
1

An Integrated Topology Control Framework to
Accelerate Consensus in Broadcast Wireless Sensor

Networks
Massimo Vecchio, Gennaro Amendola and Pietro Ducange

Abstract—One of the primary constraints in the design and
deployment of WSNs is energy, as sensor nodes are powered by
batteries. In such networks, energy efficiency can be achieved by
reducing the use of the onboard radios, for instance limiting
packet transmissions. The broadcast nature of the wireless
channel surely represents an advantage in this respect: each node
has to send a single broadcast packet to simultaneously reach
all its neighboring nodes, thus reducing the number of required
transmissions. We present an integrated optimization framework
leveraging on this advantage to improve the convergence speed
of a distributed consensus algorithm, by means of topology
design. We evaluate the effectiveness of the proposed framework
in terms of overall energy savings and worst-case algorithmic
complexity of the optimization task, on different classes of
network topologies, and compare such results with those obtained
by a pure greedy strategy recently proposed in the literature.
We prove that our framework can slightly reduce the average
nodes’ energy cost with respect to its greedy antagonist, as well
as reducing the computational overhead of the optimization task
to a small fraction of the latter. These unique features make it
suitable to tackle the problem also over large scenarios.

Index Terms—Average consensus, algebraic connectivity, graph
Laplacian, range assignment, topology control, wireless multicast
advantage, greedy algorithms, look-ahead heuristics

I. INTRODUCTION

Consensus is one of the most fundamental and ancient prob-
lems in distributed computing: in its most general meaning it
consists in reaching an agreement on some value that depends
on the state of all the agents involved in the computation. The
average consensus is simply the agreement of the agents on
their average state. Despite this plain definition and its age,
consensus is back in vogue over the past few years, especially
because of the hype around cryptocurrencies and related
technology [1]. In this application domain, consensus is quite
adopted (together with its derivatives like “consensus rules”,
“consensus formation algorithms”, etc.) mainly to decide
whether to commit a transaction to a distributed database, or to
agree on someone’s digital identity, etc. However, consensus is
a thriving research topic also in other disciplines and contexts,
extending from graph theory [2], systems science [3] and
dynamic networks [4] to monitoring and control of industrial
plants [5], and wireless communications [6], [7].

Regarding the latter and starting from the seminal work
discussed in [8], a lot of research effort has been directed

M. Vecchio is with the OpenIoT research unit, FBK CREATE-NET, Italy
G. Amendola and P. Ducange are with the SMARTEST Research Centre,

eCampus University, Italy.

to the study of the average consensus problem in Wireless
Sensor Networks (WSNs). The interest on this subject coming
from the WSN community is confirmed by a fervent research
activity of the last years: see, for instance, [9], [10], [11] and
the references therein. Indeed, focusing on the WSN area,
there exist several practical circumstances in which to solve the
distributed consensus algorithm can become extremely useful:
clock synchronization, intrusion detection, self-localization,
sensor calibration and anomaly detection, only to mention
few of them. The main reason for this attraction lies in the
fact that distributed consensus algorithms only require iterative
local information exchanges among the neighboring nodes
and the computation of weighted sums at each node. This
feature is extremely attractive when the goal is to aggregate
data and information coming from several sources (e.g., sen-
sors) deployed in harsh, possibly large, areas. Recall, in the
end, that this is one the most common assumptions of the
Internet of Things in its practical declination [12]. Indeed,
as stated in [5], WSNs can still play a key-role in situation
awareness, namely in the mechanism of collecting, aggregating
and mining knowledge from data for its posterior usage,
which has a crucial importance when WSNs are deployed for
monitoring and controlling, for instance in the context of living
environments and/or industrial plants.

However, one important issue regarding distributed average
consensus algorithms in WSNs is its convergence speed.
Indeed, reducing consensus convergence time results in fewer
transmissions, hence it has direct impact on nodes’ battery
lifetime. State-of-the-art approaches to accelerate convergence
speed can be classified in two groups, namely:

1) fixed network topology: in this case, the only viable
option is to optimize the edge weights, in order to
minimize convergence time (see [13], [14], [15]);

2) dynamic network topology: in this case, the underlying
network graph can somehow be altered. This is being
reflected in additional flexibility, since optimization can
be performed not only on the edge weights, but also on
the graph itself [5], [16], [17], [18], [19], [20], [21]. We
will refer to this approach as topology optimization.

Generally speaking, topology optimization is a very difficult
combinatorial problem [22]; it follows that sub-optimal opti-
mization approaches should be adopted, as done in the recent
literature. For instance, in [16] the convergence properties
of different topology classes are theoretically analyzed on
average, given the number of nodes of a general network.

2

Moreover, authors of [18] start from a given topology and
prove that removing links can be beneficial in terms of
convergence speed. This seminal approach was then refined in
[19], in order to judiciously remove and add links with the goal
of speeding up the consensus algorithm, without increasing
the overall network energy consumption. Finally, when dealing
with WSNs with static nodes, topology control can be achieved
by varying the nodes’ transmission ranges (e.g., by varying
their radios’ transmit power), as considered in [5], [17], [20],
[21]. To the best of our knowledge, except [21], all of the
previous approaches to topology optimization for improving
consensus speed implicitly assume that the underlying network
is unicast, so that links can be controlled independently.
However, in WSNs there exists the possibility to exploit the
broadcast nature of the wireless channel. More specifically, at
each iteration, each node of the network broadcasts its state,
while all of its neighbors simultaneously listen, and in this way
the number of required transmissions is reduced. This is the
reason why this concept is also known as Wireless Multicast
Advantage (WMA) [23]. Unfortunately, when leveraging on
WMA, the variation of the transmission range of a given node
of the network affects the links to all of its neighbors, so that
these cannot be independently controlled. This motivates the
quest for specific topology optimization strategies that take
these additional constraints into account.

The basic idea of this paper is to start from the only
topology optimization technique that explicitly relies on the
WMA to speed up the distributed consensus of the underlying
network, namely, the “full greedy (sparsification) strategy”
proposed in [21]. This technique is adopted as a reference
strategy, both to derive alternative and more efficient tech-
niques and to have a baseline for quantitative comparisons.
More in detail, focusing on average consensus algorithms
of the constant-weight type [24], our goal is to optimize
each node’s transmission range of a WSN that only relies on
broadcast transmissions. Probably the first issue arising in such
context is the fact that, if the transmission ranges of nodes
are different, and assuming reciprocal channels, it may well
happen that one node i is out of the coverage range of another
node j, whereas node j can listen to node i’s transmissions. In
other words, the underlying graph becomes directed. Condi-
tions for reaching average consensus with directed topologies
are more demanding than those for the undirected case, since
such networks usually require some sort of graph balancing
[8], which is difficult to enforce in practice. To sidestep this
problem and deal only with undirected topologies, we adopt
the same strategy used in [21] where, at application layer,
each node of the network simply drops those broadcast packets
received from nodes not included in its own neighboring list.

More in detail, we propose a modular simulation and
testing environment (i.e., an integrated framework) able to
facilitate the design and the assessment of various topology-
control optimization algorithms, purposely forged to accelerate
distributed consensus in broadcast WSNs. To this aim, Sec. II
gives a preliminary introduction of the adopted system model,
together with a formal introduction of the optimization prob-
lem to solve and some formal definitions and assumptions.
Then, starting from the reference strategy proposed in [21]

and adopting a top-down design, in Sec. III we identify and
describe the three main functional blocks that, wired together,
constitute the proposed integrated optimization framework.
Moreover, to highlight the flexibility of such framework, in
Sec. IV we substantially modify each functional block that
actually constitute the realization of the baseline technique,
so as to forge a new family of quasi-greedy techniques able
to more efficiently tackle the original problem. Through the
extensive simulation campaign described in Sec. V, we isolate
a very specific member of the proposed family and for this
technique we verify that, besides producing consistently better
optimized solutions with respect to the baseline technique, it
consumes only a small fraction of the computational power re-
quired to the baseline counterpart. These unique features make
the selected technique particularly suitable when performing
topology-control in WSN scenarios composed by hundreds
of nodes and a single exact quality assessment of a network
topology may become computationally very intensive, as it
basically requires the inversion of an n× n matrix1. In these
circumstances, it makes sense to:

1) reduce as much as possible the overall number of exact
quality assessments performed during the execution of
the topology optimization algorithm; and

2) reduce the computational time required to assess the
quality of a single network topology.

The selected technique, being a direct realization of the pro-
posed integrated optimization framework, is able to produce
such better results with respect to the baseline counterpart
because of a combination of (i) a more effective search strategy
with respect to a standard greedy method, and (ii) a faster
approximated quality assessment of a network topology. More
in detail, we show that on large network scenarios the selected
solution is able to save up to around 17% of the energy needed
for the nodes to reach consensus, w.r.t. the greedy counterpart
and at reduced computational cost, since it only requires the
2% of the total number of eigenvalue decompositions required
by its antagonist. Concluding, as discussed in Sec. VI, the
proposed optimization framework is able to accommodate
more sophisticated and effective strategies with respect to pure
greedy local search methods.

II. PRELIMINARIES

This section introduces the main concepts and assumptions
necessary to formally devise the proposed optimization frame-
work. More in detail, Sec. II-A describes the adopted system
model, Sec. II-B formally introduces the distributed consensus
problem, while Sec. II-C details the model adopted in our
framework to estimate the energy cost required to a WSN to
reach the average consensus, in terms of communication cost
and based on the actual nodes’ transmission ranges.

A. Graph model

Consider a set V of uniformly and randomly deployed nodes
with indexes i ∈ {1, . . . , n}. Let dij be the distance between
nodes i and j, and let R = {ri ∈ [0, rmax], i = 1, . . . , n} be a

1n represents the total number of nodes of the network.

3

set of symmetric connectivity radii (transmission ranges, in the
following), where rmax > 0 denotes the maximum allowable
range. In other words,R represents a given network configura-
tion, in terms of transmission ranges of the comprising nodes.
Then, we express the set of edges E ⊆ V × V of the graph
G = {V,E} in terms of R, as

(i, j) ∈ E ⇔ dij ≤ min{ri, rj}. (1)

Indeed, in this way the resulting graph is undirected by con-
struction. At this point, it is worth noticing that, if ri = r ∀i,
then we recover the standard Random Geometric Graph (RGG)
model [25]. However, with the aim of gaining flexibility during
the optimization phase, we allow for different transmission
ranges at different nodes. Obviously, this complicates the
underlying range assignment (RA) problem that becomes NP-
hard, as discussed in [26].

Once defined G, we can express the neighborhood of the
generic node i in terms of the network’s edges, as

Ni = {j : (i, j) ∈ E}. (2)

Finally, we define the elements of the n×n Laplacian matrix
L of G, as

Lij =

 |Ni| if i = j
−1 if i 6= j and j ∈ Ni
0 otherwise.

(3)

By construction L is symmetric. Let λ1(L) ≤ λ2(L) ≤
. . . ≤ λn(L) denote its eigenvalues. Since all rows of L
have zero sum, it follows from the Geršgorin theorem that
L is positive semidefinite; in fact, one has λ1(L) = 0 with
corresponding eigenvector the n × 1 all-ones vector 1, since
L1 = 0. Moreover, λ2(L) > 0 if and only if G is connected
[27]. The second smallest eigenvalue λ2(L) is known as the
algebraic connectivity of the graph.

B. Average consensus algorithm

Let x(0) = [x1(0) . . . xn(0)]T ∈ Rn denote the vector
comprising the initial measurements at the nodes. The goal
of the average consensus algorithm is to have all nodes
compute the average of these values, x̄ = 1

n1
Tx(0) iteratively

and in a distributed fashion. Notice that, with the adjective
distributed we mean that the generic node i of the network
only communicates with nodes within its neighborhood Ni.
Moreover, we focus on constant-weight type distributed linear
iterations [24], in which the state of node i is iteratively
updated as

xi(k + 1) = xi(k) + α
∑
j∈Ni

[xj(k)− xi(k)], (4)

where α > 0 is a step-size. Letting x(k) = [x1(k) . . . xn(k)]T

be the state vector at iteration k, we can write (4) as x(k+1) =
(I − αL)x(k). The goal is to have the states at all nodes
converge to x̄, given any initial condition x(0), i.e.:

lim
k→∞

(I − αL)kx(0) = x̄1 =
1

n
11Tx(0). (5)

It is well known that (5) holds if and only if |1−αλi(L)| < 1
for 2 ≤ i ≤ n [13] i.e., if and only if 0 < α < 2/λ2(L). As
in [13], we can define the asymptotic convergence factor as

ρ = sup
x(0) 6=x̄1

lim
k→∞

(
||x(k)− x̄1||2
||x(0)− x̄1||2

) 1
k

(6)

and its corresponding convergence time as

τ =
s

log(1/ρ)
. (7)

Specifically, τ is indicative of the number of iterations
required for the error norm ||x(k) − x̄1||2 to decrease by a
factor of e−s. Without loss of generality, in the following we
will set s = 7 in (7), which amounts to a decrease of the error
norm to 0.1% of its initial value.

Then, as shown in [13], we have

ρ = max
2≤i≤n

|1− αλi(L)|, (8)

therefore the optimum step-size α minimizing (8) is

α? =
2

λn(L) + λ2(L)
. (9)

Similarly, we can define the corresponding minimum value of
ρ as

ρ? =
1− γ(L)

1 + γ(L)
, (10)

where the ratio

γ(L) = λ2(L)/λn(L) (11)

represents the objective function to maximize.

C. Consensus cost

First of all, it is worth to reveal in advance that the frame-
work we are going to introduce in the next section behaves as
a direct search optimization strategy [28], in the sense that the
quality assessment of a solution of the problem is computed
without the need of building any model for the objective
function. This means that no assumptions are necessary on
the latter continuity or derivability; in other words, the quality
of a feasible solution is explicitly computed as a cost value that
only depends on the actual solution’s configuration and other
system-wide parameters [29]. In this way, in our framework,
complete freedom is left to the algorithm designer when
defining the so-called assess block (see Sec. III-B).

Said that, the final goal of the optimization framework
proposed in this paper is to modify a given broadcast WSN
topology in a way that the convergence speed of the distributed
consensus algorithm executed by the nodes comprising such
network is improved. At the same time, it is understood
that the ultimate cost we are interested in undermining is
the total energy E spent by the network to reach such a
consensus. Thus, in the following, instead of maximizing (11)
we prefer optimizing the energy cost Ec, which is directly
proportional to E and expressible in terms of the actual
network configuration R as:

E ∝ Ec(R) =
τ

n

n∑
i=1

r2
i . (12)

4

In order to explain the last relationship, we notice that
the energy cost Ec can be approximated by the sum of the
transmission energy cost Etx and the receiving energy cost
Erx necessary, on overage, to the nodes of the network to
reach a consensus.

a) Transmission energy cost Etx: it is proportional to the
average τ · avg (powtx) of the transmission powers. As done
in [21], we assume that powtx is proportional to rβi , where β
represents the path-loss exponent and it set to 2, getting

Etx ∝ τ · 1

N

n∑
i=1

r2
i . (13)

b) Receiving energy cost Erx: it is proportional to the
average τ · avg (powrx) of the receiving powers, which are
proportional to the number of nodes within the transmission
range of each node (i.e., the number of actual neighbors N i).
Therefore, we have:

Erx ∝ τ · 1

N

n∑
i=1

N i. (14)

Since the nodes of the topologies we are taking into account
are randomly and uniformly distributed in the unity square,
N i is proportional to the area of the region in which such
neighbors are, which is contained in the circle with radius ri.
Therefore, we have:

Erx ∝ τ · 1

N

n∑
i=1

r2
i . (15)

More precisely, since in our framework we allow different
radii for the nodes, the whole circle is not needed and as a
matter of fact the last expression is an upper bound for Erx.

Since Etx and Erx are proportional to (or proportionally
bounded from above by) τ · 1

N

∑
i r

2
i , also Ec is and, in the

following sections, whenever we mention “costs”, we will be
implicitly referring to (12).

III. ARCHITECTURE OF THE PROPOSED OPTIMIZATION
FRAMEWORK

This paper takes roots in the seminal work described in
[21], where the authors proposed some simple greedy strate-
gies able to optimize the transmission ranges of a broadcast
WSN, so as to accelerate the distributed average consensus
algorithm running at sensor nodes. Starting from there, one
of the goals of this paper is to provide a more flexible
simulation-based implementation and testing environment able
to generalize the very specific behaviour of the techniques
proposed in [21] and, at the same time, to ease the forge and
the assessment of new topology control techniques. Usually, in
computer science terminology, such an environment is termed
framework: a software platform modeling a specific relevant
domain, where software providing generic functionality can
be selectively changed by additional user-written code, thus
providing application-specific software [30]. In the remaining
of this section, by adopting a classical top-down design, we
will describe the main functional blocks that, wired together,
constitute the proposed framework.

To begin with, let us consider the most generic local search
strategy: a well-known direct search method that at each
iteration moves from one solution to another in the space
of candidate solutions (also known as search space). More
specifically:

1) a move is performed by applying local changes to the
current solution;

2) the quality of each move (i.e., a candidate solution) is di-
rectly assessed by computing its fitness value according
to a given objective function; and

3) among the assessed moves, the most advantageous one
is selected for the next iteration of the search.

The previous actions are repeated until a stop criterion is ver-
ified (e.g., maximum number of solution evaluations, elapsed
time, etc.) and, at the end of the search procedure, the best
solution found is returned [29]. Fig. 1 depicts the diagram of
such a generic local search-based optimization framework, as
composed by three main blocks, each of which implementing
one of the three main actions of the search method, namely:
move, assess and select. As we will see in the following, the
optimization framework proposed in this paper belongs to this
classical optimization scheme.

Figure 1. The block diagram of a general local search-based optimization
scheme which the proposed framework belongs to.

A. The move block

Let us recall the main intuition behind the greedy strate-
gies proposed in [21]: there, the problem of accelerating
the average consensus algorithm was firstly mapped onto a
more general range assignment (RA) broadcast problem. Then,
starting from a maximally connected topology, all the proposed
strategies successively removed one link at each iteration step
(in this respect, they were all “sparsification” techniques). The
selection of the link to remove fell into the most advantageous
one (in this respect, in a purely greedy fashion) at the given
iteration and in terms of a given metric (e.g., convergence time,
energy cost, etc.) among a purposely formed list of candidate
links (“list of candidates”, Clist in the following). Finally,
the way such lists were populated at each iteration derived
the different greedy sparsification strategies. For instance, the
best greedy strategy proposed in [21], namely the “full greedy
strategy”, simply populated Clist at each iteration step by
considering those links connecting each node of the network
to its corresponding farthest neighboring node.

To generalize this intuition, we define a functional block
able to output a list of candidate solutions, starting from a
given graph representation (e.g., as the corresponding symmet-
ric Laplacian matrix L) and according to a consistent set of
rules. We term this functional block topology-control policy-
maker and, by slight abuse of dynamic programming nomen-
clature, we say that the input Laplacian matrix represents the

5

current state, while the output is a list of possible actions [31].
As a proof of this concept, Algorithm 1 depicts a possible
translation into a topology-control policy-maker block of the
way the full greedy strategy described in [21] populated the
list of candidates at each iteration t2.

Algorithm 1. The translation of the specific strategy adopted by the full
greedy strategy of [21] into a topology-control policy-maker program.
1: procedure FARTHESTNODEPOLICYMAKER

Input: D, Lt

Output: Clistt
2: Clistt ← emptyList
3: for i← 1 to n do
4: j ← FARTHESTNODE(i,Lt,D)
5: Clistt.PUSH(GETLINK(i, j))
6: end for
7: return Clistt
8: end procedure

Notice that Algorithm 1 uses an internal utility function
FARTHESTNODE to isolate the index j of the farthest neigh-
boring node of the given node i. This is due to the intrinsic
notion of “farthest neighbor” that cannot avoid considering,
besides the Laplacian matrix of the underlying undirected
graph, the actual network topology (e.g., the immutable x-y
coordinates of each node of the topology or, equivalently, the
global n×n distance matrix, D in Algorithm 1). Due to severe
space limitation, the implementation of this utility function is
omitted.

B. The assess block

In the previous section, we highlighted the crucial role
played within our framework by the policy-maker block when
designing effective, but computationally affordable, topology-
control optimization algorithms. To step forward in the de-
scription of the proposed framework, it is worth looking at
the action of picking the best candidate out of Clist (“picking
action”, in the following) as composed by two elementary sub-
actions, namely:

1) the assessment of the quality of each candidate solution,
according to a given metric; and

2) the selection of the best assessed candidate solution,
according to a given decision strategy.

Therefore, in the proposed framework, the picking action is
further decomposed into two separate functional blocks. This
approach provides two main advantages, detailed next. The
first advantage is architectural: to fix the ideas, it is worth
recalling that all the strategies proposed in [21] evaluated the
quality of a candidate solution by estimating the convergence
time of a consensus algorithm running on the nodes (or, equiv-
alently, the average energy cost associated to this execution)
of the underlying network topology. There, to perform such
estimation, the heaviest operation (in terms of computational
power) was the eigenvalue decomposition of the Laplacian
matrix representing the actual network topology. More for-
mally, all the strategies proposed in [21] assessed the quality of
the candidate solutions by solving (7) (or, equivalently, (12)).

2In the following, we adopt the notation Xt to say that variable X depends
on iteration t.

Obviously, the latter is only a way to assess the quality of
a candidate solution, while alternative assessment functions
can also be defined. Thus, to have a dedicated functional
block responsible of the quality assessment of a topology adds
flexibility to the proposed framework. The second advantage
is keener and leverages on the intuition of relying on faster
quality assessment functions for the candidate solutions, even
at the cost of obtaining less accurate cost estimations. Indeed,
by speeding up the process of estimating each candidate
solution contained in Clist, it would be possible to evaluate
more candidate solutions per time unit. Hence, the possibility
of designing and plugging computationally-faster assessment
blocks delivers to our framework the non-obvious feature of
accommodating topology-control strategies relying on lowly
restrictive policy-makers implementations (i.e., policy-maker
blocks producing larger candidate lists at each iteration). Said
differently, the proposed framework is able to trade-off some
accuracy in the Clist assessment with an extended overall
exploration capability of the search space.

C. The select block

As introduced in the previous section, the select block is
responsible of selecting the best assessed candidate out of
Clist and according to a given decision strategy. By adopting
the same approach used to introduce the other blocks of the
proposed framework, it is worth to recall how such primitive
action was implemented by the techniques described in [21].
There, at each iteration of the search procedure, the candidate
solution characterized by the minimum estimated convergence
time (or, equivalently, the minimum average energy cost) was
selected as the topology for the next iteration. In this sense,
all the strategies proposed there were intrinsically greedy.
However, as for the assessment block, this is not the only way
a direct search algorithm has to implement the select move. On
the contrary, since this specific RA problem does not exhibit
neither an optimal sub-structure, nor a greedy-choice property
[32] (otherwise the problem would have not been NP-hard, as
proved in [22]), from a research point of view it is extremely
interesting to explore alternative strategies to more effectively
tackle it. Thus, with the goal of enabling such possibility, our
framework abstracts the select action, providing such action
as a dedicated functional block.

IV. A FAMILY OF QUASI-GREEDY APPROXIMATED
TECHNIQUES

In the previous section, we thoroughly described the three
main functional blocks that wired together compose the pro-
posed optimization framework. Moreover, to accentuate its
generalization capabilities, we showed how the original full
greedy strategy proposed in [21] could be ported into such
framework. Along the same lines, in this section, we will
introduce some alternative implementations of the functional
blocks that, combined together, constitute a new family of
optimization techniques suitable for more efficiently tackling
the original RA problem. We term this family “quasi-greedy
approximated techniques”.

6

A. Move block: unconstrained link removal policy-maker

In Sec. III, we drew attention on the crucial role played
by the move block when designing effective but computa-
tionally affordable topology-control algorithms. Using a more
optimization-friendly terminology, we may say that such block
is responsible of building the current solution’s “neighbor-
hood”, in a Variable Neighborhood Search (VNC) fashion
[33]. Generally, this means that the larger is the average
neighborhood size, the wider would be the portion of the
search space explored by the algorithm. Therefore, when
no other options exist to balance the trade-off between the
exploration capabilities and the computational overhead of a
direct search technique, it is critical to adopt some wisely-
designed move strategy. As per the discussion of the previous
section, in this specific context, we know that this is not the
case for our framework where, downstream of the policy-
maker block, options to balance such trade-off do exist, even
though the implementation details have not yet been disclosed.

Therefore, all the members of the family proposed in this
section rely on a not-so-restrictive policy that is here described:
the direct search starts considering, at iteration t = 0, a highly-
connected topology where all nodes’ transmission ranges are
set to a common value (i.e., Rt=0 = {ri = rmax, ∀i}); from
such network topology, the associated symmetric Laplacian
matrix Lt=0 is considered. Then, at each iteration t of the
algorithm, the policy-maker block simply populates Clistt by
pushing all the existent (undirected) links of Lt. We term this
policy unconstrained link removal policy, to emphasize that it
is still a sparsification technique (as the farthest-node policy
described in Algorithm 1 is), though there are no constraints
for an existent link of the current network topology to be
considered (as opposed to the farthest-node policy described
in Algorithm 1).

For the sake of completeness, the translation of this policy
into a program is depicted in Algorithm 2, while in Sec. IV-D
we will formally prove that this policy represents a less
restrictive version of the farthest-node policy described in
Algorithm 1. Finally, regarding the enforcement of such policy
at sensor nodes, we can assume, for instance, that each node
has knowledge of the list of neighboring nodes belonging to
the optimized network configuration. Hence, each receiving
node simply drops those broadcast packets received by nodes
not belonging to its own optimized neighboring list.

Algorithm 2. The unconstrained link removal policy-maker program.
1: procedure MOVE

Input: Lt

Output: Clistt
2: Clistt ← emptyList
3: for i← 1 to n do
4: for j ← i+ 1 to n do
5: if Lt(i, j) == −1 then
6: Clistt.PUSH(GETLINK(i, j))
7: end if
8: end for
9: end for

10: return Clistt
11: end procedure

B. Assess block: approximated quality assessment

In the context of the proposed family of topology-control
techniques, the main requirement for a suitable quality assess-
ment block is to be computationally fast. Recall, in fact, that
the move block adopted by all the techniques of this family is
quite loose, hence generating, at each iteration of the search,
several candidate topologies that need to be assessed.

Before introducing the implementation details of the three
quality assessment blocks of this family, it is important to
recall that, from an algebraic point of view, if the edge
(s, d) connecting nodes s and d is removed from graph G
represented by L, then the new Laplacian becomes

L̃ = L− ωggT , (16)

where g = es − ed, ek is the k-th column of the n × n
identity matrix and ω = 1. For this reason, L̃ is a rank-1
perturbation of L [21]. Given that the goal is to maximize
(11), to speed up such computation the proposed assessment
blocks only estimate γ(L̃) without actually performing the
eigenvalue decomposition of L̃. We start by considering (16),
this time expliciting the dependency of L̃ on ω ∈ R, as

L̃(ω) = L− ωggT . (17)

Thus, L̃ is a function of ω, as indeed its eigenvalues (and
eigenvectors), and we are interested in approximating the ratio
of its second and n-th eigenvalue, when ω = 1 (i.e., the rank-1
perturbation after removing an edge of L). To this aim, we use
three classic approximation methods, namely the first and the
second order Taylor and the log-linear approximations (1st-
order, 2nd-order and log approximations, in the following).

In what follows, the i-th eigenvalue of L̃(ω) and its cor-
responding eigenvector will be denoted by λi(ω) and vi(ω),
respectively. We can suppose that λi(ω) and vi(ω) are differ-
entiable w.r.t. ω and, since L̃(ω) is symmetric, that the vi(ω)’s
are orthonormal. From [34] we have that, for i = 1, 2, . . . , n,
the first and and the second-order derivatives of λi w.r.t. ω are

λ′i(0) = −
(
vTi g

)2
, (18)

λ′′i (0) =
∑

j=2,3,...,n
j 6=i

2

(
vTi g

)2 (
vTj g

)2
λi − λj

. (19)

For our family of techniques, we consider the following
three approximations of γ(L̃):

a) 1st-order approx: the Taylor approximation of the
ratio up to first order

γ(L̃) ' γ(L) + γ′(0); (20)

b) 2nd-order approx: the Taylor approximation of the
ratio up to second order

γ(L̃) ' γ(L) + γ′(0) +
1

2
γ′′(0); (21)

c) log approx: the Taylor approximation of the second
eigenvalue up to second order and the log-linear approximation
of the n-th eigenvalue up to first order, obtained by means of
a suitable change of variable

7

λ2(L̃) ' λ2(0) + λ′
2(0) +

1

2
λ′′
2 (0), (22)

λn(L̃) ' λn(0)−
(λ′

n(0))
2

λ′′
n(0)

(
log

(
1− λ′

n(0)

λ′′
n(0)

)
+ log

(
−λ

′
n(0)

λ′′
n(0)

))
.

(23)

For the sake of completeness, Algorithm 3 depicts a possible
implementation of the approximated quality assessment block:
at each iteration t of the search, it takes as input the current
network configuration Lt and the current list of candidates
Clistt as provided by the policy-maker block and outputs
the list of approximated quality estimations estQt, depending
on the specific approximation method and passed as input
argument AP M .

Algorithm 3. The approximated quality assessment program.
1: procedure ASSESS

Input: Lt, Clistt, AP M
Output: estQt

2: estQt ← emptyList
3: for j ← 1 to SIZE(Clistt) do
4: L̃t = Lt − Clistt[j]
5: estQt[j]← APPROXEVAL(L̃t, AP M)
6: end for
7: return estQt

8: end procedure

C. Select block: quasi-greedy selection

In this section, we describe the implementation of the
selection block adopted by the members of the proposed
family. First of all, it is worth remarking that, in the economy
of the framework, the role covered by this block is at least as
important as the other two, since its implementation exploits
some assumptions and outcomes coming from the upstream
blocks. Thus, this block can be seen as the gluing compo-
nent providing the whole family with the appearance of an
integrated optimization framework. Overall, the main macro-
effect of this block is to steer the search ability of the family
towards not-purely-greedy directions, so we term it “quasi-
greedy selection block”.

The block performs as following: at each iteration t, it sorts
the elements of estQt in ascending order. Then, it scans one
by one such sorted elements, starting from the most promising
estimated quality and until either verifying the effectiveness of
a certain element, or reaching the end of the list. In some
sense, this process resembles an auction system, in which
the elements of estQt represent the bids; before accepting
one bid, the latter is firstly verified, according to some given
constraints imposed by the equivalent of a surveyor. Upon the
verification of a bid, the block selects it for the next iteration of
the search, hence correctly closing the auction; otherwise the
next bid is processed, and so on and so forth, until verifying
(and selecting) a bid, or reaching the end of the sorted list.
In the latter case, all bids were not verifiable and, with the
proviso of storing the best actual cost found throughout the
whole verification process, such bid is forcefully verified and
selected. This because the algorithm must necessarily perform

a selection at each iteration, eventually at the cost of hill-
climbing: in this case we say that the auction is not correctly
closed.

Generally speaking, complete freedom is left in the defini-
tion of the set of conditions that together form a surveyor. For
instance, simple surveyor implementations may require bids
to be within a certain interval of real costs, or simply better
than the current cost, and so on and so forth. Nevertheless,
it is worth noticing that the more demanding the surveyor
is, the more difficult would be to correctly close an auction.
This happens because the surveyor will have to perform more
verifications, before actually selecting one bid and moving the
algorithm to the next iteration step. Even worse, too-hard-to-
meet conditions could cause whole auctions not to be correctly
closed: this means that, at a given step, all bids are not
verifiable and the “least bad” would be selected only afterward.
The opposite is also true: too loose surveyor’s conditions mean
weakening the beneficial effects of the quasi-greedy heuristics,
by instilling too much trust in the approximated assessment
block.

From a mere coding perspective, a bid is verified by exactly
assessing the average energy cost associated to the correspond-
ing Laplacian perturbation. Because of this, at iteration t of
the main optimization loop, the exact evaluation of a verified
bid can be saved and re-used at iteration t+1; this means that
at step t+ 1, the optimization engine has not to compute the
eigenvalue decomposition of Lt+1, as this computation was
already performed at step t to verify the associated bid. This
results particularly useful when, for instance, the condition
imposed by the surveyor adopts the quality of the current
Laplacian configuration as a reference value for verifying bids.
Therefore, with slight oversimplification, the implementation
of such quasi-greedy block is similar to that described in [35]
and for this reason we term it look-ahead heuristics.

Regarding the actual definition of the rules realizing the
surveyor of the proposed family, we conducted a wide offline
simulation campaign, out of which it emerged that simple com-
parisons between the cost associated to the current network
configuration Lt and those associated to L̃t are sufficient.
Therefore, all the techniques of the proposed family adopt
the following single-rule-based surveyor:

EXACTCOST(Lt) > EXACTCOST(L̃t), (24)

where EXACTCOST(x) computes the energy cost (as detailed
in (12)) associated to an input network configuration x,
represented as a symmetric Laplacian matrix. In other words,
the proposed surveyor “verifies a bid and correctly close the
current auction” as soon as the Laplacian perturbation under
verification ensures a down-hill (i.e., a real cost reduction w.r.t.
the current network configuration Lt).

Although the surveyor summarized in (24) might seem too
simplistic, it is worth highlighting that, during the search, it
is not a rare event that of not correctly closing an auction.
In terms of number of verifications, this translates into a
surveyor exactly evaluating all of the Laplacian perturbations
and selecting the “least bad” one only a-posteriori. Transpos-
ing this argument onto the energy cost curve to minimize,
the optimization algorithm could not find a down-hill and

8

reluctantly had to select an up-hill. Thus, it makes sense
to deterministically combat this pathological situation that
ultimately only wastes computational power. In our framework
this is realized by limiting the maximum number of bids
to verify at each iteration. More practically, the look-ahead
procedure is not applied exhaustively to all of the elements of
Clistt, but only to the laSize < SIZE(Clistt) most promising
ones. It is clear that, to wisely set the look-ahead size (i.e., to
dimension laSize) is as crucial as establishing well-balanced
surveyor’s conditions. In the remaining of this paper, this
concept will be made more evident by simulations while,
for the moment, we simply consider the availability of the
LIMITLASIZE() method for this purpose, to realize different
members of the same optimization family.

For the sake of completeness, a possible implementation
of this block (comprising the surveyor and the look-ahead
blocks) is depicted in Algorithm 4. The program takes as input
the current network configuration Lt and its associated energy
cost ct, together with the list of candidates Clistt (as produced
by the policy-maker block) and their corresponding estimated
qualities estQt (as produced by the approximated assessment
block). The output of this block is the selected Laplacian
perturbation Lt+1 and its associated cost ct+1. Notice that the
program relies on the [sv, si] = SORTASCENDING(x) method
that takes a sequence of unsorted values x as input, and outputs
the arrays sv and si, where sv lists the sorted values and si
contains the corresponding indexes of x. In this way, it is
possible to directly access the s-th sorted element of x, by
using the s-th index contained in si, as done, for instance, in
line 7 of Algorithm 4.

Algorithm 4. The quasi-greedy selection program.
1: procedure SELECT

Input: Lt, ct, Clistt, estQt

Output: Lt+1, ct+1

2: [sB, sI]← SORTASCENDING(estQt)
3: laSize← LIMITLASIZE()
4: s← 1
5: best← +∞
6: for j ← 1 to laSize do //bids verification

7: cost[j]← EXACTEVAL(L− Clist[sI[j]])
8: if cost[j] < best then
9: s← j //keeping the “least bad” index in s

10: if cost[j] < ct then //surveyor’s condition of (24)

11: break //bid verified: auction correctly closed

12: end if
13: end if
14: end for
15: Lt+1 ← L− Clist[sI[s]]
16: ct+1 ← cost[s]
17: return [Lt+1, ct+1]
18: end procedure

D. Worst-case complexity analysis

At this point, it is clear that an algorithm designer has
different ways to balance the trade-off between the overall
search capability of a technique belonging to the proposed
family and its computational overhead. However, as seen in
[21], the most expensive operation that the generic algorithm
executes at each iteration of the search is the eigenvalue
decomposition (EVD) of the Laplacian matrix associated to a

candidate topology. Thus, it is important to formally analyze
the worst-case complexity of a given technique, so as to give
upper bounds on the computational resources required by the
algorithm, terms of total number of EVDs (E , in the following).

Without loss of generality, we assume that a given algorithm
is executed for M iterations; if ew represents the number of
EVDs that it executes at each iteration in the worst case, then
we can derive an upper bound for E as:

E ≤M · ew. (25)

For instance, considering the full greedy strategy proposed in
[21], at most n EVDs are necessary at each iteration of the
search, so a possible upper bound EBASE for such strategy
could be:

EBASE ≤M · n. (26)

With respect to the proposed family of quasi-greedy tech-
niques, because of the arguments of the previous section, a
loose upper bound EF could be:

EF ≤M · laSizemax, (27)

where laSizemax represents the maximum size reached by the
look-ahead, throughout the execution of a given algorithm of
such family. Clearly, if such algorithm adopted a constant and
fixed size laSize for the look-ahead, then M · laSize would
represent a tighter upper bound for EF .

V. EXPERIMENTAL RESULTS

This section describes the simulation results obtained by
different topology-control strategies on various synthetically-
generated WSN scenarios. Specifically, we have generated
several network topologies by randomly and uniformly placing
n nodes in U = [0, 1] × [0, 1]. Moreover, to further differ-
entiate the network scenarios, we have varied the value of
the initial maximum transmission range as a function of n,
as rmax =

√
c logn

n . Thus, after fixing n, the larger is the
value of c, the denser would be the topology. For all the
experiments described in this section, if not differently stated,
we have varied n ∈ {50, 75, 100}, c ∈ {1, 1.5, 2} and we have
averaged the results over 30 deployments for each (n, c) pair.
Regarding the topology-control strategies, when possible, we
have used the results of the full greedy strategy proposed in
[21] as baseline reference values. Regarding the number of
iterations of any of the assessed direct search methods, if not
differently stated, we have fixed M = 500.

A. First experiment
In Sec. IV-A, we revealed that all the different members

of the proposed quasi-greedy optimization family adopt the
same policy-maker block implemented by Algorithm 1. For
this reason, it is of primary importance to assess the impact of
this block’s implementation on the overall performances of the
techniques of the family. Moreover, as introduced in Sec. IV-B,
different approximated assessment methods characterize dif-
ferent members of the family. Thus, it is also important to
assess how different approximation methods affect the overall
performances of the corresponding techniques. The objective
of this experiment, divided into two phases, is to quantitatively
measure such impacts.

9

1 1.5 2
76

78

80

82

84

86

88

90

92

c

re
la

ti
v
e

 e
n

e
rg

y
 E

 r
e
l =

 E
U

L
R

P
 /

 E
B

A
S

E

 (
%

)

50 nodes networks

75 nodes networks

100 nodes networks

(a) Phase one

1 1.5 2
3

4

5

6

7

8

9

c

a
b

s
o

lu
te

 e
n

e
rg

y

n =50

1 1.5 2
3

4

5

6

7

8

9

c

n =75

1 1.5 2
3

4

5

6

7

8

9

c

n =100

BASE

ULRP [exact]

ULRP (1st−order approx)

ULRP (2nd−order approx)

ULRP (log approx)

(b) Phase two

Figure 2. First experiment: comparison, in terms of relative and absolute
energies, between the farthest-node removal policy (BASE) and the uncon-
strained link removal policy (ULRP) in its (a) ideal and (b) approximated
variants.

a) ideal policy maker block (phase one): in this phase,
we simply compare the results obtained by the original full
greedy strategy proposed in [21] (BASE, in the following)
with those obtained by an ideal variant of the same strategy.
Specifically, the latter adopts the unconstrained link removal
policy implemented in Algorithm 1 (ULRP, in the following)
instead of the original farthest-node policy of Algorithm 2.
Fig. 2(a) depicts a comparison of such techniques, in terms of
relative energy Erel = EULRP /EBASE . Since the relative
cost is proportional to the actual average energy spent by
the nodes of the network, the goal is to minimize the ratio.
Hence, lower values of Erel correspond to better payoffs for
ULRP w.r.t. BASE. Observing Fig. 2(a), we say that ULRP
consistently finds better solutions w.r.t. BASE; moreover, the
benefits of an unconstrained link removal policy seem more
prominent in denser scenarios. However, this variant of BASE
is only ideal: recall, in fact, that the derived ULRP technique
is computationally heavy, since the assessment and selection
blocks are the original ones adopted by BASE. In other words,
this version of ULRP relies on the unconstrained removal
policy-maker, without exploiting any fast assessment block.
This is reflected on the excessively large number of EVDs that
such a technique has to compute at each iteration (ew ≤ n2,
so EULRP ≤M · n2 is a reasonable upper bound of the total
number of EVDs). Nevertheless, this phase of the experiment
is only preparatory, as its goal is only to prove by simulation
that a less restrictive link removal policy can be beneficial in

terms of overall search capability of the family.
b) real policy maker blocks (phase two): in this phase,

besides BASE and the ideal version of ULRP, we compare
three more realistic variants against each other (see Fig. 2(b)
where, to ease multiple comparisons, we depict the absolute
energy costs of each technique). More in detail, the results of
BASE and ideal ULRP (labeled as exact) are shown together
with the results obtained by three approximated ULRP vari-
ants adopting the 1st-order, 2nd-order and log approximation
blocks introduced in Sec. IV-B, respectively. We observe that
only the log approximation block could approach the results
of the exact counterpart, especially for very dense scenarios
(e.g., n = 100 and c = 2). On the other hand, it is worth
noticing also that, except for too sparse scenarios (e.g., ∀n
and c = 1), the log-approximated ULRP method has already
better search capabilities w.r.t. the reference strategy proposed
in [21].

B. Second experiment

In Sec. IV-C, we introduced the possibility of realizing
different members of the proposed quasi-greedy optimization
family, by purposely changing the implementation of the
LIMITLASIZE() method of Algorithm 4. With this experiment,
we assess the impact of some specific realizations of such
method on the overall performances of the derived techniques.
This experiment is divided into three phases.

a) unbounded look-ahead block (phase three): in this
phase, we enable also the select block described in Sec. IV-C
into the three approximated variants of the previous phase.
Specifically, for such members of the family and regarding the
LIMITLASIZE() method, we simply leave unbounded the size
of the look-ahead heuristics. This means that, at each iteration
t, LIMITLASIZE() simply returns the size of Clistt, thus
admitting all the candidate topologies produced by the policy-
maker block to the current auction. We term the members of
the proposed family using such a select block “unbounded
look-ahead”-based strategies, ULA in the following. Notice
that EULA ≤ M · n2, though looser w.r.t. ULRP, is still a
valid upper bound of the total number of EVDs. As expected,
the strategy adopting the log approximation still obtains the
best results. More interestingly, we observe that, except for
the sparsest scenarios (e.g., n = 50 and c = 1), the technique
adopting the logarithmic approximation block followed by the
ULA block is able to perform at least as good as its exact
ULRP counterpart. Moreover, for sufficiently dense scenarios
(e.g., ∀n and c > 1), the former is able to obtain better results
w.r.t. the latter. This fact confirms that pure greedy algorithms
cannot guarantee to reach optimal solutions of such a complex
optimization problem. In other words, a pure greedy method
like the exact variant of ULRP, cannot trace insurmountable
(lower) bounds for our optimization framework, in terms of
optimized topologies. This argument is further analyzed in the
following phases.

b) Dynamically-bounded look-ahead blocks (phase four):
motivated by the encouraging results of the previous phase,
in the following we aim at better measuring the impact of
the look-ahead size on the global search capability of the

10

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

a
b

s
o

lu
te

 e
n

e
rg

y

n =50

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =75

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =100

BASE

ULRP [exact]

ULRP (1st−order approx, ULA)

ULRP (2nd−order approx, ULA)

ULRP (log approx, ULA)

(a) Phase three

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

a
b

s
o

lu
te

 e
n

e
rg

y

n =50

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =75

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =100

BASE

ULRP [exact]

ULRP (log approx, ULA)

ULRP (log approx, LA=5%)

ULRP (log approx, LA=10%)

ULRP (log approx, LA=15%)

(b) Phase four

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

a
b

s
o

lu
te

 e
n

e
rg

y

n =50

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =75

1 1.5 2
3

3.5

4

4.5

5

5.5

6

6.5

c

n =100

BASE

ULRP [exact]

ULRP (log approx, ULA)

ULRP (log approx, LA=5% n)

ULRP (log approx, LA=10% n)

ULRP (log approx, LA=15% n)

ULRP (log approx, LA=sqrt(n))

(c) Phase five

Figure 3. Second experiment: comparison, in terms of absolute energy,
between the farthest-node removal policy (BASE) and the unconstrained link
removal policy (ULRP) with (a) unbounded, (b) dynamically-bounded and (c)
statically-bounded look-ahead blocks.

corresponding techniques. As briefly introduced in Sec. IV-C,
the implementation of the LIMITLASIZE() method plays a
crucial role in the economy of the proposed framework and
family of optimization strategies, since reducing (i.e., bound-
ing) the look-ahead size is the way the techniques belonging
to this family actually trade-off computational complexity and
search power. In this phase, we reduce the size of the look-
ahead to a fraction of its own current size (i.e., dynamically),
so a reasonable upper bound of the total number of EVDs
can be the one summarized in (27). In the following, for the
sake of visual clarity, we omit reporting the results obtained
with the 1st and 2nd-order approximation blocks, focusing
only on assessing the performances of the strategies adopting
the logarithmic approximation block. Fig. 3(b) compares the
curves of Fig. 3(a) with those obtained when reducing at each
iteration t the look-ahead size to 5, 10 and 15 percent of the

actual Clistt size3. Observing Fig. 3(b), we understand that
limiting the look-ahead size may be beneficial not only to save
computational power, but also to improve the effectiveness
of the optimized solutions. Indeed, the technique limiting the
look-ahead size to 5% is the best assessed one, while larger
look-ahead sizes (e.g., 10% and 15% of Clistt size) do not
guarantee better results in terms of energy cost w.r.t. the
unbounded counterpart.

c) Statically-bounded look-ahead blocks (phase five): in
the previous phase we observed that for our family of opti-
mization techniques, if we want to improve the effectiveness
of the search while also keeping the computational complexity
at bay, then we have to dynamically set the look-ahead size to
quite small values w.r.t. the actual Clistt size. It follows that it
makes sense to explore also simpler bounding strategies, that
are eventually dependent on some global network parameters
that remain constant throughout the optimization phase (i.e.,
statically). Moreover, to statically bound the look-ahead size
has the non negligible advantage of a-priori defining tighter
upper bounds of the algorithmic complexity, in terms of
number of EVDs. For this reason, in this phase, we decided to
set the look-ahead size to 5, 10, 15 percent of the total nodes
n and to

√
n, respectively (square roots and percentage values

are rounded down). The results of this experiment are shown
in Fig. 3(c), where we observe that the technique adopting
a look-ahead size equal to

√
n is able to reach equivalent

results w.r.t. its siblings. For this reason, we select and keep
it as the only representative of the whole family, for the next
experiment.

C. Third experiment

The wide simulation campaign described in Sec. V-A and
Sec. V-B ended up suggesting that a technique adopting:

• an unconstrained link removal policy, as move block;
• a logarithmic approximation block, as assess block; and
• a statically-bounded look-ahead size set to

√
n, as select

block

is quite representative of the whole family of optimization
techniques proposed in this paper and implemented in our
framework. Therefore, after re-labeling it as “selected tech-
nique” (SEL, in the following), in this experiment we aim at
further assessing its effectiveness.

a) Comparing energy costs (phase six): first of all,
it makes sense to compare the relative energy cost of the
selected technique w.r.t. the baseline technique. This is done
in Table 4(a), where we observe that SEL consistently finds
better solutions w.r.t. BASE. Specifically, this table reports
relative energy gains, which are expressed in percentage and
computed as 100 minus the corresponding relative energy
cost of SEL w.r.t. BASE. We observe that using the final
optimized topologies searched by SEL ensures proportional
energy savings from around 7%, up to around 25%, w.r.t.
BASE.

3Percentage values are rounded down, i.e., x% means bx%c.

11

c = 1 c = 1.5 c = 2 avg
n = 50 6.57% 16.82% 24.39% 15.93%
n = 75 10.61% 19.46% 24.29% 18.12%
n = 100 11.22% 17.37% 18.65% 15.75%
avg 9.47% 17.88% 22.44% -

(a) Phase six

1 1.5 2
3

4

5

6

7

8

9

c

E
V

D
re

l =
 E

V
D

S
E

L
 /

 E
V

D
B

A
S

E

(%
)

50 nodes networks

75 nodes networks

100 nodes networks

(b) Phase seven

BASE SEL

3.5

4

4.5

a
b

s
o

lu
te

 e
n

e
rg

y

BASE SEL

4.8

4.9

5

5.1

5.2

5.3
x 10

5

n
u

m
b

e
r

o
f

E
V

D
s

1.3

1.4

1.5

1.6

x 10
4

2

(c) Phase eight

Figure 4. Third experiment: comparison between the farthest-node removal
policy (BASE) and the selected technique (SEL) in terms of (a) energy
costs (expressed as relative energy gains) and (b) computational overhead
(expressed as relative EVDs). In (c) a comparison in terms of energy and
computational overhead is performed over a class of larger networks (n = 400
and c = 1), by means of boxplots (in the second boxplot, the different y-axes
scales should be noticed).

b) Comparing computational overhead (phase seven):
in the previous phase, we observed that the selected technique
performs favorably w.r.t. the baseline counterpart, in terms
of overall energy cost necessary to the optimized network
topology (and consequently to the individual nodes of the
network) to reach the average consensus. Nevertheless, energy
saving of the optimized network topologies is only one of
the metrics to consider when tackling such a computationally
difficult problem. Indeed, from an optimization perspective,
it is also extremely interesting to design techniques able
to balance the search capability of the algorithm and the
overall computational complexity. In this respect, we cannot
forget that the original RA problem is NP-hard [22], so good
heuristics able to wisely sample and explore such a complex
search space are interesting from a research point of view. To
this aim, in Fig. 4(b) we show the relative number of EVDs
required by SEL w.r.t. BASE. Specifically, we observe that the
former required less than 10% of the total EVDs that were
necessary to the latter, to obtain the results of the previous
phase. In particular, for SEL we have that ew ≤

√
n, so

ESEL ≤ M ·
√
n . Finally, it is also important to notice that,

as the network size and density increase (i.e., for increasing
values of n and c) the EVD-gain increases. This observation
will be the basis of the last phase of this experiment.

c) Comparing techniques on larger network topologies
(phase eight): in this final phase, we aim at comparing the
performances of SEL against BASE, for a class of larger
network scenarios. More in detail, to run this experiment, we

set n = 400 and c = 1 and executed both the techniques, this
time using a different stop criterion w.r.t. the one adopted so
far. Specifically, instead of executing the direct search for M
iterations, we compute the energy cost of the initial topology
(i.e., ct=0, associated to Lt=0) and used it as a reference value
in the following way: at each iteration t, ct is compared with c0
and, if for more than 10 consecutive iterations the former value
is larger than the latter one, then the main optimization loop is
interrupted. Obviously, different (and more sophisticated) stop
criteria could be adopted, while the goal is only to avoid too
premature stops without having to fine-tune the M parameter.

By means of boxplot4 diagrams, Fig. 4(c) depicts a com-
parison between the baseline and the selected techniques, in
terms of absolute energy and number of EVDs. More in detail,
when optimizing the topologies belonging to this class of
larger networks, we observe that SEL consistently finds better
topologies w.r.t. BASE (on average the energy saving of the
final topologies is larger than 17%) at a small fraction of the
computational cost (on average, SEL requires only the 2% of
the EVDs required by BASE).

D. Fourth experiment

The goal of this experiment is to assess the performance
of the proposed framework in more realistic settings. To this
aim, we adopt the publicly available Intel Lab’s WSN deploy-
ment as our experimental topology map. This map consists
of 2-dimensional relative locations (expressed in meters, at
half meter resolution) of 54 sensor nodes, deployed in the
Intel Berkeley Research Lab (i.e., an indoor ICT laboratory
spreading over a surface area larger than 1300 square meters)
in 20045. However, this topology map cannot be considered
as an instance of the RGG model. It follows that the energy
cost Ec introduced in (12) cannot reliably model this context,
mainly because the receiving energy term expressed in (15)
assumes randomly and uniformly distributed nodes in the unity
square, which is not the case of this topology. Thus, only for
this experiment, we opt for using the so called first order radio
model, appeared for the first time in the WSN context in [36].
According to this model, the energy spent to receive and send
a wireless message are respectively:

sErx = Eelec · L (28)
sEtx = Eelec · L+ εamp · L · r2

i , (29)

where L represents the length in bits of the received/sent
message, Eelec is a constant term indicating the energy dis-
sipated by the transceiver circuitry to receive or send one bit
over the medium and εamp is the energy consumed by the
transmit amplifier to reliably send one bit at a distance ri,
when still assuming a quadratic energy loss due to channel
transmission. We have verified that, despite its simplicity, this
model is still often adopted in the recent literature. Only as an
example, the authors of [37] have used the same radio model

4For each boxplot, the lowest and the largest values are represented as
whiskers, the lower and upper quartiles are shown as a box and the median
value is represented by a dashed line.

5The interested reader is referred to http://db.csail.mit.edu/labdata/labdata.
html.

12

and actual parameter setup of [36], as we do in this experiment.
Specifically we fix L, Eelec and εamp to 200 bits, 50 nJ/bit
and 100 pJ/bit/m2, respectively.

Similarly to Sec. II-C, we express the total energy con-
sumption to reach a consensus sEc as the sum of the energy
spent by the individual nodes of the network, this time without
averaging and by separately taking into account the receiving
and transmitting energy terms, sErxi and sEtxi respectively.
More in detail:

sEc(R) = dτe ·
n∑
i=1

(
N i · sErx+ sEtxi

)
. (30)

It is worth to notice that, in this case, both the receiving and
transmitting energy terms of generic node i are accounted in
the total energy cost, while being them dependent on node i’s
relative position in the topology (and so on R). In fact, N i

represents the number of actual neighboring nodes of node i
(as defined in Sec. II-C), while sEtxi directly depends on node
i’s transmission range ri (as specified in (29)). Notice also that
sEc(R) is expressed in Joules.

a) Comparing techniques on a class of realistic topolo-
gies (phase nine): starting from the Intel Lab’s topology
map, we have varied the initial common transmission range
rmax ∈ {6, 10, 15, 20, 25}, hence building a class of 5 realistic
topologies6. On each topology, we have executed BASE and
SEL techniques, as well as a group of quasi-greedy techniques
where we fixed the look ahead sizes to 1 (which corresponds
to have a purely approximated method) and to [5 : 5 : 100]7.
Therefore, the total number of optimization executions con-
stituting our population is 115. For all the members of the
population, the value of M was set to infinitive, to ensure
optimization executions until topology disconnection; at that
time each member returned the best performing topology in
terms of sEc, as described by (30).

To ease the visual analysis of the results obtained by the
described population in terms of both energy consumption
and computational overhead, Fig. 5(a) depicts a scatter plot
with sEc and number of EVDs as the x and y axes of the
Cartesian plane, respectively. On this plane we projected the
results of each member of the population, marking the Pareto-
dominant solutions (i.e., the members of the Pareto front)
with red crosses and the Pareto-dominated ones with black
points [38]. Moreover, to easily identify the SEL members
of the population, they are marked with stars in the figure
(full-red stars for Pareto-dominant solutions, empty-black stars
otherwise). It is important to notice that all BASE members
were largely dominated by the Pareto front: these solutions
were not reported in Fig. 5(a) to avoid using too wide axes
ranges, which would have negatively affected figure readabil-
ity. Observing the graph, we see that (except for the SEL
member with rmax = 20, which does not belong to the Pareto
front) the SEL sub-population belongs to the most interesting
portion of the Pareto front (i.e., the area located around the

6Notice that, when rmax = 5, the initial topology was already disconnected.
7A Matlab colon notation is used here to refer to an interval of integer

values from 5 to 100, extremes included, with a increment value of 5 units,
for a total of 20 integer values.

knee of the front, where the optimal trade-offs between energy
consumption and computational cost are projected).

For the sake of completeness, Table 5(b) summarizes some
interesting metrics of the SEL sub-population. In this table,
Ei and Eb are energy costs, computed as (30) and expressed
in Joules, of the initial and the best topology, respectively;
ρ = Eb/Ei (expressed in percentage, where lesser values
mean better payoffs of the best topology w.r.t. the initial
topology); itb and itd represent the optimization iterations
at which the corresponding optimization process found the
best configuration and the first disconnected configuration,
respectively; σ is the sparsity degree of the best topology w.r.t.
the initial topology, computed as the ratio between their cor-
responding number of links (expressed in percentage, where
higher values mean sparser best topologies); finally, ω repre-
sents the relative overhead degree of the executor, computed
as the ratio between the number of exact the approximated
number of EVDs computed by the optimization process to
find the best topology (expressed in percentage, where higher
values mean higher computational overhead due to exact EVD
calculations). These results confirm what highlighted in the
previous experiments, that is the sparsification process always
lead to better topology configurations (the best topologies are
sparser than the original ones, up to 90% of sparsity degree),
in terms of energy spent by the nodes of the network to reach
the consensus. In detail, the optimized topologies are able
to save up to more than the half of the energy required by
their initial counterparts. Such benefits are more pronounced
when starting from initial dense scenarios. For this reason, it
is of key importance to rely on very fast assessment methods.
Just as an example, starting from the densest topology (i.e.,
rmax = 25), our approximated method reached the best solu-
tion at 96% of the whole optimization process (iteration 826 on
a total of 860 iterations), while the whole optimization process
required only 0.52% of exact EVDs calculations required to
its (hypothetical) exact counterpart.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0

2000

4000

6000

8000

10000

12000

14000

16000

energy [J]

n
u
m

b
e
r

o
f
E

V
D

s

(Rmax=25, LA=70)

(Rmax=25, LA=65)

(SEL, Rmax=25)

(SEL, Rmax=20)

(SEL, Rmax=15)

(SEL, Rmax=10)

(Rmax=15, LA=1)

(SEL, Rmax=6)

rmax Ei Eb ρ itb itd σ ω
6 0.88 0.68 77.33% 23 37 25.56% 5.89%
10 0.44 0.18 41.64% 140 164 63.93% 2.29%
15 0.29 0.14 49.28% 324 359 78.45% 1.41%
20 0.27 0.14 50.36% 568 600 86.85% 0.82%
25 0.23 0.12 54.81% 826 860 90.57% 0.52%

(b) Phase nine

Figure 5. Fourth experiment: visual comparison of BASE and SEL techniques
over a class of realistic topologies generated from the Intel Lab’s topology
map, in terms of (a) energy (expressed in Joules) versus computational
overhead (expressed as number of EVDs). In (b) some interesting metrics
of the SEL sub-population are reported.

13

VI. CONCLUSIONS

In this paper, we proposed an integrated optimization frame-
work able to reduce a topology-dependent cost function, in
the context of broadcast WSNs. This framework, by means of
topology design, could effectively improve the convergence
speed of an average consensus algorithm, thus reducing the
energy consumption of the sensor nodes executing such dis-
tributed algorithm. The effectiveness of the proposed frame-
work was thoroughly assessed over various classes of network
scenarios. At the end of this wide simulation campaign, we
could isolate a specific technique realized with the proposed
framework and we compared it against a pure greedy strategy
recently proposed in the literature. This comparison revealed
consistently better results of the implemented technique over
the state-of-the-art technique, both in terms of energy saving
at sensor nodes and computational power at central processing
unit, evaluated in terms of number of eigenvalue decomposi-
tions. With respect to such capability of reducing the required
computational power without affecting the quality of the final
topology, the selected technique is particularly suitable when
the network scenario to optimize increases in size and density.

REFERENCES

[1] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[2] Q. Shen, P. Shi, Y. Shi, and J. Zhang, “Adaptive output consensus with
saturation and dead-zone and its application,” IEEE Transactions on
Industrial Electronics, 2016.

[3] H. Ji, F. L. Lewis, Z. Hou, and D. Mikulski, “Distributed information-
weighted Kalman consensus filter for sensor networks,” Automatica,
vol. 77, pp. 18–30, 2017.

[4] S. R. Etesami and T. Başar, “Convergence time for unbiased quantized
consensus over static and dynamic networks,” IEEE Transactions on
Automatic Control, vol. 61, no. 2, pp. 443–455, 2016.

[5] C. Asensio-Marco and B. Beferull-Lozano, “Energy efficient consensus
over complex networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 2, pp. 292–303, 2015.

[6] A. Khosravi and Y. S. Kavian, “Challenging issues of average consensus
algorithms in wireless sensor networks,” IET Wireless Sensor Systems,
vol. 6, no. 3, pp. 60–66, 2016.

[7] B. Dulek, O. Ozdemir, P. K. Varshney, and W. Su, “Distributed maxi-
mum likelihood classification of linear modulations over nonidentical
flat block-fading gaussian channels,” IEEE Transactions on Wireless
Communications, vol. 14, no. 2, pp. 724–737, 2015.

[8] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[9] J. Qin, W. Fu, H. Gao, and W. X. Zheng, “Distributed k-means algorithm
and fuzzy c-means algorithm for sensor networks based on multiagent
consensus theory,” IEEE Transactions on Cybernetics, vol. 47, no. 3,
pp. 772–783, 2017.

[10] Z. Wang, P. Zeng, M. Zhou, D. Li, and J. Wang, “Cluster-based
maximum consensus time synchronization for industrial wireless sensor
networks,” Sensors, vol. 17, no. 1, p. 141, 2017.

[11] M. Vazquez-Olguin, Y. Shmaliy, and O. Ibarra-Manzano, “Distributed
unbiased fir filtering with average consensus on measurements for wsns,”
IEEE Transactions on Industrial Informatics, 2017.

[12] M. Vecchio, R. Giaffreda, and F. Marcelloni, “Adaptive lossless entropy
compressors for tiny IoT devices,” Transactions on Wireless Communi-
cations, vol. 13, no. 2, pp. 1088–1100, 2014.

[13] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[14] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33–46, 2007.

[15] M. E. Chamie, G. Neglia, and K. Avrachenkov, “Distributed weight
selection in consensus protocols by schatten norm minimization,” IEEE
Transactions on Automatic Control, vol. 60, no. 5, pp. 1350–1355, May
2015.

[16] S. Kar and J. M. F. Moura, “Topology for global average consensus,” in
2006 Fortieth Asilomar Conference on Signals, Systems and Computers,
2006, pp. 276–280.

[17] S. Barbarossa, G. Scutari, and A. Swami, “Achieving consensus in self-
organizing wireless sensor networks: The impact of network topology
on energy consumption,” in 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing-ICASSP’07, vol. 2, 2007, pp.
841–844.

[18] C. Asensio-Marco and B. Beferull-Lozano, “Accelerating consensus
gossip algorithms: Sparsifying networks can be good for you,” in IEEE
International Conference on Communications (ICC 2010), 2010, pp. 1–
5.

[19] ——, “A greedy perturbation approach to accelerating consensus algo-
rithms and reducing its power consumption,” in IEEE Statistical Signal
Processing Workshop (SSP 2011), June 2011, pp. 365–368.

[20] S. Sardellitti, S. Barbarossa, and A. Swami, “Optimal topology control
and power allocation for minimum energy consumption in consensus
networks,” IEEE Transactions on Signal Processing, vol. 60, no. 1, pp.
383–399, Jan. 2012.

[21] M. Vecchio and R. López-Valcarce, “A greedy topology design to
accelerate consensus in broadcast wireless sensor networks,” Information
Processing Letters, vol. 115, no. 3, pp. 408–413, 2015.

[22] B. Fuchs, “On the hardness of range assignment problems,” Networks,
vol. 52, no. 4, pp. 183–195, 2008.

[23] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-efficient
broadcast and multicast trees in wireless networks,” Mobile networks
and applications, vol. 7, no. 6, pp. 481–492, 2002.

[24] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[25] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on information theory, vol. 46, no. 2, pp. 388–404, 2000.

[26] P. Santi, “Topology control in wireless ad hoc and sensor networks,”
ACM Comput. Surv., vol. 37, no. 2, pp. 164–194, 2005.

[27] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science
& Business Media, 2013, vol. 207.

[28] R. Hooke and T. A. Jeeves, “”direct search” solution of numerical and
statistical problems,” Journal of the ACM, vol. 8, no. 2, pp. 212–229,
1961.

[29] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods:
then and now,” Journal of Computational and Applied Mathematics, vol.
124, no. 1, pp. 191–207, 2000.

[30] D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, and
H. Züllighoven, “Framework development for large systems,” Magazine
Communications of the ACM, vol. 40, no. 10, 1997.

[31] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd ed., ser. Wiley Series in Probability and Statistics.
Wiley, 2009.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[33] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood
search: methods and applications,” Annals of Operations Research, vol.
175, no. 1, pp. 367–407, 2010.

[34] N. P. van der Aa, H. G. ter Morsche, and R. R. M. Mattheij, “Compu-
tation of eigenvalue and eigenvector derivatives for a general complex-
valued eigensystem,” Electronic Journal of Linear Algebra, vol. 16, pp.
300–314, 2007.

[35] J. B. Atkinson, “A greedy look-ahead heuristic for combinatorial op-
timization: An application to vehicle scheduling with time windows,”
Journal of the Operational Research Society, vol. 45, no. 6, pp. 673–
684, 1994.

[36] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
Proc. of the 33rd Hawaii International Conference on System Sciences,
vol. 8, 2000, pp. 8020–.

[37] G. S. Arumugam and T. Ponnuchamy, “Ee-leach: development of
energy-efficient leach protocol for data gathering in wsn,” EURASIP
Journal on Wireless Communications and Networking, vol. 2015, no. 1,
Mar 2015.

[38] M. Voorneveld, “Characterization of Pareto dominance,” Operations
Research Letters, vol. 31, no. 1, pp. 7–11, 2003.

14

Massimo Vecchio received the M.Sc. degree in
Information Engineering (Magna cum Laude) from
the University of Pisa and the Ph.D. degree in
Computer Science and Engineering (with Doctor
Europaeus mention) from IMT Lucca Institute for
Advanced Studies in 2005 and 2009, respectively.
Starting from May 2015, he is an associate professor
at eCampus University, while in September 2017
he has also joined FBK CREATE-NET to coor-
dinate the research activities of the OpenIoT Re-
search Unit. He is the project coordinator of AGILE

(www.agile-iot.eu), a project co-founded by the Horizon 2020 programme
of the European Union. His current research interests include computational
intelligence and soft computing techniques, the Internet of Things paradigm
and effective engineering design and solutions for constrained and embedded
devices. Regarding his most recent editorial activity, he is a member of the
editorial board of the Applied Soft Computing journal and of the newborn
IEEE Internet of Things Magazine, besides being the managing editor of the
IEEE IoT newsletters.

Gennaro Amendola received the degree and the
Ph.D. degree in Mathematics from the University
of Pisa (Italy), in 1999 and 2004, respectively.
Currently, he is an associate professor at eCampus
University (Italy), where he is the president of the
Evaluation Board. He is interested in both Pure
and Applied Mathematics. His research topics deal
with Geometry (more precisely, low dimensional
topology) and applications of Mathematics to Social
choice, Engineering, Management, Informatics and
Geodesy. He has coauthored 13 papers in interna-

tional journals and conference proceedings.

Pietro Ducange received the M.Sc. degree in Com-
puter Engineering and the Ph.D. degree in Infor-
mation Engineering from the University of Pisa,
Pisa, Italy, in 2005 and 2009, respectively. Currently,
he is an associate professor at eCampus Univer-
sity, Novedrate, Italy, where he is the director of
the SMART Engineering Solutions & Technologies
(SMARTEST) Research Centre. His main research
interests include evolutionary fuzzy systems, big
data mining, social sensing and sentiment analysis.
Further, he has been involved in a number of R&D

projects in which data mining and computation intelligence algorithms have
been successfully employed. He has coauthored more than 40 papers in
international journals and conference proceedings. Prof. Ducange is a Member
of the Editorial Boards for Soft Computing and the International Journal of
Swarm Intelligence and Evolutionary Computation.

