSs loading K and SIR are correlated, since BSs with
a larger cell size have higher loading and lower SIR [23].
However, the exact relationship between K and SIR is very
complex and is still not known. For tractability of the analysis,
as in [23], the dependence is ignored. Hence, the successful
transmission probability conditioned on the l0-th content file
requested by u0 and distance d is given by

pl0,d =
∑
k∈NL

Pr
[
K = k

∣∣L0 = l0
]

× Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

× Pr
[
S = 1

∣∣K = k, L0 = l0
]
, (60)

where Pr
[
C ≥ τ

∣∣K = k, L0 = l0, S = 1
]

follows (11), and
Pr
[
S = 1

∣∣K = k, L0 = l0
]

follows (10). Then we calculate
pl0 by removing the condition on d:

pl0 =

∫ ∞
0

pl0,d (d) fD0,0,l0 (d) dd. (61)
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Finally, by the total probability theorem, the average successful
transmission probability is given by

p =

L∑
l0=1

pl0ρl0 . (62)

Note that the above expression of p is complicated, since
the expression of the probability mass function of k is com-
plicated. As a result, it is hard to find the optimal number
of subbands M and cache storage allocation vector q that
maximize the average successful transmission probability p.

D. Proof of Theorem 1

By removing constraint (28) in Problem P̃ (M,L′), we
obtain the following problem:

P̌ (M,L′) : min
ql

L′∑
l=1

ρl
β (M, g̃0)

ql0 + β (M, g̃0)
(63)

s.t.

L′∑
l=1

ql = MBC , (64)

ql ≥ 1,∀l ∈ {1, . . . , L′} , (65)
ql ≤M,∀l ∈ {1, . . . , L′} . (66)

Denote q̌? = [q̌?1 , . . . , q̌
?
L′ ] as the optimal solution of

P̌ (M,L′). We will show later that an optimal solution of
P̌ (M,L′) is also an optimal solution of P̃ (M,L′). Problem
P̌ (M,L′) is a convex optimization problem. Introducing a
Lagrange multiplier λ? for equality constraint (64), multipliers
ν?l for constraint (65), and multipliers ω?l for constraint (66),
we obtain the KKT conditions:

L′∑
l=1

q̌?l = MBC , q̌
?
l ≥ 1, q̌?l ≤M. (67)

ν? ≥ 0, ω? ≥ 0. (68)

ν?l (1− q̌?l ) = 0, ω?l (q̌?l −M) = 0. (69)

− ρl

(q̌?l + β (M, g̃0))
2 + λ? − ν?l + ω?l = 0,∀l. (70)

By eliminating ν, we have

L′∑
l=1

q̌?l = MBC , q̌
?
l ≥ 1, q̌?l ≤M. (71)

ω? ≥ 0. (72)(
λ? − ρl

(q̌?l + β (M, g̃0))
2 + ω?l

)
(1− q̌?l ) = 0, (73)

ω?l (q̌?l −M) = 0. (74)

λ? ≥ ρl

(q̌?l + β (M, g̃0))
2 − ω

?
l ,∀l. (75)

• If λ? < ρl
(1+β(M,g̃0))2

− ω?l , the last condition can only
hold if q̌?l > 1, which by the third condition implies that
λ? = ρl

(q̌?l +β(M,g̃0))
2−ω?l , i.e., q̌?l =

√
ρl

λ?+ω?l
−β (M, g̃0).

– If
√

ρl
λ?+ω?l

− β (M, g̃0) ≥ M , since q̌?l > M

is impossible, we have q̌?l = M and ρl
λ?+ω?l

=

(M + β (M, g̃0))
2, i.e., ω?l = ρl

(M+β(M,g̃0))2
− λ?.

Since λ? ≤ ρl
(M+β(M,g̃0))2

, ω?l ≥ 0 is feasible.

– If
√

ρl
λ?+ω?l

− β (M, g̃0) < M , then ω?l = 0. We

then have
√

ρl
λ? − β (M, g̃0) < M , which indicates

λ? > ρl
(M+β(M,g̃0))2

, q̌?l =
√

ρl
λ? − β (M, g̃0).

• If λ? ≥ ρl
(1+β(M,g̃0))2

− ω?l , then q̌?l > 1 is impossible,
because it would imply λ? ≥ ρl

(1+β(M,g̃0))2
− ω?l >

ρl

(q̂?l +β(M,g̃0))
2 − ω?l , which violates the complementary

slackness condition. Therefore, we have q̌?l = 1.
In summary, the optimal solution is given by

q̌?l

=


M, λ? ≤ ρl

(M+β(M,g̃0))2
,√

al
λ? − β (M, g̃0) , ρl

(M+β(M,g̃0))2
< λ? < ρl

(1+β(M,g̃0))2

1, λ? ≥ al
(1+β(M,g̃0))2

,

,

(76)

which is equivalent to

q̌?l = min
{
M,max

{
1,
√
ρl/λ? − β (M, g̃0)

}}
. (77)

Substituting this expression for q̌?l into
∑L′

l=1 q̌
?
l = MBC , we

obtain

L′∑
l=1

min
{
M,max

{
1,
√
ρl/λ? − β (M, g̃0)

}}
= MBC .

(78)
Note that since ρl ≥ ρl+1 for l = 1, . . . , L′ − 1, q̌?l satisfies
q̌?l ≥ q̌?l+1 for l = 1, . . . , L′ − 1. As a result, q̌ is also an
optimal solution of P̃ (M,L′).
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