
1

Power Minimization Based Joint Task

Scheduling and Resource Allocation in

Downlink C-RAN

Wenchao Xia, Jun Zhang, Tony Q. S. Quek, Shi Jin, and Hongbo Zhu

Abstract

In this paper, we consider the network power minimization problem in a downlink cloud radio

access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for

computation and the power consumed at the remote radio heads and fronthaul links for transmission. The

power minimization problem for transmission is a fast time-scale issue whereas the power minimization

problem for computation is a slow time-scale issue. Therefore, the joint network power minimization

problem is a mixed time-scale problem. To tackle the time-scale challenge, we introduce large system

analysis to turn the original fast time-scale problem into a slow time-scale one that only depends on the

statistical channel information. In addition, we propose a bound improving branch-and-bound algorithm

and a combinational algorithm to find the optimal and suboptimal solutions to the power minimization

problem for computation, respectively, and propose an iterative coordinate descent algorithm to find the

solutions to the power minimization problem for transmission. Finally, a distributed algorithm based

on hierarchical decomposition is proposed to solve the joint network power minimization problem.

In summary, this work provides a framework to investigate how execution efficiency and computing

capability at BBU as well as delay constraint of tasks can affect the network power minimization

problem in C-RANs.

W. Xia, J. Zhang, and H. Zhu are with the Jiangsu Key Laboratory of Wireless Communications, Nanjing University of

Posts and Telecommunications, Nanjing 210003, P. R. China, E-mail addresses: { 2015010203,zhangjun,hbz}@njupt.edu.cn.

T. Q. S. Quek is with the Information Systems Technology and Design Pillar, Singapore University of Technology and

Design, Singapore 487372, E-mail address: tonyquek@sutd.edu.sg.

S. Jin is with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, P. R.

China, E-mail address: jinshi@seu.edu.cn.

Parts of this work were accepted in IEEE Wireless Commun. Network Conf. (WCNC) [1], Barcelona, Spain, Apr. 2018.

ar
X

iv
:1

80
8.

03
43

5v
1 

 [
cs

.I
T

] 
 1

0 
A

ug
 2

01
8



2

Index Terms

Cloud radio access network, large system analysis, energy efficiency, power minimization, compu-

tation resource, task scheduling.

I. INTRODUCTION

During the last decade, the evolution of information and communication technology is causing

energy consumption levels to reach a distressing rate, due to the dramatic increase in the

quantity of subscribers and the number of devices [2]. The massive connectivity also leads

to tremendous carbon dioxide emissions into the environment. To reduce energy consumption,

many new technologies and network architectures are proposed for 5G green communications

[3]. Cloud radio access network (C-RAN) is a new system architecture where computational

resource is aggregated into a central baseband unit (BBU) pool to implement the baseband

processing of the conventional base stations. The radio functions including amplification, A/D

and D/A conversion, and frequency conversion are performed at remote radio heads (RRHs) [4].

In C-RANs, conventional base stations are replaced with low-cost RRHs and these RRHs are

deployed close to user equipment terminals (UEs), so the transmission power is significantly

reduced. Furthermore, virtualization technique can take full advantage of aggregated computa-

tional resources to improve hardware unitization and centralized signal processing can achieve

cooperation gain [3, 5].

However, with the aforementioned advantages, new challenges also arise in C-RANs. With

the dense deployment of RRHs, C-RANs consume considerable power. Hence turning the idle

RRHs into sleep mode and designing energy efficient beamforming matrix are important issues

[6, 7]. In addition, the increased traffic causes a heavy burden on fronthaul in terms of capacity

demand and power consumption [8, 9]. Finally, the power consumption of baseband processing

is also considerable, which is determined by the allocation of computational resource. Overall,

all the three challenges have a great effect on the network power consumption in C-RANs.

The network power minimization problem has been extensively studied in [6–11]. Reference

[9] jointly optimized downlink beamforming and admission control to minimize the network

power. Reference [8] compared two transmission schemes, i.e., the data-sharing scheme and

compression scheme. Reference [6] proposed a joint downlink and uplink UE-RRH association

and beamforming design to reduce energy consumption. Precoding design and RRH selection
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were optimized jointly in [7, 11]. However, the aforementioned papers only considered the first

and second challenges, taking into account the power consumption for transmission, i.e., power

consumptions of the RRHs and fronthaul links. Dealing with the third challenge in C-RANs

is still an open issue. The computational resource aggregated in the BBU pool is provided by

many physical servers. Each UE’s task is first scheduled on one of these servers and then

executed by a virtual machine (VM) created by the server. Therefore, task scheduling and

computational resource allocation are the key to the third challenge. There exist some works

on computational resource allocation [12–18]. References [12, 14] used a queueing model to

represent UEs’ data processing and transmitting behavior. Reference [15] modelled the power

consumption for computation as an increasing function of UEs’ rates. Reference [13] investigated

a mobile cloud computing system with computational resource allocation. One thing these works

have in common is that they all considered delay constraint. With the popularity of the online

video and mobile game, as well as the development of the Internet of things, traffic delay is

considered as a key metric to measure the quality-of-service (QoS). However, none of these

works take into account task scheduling and computational resource allocation simultaneously.

Besides, these works do not consider the time-scale challenge except reference [16], in which

the sample averaging was adopted to approximate the time averaging of the power consumption

of transmission.

Motivated by these facts, we aim to minimize the network power consumption under delay

constraint where the aforementioned three challenges are considered simultaneously in this paper.

We consider a downlink C-RAN composed of many RRHs which are connected to a BBU pool

via fronthaul. In the BBU pool, there is a data center with a set of physical servers. Each UE

has one task which is first scheduled on a certain server and a VM is created by the server to

execute this task. Then, the output data is transmitted using RRHs via fronthaul to the UEs. Due to

limited fronthaul capacity, the precoded signals are first compressed and then the corresponding

compression descriptions are forwarded through the fronthaul. We formulate a joint network

power minimization problem of task scheduling and resource allocation, which includes not

only computational resource allocation but also power allocation for transmission. Note that the

power minimization problem for transmission is a fast time-scale issue because it depends on

small-scale fading which varies in the order of milliseconds. However, the power consumption

problem for computation is a slow time-scale issue since the task scheduling and computation
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resource allocation are usually executed much slower than milliseconds [16]. Therefore, the joint

network power minimization problem is a mixed time-scale issue. The main contributions of this

work are summarized as follows:

• We first formulate two power minimization problems for computation and transmission,

respectively. The power minimization problem for computation is a slow time-scale issue

and also a mixed-integer nonlinear programming, where the task scheduling and computation

resource allocation are optimized jointly. However, the power minimization problem for

transmission is a fast time-scale issue and also a nonconvex problem where power allocation

and compression noise are optimized jointly. Then, a joint and mixed time-scale network

power minimization problem combining the above two problems is also formulated.

• We translate the fast/mixed time-scale problem into a slow time-scale one. Different from

reference [16], where the sample averaging was used to approximate the time averaging of

the power consumption of transmission, we introduce the large system analysis to convert

our problem into one that only depends on statistical channel information (i.e., large-

scale fading) instead of small-scale fading. Therefore, the power minimization problem

for transmission, as well as the joint network power minimization problem, is turned into

a slow time-scale one.

• For the power minimization problem for computation, we propose a bound improving branch

and bound (BnB) algorithm to determine the optimal solutions. To reduce the computational

complexity and time, we also propose a suboptimal combinational algorithm. For the power

minimization problem for transmission, an iterative coordinate descent algorithm is proposed

to determine solutions. Finally, a distributed algorithm based on hierarchical decomposition

is proposed to solve the joint network power minimization problem.

The remainder of this paper is organized as follows. Section II introduces the system model

and formulates three power minimization problems. Section III proposes two algorithms, i.e.,

the BnB algorithm and combinational algorithm, to solve the power minimization problem for

computation. Section IV proposes an iterative coordinate descent algorithm to solve the power

minimization problem for transmission. Based on the analysis in Sections III and IV, a distributed

algorithm based on hierarchical decomposition is proposed to solve the joint network power

minimization problem in Section V. Numerical results are presented in Section VI. Finally,
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Fig. 1. A typical structure of downlink C-RAN with a data center.

conclusion is drawn in Section VII.

Notations: The notations are given as follows. Matrices and vectors are denoted by bold

capital and lowercase symbols. (A)T , (A)†, and tr(A) stand for transpose, conjugate transpose,

and trace of A, respectively. A � 0 indicates that A is a Hermitian positive semidefinite matrix.

The notations E(•) and || • ||0 are expectation and l0 norm operators, respectively. Finally,

a ∼ CN (0,Σ) is a complex Gaussian vector with zero-mean and covariance matrix Σ.

II. CLOUD RADIO ACCESS NETWORK

A. System Model

Consider a downlink C-RAN where L RRHs, each with N antennas, serve K single-antenna

UEs, as shown in Fig. 1. The sets of the RRHs and UEs are denoted as NR , {1, 2, . . . , L}

and NU , {1, 2, . . . , K}, respectively. In the BBU pool, there is a data center consisting of a

set of servers NS , {1, 2, . . . , S}. The UEs’ tasks are first processed at the data center before

the output data is transmitted via the RRHs. It is assumed that the RRHs are connected to the

BBU pool through high-speed but limited-capacity fronthaul links. In particular, the compress-

and-forward scheme is adopted such that the signals for the UEs are first compressed and then

the compression descriptions are forwarded to all the RRHs.

In the following, we consider that each UE has one delay-sensitive and computation-intensive

task to be executed at the data center. Similar to references [13, 19], the task Φk of UE k is
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modelled as

Φk = 〈Dk, τk, Lk〉, (1)

where 〈·, ·, ·〉 is a triplet, Dk is the amount of output data after accomplishing task Φk, τk denotes

the total time constraint on task execution and data transmission, and Lk represents the load of

task Φk. Here, we define the load as the execution time when it is executed on a VM with unit

computation capability [18].

The tasks are scheduled on different servers for execution at the data center. We use binary

variables xs,k ∈ {0, 1} to present the placement plan of tasks, where xs,k = 1 indicates task Φk

is placed on server s ∈ NS and xs,k = 0 otherwise. After the task Φk is placed on server s with

computing capacity λs, a VM with computing capability As,k is created by server s to complete

task Φk. Due to the diversity of servers, different servers have different executing efficiencies

and we define ςs,k as the efficiency of executing task Φk on server s. Note that a task can be

scheduled on one and only one server during a task execution period so we have the constraint∑
s∈NS xs,k = 1,∀k ∈ NU . Then the corresponding execution time of task Φk is given as

T
(EX)
k =

Lk∑
s∈NS ςs,kxs,kAs,k

, (2)

where As,k should meet the computing capacity constraint of server s as follows:∑
k∈NU

xs,kAs,k ≤ λs,∀s ∈ NS. (3)

Once one task is finished, its resulting data is encoded and forwarded to the corresponding UE.

We first define the channel matrix between all UEs and RRH l as Hl = [hl,1, . . . ,hl,K ] ∈ CN×K

with hl,k =
√
dl,kh̃l,k, where dl,k is the large-scale fading factor caused by path loss and shadow

fading between UE k and RRH l, and h̃l,k ∼ CN (0, IN) is the small-scale fading factor. We

assume that the UEs are static or moving slowly such that in a task execution period the large-

scale fading is invariant.

At the BBU, maximum-ratio transmission is adopted at the signal vector s = [s1, . . . , sK ]T ∈

CK×1, where sk ∼ CN (0, 1) is the signal for UE k. The perfect channel state information is

assumed to be available at the BBU, then the precoded signals for RRH l is given by

x̂Rl = Vls, (4)
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where Vl = ξlHl

√
Pl is the precoding matrix, Pl ∈ CK×K is a diagonal matrix whose elements

are adjustable such that power allocation is implemented to improve system performance, and

ξl is the power scale factor which is given as ξ2
l = 1

E[tr(HlH
†
l )]

.

Due to the limited capacities of fronthaul links, the precoded signal x̂Rl are first independently

compressed and transmitted to the RRHs via fronthaul links. Here, we adopt point-to-point (P2P)

compression for simplicity1. The quantized signal is expressed as

xRl = x̂Rl + ql, (5)

where ql ∼ CN (0,Ψl) is the quantization noise independent of signal x̂Rl with Ψl , E(qlq
†
l ).

Note that the process of signal compression is independent so that the quantization noise signals

ql and ql′ , are uncorrelated, i.e., E(qlq
†
l′) = 0, l′ 6= l. According to reference [20], the signal

xRl can be recovered from x̂Rl at RRH l if the condition

RFl = E

(
log2

|VlV
†
l + Ψl|
|Ψl|

)
≤ Cl, l ∈ NR, (6)

is satisfied, where Cl is the fronthaul capacity for RRH l. Furthermore, the transmission power

at RRH l should meet the power constraint given as follows:

P
(TR)
Rl

= E
[
tr
(
VlV

†
l + Ψl

)]
≤ P

(MAX)
Rl

,∀l ∈ NR, (7)

where P (MAX)
Rl

is the transmission power budget.

The received signal at UE k is given by

yUk = h†kxR + zUk , (8)

where hk = [hT1,k, . . . ,h
T
L,k]

T ∈ CLN×1, xR = [xTR1
, . . . ,xTRL ]T ∈ CLN×1, and zUk ∼ CN (0, σ2)

is the independent received noise with zero mean and variance σ2. Although the UEs do not know

the exact effective channels, we assume that the average effective channels can be learned at the

1There are two common compress-and-forward schemes, i.e., P2P compression and Wyner-Ziv (WZ) coding. WZ coding

can achieve higher performance and make better use of limited fronthaul capacity than P2P compression scheme. However,

such benefits come with a cost in terms of computational complexity. Besides, finding an optimal decompression order is a hard

problem. In this work, for simplicity, we only consider P2P compression scheme. However, this work can be extended to the

case of WZ coding scheme applied at fronthaul with a fixed decompression order.
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UEs. Therefore, the achievable rate of UE k using a standard bound based on the worst-case

uncorrelated additive noise [21, 22] is computed as

RUk = B log2

(
1 +

Sigk
Intk

)
, (9)

where B is the system bandwidth, Sigk = |E(h†kvk)|2, vk = [vT1,k, . . . ,v
T
L,k]

T ∈ CLN×1, and

Intk = var(h†kvk) +
∑

i∈NU\{k}

E|h†kvi|
2 + E|h†kΨhk|+ σ2, (10)

where var(x) = E{[x−E(x)][x−E(x)]†} and Ψ = diag({Ψl}Ll=1). Then, the transmission time2

of output data of task Φk is given as T (TR)
k = Dk

RUk
.

B. Power Consumption Model

In the following, we are interested in the network power which includes the powers consumed

at the RRHs, the fronthaul links, and the servers.

1) RRH Power Consumption: The power consumption at the RRHs consists of both circuit

power consumption and transmitting power consumption, and we adopt a linear power consump-

tion model given by [7, 23]

PRl =


1
υl
P

(TR)
Rl

+ P
(Active)
Rl

, if P (TR)
Rl

> 0,

P
(Sleep)
Rl

, if P (TR)
Rl

= 0,
(11)

where υl is the efficiency of the power amplifier and P
(Active)
Rl

denotes the circuit power con-

sumption to support RRH l to transmit signals. If there is no transmission at RRH l, it can be

turned into sleep mode with lower power consumption P
(Sleep)
Rl

. Generally, P (Sleep)
Rl

< P
(Active)
Rl

,

thus turning a RRH into sleep mode can save power. We define P4Rl = P
(Active)
Rl

−P (Sleep)
Rl

and

PRl can be rewritten as

PRl =
1

υl
P

(TR)
Rl

+ P
(Sleep)
Rl

+ ||P (TR)
Rl
||0P4Rl . (12)

2In this paper, we assume that the transmission time at fronthaul links is constant and negligible so that it can be ignored.
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2) Fronthaul Power Consumption: The power consumption model of fronthaul links depends

on specific fronthaul technologies. Similar to reference [8], we use a general model to compute

the power consumption of each fronthaul channel as

PFl = ηlRFl , (13)

where ηl =
P

(MAX)
Fl

Cl
and P

(MAX)
Fl

is the power consumed by the fronthaul link for RRH l when

working at full capacity. This model has been used for microwave backhaul links in [24] and also

can be generalized to other backhaul technologies, such as passive optical network, fiber-based

Ethernet, etc., as mentioned in [25].

3) Server Power Consumption: The total power consumption of a server s is given by [26]

PSs = P
(Static)
Ss

+
∑
k∈NU

PVMs,k
, (14)

where P (Static)
Ss

is constant no matter whether VMs are running or not and PVMs,k
is the power

consumed by a VM. It is observed that the total power consumption of a VM is directly related

to the system component utilization [18, 26, 27]. More utilization of the system components leads

to more power consumption [26]. In the linear weighted model, the total power consumption

PVMs,k
of VM k created by server s can be further decomposed into four components related

to CPU, disk, IO devices, and memory as follows [18]:

PVMs,k
= P

(CPU)
VMs,k

+ P
(DISK)
VMs,k

+ P
(IO)
VMs,k

+ P
(MEMORY )
VMs,k

. (15)

Because there exists a direct relation between the execution time of tasks on VMs and CPU

utilization, we use the CPU power consumption to approximate the VM power consumption

with a weight χs,k [18, 27], which can be expressed as

PVMs,k
= xs,kχs,kAs,k. (16)

C. Problem Formulation

Since we are interested to minimize the network power consumption while meeting the

delay constraint, we first formulate two power minimization problems for computation and

transmission, respectively. Then, a joint network power minimization problem is also established.
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1) Power Minimization Problem for Computation: It is assumed that the time limitation for

finishing task Φk on a certain VM is τ (EX)
k (τ (EX)

k < τk). Based on the above analysis, the

power minimization problem for computation where task scheduling and computational resource

allocation are executed jointly is formulated as

P0 : min
x,A

∑
s∈NS

PSs (17a)

s.t. T
(EX)
k ≤ τ

(EX)
k ,∀k ∈ NU , (17b)∑

k∈NU

xs,kAs,k ≤ λs,∀s ∈ NS, (17c)

∑
s∈NS

xs,k = 1,∀k ∈ NU , (17d)

As,k ≥ 0,∀k ∈ NU ,∀s ∈ NS, (17e)

xs,k ∈ {0, 1},∀k ∈ NU , ∀s ∈ NS. (17f)

where x is a collect of xs,k’s, indicating the placement plan of tasks and A is a collect of As,k’s

denoting the resource allocation plan of the servers.

2) Power Minimization Problem for Transmission: Similarly, we first assume that the time

constraint for transmitting the output signals of the tasks is τ
(TR)
k (τ (TR)

k < τk). Then, we

formulate the power minimization problem for transmission as

P1 : min
P,Ψ

∑
l∈NR

PRl + PFl (18a)

s.t. T
(TR)
k ≤ τ

(TR)
k ,∀l ∈ NR, (18b)

RFl ≤ Cl,∀l ∈ NR, (18c)

P
(TR)
Rl

≤ P
(MAX)
Rl

,∀l ∈ NR, (18d)

where P is a collect of pl,k’s and Ψ is a collect of Ψl’s. Note that P describes the power

allocation scheme and Ψ indicates the quantization levels of the all RRHs.
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3) Joint Network Power Minimization Problem: Finally, the joint network power minimization

problem for computation and transmission is formulated as

P2 : min
x,A,P,Ψ

∑
s∈NS

PSs + ω
∑
l∈NR

(PRl + PFl) (19a)

s.t. T
(EX)
k + T

(TR)
k ≤ τk,∀k ∈ NU , (19b)

(17c)− (17f), (18c), and (18d), (19c)

where ω is a factor to balance the power consumption of computation and transmission.

We observe that P0 is a slow time-scale problem but the joint optimization of power allocation

and quantization noise in P1 is a fast time-scale problem since it depends on small-scale fading.

Consequently, P2 is a mixed time-scale issue that needs further attention [16]. To solve this

challenge caused by the time-scale issue, authors in [16] used ensemble averaging over fast

time-scale samples so that the final problem became a slow time-scale problem. Instead, we

introduce large system analysis to transform P1 and P2 into slow time-scale problems depending

only on large-scale fading [28, 29]. Furthermore, we assume that the UEs are static or moving

slowly such that the large-scale fading remains invariant within a task execution period.

III. POWER MINIMIZATION PROBLEM FOR COMPUTATION

For P0 to be solvable, it is assumed that task Φk can be further divided into S sub-task

φs,k’s, each with load ls,k, and placed on S servers, respectively [18, 30]. This assumption can

be interpreted as a relaxation of the binary variable xs,k to a real variable, i.e., xs,k ∈ [0, 1], then

the variable xs,k is absorbed in the new defined variable ls,k = xs,kLk. The total load of sub-tasks

should satisfy the constraint
∑

s∈NS ls,k = Lk. Then, a VM with computation capability as,k is

created by server s for sub-task φs,k and the associated execution time is t(EX)
s,k =

ls,k
ςs,kas,k

, where

as,k satisfies the constraint
∑

k∈NU as,k ≤ λs. Accordingly, the power consumption of sub-task
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φs,k is given as pVMs,k
= χs,kas,k and the relaxed version of P0 can be written as

P0-1 : min
a,l

∑
s∈NS

∑
k∈NU

pVMs,k
(20a)

ls,k − ςs,kas,kτ (EX)
k ≤ 0, k ∈ NU , s ∈ NS, (20b)∑

k∈NU

as,k ≤ λs, s ∈ NS, (20c)

∑
s∈NS

ls,k = Lk, k ∈ NU , (20d)

as,k ≥ 0, ls,k ≥ 0, k ∈ NU , s ∈ NS, (20e)

where a is a collect of as,k’s and l is a collect of ls,k’s. Note that P (Static)
Ss

is constant and thus

omitted. The objective function and constraints (20b)-(20e) are linear so P0-1 can be solved

easily. However, the solution determined from P0-1 is generally not the optimal solution to P0.

In what follows, we introduce the BnB algorithm to find the optimal solution to P0 based on

the solution to P0-1.

A. Branch and Bound Algorithm

We define a set S = {(s, k)|∀s ∈ NS,∀k ∈ NU} that contains all the task-server pairs and

introduce another two task-server pair sets S0 = {(s, k)|xs,k = 0,∀s ∈ NS,∀k ∈ NU} and

S1 = {(s, k)|xs,k = 1,∀s ∈ NS,∀k ∈ NU}. With the defined sets, we formulate an equivalent

problem of P0 as follows:

P0-2 : min
x,A

∑
s∈NS

∑
k∈NU

PVMs,k
(21a)

s.t. (17b)− (17e), (21b)

xs,k = 1, ∀(s, k) ∈ S1, (21c)

xs,k = 0, ∀(s, k) ∈ S0, (21d)

xs,k ∈ {0, 1}, (s, k) ∈ S \ (S0 ∪ S1). (21e)
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Similarly, an equivalent problem of P0-1 is formulated as

P0-3 : min
a,l

∑
s∈NS

∑
k∈NU

pVMs,k
(22a)

s.t. (20b)− (20e), (22b)

ls,k = Lk,∀(s, k) ∈ S1, (22c)

ls,k = 0,∀(s, k) ∈ S0, (22d)

0 ≤ ls,k ≤ Lk, (s, k) ∈ S \ (S0 ∪ S1). (22e)

For notational convenience, we use the related parameter tuples (z,S0,S1) and (z,S0,S1)′ to

denote P0-2 and P0-3, respectively, where z is the optimal value of the objective function in P0-3.

The BnB algorithm for P0 is provided in Algorithm 1. At the beginning, we define z as the

set of branch problems and z? as the best-known objective value. The main process of the BnB

algorithm consists of two important steps as follows:

1) Branching: In each iteration process, we choose the problem that achieves the minimum

lower bound, denoted as (ẑ, Ŝ0, Ŝ1), to branch. Then, the task-server pair with the highest priority

(s∗, k∗) is chosen to be divided into two smaller branch problems: one is with xs∗,k∗ = 0 and

the other is with xs∗,k∗ = 1. Accordingly, the relaxed problems of the two branches are given as:

one is with ls∗,k∗ = 0 and the other is with ls∗,k∗ = Lk∗ . Evidently, the priority function plays an

important role in reducing the complexity and we define the priority function as fp(s, k) =
χs,kLk
ςs,k

.

2) Bounding and Pruning: According to the selected branch, we compute the lower bounds

of sub-problems (z(B1,n),S(B1,n)
0 ,S(B1,n)

1 )′ and (z(B2,n),S(B2,n)
0 ,S(B2,n)

1 )′, respectively. The two

branch problems are stored in z for further branching when their lower bounds are less than the

current best-known value z?. If a new feasible solution is found which is lower than the current

best-known value z?, the current best-known solution is updated. Besides, the stored branches

in z having an lower bound larger than the value of the new best-known feasible solution can

be deleted.

B. Suboptimal Task Scheduling Algorithm

Although the BnB algorithm can find the global optimal solution, the convergence rate can

be slow, especially for large number task-server pairs. Therefore, we introduce a suboptimal but
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Algorithm 1 BnB algorithm for task scheduling.

1: Initialization: z? = +∞, S(0)
0 = S(0)

1 = ∅, and z = {(z(0),S(0)
0 ,S(0)

1 )}, and n = 0.

2: while z 6= ∅ do

3: Find the problem (ẑ, Ŝ0, Ŝ1) according to ẑ = min(z,S0,S1)∈z z from z and update z =

z \ {(ẑ, Ŝ0, Ŝ1)}.

4: Select the task-server pair with the highest priority, i.e., (s∗, k∗) =

arg max(s,k)∈S\(Ŝ0∪Ŝ1) fp(s, k), and set n = n+ 1.

5: Update S(B1,n)
0 = Ŝ0∪{(s∗, k∗)}, S(B1,n)

1 = Ŝ1, S(B2,n)
0 = Ŝ0, and S(B2,n)

1 = Ŝ1∪{(s∗, k∗)};

6: Solve problems (z(Bi,n),S(Bi,n)
0 ,S(Bi,n)

1 )′, i = 1, 2. If there is no feasible solution, set

z(Bi,n) = +∞.

7: if z(Bi,n) < z?, i = 1, 2, then

8: if S == S(Bi,n)
0 ∪ S(Bi,n)

1 , then

9: Set z? = z(Bi,n), S?0 = S(Bi,n)
0 , and S?1 = S(Bi,n)

1 .

10: else

11: Update z = z ∪ {(z(Bi,n),S(Bi,n)
0 ,S(Bi,n)

1 )}.

12: end if

13: end if

14: Check and prune existing branches. If branch problem (z(j),S(j)
0 ,S(j)

1 ) in z meets the con-

straint z(j) > z?, j = 1, 2, . . . , |z|, then it can be pruned, i.e., z = z \ {(z(j),S(j)
0 ,S(j)

1 )}.

15: end while

16: Return z?, S?0 , and S?1 .

fast task scheduling algorithm which is referred to as heuristic task scheduling algorithm, as

shown in Algorithm 2.

In Algorithm 2, the unscheduled task Φk∗ with the highest load is first considered and server s∗

which has the highest execution efficiency for this task has a priority. When the available resource

in server s∗ is sufficient to support task Φk∗ , then server s∗ allocates as little computing resource

as possible to task Φk∗ , i.e., As∗,k∗ = Lk∗
τk∗ ςs∗,k∗

. Otherwise, task Φ∗k continues to search the potential

server. Note that different from the BnB algorithm, the heuristic task scheduling algorithm cannot

always find solutions to P0. However, in the case with high execution efficiency or abundant
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computation resource, Algorithm 2 can achieve satisfying performance with lower computational

complexity and time. Therefore, we propose a combinational algorithm where Algorithm 2 is first

adopted to find the suboptimal solutions. If no solution is found via Algorithm 2, we continue to

resort to Algorithm 1. We refer to such an algorithm as combinational task scheduling algorithm,

as shown in Algorithm 3.

Algorithm 2 Heuristic task scheduling algorithm.
1: Initialize NS′ = NS . Find task Φk∗ = arg maxk∈NU Lk and update NU , NU \ {k∗}.

2: if NS′ is not empty, then

3: Find server s∗ = arg mins∈NS′
χs,k
ςs,k∗

for task Φk∗ and update NS′ = NS′ \ {s∗}.

4: if Lk∗
τk∗ ςs∗,k∗

≤ λs∗ , then

5: Update As∗,k∗ = Lk∗
τk∗ ςs∗,k∗

and λs∗ = λs∗ − As∗,k∗ . Then, go to step 1.

6: else

7: Go to step 2.

8: end if

9: else

10: Heuristic task scheduling fail.

11: end if

Algorithm 3 Combinational task scheduling algorithm.
1: Algorithm 2 is adopted.

2: if no available solution is found via Algorithm 2, then

3: Algorithm 1 is adopted to find the optimal solution.

4: else

5: Return the solution found by Algorithm 2.

6: end if

IV. POWER MINIMIZATION PROBLEM FOR TRANSMISSION

In this section, we first introduce approximate results with large system analysis and then find

the solution to P1 based on these approximations. According to large system analysis, we can

take care of the small-scale fading using the following lemma.
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Lemma 1. Given that h̃l,k’s are i.i.d. complex Gaussian variables with independent real and

imaginary parts. According to the law of large numbers and the large-dimensional random matrix

theory, as N →∞, then we have the following results:

1) P (TR)
Rl
− P̄ (TR)

Rl
→ 0, where

P̄
(TR)
Rl

= ξ̄2
lN

∑
k∈NU

pl,kdl,k + tr(Ψl), (23)

with ξ̄2
l = 1

N
∑
k∈NU

dl,k
.

2) RUk − R̄Uk → 0, where

R̄Uk = log2

[
1 +

Sigk
Intk

]
, (24)

where Sigk = (d̄Tk
√

pk)
2, Intk = 1

N

∑
i∈NU\{k}(d̄i ◦ d̄k)

Tpi + 1
N2

∑
l∈NR dl,ktr(Ψl) + 1

N2σ
2,

d̄k = [ξ1d1,k, . . . , ξLdL,k]
T , pk = [p1,k, . . . , pL,k]

T , and d̄i ◦ d̄k is the Hadamard product whose

l-th element is ξ2
l dl,idl,k.

3) RFl − R̄Fl → 0, where

R̄Fl =
1

log 2
(∆l − log |Ψl|), (25)

where ∆l = log |Λl|+
∑

k∈NU ( 1
1+el,k

− log 1
1+el,k

)−K, el,k = ξ̄2
l pl,kdl,ktrΛ

−1
l , and

Λl =
∑
k∈NU

ξ̄2
l pl,kdl,k
1 + el,k

IN + Ψl. (26)

Proof: See the Appendix.

The approximate results in (23), (24), and (25) are obtained with the assumption that N →∞.

Note that these results can achieve satisfying accuracy even when N is not too large.

Based on the approximate results, we formulate an alternative to P1 as:

P1-1 : min
P,Ψ

∑
l∈NR

P̄Rl + P̄Fl (27a)

s.t. (2

Dk

τ
(TR)
k

B − 1)Intk ≤ Sigk,∀k ∈ NU , (27b)

R̄Fl ≤ Cl, ∀l ∈ NR, (27c)

P̄
(TR)
Rl

≤ P
(MAX)
Rl

,∀l ∈ NR, (27d)

where P̄Fl = ηlR̄Fl and P̄Rl = ( 1
υl

+ ρlP4Rl)P̄
(TR)
Rl

+ P
(Sleep)
Rl

. According to reference [31], the

l0-norm can be approximated with convex relaxation l1-norm as ||P̄ (TR)
Rl
||0 ≈ ρlP̄

(TR)
Rl

, where
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ρl = c1

P̄
(TR)
Rl

+c2
is iteratively updated, c1 is a constant, and c2 is a small constant to guarantee

numerical satiability. However, P1-1 is still non-convex with respect to pl,k and Ψl because of

R̄Fl and Sigk. To achieve a stationary point of P1-1, we first introduce the following lemma.

Lemma 2 ([32, 33]). For any two N ×N positive definite Hermitian matrices Λ and Γ, then

log |Λ| ≤ − log |Γ|+ tr(ΓΛ)−N, (28)

with the equality if and only if Γ = Λ−1.When N = 1, the inequality (28) is simplified as

log(ϕ) ≤ − log(γ) + ϕγ − 1, (29)

with the equality if and only if γ = ϕ−1.

Applying (28) to the denominator of R̄Fl , then we have

˜̄RFl = − log2 |Γl|+ tr(ΓlΛl)−N − log2 |Ψl|+
∑
k∈NU

(
1

1 + el,k
− log

1

1 + el,k
)−K, (30)

which is equivalent to R̄Fl when Γl = Λ−1
l .

Next, we change optimization variable pl,k to W = wwT ∈ CKL×KL where w = [wT
1 , . . . ,w

T
K ]T

and wk =
√

pk. Then, P̄ (TR)
Rl

can be rewritten as

P̄
(TR)
Rl

= Ntr(AlTW) + tr(BlΨ),

where Al = diag([aTl , . . . , a
T
l ]T ) ∈ CKL×KL, al ∈ CL×1 represents a vector whose l-th element

is 1 and 0 elsewhere, T = diag({tk}Kk=1) ∈ CKL×KL is a diagonal matrix, tk ∈ CL×1 denotes a

vector whose l-th element is ξ̄2
l dl,k, and Bl ∈ CNL×NL is a diagonal matrix whose main diagonal

elements from ((l − 1)N + 1)-th to (lN)-th are 1’s and 0 elsewhere. Λl can be rewritten as

Λl = tr(AlEAlW)IN + JlBlΨJHl ,

where E = diag({ek}Kk=1) ∈ CKL×KL is a diagonal matrix, ek is a vector whose l-th diagonal

element is ξ̄2l dl,k
1+el,k

, and J = [01, . . . ,0l−1, IN ,0l+1 . . . ,0L] ∈ CN×NL with 0l ∈ CN×N being a

zero-matrix. Similarly, based on the new defined variable W, el,k, Sigk, and Intk can be rewritten

as el,k = tr(TGlkW)trΛ−1
l , Sigk = tr(FkD̄FkW), and

Intk =
1

N

∑
i∈NU\{k}

tr(D̃ikFiW) +
1

N2
tr(DkΨ) +

1

N2
σ2,
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respectively, where Glk is a diagonal matrix whose (l + (k − 1)L)-th main diagonal element

is 1 and 0 elsewhere, D̄ = d̄d̄T ∈ CKL×KL with d̄ = [d̄T1 , . . . , d̄
T
K ]T , Fk ∈ CKL×KL is a

matrix whose main diagonal elements from ((k − 1)L+ 1)-th to (kL)-th are 1’s and elsewhere

0, D̃ik = diag([zT1 , . . . , z
T
i−1, (d̄i ◦ d̄k)

T , zTi+1, . . . , z
T
K ]T ), and Dk = diag({dlk}Ll=1) with dlk =

[dl,k, . . . , dl,k]
T ∈ CN×1.

As a result, P1-1 can be reformulated as a semidefinite programming as follows:

P1-2 : min
W,Ψ,Γ

∑
l∈NR

P̄Rl + ηl
˜̄RFl (31a)

s.t. ˜̄RFl ≤ Cl,∀l ∈ NR, (31b)

W � 0, (31c)

rank(W) = 1, (31d)

(27b) and (27d), (31e)

where Γ is a set of Γl’s. The optimal value of Γl in P1-2, according to Lemma 2, is Γ∗l =

Λ−1
l ,∀l ∈ NR. Relaxing the rank constraint rank(W) = 1, P1-2 is still non-convex over three

variables W, Ψ, and Γ. But it is convex with respect to any one of these variables and can

converge to a stationary point by an iterative coordinate descent algorithm as shown in Algorithm

4.

In Algorithm 4, at t iteration, W(t) and Ψ(t) are optimized simultaneously, whereas Γ(t) is

updated directly as Γ
(t)
l = (Λ

(t)
l )−1,∀l ∈ NR, according to (28). Such process is repeated until

convergence. Note that Algorithm 4 does not take the rank-one constraint into consideration.

After the semidefinite relaxation (SDR) of P1-2 is solved, the optimal solution W∗ should be

converted into a feasible solution to P1. Since the rank of W∗ may not equal to one, we

can extract the feasible solution to P1 from W∗ with Gaussian randomization method [34].

Algorithm 4 generates a non-increasing sequence of objective values, thus the convergence is

guaranteed [32]. The main computational complexity of Algorithm 4 lies in step 2, where the

SDR of P1-2 is solved. The computational complexity of the SDR of P1-2 is O(D3.5
SDP log(1/ε))

with a custom-built interior-point algorithm [35], where ε > 0 is the solution accuracy and

DSDP = KL + NL is the dimension. Assuming that Algorithm 4 converges in T1 iterations,

the total complexity of Algorithm 4 is O(T1D
3.5
SDP log(1/ε2)) [8].
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Algorithm 4 Iterative coordinate descent algorithm.

1: Initialization: W(0),Ψ(0)
l , Γ

(0)
l = (Λ

(0)
l )−1 and t = 0.

2: Update t = t+ 1 and find the optimal Ψ
(t)
l and W(t) with given Γ

(t−1)
l via solving problem

P1-2.

3: Update Γ
(t)
l = (Λ

(t)
l )−1.

4: Repeat steps 2 and 3 until convergence.

5: Return Ψ
(t)
l and W(t) as the optimal solution Ψ∗l and W∗, respectively.

V. JOINT NETWORK POWER MINIMIZATION PROBLEM FOR COMPUTATION AND

TRANSMISSION

In this section, we find the solution to the joint network power minimization problem P2.

A. Problem Reformulation

We find that P2 has to confront with all the difficulties in P0 and P1 because P2 is combination

of two problems coupled by the delay constraint. To avoid the nonconvexity, we first reformulate

P2 as

P2-1 : min
x,A,P,Ψ

∑
s∈NS

∑
k∈NU

χs,kAs,k + ω
∑
l∈NR

(PRl + PFl) (32a)

s.t.
Lk∑

s∈NS ςs,kAs,k
+ T

(TR)
k ≤ τk,∀k ∈ NU , (32b)∑

k∈NU

As,k ≤ λs,∀s ∈ NS, (32c)

As,k ≤ xs,kλs, ∀s ∈ NS,∀k ∈ NU , (32d)

(17c)− (17f), (18c), and (18d), (32e)

where (32d) indicates that server s does not allocate any resource to task Φk, if task Φk is not

assigned on server s, i.e., xs,k = 0 =⇒ As,k = 0. As mentioned above, P2-1 is a mixed time-scale

problem. Similar to P1, we turn P2-1 into a slow time-scale problem based on the asymptotic
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results in Section IV and formulate the SDR of P2-1 as follows:

P2-2 : min
x,A,W,Ψ,Γ,ϕ

∑
s∈NS

∑
k∈NU

χs,kAs,k + ω
∑
l∈NR

P̄Rl + ηl
˜̄RFl (33a)

s.t.
Lk∑

s∈NS ςs,kAs,k
+

Dk

˜̄RUk

≤ τk,∀l ∈ NR, (33b)

xs,k ∈ [0, 1], (33c)

(17d), (17e), (27d), (31b), (31c), (32c), and (32d), (33d)

where ϕ is a set of ϕk’s and

˜̄RUk = log2(Sigk + Intk) + log2(ϕk)− ϕkIntk + 1. (34)

In P2-2, xs,k’s are relaxed as continuous variables within [0, 1] and (28) and (29) are applied to

R̄Fl and R̄Uk , respectively. Then, P2-2 is convex with respect to either {x,A,W,Ψ} or {Γ,ϕ}.

Thus, we find the solution to P2-2 by alternatingly solving the following two problems:

P2-3 : min
x,A,W,Ψ

∑
s∈NS

∑
k∈NU

χs,kAs,k + ω
∑
l∈NR

P̄Rl + ηl
˜̄RFl (35a)

s.t. (17d), (17e), (27d), (31b), (31c), (32c), (32d), (33b), and (33c), (35b)

and

P2-4 : min
Γ,ϕ

∑
l∈NR

P̄Rl + ηl
˜̄RFl (36a)

s.t. (27d), (31b), and (33b), (36b)

where the optimal solution to P2-4 is given as

Γ∗l = Λ−1
l and ϕ∗k = Int−1

k . (37)

By applying the dual decomposition to P2-3 [36–38], the Lagrangian function associated with

problem P2-3 is given by

L(x,A,W,Ψ,µ)

=
∑
s∈NS

∑
k∈NU

χs,kAs,k+ω
∑
l∈NR

(P̄Rl+ηl
˜̄RFl)+

∑
k∈NU

µk(
Lk∑

s∈NS ςs,kAs,k
+
Dk

˜̄RUk

− τk),
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where µ = [µ1, . . . , µK ]T ∈ CK×1 is composed of the Lagrangian multipliers. The corresponding

Lagrangian dual function is given by

g(µ) = g1(µ) + g2(µ)−
∑
k∈NU

µkτk, (38)

where 
g1(µ) = inf

x,A

∑
s∈NS

∑
k∈NU

χs,kAs,k +
∑
k∈NU

µk
Lk∑

s∈NS
ςs,kAs,k

,

s.t. (17d), (17e), (32c), (32d), and (33c),
(39)

and 
g2(µ) = inf

Ψ,W

∑
l∈NR

(ωP̄Rl + ωηl
˜̄RFl) +

∑
k∈NU

µk
Dk
˜̄RUk

,

s.t. (27d), (31b), and (31c).
(40)

Then, the master dual problem associated with P2-3 is formulated as

P2-5: max
µ

g(µ). (41)

Since P2-3 is convex and satisfies the Slater’s condition, the duality gap of P2-3 and its dual

problem P2-5 is zero [39]. In the following, we propose a distributed algorithm based on

hierarchical decomposition to find the optimal solution to P2-2.

B. Distributed Algorithm Based on Hierarchical Decomposition

In Algorithm 5, the upper level primal decomposition is conducted, which introduces P2-3

and P2-4. Based on P2-3, the lower level dual decomposition is conducted to formulate the dual

problem P2-5. Therefore, the distributed algorithm should involve two level iterations: the outer

iteration is for P2-3 and P2-4 to converge and the inner iteration is for P2-5 to converge.

In the outer iteration, the optimal solution to P2-4 is directly given as Γ
(t)
l = (Λ

(t)
l )−1 and ϕ(t)

k =

(Int(t)k )−1. However, to obtain the optimal solution to P2-3, it relies on the dual problem P2-5,

whose optimal solution can be achieved via the inner iteration where (x(q),A(q)) and (W(q),Ψ(q))

are alternatingly updated. Specifically, at p-th inner iteration:

1) Data center’s algorithm jointly optimizes task scheduling and computation resource

allocation. x(p) and A(p) are updated by solving subproblem g1(µ) with a BnB algorithm

similar to Algorithm 1 or a combinational algorithm similar to Algorithm 3.
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2) BBU pool’s algorithm jointly optimizes power allocation and compression noise. W(p)

and Ψ(p) are updated by solving subproblem g2(µ) with an iterative coordinate descent

algorithm similar to Algorithm 4.

3) On the other hand, the price factor is adjusted by UEs’ algorithm. Since g(µ) is not

differentiable over µk, a sub-gradient approach is adopted here to update the price factor

µk at UE k, i.e.,

µ
(p+1)
k =

[
µ

(p)
k + δ(p)

µ

(
Lk∑

s∈NS ςs,kA
(p)
s,k

+
Dk

˜̄RUk

− τk

)]+

,∀k ∈ NU , (42)

where δ(p)
µ is dynamically chosen stepsize sequence [36, 40]. Similarly, after the SDR problem

of P2-2 is solved, we need to extract pl,k’s from W∗ with Gaussian randomization method [34].

Note that there are three sub-algorithms named data center’s algorithm, BBU pool’s algorithm,

and UEs’ algorithm in Algorithm 5 and they are executed in parallel in the data center, the BBU

pool, and the UEs, respectively. Therefore, the complexity is significantly reduced compared to

the direct optimization of P2-2.

VI. NUMERICAL RESULTS

In this section, we present the numerical results to show the performance of our proposed

algorithms, where L RRHs and K UEs are distributed uniformly and independently in an area

with a radius of 100 m. The outer interference combined with background noise is set as -150

dBm/Hz and the path loss function is given as 128.1 + 37.6 log10(d) where d in km. The system

bandwidth is B = 20 MHz and the number of RRH antenna is N = 5. For simplicity, we

assume that each RRH has the same parameters and is subject to the same constraints, i.e.,

P
(MAX)
Rl

= 1 W, Cl = 2 bps/Hz, ηl = 0.5, υl = 0.25, p(Active)
Rl

= 6.8 W, and p
(Sleep)
Rl

= 4.3 W,

∀l ∈ NR. The task load Lk is assumed to be uniformly distributed in [0.01, 0.1] and the output

data is Dk = 1.6 Mbits, ∀k ∈ NU . The parameters of the servers are set as P (Static)
Ss

= 2 W,

χs,k = 1,∀s ∈ NS, ∀k ∈ NU , and the computing capacity λs is uniformly distributed in [λlb, λub].

Moreover, we assume the execution efficiency ςs,k is distributed uniformly in [ςlb, ςub], c1 = 1,

c2 = 10−5, and ω = 1.
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Algorithm 5 Distributed algorithm based on hierarchical decomposition.
1: Initialization: W(0), Ψ(0), t = 0.

2: while Convergence of outer iteration (t) not achieved do

3: t = t+ 1 and p = 0.

4: while Convergence of inner iteration (p) not achieved do

5: p = p+ 1;

6: Data center’s algorithm: Update x(p) and A(p) by solving subproblem g1(µ).

7: BBU pool’s algorithm: Update W(p) and Ψ(p) by solving subproblem g2(µ).

8: UEs’ algorithm: Update µ(p) according to (42).

9: end while

10: Update {x(t),A(t),W(t),Ψ(t)} as {x(p),A(p),W(p),Ψ(p)} at the convergence of the inner

iteration.

11: Update Γ
(t)
l = Λ−1

l (W(t),Ψ(t)),∀l ∈ NR, and ϕ(t)
k

= Int−1
k (W(t),Ψ(t)),∀k ∈ NU .

12: end while

13: Return {x(t),A(t),W(t),Ψ(t)} as the optimal solution at the convergence of the outer

iteration.

A. Power Consumption for Computation

We first consider that each task has the same execution delay constraint, i.e., τ (EX)
k =

τ (EX), ∀k ∈ NU . Fig. 2 shows the sum of power consumed by all the VMs, i.e., PVM =∑
s∈NS

∑
k∈NU PVMs,k

, versus the execution delay constraint τ (EX) with {K = 6, S = 4, λlb =

1, λub = 2}. It is observed that with the increase of τ (EX), the consumed power decreases

accordingly because the VMs have more time to finish the tasks with a lower power. To study

the influence of the execution efficiency ςs,k on the power consumption of the VMs, we set

two different regimes [0.1, 0.5] and [0.6,1] representing low and high execution efficiency cases,

respectively. It is observed that higher execution efficiency leads to less power consumption.

Next, we compare the BnB algorithm (i.e., Algorithm 1) with the combinational algorithm

(i.e., Algorithm 3) versus the execution efficiency ςs,k in Fig. 3 with {K = 6, S = 4, λlb =

0.1, λub = 1}. Since ςs,k’s are random variables distributed uniformly in [ςlb, ςub], we divide the

value range into many segments [ςlb, ςlb + 0.1] with a fixed length 0.1 for fairness and use the
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Fig. 2. Sum of power consumed by VMs versus execution delay constraint.

lower bound of the execution efficiency ςlb as the x-axis. Fig. 3 is the average result of 200

independent realizations. It is found that the power consumption for computation decreases as

the lower bound of the execution efficiency ςlb increases because the demand for computation

resource is reduced. We also observe that the solutions obtained by the combinational task

scheduling algorithm are suboptimal and require a little more power consumption but with

much less runtime, compared to the BnB algorithm. Therefore, in order to save time and reduce

computation complexity, it is suggested to adopt the combinational task scheduling algorithm

with a little performance loss. However, the optimal solution can be found via the BnB algorithm

at the cost of computational time and complexity. Besides, Fig. 3(b) suggests that as the lower

bound of the execution efficiency ςlb increases, indicating that the overall execution efficiency

of servers is improved, then the fraction of times where Algorithms 2 fails decreases.

B. Power Consumption for Transmission

In the following, we first validate the accuracy of the approximate results derived in Section

IV. We define ε1 =
∑

k∈NU
|R̄Uk−RUk |

RUk
, ε2 =

∑
l∈NR

|R̄Fl−RFl |
RFl

, and ε3 =
∑

l∈NR
|P̄Rl−PRl |

PRl
as the
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Fig. 3. Comparison of BnB algorithm and combinational algorithm: (a) average power consumption of the VMs and (b) average
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inaccuracy levels of the sum rate of UEs R̄U =
∑

k∈NU R̄Uk , the sum rate of fronthaul links

R̄F =
∑

l∈NR R̄Fl , and the sum power of RRHs P̄R =
∑

l∈NR P̄Rl , respectively. Fig. 4 shows

that these approximate results are not only close to their original expressions but become more

accurate as the number of RRH antennas N increases.

For notational simplicity, we define P (TR) =
∑

l∈NR(PRl + PFl) as the total power consump-

tion for transmission. It is also assumed that each UE has the same transmission delay, i.e.,

τ
(TR)
k = τ (TR),∀k ∈ NU . To compare compression-based transmission scheme with the data-

sharing transmission scheme, Fig. 5 plots P (TR) versus the transmission delay constraint τ (TR).

It can be observed that the power consumption of both transmission schemes decrease as the

transmission delay constraint increases. In addition, Fig. 5 indicates that with strict transmission

delay constraint, i.e., small values of τ (TR), compression-based transmission scheme produces

less power consumption. However, when the transmission delay constraint is loose, i.e., large

values of τ (TR), the data-sharing transmission scheme achieves a better performance. This is

because the fronthaul rate of compression scheme relies on the signal-to-quantization-noise ratio

whereas that of data-sharing scheme depends on the UEs’ rates and the serving RRH numbers,

since the data-sharing scheme delivers each UE’s message to all the RRHs that serve this UE

via fronthaul links. A smaller value of τ (TR) suggests a higher data-rate demand, then more

RRHs are required to serve the UEs. Therefore, a faster increase of the fronthaul rate occurs in

the data-sharing scheme. However, a gradual increase of the fronthaul rate in the compression

scheme as the data-rate demand rises.

C. Joint Network Power Minimization Problem for Computation and Transmission

Finally, we present the network power minimization with respect to the delay constraint τk

under different transmission schemes (i.e., compression based scheme and data-sharing based

scheme) and different executing efficiency cases (i.e., low executing efficiency case with {ςlb =

0.1, ςub = 0.5} and high executing efficiency case with {ςlb = 0.6, ςub = 1}) in Fig. 6. For

simplicity, we assume τk = τ, ∀k ∈ NU . The network power consumption decreases with the

increase of the delay constraint because when the delay constraint increases, the QoS level

decreases and less power is required to meet the QoS. Similarly, when the average executing

efficiency is improved, less computational resource is required thus the network power consump-

tion is also reduced. It is also observed that the network adopts the transmission scheme based
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on compression shows a better performance than the data-sharing transmission scheme.

VII. CONCLUSION

In this paper, we considered the network power consumption including power consumptions

for computation and transmission in a downlink C-RAN. The power minimization problem

for computation was a slow time-scale problem, since the joint design of task scheduling and

computing resource allocation was generally executed much slower than milliseconds. However,

the power minimization problem for transmission was a fast time-scale problem because the joint

optimization of power allocation and compression was based on small-scale fading. Therefore,

the joint network power minimization problem was a mixed time-scale problem. To overcome the

time-scale challenge, we introduced the approximate results of the original problems according to

large system analysis. The approximate results were dependent on statistical channel information

and independent on small-scale fading, thus the fast/mixed time-scale problem was turned into

a slow time-scale one. We proposed a BnB algorithm and a combinational algorithm to find
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the optimal and suboptimal solutions to the power minimization problem for computation,

respectively, and introduced an iterative coordinate descent algorithm to find solutions to the

power minimization problem for transmission. Then a distributed algorithm based on hierarchical

decomposition was also proposed to solve the joint network power minimization problem. Simu-

lation results showed that for the power minimization problem for computation, the combinational

algorithm achieved the suboptimal solutions with much less computational complexity and time,

compared to the BnB algorithm. In addition, as the delay constraint increased, suggesting the

decrease of the QoS demand, the joint network power consumption was also reduced.

APPENDIX

PROOF OF LEMMA 1

Based on the law of large numbers, results (23) and (24) can be directly obtained with the

following expressions [22, 41]:

1

N
h̃l,kh̃

†
l,k

N→∞−−−→ 1

N
IN and

1

N
h̃l,kh̃

†
l,k′

N→∞−−−→ 0, k′ 6= k. (43)

Then we focus on result (25). We first define a function f(z) = log2 |HlPlH
†
l + zIN + Ψl|,

which tends to the numerator of RFl as z → 0. The derivative of f(z) over z is

∂f(z)

∂z
=

1

log 2
tr(HlPlH

†
l + zIN + Ψl)

−1. (44)

Using the random matrix theory, we have

tr(HlPlH
†
l + zIN + Ψl)

−1 � tr

(∑
k∈NU

pl,kdl,k
1 + el,k

IN + zIN + Ψl

)−1

. (45)

Then according to [42, 43], we have result (25) with z → 0. �
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