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Abstract—Existing works have explored the anchor deploy-
ment for autonomous underwater vehicles (AUVs) localization
under the assumption that the sound propagates straightly
underwater at a constant speed. Considering that the underwater
acoustic waves propagate along bent curves at varying speeds
in practice, it becomes much more challenging to determine a
proper anchor deployment configuration. In this paper, taking
the practical variability of underwater sound speed into account,
we investigate the anchor-AUV geometry problem in a 3-D time-
of-flight (ToF) based underwater scenario from the perspective of
localization accuracy. To address this problem, we first rigorously
derive the Jacobian matrix of measurement errors to quantify
the Cramer-Rao lower bound (CRLB) with a widely-adopted
isogradient sound speed profile (SSP). We then formulate an
optimization problem that minimizes the trace of the CRLB
subject to the angle and range constraints to figure out the
anchor-AUV geometry, which is multivariate and nonlinear and
thus generally hard to handle. For mathematical tractability, by
adopting tools from the estimation theory, we interestingly find
that this problem can be equivalently transformed into a more
explicit univariate optimization problem. By this, we obtain an
easy-to-implement anchor-AUV geometry that yields satisfactory
localization performance, referred to as the uniform sea-surface
circumference (USC) deployment. Extensive simulation results
validate our theoretical analysis and show that our proposed USC
scheme outperforms both the cube and the random deployment
schemes in terms of localization accuracy under the same
parameter settings.

Index Terms—Autonomous underwater vehicle (AUV); local-
ization; Cramer-Rao lower bound; anchor deployment.

I. INTRODUCTION

As an important platform for underwater information gather-

ing and transmitting, autonomous underwater vehicles (AUVs)

have been widely used for a variety of underwater applications

such as oceanographic surveys, object detection, and environ-

ment monitoring [1]–[3]. In these applications, the observed

data becomes meaningful only when labeled with correct posi-

tion [4]–[7], and thus how to accurately locate AUVs becomes

a crucial issue. However, universal underwater localization is

not easy and still vacant currently, as the global positioning

system (GPS) signals are unavailable in the ocean [3], [5]. The

most prominent choice for AUV localization is to use acoustic

anchors deployed beforehand with known positions, such as

surface buoys, seabed array elements, and sensors attached

to autonomous surface vehicles (ASVs). In these scenarios,
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University of Science and Technology, Wuhan, 430074, P. R. China (e-mail:
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the geometry relationships between the AUV and anchors,

including both the anchor-AUV geometrical shape and ranges,

have significant impacts on the localization network’s overall

performance, e.g., localization accuracy, network connectiv-

ity, seamless coverage, and energy efficiency [8]–[14]. In

particular, this article focuses on designing proper anchor-

AUV geometries for AUV localization from the perspective

of localization accuracy.

There have been some works to investigate anchor-target

geometries for target localization in underwater environments

so far. Han et al. in [10] proposed a regular tetrahedron geome-

try for anchor deployment, which outperforms the random and

cube deployment schemes in terms of network connectivity but

achieves little improvement in localization accuracy. In [13],

Dosso et al. studied the problem of determining the optimal

configurations for symmetrically horizontal or vertical source

placement in array element localization scenarios. For high

accuracy, N. Bishop et al. in [15] exploited passive time-of-

arrival (ToA) based localization to explore the relative sensor-

target geometries and proved that the way of equi-angularly

surrounding the target by an arbitrary number of sensors is

optimal. In the case when the sensor-target distance is fixed,

the sensor deployment for underwater source localization was

analyzed based on the Cramer-Rao lower bound (CRLB)

theory in [16]. Further in [17], by minimizing the trace of

the CRLB, i.e., tr(CRLB), an optimal anchor deployment for

underwater localization was derived under the assumption that

the sound speed is constant.

In a nutshell, although [10], [13], [15]–[17] investigated the

anchor geometry deployment problem for underwater target

localization from different perspectives, they all assumed that

the speed of acoustic waves remains unchanged in underwater

environments and their trajectories are straight lines. However,

the underwater acoustic waves propagate along bent curves

at varying speeds in practice due to the fact that the water

medium is inhomogeneous in temperature, pressure, and salin-

ity. This unique phenomenon disrupts the linear dependency

between the sound propagation distance and the duration

(i.e., consumed time) it takes for the sound to travel over

that distance. Therefore, the existing straight-line propagation

model based anchor deployment schemes [10], [13], [15]–[17]

are possibly not effective in realistic underwater environments

as what we expect. To address this problem, some works have

begun to develop localization algorithms to match the feature

of the varying sound speed, in which the acoustic velocity is

modeled as the sound speed profile (SSP) in [3], [5], [18]–[24]

http://arxiv.org/abs/1810.03116v1
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Fig. 1. Illustration of the acoustic ray between the AUV and an anchor.

or a series of state variables in [25], [26]. Both simulation

results and field tests have demonstrated that localization

algorithms that consider the varying sound speed can achieve

higher localization accuracy than those based on a constant

sound speed. Nevertheless, [3], [5], [18]–[26] obtained their

results under some specialized anchor deployment schemes

without providing any analysis or proof for the problem

whether such deployments are appropriate or not.

In view of these, taking the practical variability of underwa-

ter sound speed into account, this paper devotes to answering

whether there exist more proper deployment configurations

that can further improve the localization accuracy. We ex-

plore this fundamental problem by considering a 3-D time-

of-flight (ToF) [27] based underwater localization scenario

involving multiple anchors and a single target AUV. Under

a realistic isogradient SSP, we first derive the CRLB of ToF-

based estimation methods as the localization accuracy index to

evaluate whether a spatial anchor configuration is appropriate

or not. By minimizing the trace of CLRB, we formulate

an optimization problem to figure out the promising anchor-

AUV geometry. To handle this complicated problem, we first

convert it into another tractable form subject to some angle and

range constraints. We then find an easy-to-implement anchor-

AUV geometrical shape that satisfies these constraints and

obtain corresponding anchor-AUV ranges. Simulation results

show that our proposed anchor-AUV geometry achieves higher

localization accuracy when targeting the AUV.

The main contributions of this work are as follows.

• We first rigorously derive the Jacobian matrix of mea-

surement errors evaluated at the AUV’s true position to

quantify the CRLB of the ToF-based AUV localization

under an isogradient SSP for characterizing the local-

ization accuracy with a given anchor-AUV geometry.

Enfolding the variable sound speed into the anchor geom-

etry deployment problem, we then formulate an anchor-

AUV geometry optimization problem subject to the angle

and range constraints by minimizing the trace of the

CRLB. As this problem is rather complex to deal with

mathematically, we adopt the Courant-Fischer-Weyl min-

max principle and the arithmetic mean and geometric

mean (AM-GM) inequality to transform it equivalently

into a more explicit optimization problem.

• Although it is in general difficult to find a globally opti-

mal solution for our formulated nonlinear and multivari-

ate geometry problem, we obtain an easy-to-implement

anchor-AUV geometry that guarantees satisfactory lo-

calization accuracy in a semi-analytical way, referred

to as the uniform sea-surface circumference (USC) de-

ployment. Specifically, we first devise an anchor-AUV

geometrical shape to convert the original multivariate

problem into a univariate distance optimization problem.

We then adopt a gradient descent method to find the

promising anchor-AUV ranges given the USC deploy-

ment scheme.

• Extensive simulation results validate our theoretical anal-

ysis and show that our proposed USC scheme has a better

localization performance compared with the existing cube

and the random deployment schemes under the same

parameter settings. Moreover, the USC deployment can

maintain a satisfactory localization accuracy even if the

relative anchor-AUV geometry changes, which indicates

that the USC is robust to position variance of the AUV

and anchors.

The remainder of this paper is organized as follows. In

Section II, we introduce the system model and formulate an

anchor deployment optimization problem. The USC deploy-

ment is devised in Section III. Section IV presents simulation

results to evaluate the performance of the USC. Finally, we

conclude our paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the considered system sce-

nario and involved parameters. Then, we adopt the isogradient

sound speed profile to quantify the localization error in terms

of the CRLB and use it to formulate the anchor-AUV geometry

optimization problem.
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A. System Scenario

As shown in Fig. 1, we consider a 3-D underwater acoustic

localization scenario, where a target AUV is to be located

with the assistance of N similar anchors. In this ℜ3 scenario,

we denote the set of anchors by C = {1, 2, 3, ..., N}, the

location of the AUV by q = [x, y, z]T, and the position

of the ith anchor by pi = [xi, yi, zi]
T

, ∀i ∈ C. Let the

range (i.e., distance) between the ith anchor and the AUV

be ri = ‖q − pi‖, where ‖ · ‖ denotes the Euclidean norm.

Similarly as in [28], assume that the underwater sound

speed follows an isogradient depth-dependent SSP and has

the following form

C (z) = b+ az (1)

where b denotes the sound speed at the sea surface, and a
is the steepness of the SSP. Because of the variable sound

speed, the actual acoustic path from anchor i to the AUV

follows a bent trajectory, as depicted by the red bold curve in

Fig. 1. The angle at which the actual ray trajectory deviates

from the straight line between the AUV and anchor i, denoted

by αi, can be derived from a set of differential equations

characterized by the Snell’s law and can be calculated as [19]

αi = arctan

√

(x− xi)
2 + (y − yi)

2

2b
a
+ (z + zi)

(2)

and the angle of this straight line w.r.t the horizontal axis,

denoted by θi, is equal to

θi = arctan
z − zi

√

(x− xi)
2
+ (y − yi)

2
. (3)

In addition, the horizontal distance and the horizontal orien-

tation angle between the ith anchor and the AUV are calculated

as di =

√

(x− xi)
2
+ (y − yi)

2
and ϕi = arctan y−yi

x−xi

,

respectively. With these information about the anchor-AUV

geometry, the actual ray traveling time (RTT) from anchor i
to the AUV along the bent curve is derived as [19]

ti =
1

a

[

ln

(

1 + sin (θi + αi)

cos (θi + αi)

)

− ln

(

1 + sin (θi − αi)

cos (θi − αi)

)]

.

(4)

From Eqs. (2)–(4), it is noteworthy that the RTT is dependent

not only on the distance between the AUV and anchors, but

also on their positions. This feature makes the underwater

localization different from the terrestrial localization as the

RTT in the terrestrial is only related to the anchor-target range.

In a ToF-based localization system, the position of the AUV

is estimated by using at least four RTT measurements from

four anchors. The RTT measurement from the anchor i to the

AUV, denoted by t̂i, can be modeled as

t̂i = ti + ξi, ∀i ∈ C (5)

where ξi refers to the measurement error, which is assumed to

be mutually independent and Gaussian distributed with zero

mean and distance-dependent variance σ2
i [29], i.e., ξi ∼

N (0, σ2
i ). For notational simplicity, we use n = [ξ1, ..., ξN ]T

to denote the measurement noise and v(q) = [t1, ..., tN ]T to

denote the actual RTT with respect to the AUV’s position

TABLE I
SYMBOLS AND DESCRIPTIONS

Symbol Description

C Set of anchors

i Index of the anchor

N Number of anchors

q = [x, y, z]T Location of the AUV

pi = [xi, yi, zi]
T Location of the ith anchor

θi Angle of the straight line between the ith
anchor and the AUV w.r.t the horizontal axis

αi Angle at which the ray trajectory deviates from
the straight line between the ith anchor and the
AUV

ϕi Horizontal orientation angle between the ith
anchor and the AUV

di Horizontal distance between the ith anchor and
the AUV

ri Range between the ith anchor and the AUV

ti Actual ray traveling time (RTT) from the ith
anchor to the AUV

σ2
i Measurement noise variance of the RTT ti

Jo Jacobian of measurement errors evaluated at
the AUV’s true position

Σ Measurement covariance matrix of anchors

q. Thus, the RTT measurements between the AUV and N
anchors, denoted by v̂, can be written in a vector format as

v̂ = v(q) + n = [t1, ..., tN ]
T
+ [ξ1, ..., ξN ]

T
. (6)

The measurement error n is assumed to be a multivariate

random vector with an N × N positive-definite covariance

matrix [30], denoted as

Σ = E{(n − E(n))(n − E(n))T} (7)

where E{·} denotes the expectation operation. By substituting

(6) into (7), the covariance matrix Σ can be derived as

Σ =









σ2
1

. . .

σ2
N









. (8)

The list of symbols and notations used throughout this paper

is summarized in Table I.

In this paper, we devote to constructing a geometrical

deployment configuration between the AUV and anchors for

improving localization accuracy, i.e., determining the afore-

mentioned ranges and angles (namely di, ri, αi in (2), θi in

(3), and ϕi). Different configurations achieve different local-

ization performance, and thus exploring the proper geometry is

equivalent to finding the angular and distance relations. In next

subsection, we will first derive the localization performance

bound by using all above angular and distance formulas. Based

on the derived bound, we then formulate an optimization

problem to optimize angular and distance configuration, which

forms the proper anchor-AUV geometry.

B. Problem Formulation

The performance of an estimator is commonly characterized

by the mean-square error (MSE) of the estimate, which

represents the uncertainty associated with the accuracy of

the estimation results. One of classical results for this is
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known as the Cramer-Rao lower bound (CRLB), which has

been seen to provide a reasonably tight bound on the MSE

of the estimate [31]. Thus, the performance of localization,

which is essentially an estimation problem, can be explicitly

depicted by the CRLB of the estimator. Further, motivated by

the fact that the anchor deployment geometry has significant

impacts on the performance of localization estimators, we

in this subsection derive the performance bound, i.e., the

CRLB, to evaluate whether a relative anchor-AUV geometry

is appropriate or not.

Back to our considered 3-D ToF-based AUV localization

scenario (see Fig. 1), the AUV’s true position q = [x, y, z]
T ∈

ℜ3 needs to be estimated, given the observation measurement

v̂. It is known that, the Cramer-Rao inequality bounds the

achievable covariance by an unbiased estimator. For an unbi-

ased estimate q̂ of q, the CRLB states that [31], [32]

E{(q̂ − q) (q̂ − q)
T} ≥ FIM−1 ∆

= CRLB (9)

where the FIM is called the Fisher Information Matrix (FIM),

an index quantifying the information amount that the ob-

servable random measurement vector v̂ carries about the

unobservable q.

Under the standard assumption of Gaussian measurement

errors, the probability function of q, given the measurement

vector v̂ ∼ N (v(q),Σ), is given by

fq =
1

(2π)
N

2 |Σ| 12
exp

{

−1

2
(v̂ − v (q))

T
Σ

−1 (v̂ − v (q))

}

(10)

where |Σ| is the determinant of Σ. As in [30] and [33], by

taking the logarithm on (10), computing its derivative with

respect to q, and taking the expectation operation, the FIM

corresponding to our considered scenario can be derived as

FIM = E

{

∇q log f q · ∇q log f q
T
}

= JToΣ
−1Jo. (11)

In (11), Jo ∈ ℜN×3 is the Jacobian of measurement vector

with respect to q, which is specified in the following theorem,

proved in Appendix A.

Theorem 1. Considering the 3-D ToF-based localization

problem under an isogradient SSP, the Jacobian of measure-

ment errors evaluated at the AUV’s true position q is given

by

Jo =
2

a























sinα1 cosϕ1

r1

sinα1 sinϕ1

r1

tan(θ1−α1) sinα1

r1

...
...

...

sinαi cosϕi

ri

sinαi sinϕi

ri

tan(θi−αi) sinαi

ri

...
...

...

sinαN cosϕN

rN

sinαN sinϕN

rN

tan(θN−αN ) sinαN

rN























.

(12)

From Theorem 1, by substituting (7) and (12) into (11), we

can obtain the full expression of the FIM as shown in (13) at

the bottom of this page, and thus the CRLB could be derived

by CRLB = FIM−1 from (9). There are several optimality

criteria that can be considered, e.g., the A-optimality, the D-

optimality, and the E-optimality criteria [30]. The D-optimality

criterion aims to maximize the determinant of the FIM or

to minimize the volume of the localization error ellipsoid.

However, it can yield to some errors, as the information in

one dimension can be improved rapidly, providing a very large

FIM determinant, while we may not have any information

in other dimensions [34]. This problem can be avoided with

the A- and E- optimality criteria which aim to minimize the

trace and the maximum eigenvalue of the CRLB, respectively.

Among them, the A-optimality is widely adopted in existing

works, e.g., [34]–[36], and it is more appropriate in our

problem. Based on this fact, we adopt the tr(CRLB) as the

performance indicator for the AUV localization in this paper.

Specifically, for a fixed AUV location, we formulate the

following tr(CRLB) minimization problem1

min
αi,θi,ϕi,di

tr(CRLB)

s.t. C1: αi ∈
[

0,
π

2

)

, ∀i ∈ C

C2: θi ∈
[

0,
π

2

)

, ∀i ∈ C
C3: ϕi ∈ [0, 2π] , ∀i ∈ C
C4: di > 0, ∀i ∈ C
C5: N ≥ 4.

(14)

Regarding problem (14), angles αi, θi, and ϕi determine the

geometrical shape between the anchors and the AUV, while di
denotes the anchor-AUV horizontal distances. C1–C4 directly

1It is noteworthy that changing the minimization objective in problem (14)
as a min-max objective is more interesting when considering that the AUV
is moving inside a bounded operation area. Although our analysis is based
on the fixed AUV scenario, we will verify that our proposed scheme can
also achieve satisfactory localization performance in a moving AUV scenario
through the simulation result in Section IV.

FIM =
4

a2

















N
∑

i=1

sin2αicos
2θicos

2ϕi

d2
i
σ2

i

N
∑

i=1

sin2αicos
2θi sinϕi cosϕi

d2
i
σ2

i

N
∑

i=1

sin2αi tan(θi−αi)cos
2θi cosϕi

d2
i
σ2

i

N
∑

i=1

sin2αicos
2θi sinϕi cosϕi

d2
i
σ2

i

N
∑

i=1

sin2αicos
2θisin

2ϕi

d2
i
σ2

i

N
∑

i=1

sin2αi tan(θi−αi)cos
2θi sinϕi

d2
i
σ2

i

N
∑

i=1

sin2αi tan(θi−αi)cos
2θi cosϕi

d2
i
σ2

i

N
∑

i=1

sin2αi tan(θi−αi)cos
2θi sinϕi

d2
i
σ2

i

N
∑

i=1

sin2αitan
2(θi−αi)cos

2θi
d2
i
σ2

i

















(13)
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follow the geometric logic, and C5 comes from the fact that at

least four anchors are needed to confirm the AUV’s position

in 3-D underwater scenarios.

III. ANCHOR DEPLOYMENT SOLUTIONS

To solve (14), a straightforward method is to first derive

the closed-form expression for the tr(CRLB) and then find its

minimum, which is in general difficult due to the fact that

the CRLB is the inverse of the complicated matrix (13). As a

result, there are usually no easy-to-calculate solutions for the

CRLB as functions of the anchor-AUV angles and distances.

Aiming at solving (14) in a more explicit manner, we exploit a

classical result in the Courant-Fischer-Weyl min-max principle

[34] to reformulate it, described in the following theorem. We

refer the readers to [34] on its proof and omit it for brevity in

the paper.

Theorem 2. The FIM in a 3-D target localization scenario is

a 3× 3 symmetric matrix and can be expressed as

FIM =







ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33






(15)

where ψ12 = ψ21, ψ13 = ψ31, and ψ23 = ψ32. Moreover, the

trace of the CRLB is always larger than the sum of the FIM’s

diagonal elements, that is,

tr (CRLB) = tr
(

FIM−1
)

≥ 1

ψ11
+

1

ψ22
+

1

ψ33
(16)

with the equality holding if and only if

ψ12 = ψ13 = ψ23 = 0. (17)

Remark 1. Theorem 2 indicates that minimizing the

tr(CRLB) is equivalent to minimizing 1
ψ11

+ 1
ψ22

+ 1
ψ33

subject

to the constraint that the FIM is diagonal, i.e., ψ12 = ψ13 =
ψ23 = 0.

By applying Theorem 2 to the FIM matrix (13), problem

(14) can be equivalently transformed to

min
αi,θi,ϕi,di

tr (CRLB)

=
a2

N
∑

i=1

4sin2αicos
2θicos

2ϕi

d2
i
σ2

i

+
a2

N
∑

i=1

4sin2αicos
2θisin

2ϕi

d2
i
σ2

i

+
a2

N
∑

i=1

4tan2(θi−αi)cos
2θisin

2αi

d2
i
σ2

i

s.t. C1–C5

C6:

N
∑

i=1

sin2αicos
2θi sinϕi cosϕi

d2iσ
2
i

= 0

C7:

N
∑

i=1

sin2αi tan (θi − αi) cos
2θi cosϕi

d2iσ
2
i

= 0

C8:

N
∑

i=1

sin2αi tan (θi − αi) cos
2θi sinϕi

d2iσ
2
i

= 0.

(18)

In (18), constraints C7–C9 form into a necessary condition

to minimize the tr(CRLB), under which the FIM turns into

a diagonal matrix and hence the expression of the tr(CRLB)

becomes explicit to understand and deal with mathematically.

Following the AM-GM inequality as defined and proved in

[37], we further specify this necessary condition and clarify the

tr(CRLB) minimization problem through the following lemma.

Lemma 1. For any two non-negative numbers a and b, the

arithmetic mean of a and b is greater than or equal to the

geometric mean of them, i.e.,

1

a
+

1

b
≥ 2√

a
√
b

1

2
√
a
√
b
≥ 1

a+ b
.

(19)

Eq. (19) implies that

1

a
+

1

b
≥ 4

a+ b
(20)

where the equality holds if and only if a = b.

From Lemma 1, respectively replacing a and b in (20)

by
N
∑

i=1

sin2αicos
2θicos

2ϕi

d2
i
σ2

i

and
N
∑

i=1

sin2αicos
2θisin

2ϕi

d2
i
σ2

i

, (18) can be

further equivalently recast to

min
αi,θi,ϕi,di

tr(CRLB)

=
a2

N
∑

i=1

sin2αicos
2θi

d2
i
σ2

i

+
a2

N
∑

i=1

4tan2(θi−αi)sin
2αicos

2θi
d2
i
σ2

i

s.t. C1–C8

C9:

N
∑

i=1

sin2αicos
2θicos

2ϕi

d2iσ
2
i

=
N
∑

i=1

sin2αicos
2θisin

2ϕi

d2iσ
2
i

.

(21)

From Problem (21), to achieve possibly high estimation

accuracy, the first and foremost requirement is that the anchor-

AUV geometry should meet the constraints C1–C9 shown

in (14), (18), and (21), where C1–C9 are a set of multi-

variable nonlinear equations. Although it is rather complex

to mathematically quantify the complete solutions for C1–

C9, we interestingly find that an easy-to-implement anchor-

AUV geometrical shape, as a special solution for them, can

be obtained by exploiting a semi-analytical method. The

following theorem characterizes this geometrical shape.

Theorem 3. One of solutions that meets C1–C9 is given by















































|α1| = · · · = |αi| = · · · = |αN | = α

|θ1| = · · · = |θi| = · · · = |θN | = θ

ϕi =
2πi

N
d1 = ... = di = ... = dN = d

σ1
2 = ... = σi

2 = .... = σN
2 = σ2

zi = 0

(22)

where N ≥ 4 and ∀i ∈ C.
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Proof: When N ≥ 4, noticing the orthogonality relations

for sines and cosines from Fourier analysis [38], the following

equations hold

N
∑

i=1

cos2
(

2π

N
i

)

=

N
∑

i=1

sin2
(

2π

N
i

)

=
N

2
(23)

N
∑

i=1

cos

(

2π

N
i

)

sin

(

2π

N
i

)

=

N
∑

i=1

cos

(

2π

N
i

)

=

N
∑

i=1

sin

(

2π

N
i

)

= 0.

(24)

Substituting |α1| = · · · = |αi| = · · · = |αN | = α, |θ1| =
· · · = |θi| = · · · = |θN | = θ, d1 = ... = di = ... = dN = d,

(23), and (24) into (13), we could obtain the same equations

as C1–C9.

Remark 2. Interestingly, Theorem 3 indicates a special

anchor-AUV geometrical shape, where all the anchors are

uniformly distributed along a circumference on the sea sur-

face with its center being right above the AUV. We refer

this kind of anchor-AUV geometrical shape as uniform sea-

surface circumference (USC) deployment. As shown in Fig. 2,

we take four anchors as an example to explain the USC’s

configuration, where the AUV is placed at a depth of z m and

four anchors are placed on the surface. From the theoretical

analysis presented before, the anchors are placed at

p1 = [x+ d · cos (π/2) , y + d · sin (π/2) , 0]
T
m

p2 = [x+ d · cosπ, y + d · sinπ, 0]
T
m

p3 = [x+ d · cos (3π/2) , y + d · sin (3π/2) , 0]Tm
p4 = [x+ d · cos (2π) , y + d · sin (2π) , 0]

T
m.

(25)

It is interesting to point out that the USC deployment

could not only be directly adopted to construct high-accuracy

GPS intelligent buoys (GIB) localization systems, but is also

suitable for the cases when autonomous surface vehicles

(ASVs) carrying acoustic anchors keep a relative position

to the AUV. Theorem 3 provides a kind of anchor-AUV

geometrical configuration, while the anchor-AUV range still

remains to be determined. In what follows, we first reformulate

(21) into a univariate optimization problem and then find the

anchor-AUV range under the USC.

From the USC deployment scheme, all the anchors are

placed on the sea surface with zi = 0. Then, the relationship

between d and z can be expressed as d = kz, where k is the

introduced scale factor. Subsequently, by replacing all anchor-

AUV horizontal distances and angles in (21) with k and z, the

tr(CRLB) can be rearranged as a function in k for a given z, as

shown in (26) at the bottom of this page. In this way, getting

the anchor-AUV range is equivalent to finding k, which can

be obtained by solving the following optimization problem

Algorithm 1 Gradient descent algorithm.

1: Initialization

• Set an initial k > 0.

• Set the iteration precision ε > 0.

• Set the step size t ∈ (0, 1), the maximum number of

iteration Nmax, and the iteration index j = 1.

2: Set f(k) = tr(CRLB) in (26).

3: repeat

4: 1. ∆k := −∇f(k)
5: 2. Update. k := k + t∆k and j = j + 1.

6: until j > Nmax or |∇f(k)| ≤ ε.
7: Output the optimal k.

min
k

tr(CRLB)

s.t. C1 : |α1| = · · · = |αi| = · · · = |αN |, ∀i ∈ C
C2 : |θ1| = · · · = |θi| = · · · = |θN |, ∀i ∈ C

C3 : ϕi =
2πi

N
, ∀i ∈ C

C4 : d1 = ... = di = ... = dN = d, ∀i ∈ C
C5 : σ1

2 = ... = σi
2 = .... = σN

2 = σ2, ∀i ∈ C
C6 : zi = 0, ∀i ∈ C.

(27)

By above transformation, the originally five optimization

variables in (21), i.e., αi, θi, ϕi, and di, have been converted

into a single k in (27). We adopt a gradient descent method

to find the promising k under the USC geometry, the details

of which are summarized in Algorithm 1.

Remark 3. From Eq. (26), the estimation performance can

be improved by increasing the number of anchors N and

decreasing the ToF measurements noise variance σ2 (because

by these the tr(CRLB) becomes smaller). On the other hand,

the proposed USC scheme is easy-to-implement in practice.

Moreover, the depth z can be reliably measured by depth

sensors nowadays with down to few millimeters’ accuracy

[39]. Based on this fact, we can use the method shown in

Algorithm 1 to figure out the USC’s radius, i.e., kz, for

localization accuracy assurance.

IV. SIMULATION EXAMPLES

In this section, we present extensive simulation results to

verify the performance of our derived theoretical conclusions

and proposed anchor-AUV geometry. We consider the USC

deployment (see Fig. 2) for localization, where the anchors’

number N ≥ 4, the surface sound speed is b = 1480 m/s,
and the underwater sound speed increases linearly with the

depth at a steepness of a. From [29], fixing the transmit power

tr(CRLB) =
a2σ2

(

1 + k2
)

[

k2z2 +
(

2b
a
+ z

)2
]

Nk2
+

a2

4





N

(1 + k2)
[

(

2b
a
+ z

)2
+ (kz)2

] ·

[

k2z −
(

2b
a
+ z

)

2b
a
+ 2z

]2

·

1

σ2





−1

(26)
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AUV-plane

Sea surface
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Fig. 2. The anchor-AUV geometrical shape proposed in Theorem 3.

and operating frequency, the ToF measurement noise is only

related to the distance between the anchor and AUV, given by

σ2
i = KE ·A(li, f), ∀i ∈ C. (28)

In Eq. (28), KE is a constant that is related to the transmit

power and the environment noise floor, and A(li, f) denotes

the overall path loss of an acoustic signal over a distance at

frequency f , which is defined as [40]

A (li, f) =

(

li
l0

)β

L(f)
li−l0 (29)

where li is the traveled distance that is taken in reference

to some l0, β denotes the path loss exponent that models

the acoustic spreading geometry, commonly in the range of

[1, 2], and L(f) represents the absorption coefficient that can

be obtained by an empirical formula in [40], [41]. The cor-

responding parameters used throughout the simulation results

are listed as follows: l0 = 1000 m, β = 2, KE = −10 dB,

and L(f) = 1 dB/km which is valid for frequencies below

20 kHz. In order to fairly compare the performance of our

proposed scheme with existing deployment schemes, in which

depth measurement are typically required, we consider that the

depth of the AUV can be measured by the equipped pressure

sensors and is usually corrupted by the Gaussian noise with

zero mean and unit variance2. In addition, an extended Kalman

filter (EKF) estimator involving the isogradient SSP is adopted

to perform the localization estimation in our simulations.

We first show how the parameter k affects the localization

accuracy in terms of the tr(CRLB) under different anchor

number settings in Fig. 3. As can be seen, for a given k,

the tr(CRLB) decreases when the anchor number increases,

which verifies our theoretical analysis in Remark 3. It is worth

2The assumption that the error introduced by the depth sensor is Gaussian
noise may be inappropriate in some practical environments but the corre-
sponding analysis has significantly theoretical value as the reference to what
can be achieved and thus has been widely adopted in existing works, e.g., in
[19], [42]–[44]. Investigation based on more realistic noise models, such as
the full scale error which is a combination of systematic bias and stochastic
errors, is also very meaningful.

k
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

tr
(C

R
LB

)

0.5

1

1.5

2

2.5

3

3.5

N=4
N=5
N=6
N=7
N=8

Fig. 3. The relationship between tr (CRLB) and k under different anchor
number settings. In this figure, the actual position of the AUV is set to be
[50, 50, 50]Tm and a = 0.1, considering distance-dependent noise.

noting that there exists an optimal k that achieves the minimum

tr(CRLB) for all of the five curves when k changes from 0.5

to 1.5. For example, the optimal k lies in 0.84–0.85 when the

number of deployed surface anchors varies from 5 to 8. Thus,

we can use a gradient descent method shown in Algorithm 1

to find k as well as the anchor-AUV ranges.

We then evaluate the localization performance of our pro-

posed USC deployment scheme by comparing its localization

accuracy with those of the other two widely-adopted anchor

deployment schemes, i.e., the cube deployment used in [19]

and the random deployment. To quantitatively characterize the

localization accuracy, we compute the root mean squared error

(RMSE) between the actual and estimated positions according

to the following formula

RMSE =

√

E{‖q̂ − q‖2}. (30)

The comparison of the RMSE versus the number of anchors

among three different anchor deployment schemes is plotted

in Fig. 4. From Fig. 4, although all the RMSE curves of three

deployment schemes decrease with the number of anchors, the

USC scheme always has the smallest localization error under

different AUV’s positions. More importantly, it is observed

from the Fig. 4(a) that, compared with the cube and the random

deployment schemes, the USC can reduce the RMSE by about

50% and 66%, respectively.

Furthermore, we exhibit the impacts of involved environ-

ment parameters on the localization accuracy of the USC

scheme, as shown in Fig. 5 and Fig. 6. Specifically, Fig. 5

displays how the RMSEs of three deployment schemes change

with the variation of the ToF measurement noise standard

derivation σ. Here, we consider a distance-independent noise

variance while maintaining the same distance between the

AUV and anchors for these three schemes. It can be observed

that, although the RMSEs of three deployment schemes lin-

early increase with σ, the USC deployment scheme always

has the smallest localization error. Meanwhile, even with a
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(a)

Number of anchors
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4.5
Random deployment
Cube deployment
USE deployment

(b)

Fig. 4. Comparison of RMSE versus number of anchors among three different
schemes. The steepness of SSP is a = 0.1, considering distance-dependent
noise. Regarding the cube deployment and random deployment, we use the
typical parameter settings provided in [19]. (a) The actual position of the
AUV is set to be [50, 50, 50]Tm. (b) The actual position of the AUV is set
to be [100, 100, 100]Tm.

large measurement noise, our proposed USC scheme achieves

a better localization accuracy than the other two schemes. For

example, when σ = 10 ms, the RMSE is approximately equal

to 8 m for the USC but surges to about 20 m for the cube

and random deployment schemes. Numerically, it is seen that,

when σ varies from 0.1 ms to 10 ms, the USC is capable

of decreasing the RMSE by 57%-63% and 68%-74% against

the cube and random deployment schemes, respectively. Fig. 6

shows the impacts of the steepness of SSP, i.e., a in (1), on the

localization accuracy of different deployment schemes. From

the figure, the RMSE curve of the USC undergoes the slightest

fluctuation with the SSP steepness and always achieves the

lowest RMSE in the steepness range of our interest. These

results indicate that our proposed USC scheme can guarantee

a satisfactory localization accuracy even under dynamically

σ (ms)
10-1 100 101

R
M

S
E

 (
m

)

10-1

100

101

102

Random deployment
Cube deployment
USC deployment

Fig. 5. Impacts of the time measurement error on the localization accuracy
under different deployment schemes. In this figure, the actual position of
the AUV is set to be [50, 50, 50]Tm and a = 0.1, considering distance-
independent noise.

Steepness of sound speed profile (a)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
M

S
E

 (
m

)

1

1.5

2

2.5

3

3.5

4

4.5

Random deployment
Cube deployment
USC deployment

Fig. 6. Impacts of the steepness of the SSP (a) on the localization accuracy
for different deployment schemes. In this figure, the actual position of the
AUV is set to be [50, 50, 50]Tm, considering distance-independent noise
with standard deviation σ = 1 ms.

changing underwater environments.

It is noteworthy that the aforementioned analysis explores

the anchor-AUV configuration problems under the assumption

that the relative positions between the AUV and anchors are

fixed. In practice, the anchors are deployed in advance while

the AUV proceeds task with autonomous movement, which

results in the variation of the relative position. In addition,

the AUV possibly starts from an unexpected initial position

in the hostile undersea environments. It’s therefore important

to evaluate the performance of the USC when the AUV is

moving with a deviation in the initial position. We consider

the situation where the anchors are deployed according to the

AUV’s initial position and keep stationary when the AUV has

a random movement. We refer this situation as the RM-USC

and use δ to denote the deviation between the initial position
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Fig. 7. Impacts of the distance of the AUV from the anchors’ center of gravity
on the localization accuracy. In this figure, the initial position of the AUV
is set to be [50, 50, 50]Tm and a = 0.1, considering distance-independent
noise with standard deviation σ = 1 ms.

of the AUV and the center of anchor’s gravity. On the other

hand, we define the relative-static USC (RS-USC) where the

anchors move with the AUV and change their configuration

with the AUV’s depth. Fig. 7 presents how the localization

accuracy varies with the anchor number in the RM-USC and

RS-USC scenarios under different deviation values δ. As can

be seen, the RS-USC always has a lower RMSE compared

with the RM-USC. Besides, it is intuitive that the RMSE

increases exponentially when the deviation of the RM-USC

grows. Particularly, within a certain range of deviations δ
(< 1 km), the RMSE of RM-USC is still maintained at a

small value (< 6 m), which indicates that the USC is robust

to position variance of the AUV and anchors.

V. CONCLUSIONS

The anchor-AUV geometries, including both the anchor-

AUV geometrical shapes and ranges, have significant im-

pacts on the AUV localization accuracy. Previous works have

explored anchor deployment problems for underwater target

localization based on the assumption that the sound speed

is constant, which actually varies with the depth. This fact

implies that the localization accuracy possibly can be further

improved by an appropriate anchor-AUV geometry that takes

the underwater varying sound speed into account. Following

this insight, we have devoted to formulating the practical

variability of underwater sound speed into the anchor-AUV

geometries optimization problem to design a proper anchors’

configuration for achieving higher localization accuracy in 3-

D underwater environments. Regarding this problem, we have

first derived the Jacobian matrix of the measurement errors at

the AUV’s true position and used it to quantify the CRLB with

ToF measurements under a depth-dependent isogradient SSP.

By minimizing the trace of the CRLB, we have formulated

an optimization problem that is multivariate and nonlinear

to figure out the satisfactory anchor-AUV geometry. Based

on the Courant-Fischer-Weyl min-max principle and the AM-

GM inequality, we have transformed this problem equivalently

into a more explicit minimization problem. Furthermore, an

easy-to-implement anchor-AUV geometry, referred to as the

uniform sea-surface circumference (USC) deployment scheme,

has been obtained by us. In the USC, all the anchors are

uniformly distributed along a circumference on the sea surface

with its center being right above the AUV. The radius of this

circumference, or equivalently the anchor-AUV range, pro-

duces great impacts on the system’s overall localization per-

formance. Thus, we reformulate a range optimization problem

under the USC and further figure out the promising anchor-

AUV ranges that achieve high localization accuracy through

gradient descent algorithm. Extensive simulation results have

verified that the USC has better localization performance than

the cube and the random deployment schemes under the same

parameter settings. Moreover, even if the relative geometry of

the AUV and anchors changes, the USC deployment can still

maintain satisfactory localization accuracy.

It is worthwhile to note that this paper considers the

isogradient SSP for simplifying our formulation and analysis.

However, practical SSPs possibly vary nonlinearly and even

non-monotonically with respect to the depth in some ocean

regions, which indicates that the isogradient SSP shown in

Eq. (1) should be modified in these cases. Thus, it is an

interesting research direction to extend our proposed methods

and analysis to more general SSP models, such as the multiple

isogradient SSP and experiment-based SSP. Moreover, when

considering more complicated scenarios, such as the scenario

that the AUV is moving inside a bounded area, how to improve

the AUV localization accuracy from the perspective of anchor

deployment is also well worth studying.

APPENDIX A

PROOF OF THEOREM 1

In our considered 3-D ToF-based AUV localization sce-

nario, including N anchors, the Jacobian Jo evaluated at the

AUV’s true position q = [x, y, z]T can be given by

Jo =





















∂t1
∂x

∂t1
∂y

∂t1
∂z

...
...

...

∂ti
∂x

∂ti
∂y

∂ti
∂z

...
...

...

∂tN
∂x

∂tN
∂y

∂tN
∂z





















(31)

where ∂ti
∂x

, ∂ti
∂y

, and ∂ti
∂z

represent the first partial derivatives

for the ith anchor’s RTT at the AUV localization q. From (4),

calculating the partial derivative for ti is equivalent to deriving

the following corresponding entries

∂ti
∂x

=
∂ti
∂θi

∂θi
∂x

+
∂ti
∂αi

∂αi
∂x

∂ti
∂y

=
∂ti
∂θi

∂θi
∂y

+
∂ti
∂αi

∂αi
∂y

∂ti
∂z

=
∂ti
∂θi

∂θi
∂z

+
∂ti
∂αi

∂αi
∂z

.

(32)
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For notation simplification, we define li as follows

li =

√

(x− xi)
2
+ (y − yi)

2
+

(

2b

a
+ z + zi

)2

. (33)

By substituting ti in (4), αi in (2), θi in (2), ϕi, di, ri, and li
in (33) into (32), we can obtain

∂ti
∂θi

=
1

a
· 2 sin θi sinαi

cos2θi − sin2αi
(34)

∂ti
∂αi

=
1

a
· 2 cos θi cosαi

cos2θi − sin2αi
(35)

∂θi
∂x

= − (x− xi) (z − zi)

r2i · di
= − 1

ri
sin θi cosϕi (36)

∂θi
∂y

= − (y − yi) (z − zi)

r2i · di
= − 1

ri
sin θi sinϕi (37)

∂θi
∂z

=
di
r2i

=
1

ri
cos θi (38)

∂αi
∂x

=

(

2b
a
+ z + zi

)

(x− xi)

l2i · di
=

1

li
cosαi cosϕi (39)

∂αi
∂y

=

(

2b
a
+ z + zi

)

(y − yi)

l2i · di
=

1

li
cosαi sinϕi (40)

∂αi
∂z

= − 1

li
sinαi. (41)

Thus, we can rewrite the Jacobian matrix as (12).
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